
The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)

Santa Fe, New Mexico, April 27-30, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

COBEA: A CORBA-Based Event Architecture

Chaoying Ma and Jean Bacon
University of Cambridge

COBEA: A CORBA-Based Event Architecture

Chaoying Ma and Jean Bacon

University of Cambridge Computer Laboratory

Pembroke Street, Cambridge CB2 3QG, United Kingdom

|

http://www.cl.cam.ac.uk/Research/SRG/opera/

cm@cl.cam.ac.uk, jmb@cl.cam.ac.uk

Abstract

Events are an emerging paradigm for composing
applications in an open, heterogeneous distributed
world. In Cambridge we have developed scalable
event handling based on a publish-register-notify

model with event object classes and server-side �l-
tering based on parameter templates. After expe-
rience in using this approach in a home-built RPC
system we have extended CORBA, an open stan-
dard for distributed object computing, to handle
events in this way.

In this paper, we present the design of COBEA - a
COrba-Based Event Architecture. A service that is
the source of (parameterised) events publishes in a
Trader the events it is prepared to notify, along with
its normal interface speci�cation. For scalability, a
client must register interest (by invoking a register

method with appropriate parameters or wild cards)
at the service, at which point an access control check
is carried out. Subsequently, whenever a matching
event occurs, the client is noti�ed.

We outline the requirements on the COBEA archi-
tecture, then describe its components and their in-
terfaces. The design and implementation aim to
support easy construction of applications by us-
ing COBEA components. The components include
event primitives, an event mediator and a compos-
ite event service; each features well-de�ned inter-
faces and semantics for event registration, noti�ca-
tion and �ltering. We demonstrate that COBEA is

exible in supporting various application scenarios
yet handles e�ciently the most common event com-
munications. The performance of server-side �lter-
ing for various registration scenarios is presented.
Our initial experience with applications is also de-
scribed.

1 Introduction

Event communications are asynchronous compared
with the request/response operations in the stan-
dard client/server model for distributed systems.
There are many application areas where event-
driven operation is the most natural paradigm: in-
teractive multimedia presentation support; telecom-
munications fault management; credit card fraud;
disaster simulation and analysis; mobile program-
ming environments; location-oriented applications,
and so on. An event is de�ned as the occurrence of
some interaction point between two computational
objects in a system. Such a point may re
ect an in-
ternal change of state of the system, or an external
change captured by the system. An event can be a
base event which has a single source of generation,
or a composite event which correlates multiple base
event occurrences to be signalled as a whole. Events
may be pushed by suppliers to consumers (the push
model) or pulled by consumers from suppliers (the
pull model) through speci�c or generic interfaces;
such communication may be direct, or indirect i.e.
through an intermediate object between the con-
sumer and the supplier. Active systems monitor
the occurrences of events and push them through to
client applications to trigger actions [2, 5]. In con-
trast, passive systems require client applications to
poll to detect event occurrences. An active system
is therefore inherently more scalable than a passive
system.

For example, in an Interactive Multimedia Presen-
tation support platform [3] a script speci�es event-
condition-action rules to drive the interactive pre-
sentation. The events \Roger appears" and \Roger
disappears" may be associated with frames 2056 and
3092 of a video presentation. If the user clicks on
Roger (an area of the screen marked during pre-

processing of the �lm) after \Roger appears" and
before \Roger disappears" then the pause method
is invoked on the video, a new window pops up, text
on Roger is displayed and the �lm resumes when
the user clicks again. Location devices, such as ac-
tive badges or electronic tags, are another source of
events. We may wish to analyse how users behaved
during a �re drill in order to determine bottlenecks
in a building [2]. We may arrange for our program-
ming environment to move with us when we are de-
tected moving from one workstation to another [1].
In telecommunication, various events are monitored
by the management system and used for network
analysis and fault recovery [12].

We have designed an architecture for building ac-
tive, event-driven systems in a large distributed en-
vironment, where there is potential for high volumes
of event tra�c; for instance in telecommunication
applications, a single source can generate tens or
hundreds events per second. The design focuses
on providing components to support easy construc-
tion of applications. The components include event
primitives, the mediator and the composite event
service; each features well-de�ned interfaces and se-
mantics for event registration, noti�cation and �ne-
grain �ltering. We demonstrate that COBEA is

exible in supporting various application scenarios
yet handles e�ciently high event volumes in the pro-
totype implementation. After experience in using
this approach in a home-built RPC system we have
extended CORBA, an open standard for distributed
object computing, to handle events in this way.

1.1 Existing Work

Architectural frameworks for event handling in large
distributed systems are discussed in [2, 7, 14, 19,
23, 24, 25]. The CORBA Event Service [14] intro-
duces the concepts of event channel, supplier and
consumer. An event channel is an intermediate ob-
ject which decouples the supplier and the consumer.
Event communication may be untyped in which a
single parameter of type \any" is used for passing
events; applications can cast any type of data into
this parameter. For typed event communication,
an interface I is de�ned in CORBA IDL. In the
typed push model, suppliers invoke operations at
the consumers using the mutually agreed interface
I; in the typed pull model, consumers invoke op-
erations at suppliers, requesting events, using the
mutually agreed interface Pull<I>. Some applica-

tion scenarios may be supported by the push and
pull models, or a combination of them. But it is
not possible for a client to select only those events
which are of interest, at �ne granularity, by means
of a detailed speci�cation of parameters and wild
cards. Furthermore, in the push model, the sup-
plier is responsible for acquiring the reference to an
appropriate noti�cation interface in order to push
events to the consumer. The CORBA event service
also lacks the ability to �lter events; only �ltering by
interface type is available. Other major limitations
include overly general, thus ine�cient for many ap-
plications, lack of standard semantics and protocols
for event channels and lack of type safety in untyped
interfaces. Schmidt and Vinoski have reviewed the
CORBA event service [21].

