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1 Introduction

The Swampland Program [1–4] originated as an endeavor to explore the idea that standard
effective field theory techniques might break down when trying to incorporate gravitational
physics into a low energy quantum field theory. This is expected to hold even at scales
which lie way below Planck’s mass

MP ≡

√
~c
G
, (1.1)

where quantum gravity degrees of freedom are supposed to become relevant. A conspicuous
body of evidence for the above-mentioned deviation from the typical effective field theory
intuition, which suggests that quantum gravity phenomenology could safely be ignored in
the low energy regime, has emerged from inspecting spatio-temporal and thermodynamical
properties of black holes, general quantum gravitational arguments and explicit superstring
theory constructions. Indeed, the belief that quantum gravity effects can strongly and fur-
ther constraint the set of apparently consistent quantum field theories coupled to a dynam-
ical space-time metric is now widely accepted and gets often expressed in the form of the
so-called Swampland conjectures. In order for the discussion to acquire clarity, it is appro-
priate to introduce the notion of the Landscape, being the subset of low energy quantum
field theories coupled to gravity that satisfy the restrictions imposed by Swampland con-
jectures and hence admit an ultraviolet completion to quantum gravity. By doing so, one
straightforwardly defines the Swampland as the subset of apparently consistent low energy
quantum field theories coupled to gravity that do not belong to the Landscape. The aim
of the Swampland program is thus to find precise and unambiguous criteria that allow to
classify theories into those belonging to the Landscape and those that fall into the Swamp-
land. The natural prosecution of this analysis is to model such a set of theories, partitioned
into the Landscape and the Swampland, as some sort of geometrically characterised moduli
space, locally charted by the vacuum expectation values of some fields and provided with
some notion of distance. The Swampland distance conjecture was outlined in [5] as the
claim that large displacements in the moduli space should force an infinite tower of light
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states to descend into the spectrum of the low energy effective theory, lowering the energy
cut-off Λeff below which it functionally models relevant phenomena. This idea was pushed
into conjecturing that infinite distance limits in the moduli space should involve signifi-
cant alterations of the features of a low energy theory, such as the decompactification of
some internal dimensions, the emergence of asymptotically tensionless and weakly coupled
string degrees of freedom [6] or the restoration of a global symmetry. The latter, in partic-
ular, connects to the long-standing idea that gravity should not allow for the existence of
global symmetries [7–10], which is strongly backed up by semi-classical black hole physics,
holographic arguments and by the fact that a global worldsheet symmetry in superstring
theory always gets gauged in the target space-time. Both the Swampland distance conjec-
ture and the No global symmetries conjuecture have been discussed and refined in many
different instances. The Swampland distance conjecture was first extendend to the case of
AdS cosmological constant in [11], showing how the infinite distance limit in which Λ→ 0
is accompanied by an infinite tower of light states. Extending the previously-introduced
notion of a moduli space to regard the space-time metric components themselves as moduli,
the most immediate way of displacing them is by considering paths induced by geometric
flow equations [12–14]. Particular attention was dedicated to Ricci flow [15]

dgµν
dλ = −2Rµν , (1.2)

which precisely reduces to the behaviour discussed in [11] in the case of AdS, and generalisa-
tions thereof. This way, exploiting mathematical methods which are rooted in string theory
via the σ-model graviton renormalisation group flow, the Swampland distance conjecture
for the metric was rephrased and specified as the Ricci flow conjecture [16–19]. The reader
is strongly suggested to refer to [20–25] for comprehensive discussions of the techniques
that are usually employed when studying Ricci flow of differentiable manifolds. On the
other hand, the recent Cobordism conjecture [26–34], stating that viable quantum gravity
backgrounds should have trivial cobordism class and thus be cobordant to one another,
can arguably be regarded as a refinement of the No global symmetries conjecture. It must
be noted that the Ricci flow conjecture typically deals with locally defined geometric flow
equations and properties, while the Cobordism conjecture comes as a genuine global state-
ment. In the following work, an attempt to conciliate the two perspectives is presented.
After having introduced some appropriate mathematical techniques, it is argued that the
key mechanism via which Ricci flow can affect the global and topological properties of a
manifold is for it to encounter a singularity, on which surgery procedures can be applied.
These are expected to preserve cobordism classes, as they are typically enforced by substi-
tuting shrinking throats with smooth caps and connected sums are cobordant to disjoint
unions. From a physics point of view, it is nevertheless usually pertinent to neglect one of
the two connected components produced by a surgery. It is thus shown that defects must
be introduced in order to trivialise the cobordism class of the resulting connected manifold
and the specific example of ΩSO

4 is studied in detail. A connection between the process of
blowing up a point of a manifoldM and that of taking the connected sum of such manifold
with CPn is thereafter explored. Hence, the problem of studying the Ricci flow of a K3
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whose cobordism class is trivialised by the addition of 16 copies of CP2 is tackled both from
a geometric flow perspective and by exploiting the classification of singularities in terms of
ADE groups.

2 Brief introduction to bordisms

At its core, the bordism relation is a simple one. We will begin by stating its simplest
definition. Then, we will progressively add more structure, defining some of the concepts
when necessary. Some other introductions are given in [26, 31], as well as [35, Chapters 4,
17]. For a more technical and in-depth treatment of bordisms the reader is redirected to
the classical reference, [36].

2.1 Unoriented bordism

We now introduce the most basic bordism relation possible, where we do not take into
account any kind of structure or special property of the bordant manifolds.

Definition 2.1. Let M and N be two closed (i.e. compact and without boundary) n-
dimensional manifolds. An (unoriented) cobordism between them is an (n+1)-dimensional
manifold whose boundary is the disjoint union ofM and N , which we write as ∂W = MtN .

A more precise statement of the above discussion would involve the introduction of
collar neighbourhoods on the boundary of the (n + 1)-dimensional manifold, as well as a
pair of maps defined on them such that, restricted over ∂W , they define embeddings of M
and N into W . However, such precision would only be needed in formal proofs involving
explicit gluings of the boundaries.

Because M t N = N tM , it is straightforward to check that cobordisms define an
equivalence relation between manifolds. We denote this relation byM ∼ N without further
reference to the type of cobordism which defines it, and we denote the equivalence class
of a manifold M by [M ]. One may further endow the set of equivalence classes of closed
n-manifolds with the structure of an abelian group by defining the sum of two classes as

[M ] + [N ] = [M tN ]. (2.1)

We denote this group by Ωn. Here, the zero-element with respect to the sum is taken to
be the empty manifold ∅. In other words, we say that, given an n-dimensional maniofold,
the fact that [M ] = 0 means that there exists some (n+ 1)-dimensional manifold W such
that ∂W = M .

Furthermore, we may consider a “multiplication”, provided by the Cartesian product
of manifolds [M ][N ] := [M ×N ]. This allows us to build up Ω∗ := ⊕∞

n=0 Ωn, and endow it
with the structure of a graded ring. We call it the unoriented cobordism ring.

A property of any unoriented cobordism ring is that all of its elements have character-
istic 2, and thus it is an algebra over Z2. In other words, the grading of the ring is given by
Z2, and all of its (nontrivial) cobordism classes are isomorphic to a Z2 factor. This is easy
to see by noting that, if we neglect orientations, [M ] + [M ] = [M tM ], and it is simple to
construct a manifold whose boundary is M tM : it is M × [0, 1]. Hence, in the language
of the group operation, we have that 2[M ] = 0 for any manifold M .
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W

S1 t S1

S1

Figure 1. Simple example of an unoriented cobordism relation between two copies of the circle
(S1 t S1) and a single S1 by a surface of genus 3 with boundary.