The Cambridge Event Paradigm [2] addresses some
of the shortcomings mentioned above as well as
some advanced event handling issues. The publish-
register-notify mode is very well supported: a ser-
vice that is the source of (parameterised) events
publishes in a Trader the events it is prepared to
notify, along with its normal interface speci�cation.
For scalability, a client must register interest (by in-
voking a register method with appropriate parame-
ters or wild cards) at the service, at which point an
access control check is carried out. Subsequently,
whenever a matching event occurs the client is no-
ti�ed. Filtering by parameters including wildcard
parameters and by event types at event sources are
the key features, which eliminate the need of plac-
ing �lters between the event server and client. For
example, users may specify �ltering criteria which
describe the PrintFinished event on a �le named
\foo" (by giving the �le identi�er upon event regis-
tration), or on every �le (by giving a wildcard �le
identi�er *"). The Cambridge work focuses on pro-
viding event handling primitives which are based
on the direct push model. A heartbeat protocol
has been incorporated, which can be tuned for the
trade-o� of computation cost between timely and
delayed event evaluation in order to ensure correct-
ness in the light of network failures. Access con-
trol on event registration have also been proposed;
you may not be allowed to monitor the movement
of your boss, for instance. In addition, a Composite
Event Language and an evaluation engine have been
developed to allow the use of composite events. The
language currently has �ve operators: Without (-

); Sequence (;); And (&), Or (j); Whenever

($) (see [8] for details). For example, a composite
event $Enter(x, r) will trigger whenever someone
x enters a room r; and an event Enter(a, 123) j

Enter(b, 123) will trigger if either person a or b
enters room 123.

The design, however, is based on a conven-
tional RPC system rather than an object-oriented
paradigm. The implementation uses MS-RPC3, a
locally developed RPC system, thus has limited in-
teroperability. Furthermore, it requires extension to
the MS-RPC IDL for speci�cation of events, thus
has the need to marshal events separately from or-
dinary RPCs. It does not directly address issues of
indirect event communications, although a compos-
ite event server may be used as an event mediator.

1.2 Objectives

Motivated by observation of the shortcomings of the
existing work and the emerging new requirements,
in particular from the application domains such as
telecommunications, we have designed COBEA for
event handling to extend the existing Cambridge
Event Paradigm and the CORBA event service.
The main goal is to design an architecture which
provides a framework for object-oriented design and
development of active application systems, espe-
cially in a large distributed environment. COBEA
extends the CORBA Event Service, namely by sup-
porting the publish-register-notify mode, parame-
terised �ltering, fault-tolerance, access control, and
composite events; all these features are missing from
the CORBA event service. COBEA is a reincarna-
tion of the Cambridge Event Paradigm with all the
features mentioned above as well as support for dy-
namic addition of new event types and event medi-
ator.

The basic requirement on an architecture for event
handling is that events can be identi�ed, clas-
si�ed, detected, speci�ed and asynchronously re-
ported to any interested party through a standard
or application-de�ned interface. A general archi-
tecture, based on which large-scale distributed ac-
tive application systems can easily be constructed,
is clearly required. We believe that both direct
and indirect event communication should be sup-
ported based on a wide range of application re-
quirements, e.g. in the areas of CSCW (Computer
Supported Cooperative Work), management in net-
work, telecommunication and distributed systems,
multimedia systems and mobile systems [2, 3, 6, 9,
13]. We focus on supporting the push model, i.e.
after explicit registration of interest by consumers,

events are pushed directly or indirectly by suppli-
ers to consumers (a.k.a. the Noti�cation Model).
Event registration is essential for receiving selective
event noti�cations. Such a scheme not only solves
the main problems with synchronous communica-
tions - the saturation of network resources caused
by polling operations, but also solves the problem
of end user saturation caused by pushing everything
through. The pull model can easily be supported by
using existing technologies thus speci�c support is
not necessary. The goals of COBEA are, in outline,
as follows:

� Support direct/indirect noti�cation of events

� Support interfaces for event noti�cation

� Support interfaces for event registration

� Support �ne-grain event �ltering

� Support interfaces for management (e.g. regis-
ter suppliers with an event mediator)

� Support composite events

� Support dynamic addition of user-de�ned event
types

� Support security on event accesses (e.g. role-
based event accesses)

� Support Quality of Service (e.g. reliable or fast,
priority-based event delivery)

2 Overview of COBEA

The components of COBEA include event han-
dling primitives with which an event sink and an
event source interface are de�ned, and event services
namely a mediator and a composite event server.
The architecture is illustrated in Figure 1, where
components may be as primitives (grey circles) or
stand-alone servers (white circles). These compo-
nents can be used by applications via standard in-
terfaces; and once included, they handle events for
the applications as indicated by the arrows in dotted
lines. Figure 2 shows inheritance structure of the
component interfaces, in which an application may
de�ne its own typed interfaces for handling events
with a choice to extend or not to extend the stan-
dard/generic interfaces de�ned in COBEA. We fo-
cus on the direct/indirect push model which forms

SourceSink

Consumer
Application

Supplier
Application

Mediator Composite
Event
Server

Figure 1: The COBEA Architecture

the core of event communication. The pull model
can easily be supported by using the CORBA re-
quest/response, or most RPC communication prim-
itives, or the forthcoming CORBA Messaging Ser-
vice [17], or by incorporating the pull interfaces de-
�ned in the CORBA event service.

The event primitives support mainly event registra-
tion and noti�cation operations de�ned by the event
sink and event source interfaces. An application ob-
ject can play the role of an event consumer or sup-
plier by supporting the event sink or source interface
respectively, or by supporting both interfaces, while
providing other services at the same time (Figure 3
shows the incorporation of the event primitives in
an application). Once registered the interest, the
consumer will be noti�ed whenever the event oc-
curs. New interfaces for application-speci�c event
handling can be derived from the primitive inter-
faces.

The event services de�ne a number of objects act-
ing either as event mediators or providing services
for handling composite events. The main task of a
mediator is to decouple the consumer and supplier
by accepting events from the suppliers, and pass-
ing events only to the interested consumers. Thus
consumers and suppliers do not need to know each
other for communicating events. Many applications
require noti�cation of events from a number of sup-
pliers in a speci�ed pattern of combined events from
these di�erent sources. A composite event service is
designed to meet such requirements.