2.2 Adding more structure to the cobordism group

While the definition we have made in the previous section is enough to understand the basic
idea underlying the bordism relation, it falls flat when dealing with manifolds which allow
for more physically interesting scenarios. For example, just to consider manifolds which
have a definite orientation (and are, hence, orientable), we need to modify our original
definition. The precise and rigorous way in which this is done is covered in [36], where
tangential structures are introduced and treated in detail. A more condensed but readable
account of this is contained in the introduction of [31].

For our present purposes, it is enough to know that, however the additional structure
is defined on two n-dimensional bordant manifolds, it must extend in a coherent way to
the (n + 1)-dimensional manifold which connects them. This can be done by means of
classifying spaces and bordisms with maps. A classifying space for a principal G-bundle
is defined as follows. Given any Lie group G, we can define a space BG, together with
a fibration given by its universal cover EG → BG, with the defining property that any
G-bundle over X can be obtained as a pullback from EG. That is, given any G-bundle
P → X, there exists a map f : X → BG such that P ' f∗EG. This construction classifies
G-bundles in the following sense. In general, given some G-bundle E → Y , and two maps
f, g : X → Y , then the two pullback budles f∗E and g∗E over X are isomorphic if and
only if f and g are homotopic (they belong to the same homotopy class). Therefore, at the
level of the classifying space of a group, we have that all principal G-bundles over some
manifold X are classified by the homotopy classes of maps X → BG. These classes of
maps are often denoted by [X,BG].

There is an explicit construction of a classifying space for the structure groups of frame
bundles, given by infinite Grassmannian manifolds. A Grassmannian manifold Gn(Rn+k)
is a manifold whose points are n-dimensional planes in Rn+k. Heuristically, one defines
BO(n) as the direct limit on k of Gn(Rn+k). In other words, one considers k planes on
higher and higher dimensional Euclidean spaces. We highlight this because BO(n) is the
relevant classifying space for the case at hand, as all the structure groups we will consider
are at most reductions of orthogonal (O(n)) bundles, which can be pulled back from the
canonical bundle over an infinite Grassmannian.

– 4 –



J
H
E
P
0
1
(
2
0
2
3
)
1
2
6

While this notion is interesting in principle, we would like to have a practical way
in which we could actually classify G-bundles over some space. Namely, we are looking
for properties which allow us to tell bundles in different classes apart. This is where
characteristic classes come into play. Because of their natural behavior under pullblacks,
and the fact that they are invariant under isomorphisms, they are precisely the sort of tools
to distinguish vector (and, in particular, principal) bundles over manifolds. For example,
in the case of bordisms between orientable manifolds, the relevant characteristic classes are
the Pontrjagin and Stiefel-Whitney classes, which give rise, respectively, to the Pontrjagin
and Stiefel-Whitney numbers.

With classifying spaces, one can define certain structures on manifolds. For example,
given some n-dimensional manifold X, a map f : X → BSO(n) induces an SO-bundle
over X, i.e. an orientation. To make this fit with the bordism relation, we produce the
following definition

Definition 2.2. Let X be a topological space. We denote by (M,f) a pair consisting of a
manifold M and a continuous map f : M → X. Now, we say that two pairs (M, f), (N, g)
are bordant if

• There is a cobordism W between M and N in the usual sense, and

• There is a continuous map F : W → X such that

F |M= f, F |N= g, (2.2)

where M and N denote the inclusions of these manifolds into ∂W .

Let us consider an SO-structure as an example again. In the above definition, this
implies taking1 X = BSO. Then, the SO-structure on W , which is induced by F : W →
BSO is such that it induces the appropriate orientation on the bordant manifolds, M
and N .

Once knowing how extra structure can be treated under the bordism relation in general,
we now come back to the particular case of orientable manifolds, namely SO-structures.
The most important result regarding this is that there are certain topological numbers
which fully characterize the oriented bordism classes.

Theorem 2.1. Two manifolds are (oriented or unoriented) cobordant if and only if their
Stiefel-Whitney and Pontryagin numbers are the same. In particular, a manifold M is
cobordant to ∅ if and only if all its Stiefel-Whitney and Pontryagin numbers vanish.

3 Brief introduction to the Ricci flow equations

The Ricci flow equations, first introduced by Richard Hamilton in [15] are a set of PDEs
which modify the geometry of a given (differentiable) manifold. If (M, g(λ)) is a family

1Note that we are now taking BSO instead of BSO(n). This is because we are juggling between two
different dimensionalities. The classifying space BSO is defined as a direct limit on n of BSO(n) spaces.
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of Riemannian manifolds, parametrized by λ, we say that they are a solution to the Ricci
flow equations if they satisfy

dgµν
dλ = −2Rµν , (3.1)

where Rµν denotes the components of the Ricci tensor with respect to g. Originally, the
flow equations were defined as a modification of some gradient flow equations, so as to
make the solutions well-behaved. Indeed, the Ricci flow can be regarded as a sort of “heat
equation” for manifolds (though the analogy is not totally rigorous). This is so because
it tends to smooth out certain types of manifolds. In particular, its first use was to show
that manifolds which admitted metrics of positive scalar curvature, also admitted metrics
of constant positive scalar curvature. In recent years, it was famously used by Perelman
to prove Thurston’s geometrization conjecture, which contained the Poincaré conjecture
as a corollary. A great introduction to this tool, which takes these recent developments,
and covers the techniques developed by Perelman is [25]. In this small section, we will not
introduce such technicalities, but rather explore two simple scenarios for the Ricci flow,
and then outline its importance in the context of the swampland program.

3.1 The Ricci flow for Einstein manifolds

An Einstein space is a Riemannian manifold (M, g) for which the Ricci tensor is propor-
tional to the metric, namely Rµν = Λgµν , with Λ ∈ R. Some examples of this are the
well-known maximally symmetric spaces: de Sitter (Λ > 0), anti de Sitter (Λ < 0), and
Euclidean space (Λ = 0). Clearly, the Einstein condition greatly simplifies the Ricci flow
equations, which are reduced to

∂sgµν(s) = −2Λgµν (3.2)

The solution to this equation is a rescaling of the metric

g(s)µν = (1− 2Λs)g(0)µν (3.3)

This can be parametrized as a Weyl rescaling of the metric

g(s)µν = e−2ω(s)g(0)µν . (3.4)

Alternatively, given that the solutions to the Ricci flow are given by rescaling, one is
justified in condensing the flow equations by a single ODE for the cosmological constant.
One can check2 that under the Ricci flow, the scalar curvature evolves as

∂sR = ∇2R+ 2RµνRµν . (3.5)

For an Einstein space, this reduces to the much simpler equation

Λ′(s) = 2Λ2(s) (3.6)
2Though the calculations are rather cumbersome.
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Whose solution is
Λ(s) = Λ0

1− 2Λ0(s− s0) , (3.7)

where Λ0 = Λ(s0). Clearly, the behavior of the solution depends on the sign. In particular,
we have that for a dS space, the solution shrinks to a point (the curvature approaches ∞)
at finite time. On the other hand, an AdS space flows to flat space in the limit s → ∞.
Both of the perspectives we have seen can of course be related by means of a rescaling.

3.2 Introducing Ricci solitons

In the context of the Ricci flow, there is a further generalization of Einstein manifolds, which
serves as motivation for the definition of new flows, such as the ones used by Perelman on
his landmark works. So-called Ricci solitons are manifolds that change by a rescaling and a
diffeomorphism under the flow. Let (M, g(s)) be a Ricci flow, and define a one-parameter
family of diffeomorphisms ϕs :M→M, ∀s ∈ [0, T ) such that ϕ0 = 1, as well as a scaling
factor σ(s) such that σ(0) = 1. With these definitions, the condition for a manifold to be
a Ricci soliton is phrased as

g(s) = σ(s)ϕ∗s(g(0)), (3.8)

where ϕ∗s of course denotes the pullback given by the diffeomorphism. After differentiating
the above expression, evaluating it at t = 0, and using the explicit form of the Lie derivative
defined by V = ϕ′(s), then we have that the PDE defining the flow of a Ricci soliton is
given by

∂gµν
∂s

= σ′(0)gµν(0) +∇µVν +∇νVµ. (3.9)

Renaming σ′(0) = −2Λ, we obtain that the manifolds which display this sort of evolution
under the Ricci flow must be such that

− 2Rµν = −2Λgµν +∇µVν +∇νVµ. (3.10)

Indeed we can see that any Einstein manifold is a Ricci soliton, with Vµ = 0.
Examples of such manifolds are not so easy to come by as with Einstein manifolds. One

such example of great physical signifiacnce is Witten’s cigar, a two-dimensional geometry
given by

g = 1
1 + x2 + y2

(
dx2 + dy2

)
(3.11)

For this metric, the Ricci tensor turns out to be

Rµν = 2
1 + x2 + y2 gµν . (3.12)

This could in principle look like an Einstein manifold. However, if we define the radial
vector field Y = −2(x∂x + y∂y), we have that

LY g = −4
1 + x2 + y2 g (3.13)

Thus, the Ricci flow equations are sourced by a pure diffeomorphism, namely, Λ = 0.

– 7 –
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3.3 The Ricci flow and the swampland

Recent publications, as [16–19], have recast the swampland distance conjecture in terms of
the Ricci flow. To this end, a distance along the moduli space of metrics was defined, and
then used to measure the distance in moduli space of metrics along the Ricci flow. It was
then argued that an infinite distance along the Ricci flow shuould be accompanied by an
infinite tower of states, whose mass scale is determined by said distance.

Of special importance to this refinement of the distance conjecture are those back-
grounds which are fixed points of the flow, namely those which satisfy

∂gµν
∂s

= 0. (3.14)

Clearly, these are given by Ricci-flat manifolds. From the discussion above, one such
example of a manifold flowing to flat space along the flow is AdS space flowing to Euclidean
space. From the perspective of the distance along the space of metrics, this is an incarnation
of the AdS distance conjecture. It states that, as AdS space flows to flat space (namely,
Λ → 0), the associated tower of states with mass scale m behaves in Planck units as
m ∼ |Λ|α, with α being a positive order one number.

In [16], the Ricci flow distance conjecture was then refined in terms of Perelman’s F
and W entropy functionals (e.g. [25, Chapter 8]). Mathematically, the beauty of these
functionals is that they allow for the consistent recasting of the Ricci flow equations in
terms of gradient flows. Namely, one obtains the equations by means of the variational
principle on certain functionals. Physically, this is useful for adding more fields to the
effective theory, such as the dilaton. In fact, one of most striking facts about the Perelman’s
entropy functionals is that they very closely resemble certain effective actions which are
naturally obtained from the bosonic string theory. For example, the F -functional has the
form

F [g, f ] =
∫ (

R+ |∇f |2
)
e−fdV (3.15)

where f is a real scalar function on the background. This is closely related to the effective
action in string theory with a metric and a dilaton field in the string frame. Indeed, the
above f plays the role of the dilaton, and we have that f = 2φ, and thus g2

s = ef , with gs
being the string coupling constant.

The above observation is important in the context of the infinite distance conjecture, as
it allows us to relate the Ricci flow equations (obtained form F) with the RG flow equations
form the string effective action. This plays into the fact that the distance conjecture, at
its core, studies the limits where certain theories are strongly and weakly coupled. In this
context, we can also use the F and W functionals themselves as a measure of the distance
along the flow. This is basically because the flow equations are obtained by finding the
maximal rate of change of the functionals, and thus these are monotonic along the flow.

4 The cobordism class and Ricci flow for ΩSO
4

Our first task is to give solid arguments to justify the behavior of cobordism classes of
manifolds under the Ricci flow. Intuitively, given the smooth nature of the flow equations,
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one expects the cobordism class of the initial manifold to remain unchanged wherever the
solution is defined. In other words, we expect the flow not to change the cobordism class,
at least unless we encounter a singularity. Indeed, given a family of manifolds (M, g(s))
parametrized by the flow time s, let T be the maximal time for which the solution is
defined. Then for every T ′ < T , we expect to be able to construct a cobordism between
(M, g(0)) and (M, g(T ′)) by following the flow.

In this section we will show that this is the case for Einstein spaces and for the more
general Ricci solitons. For it, we will need a quantity which classifies the cobordism class
of a manifold, and that can be related to the Ricci Flow in some way. Theorem 2.1 gives
us such a quantity: the Pontrjagin numbers of the frame bundle of the manifold. Indeed,
if we were to flow some manifold, and find that at some value of the flow time one of
its Pontrjagin numbers has changed, then it would follow that it belongs to a different
cobordism class than the original manifold.

Because p1(R) ∈ H4j(M,Z), the smallest dimension for which p1(R) does not trivially
vanish is d = 4, where the first Pontrjagin class is the only one that does not automatically
vanish. In this case, we have that

p1(R) = − 1
8π2 trR

2, (4.1)

where R of course stands for the curvature 2-form of the frame bundle. Consequently, the
trace is defined in terms of the GL(4,R) indices of the curvature, resulting in a top form
in d = 4. There is, however, one subtlety with the above definition, and it is that R is
defined in terms of a coordinate frame of the bundle, while the Ricci flow is more naturally
defined in coordinates. In order to make the distinction explicit, we use latin indices to
denote frame indices, and greek indices otherwise. We can thus write the above definition
in a more explicit fashion as

p1(R) = − 1
8π2R

a
bRba. (4.2)

The curvature 2-form can be defined in terms of the Riemann tensor as follows

Rab = Rabcdθ̂
c ∧ θ̂d, (4.3)

where {θ̂a} is the orthonormal coframe. We thus have that

p1(R) = RabcdR
b
aef θ̂

c ∧ θ̂d ∧ θ̂e ∧ θ̂f

= RabcdR
b
aefε

cdefdµ,

where dµ = θ̂c ∧ θ̂d ∧ θ̂e ∧ θ̂f = √gd4x. As we have already said before, the above equation
for the first Pontrjagin class is expressed with respect to an orthonormal frame (i.e. a
noncoordinate basis). Therefore, we must obtain its coordinate form. We can do this by
means of the vielbeins {eµa} ⊂ GL(4,R). There are quite a few indices to transform, but
we see that

RabcdR
b
aef = RαβµνR

β
αρσeα

aeβbeβ
beαae

µ
ce
ν
de
ρ
ee
σ
f (4.4)
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Due to the original trace on R, the first four vielbeins turn out to amount to two traces of
gαβ , and hence are constant. Because we will only be concerned with the variation under
the Ricci Flow of p1, we may drop constant prefactors and write

p1(R) ∼ RαβµνRβαρσeµceνdeρeeσfεcdef
√
gd4x. (4.5)

4.1 Ricci flow and Einstein manifolds in ΩSO
4

For an Einstein space, we know that Rµν = Λgµν , and therefore the Ricci Flow equations
are reduced to

∂sgµν(s) = −2Λgµν (4.6)

The solution to this equation is a rescaling of the metric

g(s)µν = (1− 2Λs)g(0)µν (4.7)

This can be parametrized as a Weyl rescaling of the metric

g(s)µν = e−2ω(s)g(0)µν . (4.8)

In this situation, seeing that p1(R) is invariant is fairly simple. Under a rescaling, the
relevant quantities transform as

gµν 7→ κgµν ⇒


Rαβµν 7→ Rαβµν

dµ 7→ κd/2dµ

eµc 7→ κ−1/2eµc

(4.9)

The second property comes from the appeareance of √g in the measure, and the third from
the fact that gµν = eµ

ceνc. We conclude that the first Pontrjagin number is invariant under
the Ricci flow for Einstein manifolds (this result is clearly seen to extend to manifolds of
dimension d = 4n).