One design principle is that the architecture should
be lightweight yet powerful enough in order to sup-
port the construction of various distributed active
systems. Some of the interfaces in COBEA may be
de�ned by inheriting from the CORBA event service
interfaces; for instance, the snk interface can extend

Event Sink
Event Source

User-defined
 Event Sink

User-defined
Event Source

Proxy

Typed
Proxy

Composite
 Proxy

 Mediator
Administration

Typed Mediator
Administration

 Composite
Adminintration

User-defined
 Comp Proxy

mediator

composite
event server

User-defined
 proxy

Figure 2: The Inheritance Hierarchy

Legends: round-corner rectangles represent objects; some ob-

ject such as a mediator supports two interfaces. Shade ob-

jects have user-de�ned interfaces; other objects support stan-

dard/generic interfaces. Arrows show the inheritance from

the interface that they point to; applications may choose

whether to inherit if the arrows are in dotted lines.

the CORBA PushConsumer interface. Extending
the CORBA event service this way means, however,
that all the interfaces de�ned by the CORBA event
service must be supported. We believe it is not
necessary because in our Noti�cation Model, most
CORBA event service interfaces are undesired to
use by applications. Later in Section 5.1, we will
discuss how COBEA can be made to work with the
CORBA event service.

Another design principle is that a �lter should nor-
mally be placed on a supplier or a server to reduce
the tra�c to the consumers; the �ltering criteria can
be checked either at the supplier or at the server. It
is important that �lters should be kept as simple as
possible. Sophisticated �ltering which is less com-
monly used by most applications can be done at
the application level rather than at the event sys-
tem support level. There is a trade-o� between the
volume of event tra�c generated and the complexity
of supplier, mediator or consumer objects. Related
work such as the ECA (Event-Condition-Action)
rules in active databases [4, 5, 22] uses conditions

An Event
Sink Object

An Event
Source Object

notify

register

application-specific
service operation(s)

An Event
Consumer

An Event
Supplier

SERVERCLIENT

Figure 3: Direct event communication through
primitives

which are like �ltering criteria but can not be sepa-
rated from either the evaluation engine or the action
to take upon event occurrences. In our event archi-
tecture, �lters can be placed at an event server, at
a supplier, at a consumer, or chained among them,
thus allowing less event tra�c and greater
exibility.

Three options are available for implementing
COBEA on top of the general-purpose communi-
cation system (e.g. an RPC system): create a new
description language for speci�cation of events, ex-
tend an existing IDL, or construct libraries to work
with an existing IDL and its RPC system. The
�rst two approaches allow the freedom to experi-
ment with new ideas; the second approach in par-
ticular allows a standard extension to RPC systems
for event speci�cation. However, experience shows
that application programmers are very reluctant to
move existing programs, or write new ones, to make
use of a non-standard environment. It is also very
cumbersome for small research groups to maintain
a non-standard RPC system, and keep its capabil-
ities and performance competitive with that of a
standard system. Thus, we base the implementa-
tion on CORBA - an open standard for distributed
object computing [15]. We make the interfaces stan-
dard or follow a well-de�ned design pattern instead
of using a non-standard IDL. As interoperability is
concerned, CORBA 2.0 is designed to deal with het-
erogeneity and interoperability while most RPC sys-
tems are not.

This CORBA-based approach has the following ad-
vantages:

� Uses only standard IDL for events.

� No need to have a separate marshaling package
for handling events.

� It is possible to allow the number of parameters

in a registration interface to be di�erent from
that in the corresponding noti�cation interface
for the same type of event, if an application so
requires.

� Type safety can be handled properly.

Based on the architectural framework, we are cur-
rently implementing a class library for COBEA.
We have implemented the primitives, a compos-
ite event evaluation engine plus a parser based on
the composite event algebra developed at the Cam-
bridge Computer Laboratory. We are implement-
ing two types of event service, namely an event
mediator and a composite event service; the lat-
ter will incorporate the evaluation engine and the
parser mentioned above. Furthermore, applications
based on COBEA can easily be made to work with
the CORBA Event Service, because all COBEA in-
terfaces are speci�ed using standard CORBA IDL.
We have also developed a fault detection system for
telecommunication network management based on
COBEA.

3 The Design of COBEA

3.1 Primitives and Interfaces

Two objects are identi�ed in the event noti�cation
model: a source and a sink of an event. It is essential
for an event sink to receive events sent by an event
source. The event source should support interfaces
for event registration and deregistration; the event
sink should support an interface for event noti�ca-
tion. Both objects should also support a disconnect
operation. The primitives also support the passing
of a generic event header with standard attributes
(properties), such as event identi�er, creation time,
type name, event source identi�er and priority code.
In addition, the interfaces allow a single parame-
ter - event body - for passing application-speci�c
event data dynamically. If more parameters are to
be passed in applications, new interfaces should be
de�ned, which can extend the primitive interfaces.

The standard interfaces are speci�ed in the CORBA
IDL as follows. The de�nition of exceptions is omit-
ted.

module BaseEvent {

exception ...

struct EventTime

{long sec; long usec; string clock_id;};

struct EventHeader {

long id; //the event id

EventTime create_time;

string event_type;

string source_id;

long priority; //severity code of event

};

struct Duration {

EventTime begin; EventTime end;

};

struct ConsumerSpec {

Object consumer_ref,

//the consumer object reference

Duration, //for time specific filtering

string QoS, //QoS constraint

string who, //for access control

};

interface Snk {

void notify(in EventHeader e, in any data)

raises (NotConnected);

void disconnect_snk();

};

interface Src {

void register(

in EventHeader e,

in string header_filter,

in any event_body,

in string body_filter,

in ConsumerSpec consumer,

out long uid, //the consumer id

out long eid) //the registration id

raises (RegistrationFailed);

void deregister(in long uid, in long eid)

raises (UserNotFound, EventNotFound);

};

};

At registration of interest, a number of �ltering pa-
rameters are allowed, including a duration for speci-
fying the start and end time of events of interest. A
�lter each for the event header and the event body
can also be speci�ed, which is de�ned by a string
containing operators including * " for wildcard,
\==", \>=", \<=", \<", \>", and \!=" for com-
parison. Filters can be used in combination with the
given value of the parameters in the event header or
body. The position of the operators in a �lter is
important; they correspond to the position of the
parameters in the event header or body. Each oper-

ator is two characters long with a trailing space in
case of \>", \<" or *". For more complex �lter-
ing, see the section on the composite event service.
In addition, the relation among the expression of
the parameters is conjunction. The parameter QoS
is for the consumer to specify quality-of-service re-
quirements such as reliable delivery or fast (unreli-
able) delivery of events. The parameter \who" can
be used to pass user identi�cation for access con-
trol. Upon registration, a Template will be created
which describes what event should be sent to which
consumer.