4.2 Ricci flow and Ricci solitons

We now come to check the invariance of the characteristic numbers of an orientable 4-
dimensional manifold under the Ricci flow. Instinctively, we expect that they should be,
as the only thing that remains is to study their behavior under a diffeomorphism.

To prove the previous statement, begin by considering some diffeomorphism3 ϕ :M→
N . Not only does such a map define an isomorphism of the homology and cohomology
of both manifolds, but also allows us to define the pullback bundle ϕ∗TN . Due to the
naturality of Stiefel-Whitney and Pontrjagin classes, we have that the characteristic classes
overM are the pullback of the ones over N , and thus, pi(M) = ϕ∗pi(N ), and analogously
with Stiefel-Whitney classes. Furthermore, in the context of smooth manifolds these are
nothing but differential forms. It is a standard result [37] that under these conditions, and
given some generic top form ω over N ,∫

N
ω = ±

∫
M
ϕ∗ω, (4.10)

3We are using different manifolds for the sake of clarity of the explanation.
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Figure 2. Schematic of the surgery that is to be done when a neckpinch ocurs.

where the sign on the right hand side depends on if the diffeomorphism is orientation
preserving or orientation reversing. Now, in our particular case, for the one-parameter
family of diffeomorphisms, M = N . Moreover, we know that ϕ0 = 1, and therefore
for every s ∈ [0, T ), ϕs : M → M is continuously connected to the identity, making it
orientation preserving. Thus, the invariance of the Pontjagin and Stiefel-Whitney numbers
under a flow defined by (3.10) follows.

4.3 Pinching of necks

One of the phenomena which is tightly linked with the Ricci flow is the appeareance, and
the subsequent pinching-off, of necks on a manifold. When a neck appears, it is very likely
that it will shrink faster, compared to other parts of the manifold. This leads us to the
conclusion that, at some point along the flow, a section of the manifold (located on the
neck), will shrink to a point, thus reaching the end of the flow. However, the flow equations
could still be well defined at all other parts of the manifold. Because of this, it would be
interesting to have a mechanism to allow us to study the behavior of the manifold under
the flow past the pinching of these necks, that would reproduce the intuitive behavior of a
neck pinching off, while at the same time changing the geometry as little as possible. We
will now see that this procedure is compatible with the bordism relation. First, we will
discuss the notion of a surgery on a manifold, and then we will explain a way to adapt the
notion of convergence in order to allow for such a modification to take place.

In mathematical terms, a topological neck N in a manifoldM is a local diffeomorphism
of a cylinder intoM:

N : Sn−1 × [a, b]→M. (4.11)

The treatment of necks in the context of the Ricci flow is a very delicate one. A very
detailed description of it is given in one of Hamilton’s original papers, [38]. For our present
purposes, it is only necessary to know that the strategy to follow when approaching a
singularity in the form of a neck pinch is to perform a so-called surgery on the manifold.
A surgery is a topological procedure which is based on the observation that the relation

∂(M×N ) = ∂M×N ∪M× ∂N (4.12)
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Implies the two following possibilities

Sp × Sq−1 =

∂
(
Dp+1 × Sq−1)

∂ (Sp ×Dq)

Since the two manifolds on the right hand side have the same boundary, one could in
principle cut one out, and glue the other one along the leftover boundary. This is precisely
a surgery. In mathematical terms, we have the following

Definition 4.1. Let M be a manifold of dimension n = p + q, and let ϕ : Sp ×Dq be an
embedding. Define another manifold M′ as

M′ = [M\ Int(Im(ϕ))] ∪ϕ
[
Dp+1 × Sq−1

]
.

We define the surgery to be the triple (M,M′, ϕ).4

In this way, looking at (4.11), if we perform a surgery, we substitute the pinched neck by
two smooth caps, and then keep flowing the resulting manifold. In a sense, this procedure
realizes the inverse of a disconnected sum, and thus gives a connected sum decomposition
of the original manifold. While this part is rather simple, in the context of the Ricci flow we
are interested not only on the topology, but also on the geometry of the manifold. Hence,
the problem arises when one tries to extend the metric smoothly from the bases of the neck
to the smooth caps. A detailed account of this is contained in [38].

What we have defined above is a general surgery, of which the substitution of a neck
for two smooth caps is a particular example of. From the definition of a neck in (4.11), we
need only choose p = n − 1 and q = 1. In fact, the reader might have noticed that this
particular example of a surgery is precisely a connected sum in reverse. Indeed, one of the
topological appeals of the Ricci flow is that it provides a connected sum decomposition of
the manifolds on which it is defined. This is very convenient for our purposes, as we know
that the process of taking a connected sum defines a bordismMtN ∼M#N . In general,
any type of surgery in the sense of definition 4.1 defines a bordism relation fromM toM′,
by means of taking the so-called trace of the surgery, defined as follows. In the conditions
of definition 4.1, we define an n+ 1 dimensional manifold W by first takingM× I, where
I is the unit interval, and then attaching Dp+1×Dq along one of the “ends” ofM× I. All
together, we define

W = [M× I] ∪ϕ×{1}
[
Dp+1 ×Dq

]
. (4.13)

It can be checked that this manifold indeed satisfies ∂W =MtM′, by recalling the gluing
procedure, the definition ofM′, and noting that one of the two boundaries of Dp+1×Dq is
precisely the one that is glued toM′. All in all, what we have learned form this discussion
is that the cobordism class of a manifold is left unchanged by the Ricci flow, even if necks
pinch off, due to the fact that the manifolds before and after the pinching are bordant.

Finally, there is one more aspect about neck pinching that we should look at, for the
sake of completeness. Since we have just defined a way to extend the flow past a certain

4Note that we have not specified on which manifold we perform the surgery. This is because surgeries
define an equivalence relation, and are in particular reflexive.
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type of singularity, which in particular involves stopping the flow whenever a neck forms,
only to turn it back on after the surgery, we need to define our notion of convergence. To
add to that, this notion of convergence should be diffeomorphism invariant, so a notion
of convergence of metric as tensors is unsatisfactory. Indeed, we need to specify what we
mean when we say that some manifoldM converges to some other manifoldM′ (or hasM′
as its limit). This is done by means of the smooth, pointed Cheeger-Gromov convergence of
manifolds. Here, the term pointed means that the manifolds which compose the convergent
sequence have a certain choice of distinguished points. The proper defintion is as follows

Definition 4.2. A sequence of smooth, complete, and pointed Riemannian manifolds
(Mi, gi, pi), with pi ∈Mi is said to converge smoothly to the smooth, complete, and pointed
manifold (M, g, p) as i→∞ if there exist

• a sequence of compact sets {Ωi}, with Ωi ⊆ M exhausting M with p ∈ Int(Ωi) for
each i, and

• sequence of smooth maps ϕi : Ωi → Mi which are diffeomorphic onto their image
and satisfy ϕi(p) = pi for all i,

such that limi→∞ ϕ
∗
i gi → g smoothly in the sense that for all compact sets K ⊆ M, the

tensor ϕ∗i gi − g and its covariant derivatives of all orders converge uniformly to 0 on K

This definition was taken from [25]. The interested reader is directed to this reference
for more details on this and almost all basic concepts relative to the Ricci flow.