For noti�cation, an event matching the template of
an event registration should be passed by the source
to the registered sinks. Upon noti�cation, actions
can be taken at the consumer depending on appli-
cations.

An event communication can be broken by invok-
ing a disconnect snk operation at the event sink,
or a deregister operation at the event source. A
deregister operation will either remove a registered
consumer with all related event templates or only
a particular event template. If a communication is
closed by the supplier, the consumer receives a no-
ti�cation through the disconnect snk operation.
The communication can only be resumed upon an-
other register operation.

It should be noted that the de�ned interfaces allow
only a standard event header with �xed number of
parameters; the interfaces are also standard. For
many applications, speci�c interfaces can be de�ned
by following a well-de�ned design pattern in IDL
�les, e.g. register<T>(), where T may by sub-
stituted by a DrawEvent or AccountingEvent
for a drawing or an accounting application respec-
tively. A common set of event manipulation op-
erations, such as comparison of the occurrence of
an event against the registered templates, are sup-
ported through a common class library.

An example of an application-de�ned event sink in-
terface may look as follows, where Ti is a type name.
k parameters are used in this example. The interface
extends to the standard Snk interface.

interface Snk<T>: BaseEvent::Snk {

void notify<T>

(in T1 arg1, in T2 arg2,..., in Tk argk)

raises (NoSuchType, NotImplemented);

};

Event
Consumers

An Event
Mediator

(Simple) Event
Suppliers

.

.

.

.

.

.

register

Admin

notify
notify

Src

Snk

Snk

Snk

notify

register

Admin

notify

Figure 4: Indirect event communication through a
mediator (only simple suppliers are shown)

3.2 Mediator and its Interfaces

For many applications, it is useful to have an event
mediator. Figure 4 shows the indirect model of
event communication. The advantages of having a
mediator are: (1) a consumer or a supplier does not
have to keep all the contacts to every event supplier
or consumer but only the contact to the mediator;
(2) simple event suppliers can be built which do not
support a registration method; (3) commonly used
�lters may be built once for all; e.g. a �lter at a
mediator may be placed for all faulty events from
one or more suppliers; (4) it is also easier to adopt
group communication protocols such as a reliable
multicast protocol at a mediator.

One assumption on the mediator is that a supplier
needs a mediator to publish events; an event may
be published by its type name and/or attributes
(parameter names). A consumer needs to �nd a
mediator to receive events. Finding a mediator is
orthogonal to using it. Particular bindings between
mediators, suppliers and consumers may also be ar-
ranged.

For standard events, the interfaces are as follows.
Users may attach an application-speci�c piece of in-
formation when registering a new supplier.

module Mediator {

exception ...

interface Admin {

Object new_supplier(

in string appl_info,

in boolean relay,

out string uid)

raises(RegistrationFailed);

void remove_supplier(

in string uid,

in string application_info)

raises (NoSuchSupplier, NoFound);

};

interface proxy:

BaseEvent::Snk, BaseEvent::Src {

proxy lookup(in string type_id)

raises (NotFound);

};

};

For application-speci�c events, the interfaces should
again be de�ned in the IDL �les. Moreover, a
generic interface is required for registration and
noti�cation of these events in many applications,
e.g. event noti�cation in telecommunication man-
agement. The generic interface allows dynamic ad-
dition of new event types and does not require all
event types to be de�ned in IDL �les. It is possible
for a particular implementation to support only the
generic interface. An exception NotImplemented

will be raised if operations de�ned by Snk<T> or
Src<T> are invoked. The generic interface of a
mediator is de�ned as follows.

module TypedMediator {

exception ...

interface TypedAdmin: Mediator::Admin {

Object new_typed_supplier(

in string type_id,

in boolean relay,

out string uid)

raises(RegistrationFailed);

void remove_typed_supplier(

in string type_id, in string uid)

raises(NoSuchSupplier, NoSuchType);

};

interface TypedProxy {

void typedProxyRegister(

in string type_id,

in boolean relay,

in NVList *arglist,

in short argno,

in string filter,

in ConsumerSpec consumer,

out string uid,

out string eid)

raises(RegistrationFailed);

void typedProxyNotify(

in string type_id,

in short argno,

in NVList *arglist)

raises(NotConnected);

TypedProxy typedProxyLookup(

in string type_id)

raises (NotFound);

};

};

The semantics of a mediator (either generic or
application-speci�c) depends on the types of suppli-
ers, which can be simple or sophisticated. To sup-
port a simple supplier, a mediator will not register
events at the suppliers. It accepts any event from
the registered supplier, matches it against the reg-
istered event templates and noti�es the consumers.
To support a sophisticated supplier, a mediator can
relay event registrations to the suppliers as required
or process the events as for a simple supplier. To
relay, a mediator does nothing but register the con-
sumer's reference and assign a user id to the con-
sumer; the user id is useful for the consumer to
deregister its interest, and for the mediator to tell
which consumer the received event belongs to. Af-
ter this, the mediator invokes the register<T>

method at the supplier with its own reference (in-
stead of the consumer's reference) and the user id,
and then waits for noti�cation. Upon noti�cation,
the mediator relays the noti�cation to the consumer
by invoking the notify<T> method at the con-
sumer. Upon registration and noti�cation, the me-
diator needs to construct a speci�c interface for reg-
istration e.g. register<T> at the supplier, and a
speci�c interface for noti�cation e.g. notify<T>

at the consumer in case a TypedProxy is used. In
both cases, the supplier should inform the mediator
about the event types it noti�es before the media-
tor accepts any registration from a consumer for the
events.

3.3 Composite Event Service

There is an increasing demand for using composite
events, for example, in telecommunication network

management, several alarms raised by some network
devices may contribute together towards a particu-
lar network problem known to the network manager;
this requires that several events (i.e. alarms in this
case) be signalled as a whole to the consumer (i.e.
the network manager in this case). A composite
event server is therefore included in our architec-
ture as one of the main components. Speci�cation
of composite events needs to follow a well-de�ned
syntax to allow standard parsing by a composite
event server. A composite event algebra has been
developed at Cambridge on which a composite event
language is based. For instance, a sequence of events
A and B is speci�ed as A ; B, and event A or event
B happens is speci�ed as A j B.

One way to register a composite event with a server
is using an application-speci�c interface. Typical
parameters in such an interface include event type
name, a list of parameters associated with the event
in which each parameter is represented by a struc-
ture (e.g. NamedValue in CORBA) with attributes
such as parameter name, parameter type, parame-
ter value, parameter mode (i.e. in, inout or out), a
�ltering string, a string expression of the compos-
ite event (e.g. A j B) in the Cambridge Composite
Event Language, and other parameters such as the
consumer's reference, duration, QoS etc. The inter-
face looks like:

registerComp < CT >(string event1, NVList
parameters list1, string filter1, ..., string
eventn, NVList parameters listn, string

filtern, string expression, Duration d, ...);

where CT is the type name of a composite event.
As before, the position of the characters in the �lter
corresponds to the position of each of the parame-
ters in the list.

Another possible way to register a composite event
is using a standard interface in which expressions
of composite event are speci�ed in a well-de�ned
syntax (e.g. the constraint language from the OMG
Life Cycle Service [14]) and passed as a string. For
example, a composite event may be expressed as:

\event type = \enter"; room =\T14"; person
= \Oliver"; duration = \Mon to Fri";" j
\event type = \absence"; room = \T14";
person = *";"

The interface may look like:

registerComp(string expression, Duration d,
...);

We concentrate on the former because it is consis-
tent with our interface design in COBEA. It is also
useful to have a generic interface for composite event
registration as it is for base events. To be noti�ed of
a composite event, a consumer has to submit upon
registration the parameters to be passed through
the noti�cation. If the base events are not available
at the server, the server will look for the suppliers;
this is similar to the lookups by a consumer for a
supplier. The interface is as follows.

module CompositeEventServer {

exception SyntaxError {};

interface CompAdmin:TypedMediator::TypedAdmin {};

typedef struct BaseEvent

{string type_id; NVList *arglist; string filter};

typedef sequence<BaseEvent> CompEvent;

//generic composite event registration

void typedRegisterCompEvent(

in short eventno, //the number of base events

in CompEvent comp_event, //related base events

in string expression,//describes the comp. event

in short out_argno,

in NVList *out_arglist,

in ConsumerSpec consumer,

out long uid,

out long eid)

raises (SyntaxError,RegistrationFailed);

void typedNotifyCompEvent:

TypedMediator::TypedProxyNotify {};

};

The CompAdmin is for a supplier to register itself
with the server by indicating the base events it sup-
ports, and to get a reference to a proxy for passing
the base events. There is no di�erence from a sup-
plier's point of view whether a base event is used in
a composite event or not.

Upon a registration of a composite event, the server
will analyse the parameter comp event to re-
tain the type name, the parameters and the �lters
for each of the base events. The relation of the
base events is obtained from the expression, e.g.
A;B;C where A, B and C are base event type
names. The server also retains from out argno

and out arglist the parameters for constructing

a noti�cation interface to invoke at the consumer.
More complex �ltering is possible given the support
for composite events. For example, consumers may
specify a list of parameter values in events to be re-
ceived ; a composite event A(12, \foo", \<===")
j A(14, \foo", \>=== ") may be used for an event
�lter which checks if the �rst parameter is less than
12 or larger than 14, and the second parameter is
\foo". Note that the composite event is expressed
here intuitively rather than by using the interfaces
de�ned in this section.

4 Building Applications with

COBEA

In this section we list some application scenarios
supported by COBEA.

4.1 Application Scenarios Supported

Scenario 1

An application creates a mediator object as
a noti�cation service with a generic interface
for event registration and noti�cation. Or-
bixTalk [10] and the TINA noti�cation ser-
vice can be constructed this way in COBEA.
This scenario is not well supported by either
the CORBA Event Service or the Cambridge
Event Paradigm, in the latter a composite
event server would be used for this purpose.
Examples of such scenarios can be found in
[10, 13, 21].

Scenario 2

An application de�nes its own typed inter-
faces for events which can be supported by
the class library implemented for the primi-
tives in COBEA. The applications supported
by the Cambridge Event Paradigm can all be
constructed this way in COBEA. This scenario
is not well supported by the CORBA Event Ser-
vice, and not supported at all by the TINA
noti�cation service in which an intermediate
server is enforced. Examples of the scenario
can be found in [3, 11].

Scenario 3

An application de�nes its own proxy for typed
events without inheriting from the generic
TypedProxy interface. The CORBA typed

event channel can support this scenario but no
provision for registration of events is available.
Furthermore, three steps must be carried out
for connection to a CORBA event channel: (1)
get an object reference for a factory which re-
turns the reference to the proxies; (2) get an ob-
ject reference for the supplier/consumer proxy;
(3) connect to the proxy. It is much simpler
to connect to the mediator than to the event
channel.

4.2 An Example of Telecommunication
Application

Our preliminary experience of using COBEA for
building distributed active application systems in-
cludes developing an alarm correlation system for
network management in telecommunications. This
work [13] shares motivation and scenarios with
alarm correlation research being done in Nortel
Technology [20], but o�ers a solution to the prob-
lem that di�ers in key design elements, and o�ers it
on the COBEA platform. Alarm correlation includ-
ing alarm �ltering can occur at several levels in the
progress of an event from the raising object (usually
a network device) through any intermediate critical
real-time controlling software to the network man-
ager. These levels (in the order of the lowest to the
highest) are: hardware element; real-time control;
system management. Our focus is on the system
management level.