5 The main case study: ΩSO
4

We introduce the Pontrjagin and Stiefel-Whitney numbers as the relevant topological in-
variants for the SO structure. For the particular case of the 4-dimensional group, we discuss
how the fact that the signatue σ of CP2 is σ(CP2) = 1 can be exploited to kill cobordism
classes by the addition of more and more copies of the complex projective space. In par-
ticular, 16 copies of CP2 may be used to kill the class of K3.

After having killed the class ofK3, we must give a physical (or otherwise) interpretation
of the complex projective planes. One such interpretation is given in terms of the blow-up
of singularities of the K3 surface. These are classified in terms of the ADE groups. We
will explore this in detail in later sections.

Another interpretation is given by [39], where a metric on the connected sum of copies
of CP2 is provided, together with the interpretation of the metric of magnetic monopoles in
hyperbolic space. Upon investigation, the given metric is strikingly similar to the Kaluza-
Klein monopole in 4 dimensions (also called the Taub-NUT geometry). Indeed, the re-
quirements on the connection over the circle bundle present in the monopole coincide in
the two cases.

5.1 The relevant invariants

We will now study the particular case of ΩSO
4 ' Z. Since the group is nontrivial, we know

that the cobordism conjecture forces us to consider more restricted structures or add defects
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to the theory. We now cite two results which will be of use, both of which can be found
in [35]. The first is that, in the context of oriented bordism (namely, an SO-structure),
the relevant bordism invariants are the Pontrjagin and Stiefel-Whitney numbers, which
we denote for some manifold M by pj(M) and wj(M). Another result is the Hirzebruch
signature theorem, which states that the signature of a manifold can be written in terms
of the Pontrjagin numbers and is thus, by the previous result, a cobordism invariant.

The four dimensional case is special in the above sense, as the Pontrjagin classes pj are
cohomology classes in H4j(M,Z). Therefore d = 4 is the first dimension for which we have
a class which is a priori nontrivial.5 Therefore, we will use the Pontrjagin numbers to label
cobordism classes, and thus construct manifolds such that p1(M) = 0. We will see that in
the examples we construct, this will also force all Stiefel-Whitney numbers to be 0, thus
implying that their cobordism class is indeed trivial. As we have said in the introduction,
the trivialization of these classes will also mean that for these examples, the structure group
can be further reduced. However, we will be more interested in the perspective of adding
defects.

5.2 The case for CP2

It is a known result [35] that CP2 is the generator of ΩSO
4 , the oriented cobordism group

of dimension 4. Furthermore, Hirzebruch’s signature theorem states that

p1(CP2) = 3⇔ σ(CP2) = p1(CP2)
3 = 1. (5.1)

Since the signature is a cobordism invariant, we assign [CP2] = 1 (using additive notation).
Constructing a background with trivial cobordism class is now straightforward: we take
two copies of CP2 and reverse the orientation in one of them. Thus, the background

M = CP2 t CP2 (5.2)

bounds. Indeed, we have that, by the properties of Pontrjagin numbers

σ(M) = σ(CP2) + σ(CP2) = 1− 1 = 0 (5.3)

so we conclude that [M] = 0.
As an additional note, we can use the fact that the disjoint union of two manifolds

is cobordant to their connected sum, and then use a long exact sequence of a pair and a
Mayer-Vietoris argument to show that

Hp(CP2#CP2) =


Z p = 0, 4
Z⊕ Z p = 2
0 else

 = Hp(CP2#CP2) (5.4)

This tells us that the manifold we have just constructed is not homeomorphic to S4, even
if cobordant to it.

5Note that p0 is axiomatically set to 1.
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5.3 The case for K3

One of the manifolds that gives rise to an interesting scenario in our study of cobordism
classes and the Ricci flow is K3. In [26], the authors have already studied this manifold
from the point of view of its cobordism class. For our present purposes, an important result
that is cited there is that

σ(K3) = −16 (5.5)
Again, since the signature of a manifold is a cobordism invariant, this defines a class in the
cobordism group ΩSO

4 . With CP2 as a generator, we can write this as

[K3] = −16[CP2] (5.6)

where, of course, we use the notation of addition to mean the disjoint union of 16 projective
planes with their orientation reversed. From this, we can easily construct a manifold which
has a trivial cobordism class, given by

K3 t 16CP2, (5.7)

which by the above argument has vanishing signature and hence bounds a 5-manifold.
The interesting part about the above scenario is that, if we turn on the regular Ricci

flow equations, all of the CP2 (being that they are Einstein spaces with positive sectional
curvature) shrink to a point. However, K3 is a Calabi-Yau manifold, and in particular
Ricci-flat. Therefore, it is a fixed point of the flow equations, and remains invariant under
them. Furthermore, because the disjoint union and the connected sum of manifolds are
cobordant, it is irrelevant if we consider the above manifold as K3tCP2 t . . . tCP2 or as
K3#CP2# . . .#CP2. Therefore, we do not need to worry about the necks that are formed
by the connected sums. It follows that in this setup, at the end of the flow, what remains is
the original K3, and all of the remaining copies of projective planes have shrunk to points.
This loose discussion represents the idea that there is some connection, due to working
under the bordism relation, of trivializing the bordism class at the topological level, and
adding defects to the manifold. The connection will be given by the blow-ups (minimal
resolutions) of the K3 singularities.

6 Blowing up points and connected sums of copies of CP2

In the context of algebraic geometry, there is a procedure known as “blowing up”. The
underlying idea is to substitute a certain subspace of some total space (usually some com-
plex variety) by another, more well-behaved space. Furthermore, one does it in such a way
that the resulting total space looks like the one we started with away from the blown-up
subspace. While this procedure can be done just for the sake of it, it fully comes into
fruition in the context of the resolution of singularities, where there is some sort of singular
subspace (e.g. a conifold point), which is then substituted by a smooth space, blended into
the total space in such a way that the combination of the two is smooth throughout. In this
section, we will focus on the case where the singular subspace is just a singular point, we
will give the explicit construction of its blow up, and we will see how it relates to manifolds
containing connected sums of complex projective spaces.
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6.1 The blow up of a point