Alarms can indicate possible problems (i.e. raise hy-
potheses), can con�rm existing hypotheses or can
be accepted (without change of state) by exist-
ing hypotheses or existing (con�rmed) problems.
We use the Composite Event Language to express
the complex relations between alarms and prob-
lems/hypotheses by treating alarms as base events
and problems/hypotheses as composite events. We
employ the evaluation engine and composite event
language parser implemented in order to monitor
and trigger these composite events. The system
manager supplies the alarms (base events) to the
composite event server, which monitors the compos-
ite events (problems/hypotheses) and noti�es the
problem/hypothesis browser in the alarm correla-
tion system. After a problem has been diagnosed,
appropriate actions can be taken at the system man-
agement level for network restoration. The work
has shown that it is feasible to support active alarm
correlation using COBEA and the Composite Event

Language, and has suggested directions to improve
the language [13].

Currently, we are building a trial system that fea-
tures a graphical user interface for registering, de-
registering and browsing composite events, and an
event generator which can generate events of any
speci�ed type at a given interval. Performance will
be measured to see if the system is suitable for on-
line real time alarm correlation. Some real-time
issues are discussed in [7]. Our experience shows
that an event mediator can be used as a front end
active database that incorporates the existing net-
work management information base which supplies
the network con�guration data, and as a proxy for
some of the dumb devices which signal alarms but
do not understand CORBA.

5 COBEA Performance and Other

Issues

COBEA is a general event architecture for build-
ing distributed active systems. Its main goal is to
allow scalability by reducing the volume of noti�-
cations. The goal is achieved by implementing ef-
�cient �ltering at event source. Our initial mea-
surement against the prototype implementation has
shown that �ltering at event source is crucial for the
system to scale as the volume of events increases.
Some domain speci�c issues such as real-time issues
described by [7] are not particularly addressed by
COBEA. COBEA could be tuned for speci�c do-
mains if required.

These tests were run on two Digital Alpha AXP
3000 workstations connected by a 155Mbit ATM
network. One (for the event source and/or the event
sink) is AXP 3000/900 with 275MHz CPU; and the
other (mainly for the event sink) is AXP 3000/300
with 150MHz CPU; both have dual-issue processors
running the OSF V3.2D-1 operating system. The
event system and applications were built with g++
2.7.2 with -O2 optimisation. The load was light on
both machines most of the time during the testing,
although the Alpha AXP 3000/900 normally had
about 50 users and around 400 processes. We run
many sinks on the Alpha AXP 3000/300 to avoid
causing signi�cant delay on the shared Lab machine
(Alpha AXP 3000/900).

Firstly, we conducted the latency tests to determine

events �lter & copy (�s) / # consumers
registered 1 10 50
10 4.9 28 140
50 5.9 32 N/A
100 6.7 33 N/A

Table 1: Event Filtering Latency for One or More
Consumers

the latency of �ltering at event source. Secondly we
conducted volume tests to determine the impact of
event volume increase upon the event server.

Table 1 shows the result of the latency tests. When
events occur, the server tries to match them against
the registered event templates. The latency of
event template matching increased logarithmically
as shown in columns 1 and 2. For instance, column
1 shows that as the number of registered events in-
creased from 10 to 100, the latency was 4.9�s, 5.9�s,
and 6.7�s for 10, 50, 100 registered events respec-
tively, for an average of 1000 runs. The latency for
one server and multiple consumers increased linearly
as the number of consumers increased (as shown
in row 1); this is due to preparing events to send
to each consumer after template matching. How-
ever, as shown in Figure 5, the overall cost of �l-
tering is small; only the matched events are copied.
Event dispatching delay in the case of one source
and one consumer was 39�s on average when 100
events were registered. The overall delay for event
creation, template matching and event dispatching
(i.e. moving the events to the \sendqueue") were
271�s. The total latency between the occurrence of
an event and delivery to the consumer is estimated
to be less than 1 ms.

The advantage of �ltering at event source is clearly
shown in Table 2. We tested the e�ect of increas-
ing event volume in two modes: raw, when no at-
tempt to recover missing events was taken; and nor-
mal, when event sequence numbers were checked
and attempts to recover missing events were made.
When 10 events were registered by the consumer at
the event source, the consumer detected no miss-
ing event at an event volume less than or equal to
2000Hz. In contrast, when 100 events were regis-
tered, events started to be missed when the volume
reached 20Hz. If events were not recovered after
loss, all registered events were correctly delivered to
the consumer at the event rate as high as 8000Hz or
beyond. Our test events were randomly generated
integers between 1 to 1000. Parameterised �ltering
means that the consumer can register, say, number

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 200 400 600 800 1000

m
s
e
c

events

’1client’
’10clients’
’50clients’

Figure 5: The Overall Cost of Filtering and Prepar-
ing to Send Events at Source

events 100% delivery
registered raw (Hz) normal (Hz)
10 > 8000 2000
100 20 10

Table 2: Event Volume from a Single Source to One
Consumer

1 to 10 or as required. This is a real advantage over
type-based �ltering, in which case the consumer has
no choice but to be overwhelmed by events.

It is interesting to notice that the cost of the inte-
grated fault tolerance (i.e. sequence number check-
ing and event recovering) was not as costly as we
�rst thought, especially when the event volume and
the number of registered events were low: i.e. at a
volume less than 2000Hz when 10 events were regis-
tered. However, as the number of registered events
increased, the system became much more sensitive
to event volumes. Our experiments show that as 100
events were registered, about 98% of events were re-
ceived by the sink in raw mode, while only 55% were
received in normal mode. As the event volume goes
extremely high, such cost will become expensive as
it contributes to the load on both the source and
the sink. In the case that many sinks try to recover
missing events from a single event source, the source
may eventually not be able to cope. COBEA pro-
vides solution to this by allowing replication of event
sources and partition of the sinks, so each source is
responsible to only a small number of sinks.

The current implementation may be improved for
better scalability by allowing multicast of events,

thus removing the need to copy events. One poten-
tial obstacle to scalability is the integration of fault
tolerance irrespective of the underlying communi-
cation platform; the cost can be eliminated if the
communication support is reliable.

5.1 Other Issues

� Dynamic Addition of New Event Types

or Data

Dynamic addition of new event types is sup-
ported by using the generic typed inter-
faces de�ned in COBEA. Dynamic attach-
ment of application-speci�c data to a generic
event is supported by using the parameter
event body. Any type of data may be cast
into this CORBA any parameter, which has
two �elds: type and value; type can be
checked in order to get the value correctly.

� Working with the CORBA Event Service

COBEA may be implemented alongside, or as
an extension, to the CORBA Event Service.
We have chosen the former for our current ap-
proach. A better alternative might have been
to extend the CORBA Event Service interfaces
to incorporate the new features supported in
COBEA for standardization purposes. For ex-
ample, the COBEA snk interface may be de-
�ned as follows:

#include CosEventComm.idl

module BaseEvent{

...

interface Snk:CosEventComm::PushConsumer{

void notify(

in EventHeader e,

in any data)

raises (NotConnected);

void disconnec_snk();

};

interface Src { ... };

};

Also as mentioned earlier on in this paper, the
pull model can easily be supported in COBEA
by simply incorporating the pull interfaces of
the CORBA Event Service. For example:

#include CosEventComm.idl

module BaseEvent{

...

interface COBEAPullSupplier:

CosEventComm::PullSupplier{};

...

};

� Event Naming and Locating

In COBEA, event type names are the same as
interface type names, therefore a trader can be
used to handle event naming and location; an
event with parameters is like a service with at-
tributes. If consumers are concerned with the
content of an event (i.e. particular values of
parameters), e.g. IBM stocks and Microsoft
stocks of the StockQuote event, �lters must
be used to receive the quote of a particular
stock only; a trader is not enough here.

� Event Bu�ering and Logging

It is possible for events to happen before inter-
est has been registered. Sometimes, a consumer
can not digest all the events being supplied. It
is therefore useful to bu�er events at suppliers
or mediators. A Time-To-Live (TTL) param-
eter can be associated with an event instance
to make sure an event will not be discarded
too quickly by the supplier or the mediator. It
is useful to allow the consumers to specify a
TTL. For some applications, events should be
logged or made persistent if they may be sub-
ject to frequent query later. For instance, a
security audit server may want to monitor lo-
gins by users, and log those events as evidence
in case somebody attempts to use unauthorised
resources.

� Service Con�guration

We propose a hierarchical structure (i.e. a
rooted acyclic graph) for organising the servers
which provide an event service cooperatively.
Events generation may be partitioned among
the servers, thus if a server does not know about
a certain event itself, it can get help from the
server which knows. In Figure 6, �ve servers are
responsible for supplying events partitioned in
the event groups Gr, G1, G2, G3 and G4 re-
spectively.

� QoS

In COBEA, a priority parameter in the event
header can be used to specify the priority of
an event. In addition, event queues are main-
tained according to priority for each event type,
and events are sent FIFO within a priority.
The QoS parameter in the register() oper-
ation can be used to specify speed or mode
of event delivery, i.e. fast or reliable mode;
the former has no guarantee of delivery of the

Root Server R
 (Gr)

Server 1
 (G1)

Server 2
 (G2)

Server 3
 (G3)

(Responsible for Event Group Gr)

Server 4
 (G4)

Figure 6: Composite event servers involved in han-
dling a composite event

event, while the latter is implemented on top of
a reliable transport protocol, thus can guaran-
tee reliable delivery (e.g. events are delivered at
least once and in order). Events are noti�ed in
the order of occurrence within a priority. The
parameter may be used in many applications,
for example, in telecommunication where fault
events (or alarms) have to be delivered quickly
so that the fault can be identi�ed and recti�ed,
however, performance events can tolerate some
delivery delay as they are generally analysed o�
line at some later time.

� Security

In many applications, events are required to
be delivered or viewed only by authorised con-
sumers. An object system where access con-
trol is based on object or method invocation
only has not su�cient support for such require-
ments. Event-based access control requires that
access control can be carried out against each
event occurrence. On the one hand, suppliers
or mediators (i.e. servers) are responsible for
checking if an event can be delivered to the in-
terested consumers. On the other hand, the
servers must have the right to invoke the no-
tify() operation at the consumers. In COBEA,
a consumer must supply its user/role name us-
ing thewho parameter when registering events.
The parameter will be validated by the server
to make sure that the consumer has the right
to access the particular event. In order for
the supplier to invoke the noti�cation opera-
tion at the consumer, an ORB supporting se-
cure method invocation, as speci�ed by the re-
cently adopted OMG CORBA Security Stan-
dard [16], can be used. Although many events
have been excluded at registration time, more
access control is still required in an event-based
system. To avoid computation explosion in the
order of O(no. of events � no. of consumers),
coarse-grained access control based on object

domain, event type, or method invocation only
can be used as an alternative to the �ne-grained
control based on event occurrence. Failing this,
optimised validation is still possible for access
control depending on client credentials or event
data only but not both.

6 Related Work

COBEA shares the major goals with the existing ar-
chitectural frameworks for event handling in large
distributed systems [2, 14, 18, 23, 24, 25]. The
CORBA Event Service and the Cambridge Event
Paradigm were reviewed above. Despite its weak-
nesses, the CORBA Event Service is nonetheless in-

uential. Some recent work and products [7, 18, 10]
have extended it; Expersoft, Iona, Sun Systems
and Visigenic Software have developed commer-
cial CORBA-compliant event services. The OMG
TELECOM SIG has issued a Request For Proposal
(RFP) on a noti�cation service which has received
several responses [18]. The proposed Noti�cation
Service must address issues such as �ltering, assured
noti�cation delivery, security, QoS, and noti�cation
server federation. The Noti�cation Service, how-
ever, is based on the indirect event communication
model, and does not address implementation issues.

Work in real-time event noti�cation [7, 19] has pro-
duced useful designs and implementations which use
real-time threads for event publication in order to
prevent priority inversion. Performance has been
a major emphasis. [7] in particular, also address
issues such as event �ltering and correlation. How-
ever, its �ltering and correlation mechanisms are not
as powerful as the Cambridge Event Paradigm [2].
Moreover, �lters can only be placed at the event
channel.