We will begin by considering C2. The only generality that is lost in doing so is that of
dimensionality, which will not be much of a problem, as the construction can be easily
generalized to higher dimension. Since all of the considerations we will make will be local
in nature, we can always reduce the case of an arbitrary complex manifold of dimension
n to that of Cn. Now, suppose we wanted to blow up the origin O ∈ C2. This would
produce a new space, which we shall name BlO(C2), and define as follows. Consider the
set of all paths in C2 whose endpoint is O, and for each of them, take their tangent line at
the origin. This set of lines through the origin is precisely the definition of CP1, each line
l is given by a point [y1 : y2] ∈ CP1 (where we have used homogeneous coordinates) and
vice versa. Define BlO(C2) ⊆ C2 × CP1 = {(x1, x2, [y1 : y2])|(x1, x2) ∈ C2, [y1 : y2] ∈ CP1}
as the zero locus of

p = x1y2 − x2y1, (6.1)

namely, all of the points verifying x1y2 = x2y1. This condition is equivalent to saying that
the point (x1, x2) is contained in the line l ∈ CP1, since the above equations are obtained
by imposing linear dependence of the set of vectors defined by(

x1 x2
y1 y2

)
, (6.2)

by requiring that the rank of the matrix be 1.
Let us look at (6.1) more closely. Whenever (x1, x2) 6= (0, 0), then (y1, y2) are com-

pletely determined up to scaling, which means that they are actually completely determined
in CP1. On the other hand, at the origin, y1 and y2 can take any value, and (6.1) vanishes
tivially, so both coordinates range over all of CP1. These considerations lead us to define
the following projection map

π : C2 × CP1 → C2

(x1, x2, [y1 : y2]) 7→ (x1, x2)
(6.3)

By the above discussion, this map is an isomorphism away from the origin, but at the
origin itself we have that π−1(0, 0) = CP1.

6.2 Blowing up and connected sums

In this section, we will try to draw a connection between the process of blowing up a
point and that of taking the connected sum of the original manifold with CPn. This is
encapsulated in the following proposition:

Proposition 6.1. Let x ∈ M be a point in a complex n-dimensional manifold M. Then
the blow up Blx(M) is diffeomorphic as an oriented manifold to M#CPn.

Proof. Because the blow up of a point is a local transformation, we can set, without loss
of generality, M = Dn = {z ∈ Cn|‖z‖2 < 1}, and x = 0. By the definition introduced in
the preceding section, the blow up is given by

Bl0(D) = {(x, z) ∈ D × CPn−1|xizj = xjzi, ∀ i 6= j} (6.4)
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Now we have to construct the connected sum. To do so, we must first embed two
disks Dn in our original manifolds, quotient out by their images, and then glue along the
remaining boundaries. Because we have set X = Dn, one of the embeddings can just be
taken as the identity id : Dn → X. For the remaining one, in order to maintain the overall
orientation of the manifold, we must choose an orientation reversing map f : Dn → CPn.
We thus define it to be x 7→ [1 : x]. The fact that this is indeed an orientation reversing
map can be seen by considering inward pointing rays on each of the coordinates of Dn. This
allows us to restrict the image rays to CP1 ⊂ CPn by setting the remaining (homogeneous)
coordinates to 0. Then, since CP1 ' S2, and f can be seen locally as an inversion (z 7→ 1/z)
at the level of the regular coordinates obtained from the homogeneous ones, we see that
the orientation of the rays is reversed.

Once we have the embedding maps, we consider the original manifolds and remove a
smaller disk inside the already embedded disk, leaving an embedded annulus. The exact
size of the removed disk is topologically irrelevant. For X this is trivial, and for CPn this
is given by

CPn \ f
(1

2D
)

:= {[x0 : x] | |x0| < 2‖x‖} (6.5)

Note that we are using homogeneous coordinates to describe the manifold, and hence the
particular numerical value of x0 is irrelevant, and the removed disk can be encapsulated
in the restriction on the right hand side of (6.5). All that remains to show our desired
result is to construct the gluing diffeomorphism (so that we can define X#CPn), and a
diffeomorphism from the connected sum to Bl0(D). To do so, we will kill two birds with
one stone, and use the fact that Bl0(D) is isomorphic to D away from the origin. Hence,
the gluing map from CPn to D will be the same as the one to Bl0(D) (recall that we have
chosen X = D). We can give an explicit orientation preserving map which serves this
purpose:

ξ̂ : CPn \ f
(1

2D
)
→ Bl0(D)

[x0 : x] 7→
(

x0
2‖x‖2x, [x]

)
We will first check that it restricts to the gluing map on the embedded disk, namely on
f(D) \ f(1

2D). In the above notation, this means that we must set x0 = 1, and let ‖x‖ < 1
(since this is the coordinate on the disk). Both of these conditions restrict the values of x
to be on the annulus 1

2 < ‖x‖ < 1. Therefore, x itself is defined on the annulus (as opposed
to the embedded annulus on CP2). At the level of ξ̂, the image of this set is easily seen to
be given by

ξ̂

(
f(D) \ f

(1
2D

))
=
{(

x

2‖x‖2 , [x]
)
∈ Bl0(D) | 1

2 < ‖x‖ < 1
}

(6.6)

Note that the fact that the image is defined on Bl0(D) means that it is still subject to
the set of equations which defined it (cf. (6.4)). In particular the above restriction is seen
to be a diffeomorphism of the annulus D \ 1

2D to itself, namely x 7→ ( x
2‖x‖). This map
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precisely defines the gluing scheme. Finally, due to the blow-up equations, the remaining
components of the image are completely fixed in CPn−1

To see that this map also defines a diffeomorphism to Bl0(D), we go back (6.1). The
only possibility for ξ̂ to not be differentiable is that x = 0. However, this would imply
|x0| < 0, which is impossible by (6.5). Furthermore, we can see that the behavior at the
singular point 0 ∈ D, which was the original purpose of the blow-up, is reproduced by this
map, since x0 = 0 is an allowed value which, by both (6.5) and the equations that define
the blow-up, lets x range freely over all of CPn−1. Finally, we can see that Im(ξ̂) is all
of Bl0(D) by taking the norm of the first n components of (6.6) and again noting that
by (6.5) |x0| < 2‖x‖, thus arriving at

|x0|‖x‖
2‖x‖2 < 1 (6.7)

6.3 Blowups and magnetic monopoles

Our end goal is to somehow apply the Ricci flow machinery to the manifold which is imposed
by the cobordism conjecture. In principle, to be able to do so, we first need to write down
an explicit form of the metric for the whole manifold. This is tackled in [39], and both the
result, and the method are relevant for our purposes, since a connection is drawn between
the successive blowup of points on a manifold and the connected sum of projective planes.
This is further supported by the ADE classification of K3 singularities, and its interplay
with blowups of said singularities. This last point will be left for a following section, and
we will rather focus our attention here on the geometric side of the construction. We will
leave out some details, which can be read on the original publication.

The starting point for the construction of the metric is the Gibbons-Hawking ansatz
for gravitational multi-instantons, first proposed in [40]. This is generalized to allow for an
isometric circle action on the manifold, and reformulated in geometrical terms, as solutions
of a certain set of partial differential equations. The central result of the paper, out of
which all of the results are derived, is the following:

Proposition 6.2. Let ξ > 0 and u be smooth real-valued functions on an open set U ⊆ R3

which satisfy

uxx + uyy + (eu)zz = 0 (6.8)
ξxx + ξyy + (ξeu)zz = 0 (6.9)

Suppose further that the de Rham class of the closed 2-form

1
2πα

:= 1
2π (ξxdy ∧ dz + ξydz ∧ dx+ (ξeu)zdx ∧ dy) (6.10)

is contained in H2
dr(U,Z) (i.e., it is integral). Let M → U be a circle bundle such that

its first Chern class is given by [c1(M)]R =
[
α
2π
]
, and let ω be a connection 1-form on the
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bundle whose curvature is α. If U is simply connected, both M and ω are determined up
to gauge equivlence. Then

g = euξ(dx2 + dy2) + ξdz2 + ξ−1ω2 (6.11)

is a Kähler metric on M whose scalar curvature vanishes. Conversely, any scalar-flat
Kähler surface with an S1 action can be locally described by the above result.