Work in active databases is of direct relevance to
the research on active systems [4, 5, 22]. In an
active database, events include time events, start-
and end-of-transaction events, operation invocation
events, abstract events (events signalled from out-
side the database system). These are monitored and
conditions are checked before actions are triggered
upon event occurrences. The concept of composite
events is introduced in active database for events
correlation. Most techniques used for implementa-
tion are designed for a centralised database, thus do
not address directly issues required for a distributed

implementation.

7 Concluding Remarks

We focused on the design of an architectural frame-
work for event handling and showed how COBEA
can be used to build large-scale distributed active
systems under various application scenarios. We
also reported our preliminary experience of using
COBEA for building real applications.

COBEA supports the fundamental building blocks
for developing active event-driven systems, namely
the primitives, the mediator and the composite
event service. The primitives form the foundation
of the COBEA event architecture, in which the
publish-register-notify mode is well supported for
e�cient asynchronous event communication. The
mediator decouples the supplier from the consumer
by accepting events from the suppliers, and passing
events only to the interested consumers. Thus the
supplier and the consumer do not have to know each
other in order to communicate events. The compos-
ite event service, in particular, provides a powerful
means of composing events via a number of opera-
tors and a convenient interface for the user to specify
composite events. The distributed implementation
of the service includes an evaluation engine for com-
posite events, events timestamped at source, event
streams and fault tolerance in the form of a heart-
beat protocol.

The work focuses on the Noti�cation Model and fea-
tures well-de�ned interfaces for event registration,
noti�cation and �ltering. Future work for COBEA
includes incorporating security measures and imple-
menting support for reliable event delivery.

Acknowledgements

This work is funded by EPSRC and Nortel Tech-
nology. We gratefully acknowledge the support
from Nortel for developing the application scenar-
ios in telecommunications, especially the help of
Niall Ross. We would like to thank Richard Hayton,
Christof Karl for implementing the components of
COBEA.

References

[1] J. Bacon, J. Bates, and D. Halls. Location-
oriented multimedia. IEEE Personal Commu-

nications, 4(5):48{57, October 1997.

[2] J. M. Bacon, J. Bates, R. J. Hayton, and
K. Moody. Using events to build distributed
applications. In Proc. of the Second Inter-

national Workshop on Services in Distributed

Networked Environments, pages 148{155. IEEE
Computer Society Press, June 1995.

[3] John Bates and Jean Bacon. Supporting in-
teractive presentation for distributed multime-
dia applications. Multimedia Tools and Appli-

cations, 1(1):47{78, March 1995.

[4] A. P. Buchmann et al. Building an integrated
active OODBMS: requirements, architecture,
and design decisions. In Proc. of the 11th

Intl. Conf. on Data Engineering, Taipei, March
1995.

[5] S. Gatziu and K. R. Dittrich. Events in an
active object-oriented database system. In
Proc. of the First Intl. Workshop on Rules

in Database Systems (RIDS), Edinburgh, Au-
gust/September 1993.

[6] W. Gaver et al. Europarc's RAVE System. In
Proc. of the ACM CHI'92 Conference on Hu-

man Factors in Computing Systems, Monterey,
Calif., 1992.

[7] T. H. Harrison, D. L. Levine, and D. C.
Schmidt. The design and performance of a real-
time CORBA event service. In Proc. of the

OOPSLA'97 conference, pages 184{200, Octo-
ber 1997.

[8] Richard Hayton. OASIS - An Open Architec-

ture for Secure Interworking Services. PhD the-
sis, Computer Laboratory, Cambridge Univer-
sity, June 1996.

[9] A. Hopper, A. Harter, and T. Blackie. The
Active Badge System. In Proc. of ACM IN-

TECHI'93, 1993.

[10] IONA. OrbixTalk - The White Paper. Techni-
cal report, IONA Technology, April 1996.

[11] JavaSoft. JavaBeansTM . Version 1.00-A, De-
cember 1996.

[12] G. B. Kendon and N. F. Ross. Alarm corre-
lator prototype: Demonstration script. Nortel
Technology Internal Report, February 1996.

[13] Chaoying Ma. An Alarm Correlator Based on
the Cambridge Event Technology. Active Sys-
tems Project (Cambridge University and Nor-
tel Technology) Internal Report, April 1997.

[14] OMG. Common Object Services Speci�cation,
Volume I. OMG Document No. 94-1-1, March
1994.

[15] OMG. The Common Object Request Broker:
Architecture and Speci�cation. Revision 2.0,
July 1995.

[16] OMG. CORBA Security. OMG Document No.
96-08-03 through 96-08-06, July 1996.

[17] OMG. Messaging Service: RFP. OMG Docu-
ment No. ORBOS/96-03-16, March 1996.

[18] OMG. Noti�cation Service: RFP. OMG Doc-
ument No. Telecom/96-11-03, Nov. 1996.

[19] Ragunathan Rajkumar, Mike Gagliardi, and
Lui Sha. The Real-Time Publisher/Subscriber
Inter-Process Communication Model for Dis-
tributed Real-Time Systems: Design and Im-
plementation. In First IEEE Real-Time Tech-

nology and Applications Sympo sium, May
1995.

[20] N. Ross and K. Burn-Thornton. Design for Saf-
fron Alarm Correlator. Nortel Technology In-
ternal Report, February 1996.

[21] Douglas C. Schmidt and Steve Vinoski. The
OMG Event Service. C++ Report, 9, Feb 1997.

[22] Scarlet Schwiderski. Monitoring the behaviour

of distributed systems. PhD thesis, Cambridge
University Computer Laboratory, April 1996.

[23] TIBCO. Tib/Rendezvous: White Paper. Tech-
nical report, TIBCO Software Inc., 1994.

[24] TINA-C. Engineering modelling concepts
(DPE architecture). Technical Report
TB NS.005 2.0 94, TINA-C, December 1994.

[25] J. Warne. Event management for large-
scale distributed systems. Technical Report
APM.1633.01, APM Ltd., November 1995.