Note that the above metric reduces to the Gibbons-Hawking ansatz if u = 0. The
space that this metric represents is also knwon as the Taub-NUT space. This is very
relevant to our goal for two reasons. The first one is that the Taub-NUT space describes a
KK monopole: a purely geometrical solution to Einstein’s equations in d + 1 dimensions,
which from the perspective of the d dimensions transverse to the circle bundle describes a
magnetic monopole. Moreover, the Taub-NUT solution allows us to superpose N of these
monopoles. While we will not deal with Taub-NUT spaces, but rather with a space that is
very similar to it, a lot of the properties will be shared between the two. Thus, it is useful
to keep this solution in mind for the following.

The connection that all of this has with blow-ups (and thus with connected sums of
copies of CP2) is given by the so-called Burns metric. This is a scalar flat Kähler metric
on Bl0(C2), the blow-up of C2 at the origin. There are several coordinate representations
of this metric, and we will come back to this in a later section. For now, it suffices to know
that this metric fits into the description of proposition 6.2 by setting

u = log 2z (6.12)

ξ = 1
2z + Fm (6.13)

where m is some parameter which appears on the metric, and Fm(x, y, z) is a positive
function on z > 0, and is defined on the complement of (x, y, z) = (0, 0,m/2). In particular,
this makes sense when the base space is H3 := {(x, y, z) ∈ R3 | z > 0}.

If one defines a new variable V = 2zξ, and further defines q =
√

2z, it turns out that
the second PDE from proposition 6.2 can be recast as

∆V = 0, (6.14)

where ∆ is the Laplace-Beltrami operator associated to the metric

h = dx2 + dy2 + dq2

q2 . (6.15)

This is just the usual metric for hyperbolic three-space, which we denote by H3. In terms
of V and h, the metric can be written as

g = q2[V h+ V −1ω2] (6.16)

Furthermore, we can use the hyperbolic metric distance to rewrite the function ξ (and thus
V ) that appears in the metric. With the metric (6.15) for H3, the hyperbolic distance from
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a generic point (x, y, q) ∈ H3 to (0, 0, q0) ∈ H3 can be written as

ρ = cosh−1
(
x2 + y2 + q2

2qq0

)
(6.17)

After a couple of algebraic manipulations, we can recast V as

V = 1 + 1
e2ρ − 1 (6.18)

But this last summand is precisely the Green’s function G for the Laplace-Beltrami operator
relative to the hyperbolic volume form, and with normalization given by ∆G = −2πδ.
Consequently, the Burns metric can also be thought as describing a magnetic monopole in
hyperbolic 3-space.

Up to now, we have seen that the metric for a blowup of C2 at the origin can be recast
(or, rather, understood) as a kind of generalized Gibbons-Hawking metric, which looks
eerily similar to a Taub-NUT geometry. Now, the next step, as is commonplace precisely
with the Taub-NUT metric, is to allow for multiple monopoles for our metric. This can
be done as follows: let {pj = (xj , yj , zj)}nj=1 ⊂ H3 be a collection of points on the upper
half-space, and let

Gj = 1
e2ρj − 1 (6.19)

be the Green’s functions associated to each of the points in the sense of the above paragraph.
Define

V := 1 +
n∑
i=1

Gj (6.20)

Then, we have that ξ = V
2z is a positive solution for

ξxx + ξyy + (2zξ)zz = −2π
n∑
i=1

δpi . (6.21)

This defines an integral cohomology class as

1
2πα = 1

2π (ξxdy ∧ dz + ξydz ∧ dx+ (ξeu)zdx ∧ dy) ∈ H2(H3 \ {pi},Z) (6.22)

Finally, let X → H3 \ {pi}ni=1 be the circle bundle whose first Chern class is 1
2π [α]. In

turn, this means that X has a connection 1-form ω whose curvature is given (up to gauge
equivalence) by α. Then, define a Riemannian metric on X by

g = q2[V h+ V −1ω2] (6.23)

By proposition 6.2, this is a Kähler metric with vanishing scalar curvature. However, it
is still not quite the metric that we are looking for. For one, it is not defined over the
“monopole locations”, namely the {pi}ni=1. However, it can be smoothly extended to them
by attaching points at the monopole locations. This is done in detail in [39], and contains
very technical details which are not very relevant for our purposes. The only part of this
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discussion which we will use is a local expression for the metric around the monopole
locations. This will be discussed in a later section.

In summary, we are able to construct the Kähler metric (6.23) which, by the above
discussion, can be interpreted as describing the blow-up of C2 at n points, which can
be furhter viewed as the locations of magnetic monopoles in hyperbolic 3-space. Since
blow-ups and connected sums with copies of CP2 are diffeomorphic, a consequence of
this construction is that the conformal class of the metric (6.23) represents a metric on
nCP2 := CP2# n). . . #CP2. In fact, a global representative for the conformal metric on
nCP2 is provided by

g = sech2(ρ)[V h+ V −1ω2] (6.24)
In the following, we will use this very metric, as well as some of the intermediate steps
that led to it, to try to apply the Ricci flow equations to nCP2. In this way, we hope to
use the flow equations to obtain information about backgrounds which are allowed by the
cobordism conjecture.

6.4 The Burns metric

Now that we have some geometrical information about the manifold nCP2, the next step is
to set up some kind of flow equations, or at least to approximate the manifold’s behavior
under them. Because of the above discussion, the first step that we will take in this endeavor
is to look closely at the Burn’s metric. As we have mentioned before, this is a zero scalar
curvature metric on Bl0(C2) (we are using the notation from the previous sections for the
blowup). Because we have seen that blowups at a point in a manifold are diffeomorphic
to connected sums of said manifold with CP2, we hope to extract some information out of
this.

6.4.1 First form of the Burns metric

There is more than one way to represent the Burn’s metric. Here we will only make use of
two of them. In the first representation, the Kähler nature of the metric is manifest, as it
is given by the following Kähler potential defined over C2 \ {0}:

K(z, z) = 1
2
(
‖z‖2 +m log‖z‖2

)
(6.25)

where m > 0 is a positive real constant, and ‖z‖2 = z1z1 + z2z2. Thus, the metric can be
obtained as

gij = ∂i∂jK(z, z) (6.26)
Going through the computations, this yields

g11 = 1
2

(
1 + m | z2 |2

(‖z‖2)2

)
; g21 = −m2

(
z1

(‖z‖2)2 z2

)
(6.27)

with all other entries of the metric given by the fact that it is Hermitean (so we need only
exchange 1⇔ 2):

g = 1
2


(

1 + m|z2|2
(‖z‖2)2

)
−m

(
z2

(‖z‖2)2 z1

)
−m

(
z1

(‖z‖2)2 z2

) (
1 + m|z1|2

(‖z‖2)2

)
 (6.28)
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For Kähler manifolds, there is a quick way of computing the Ricci tensor, namely by

Rij = −∂i∂j log det g. (6.29)

A quick computation reveals that

4 det g = 1 + m

‖z‖2
. (6.30)

Note that setting m = 0 is consistent with recovering the usual flat metric on C2. Since
we are taking derivatives of logs, we may also drop the overall factor of 1

4 , thus arriving at

Rij = −∂i∂j log
(

1 + m

‖z‖2
)

(6.31)

The resulting tensor is given by

R21 = mz1[
(‖z‖2)2 +m‖z‖2

]2 (2‖z‖2z2 +mz2
)

;

R11 = − m

(‖z‖2)2 +m‖z‖2
+ |z1|2

(
2‖z‖2 +m

)[
(‖z‖2)2 +m‖z‖2

]2 (6.32)

and the other components are again obtained by the exchange of indices. As one can
appreciate, the resulting Ricci flow equations become rather complicated, and far form the
case for an Einstein manifolds. It would have been our hope to be able to get some sort
of flow equation for the parameter m, but it seems that our hopes are in vain. Even if
we tried to do so out of the Ricci flow equation for the scalar curvatrue, we are met with
the fact that this metric is, by construction, of zero scalar curvature. Hence, if we were to
set m = m(s) for some flow parameter s, our equation would render m constant along the
flow.

Given the explicit formula for the Ricci tensor (6.29), another idea that one could
have is to try to take the limit where m � ‖z‖, in order to get rid of the logarithm.
Unfortunately, this has led me nowhere. The only interesting point in the “moduli space”,
where the Ricci tensor turns out to vanish, requires ‖z‖2 → 0, which is inconsistent with
the limit. On the other hand, we have noted that (even at the level of the Kähler potential
itself) the limit m→ 0 corresponds to flat space.

6.5 Second form of the Burn’s metric

There is yet another way to represent the Burn’s metric, in which its Kähler nature is rather
implicit. However, the upside of it is that we can obtain a (real) coordinate representation
of it. Hence, we can use a symbolic computation program, such as Mathematica, to more
easily compute all the quantities that we need. Moreover, this representation is instructive
when we compare it with local representations of the metric (6.24).

Let {σ1, σ2, σ3} be the coframe of SU(2) left-invariant 1-forms, normalized such that
dσ1 + 2σ2 ∧ σ3 = 0 (and cyclically). Since SU(2) ' S3, these forms also serve as an or-
thonormal coframe on the three-sphere. Then, the Burns metric can be given the following
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coordinate representation:

gB = dr2 + r2
(
σ2

1 + σ2
2 + σ2

3

)
+ σ2

1 + σ2
2 (6.33)

As a comment, note that in this representation the usual Euclidean metric is given by
g = dr2 + r2(σ2

1 + σ2
2 + σ2

3). As we have previously discussed, the metric (6.33) describes
the blow-up of C2 at the origin.

In order to do any kind of calculation with the Burns metric, we need to introduce an
explicit coordinate representation of the left-invariant SU(2) one-forms. We do so in terms
of the Euler angles, which we denote by {θ, ϕ, ψ}. The one-forms then take the following
explicit form: 

2σ1 = sin(ψ)dθ − cos(ψ) sin(θ)dϕ
2σ1 = cos(ψ)dθ + sin(ψ) sin(θ)dϕ
2σ3 = dψ + cos(θ)dϕ

(6.34)

With these explicit coordinate representations, we are able to compute both the Ricci scalar
and the Ricci tensor. As should be expected, we have that RB = 0 identically. We will
come back to this point in a later section

6.6 Getting a feel for the flow

Seeing that the treatment of the metric for CP2# n). . . #CP2 explicitly and analitically
is rather complicated, we turn to approximating the behavior of the manifold under the
Ricci flow. To this end, we will use less information than the required to solve the full flow
equations. Namely, we turn to a result about the metric (6.24) which is stated in [39]. While
the original metric (6.23) was constructed as a scalar flat metric, the actual representative
for the metric on nCP2 has a different choice of conformal factor, and thus the scalar
curvature need not vanish. In fact, it does not, and it turns out to be

R = 12
V
. (6.35)

Where V is given by (6.20). Since ρj is the distance from a point in H3 to one of the
monopole locations, it only vanishes at these singular loci. As a consequence of this, at
these loci, V →∞. Conversely, the scalar curvature vanishes at (and only at) these singular
points.

In order to use this information to study the behavior of the Ricci flow on this manifold,
we need an additional result, coming from the general theory of the flow equations. In
particular, as a consequence of the maximum principle, we have that

Theorem 6.1. Let g(t) be a Ricci flow on a closed d-dimensional manifold X, for t ∈ [0, T ].
If R > α ∈ R at time t = 0, then for all times t ∈ [0, T ],

R >
α

1−
(

2α
d

)
t

(6.36)
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What is important about this result is that, whenever the lower bound is strictly
positive, the scalar curvature blows up at some finite flow time. Going back to (6.35), and
recalling the explicit formula for V , we see that R is precisely a non-negative function over
nCP2. Moreover, the only points at which R tends to 0 are precisely the singular loci which
define the location of the magnetic monopoles. This is enough information to know that,
at every point but the singularities, there is a lower bound on the scalar curvature which
goes to infinity at finite flow time. Hence, we can guarantee that the curvature blows up
and the manifold shrinks infinitely (but at finite time) at all points but at the singular loci.

6.6.1 The behavior of the flow at the monopole locations

A failure of the above argument is that the scalar curvature (6.35) vanishes at the location
of the monopoles. To be more precise, R is not technically defined at the {pi}. However,
we have already said that it can be smoothly extended to the whole manifold by essentially
attaching points at the monopole locations. Then, after a series of approximations of the
metric around said locations, one finds that it can indeed be smoothly extended to them.
Because of the smoothness of this extension, it follows that the Ricci scalar also extends
smoothly, and hence by continuity it must vanish at the monopole locations, since

lim
p→pi

1
V

= 0. (6.37)

This, of course, renders the argument from the previous section invalid, and hence we
cannot use it to justify that the manifold shrinks at every point. One could, in principle,
follow the approximations which lead to the extension of the metric, and try to see if
anything can be done to set up a flow around the singularities. This is what we will
attempt now.

As we have said, the full manifold is obtained by an extension process which, at the
monopole locations in particular, begins by attaching points at the missing {pi}. This can
be done in such a way that the metric that we had previously built extends smoothly to
the full manifold. To this end, we begin by introducing exponential polar coordinates on
H3 near one of these points. The metric then becomes

g = q2[V (dρ2 + sinh2(ρ)gS2) + V −1ω2] (6.38)

where V = 1
2ρ + F (cf. (6.13)), for F some smooth function on a neighbourhood of the

origin, and gS2 denotes the standard metric on the unit 2-sphere. In terms of the SU(2)
left-invariant one-forms that we introduced earlier on, this can be written as gS2 = σ2

1 +σ2
2.

For small values fo the radial coordinate ρ, we can use the polar coordinates on the base
to identify it with R+ × S2, and the circle bundle with R+ × S3. In turn, the bundle map
π : X → H3 \ {pi} is identified with

p : R+ × S3 → R+ × S2

(r, x) 7→
(
r2

2 , µ(x)
)
.
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Here, the map r 7→ r2/2 is chosen as such for consistency with the previously constructed
bundle map, pi : X → H3 \ {pi}, and µ : S3 → S2 is the usual Hopf fibration. Because of
this identification with unit spheres, it is now useful to fully introduce the left-invariant
SU(2) coframe {σ1, σ2, σ3} on S3, again normalized so that dσ1 + 2σ2 ∧ σ3 = 0. Because
of this relation, and the fact that the curvature of the connection form is defined over the
base space, we have the (gauge) freedom of choosing ω = σ3 + p∗θ, with θ some one-form
defined on the base space. With all these choices, and the change of variable ρ → r2/2,
the metric turns out to be

g = q2
[
(1 + r2F )dr2 + r2(1 + sinh2

(
r2/2

)
r2F )(σ2

1 + σ2
2) + r2(1 + r2F )−1(σ3 + p∗θ)2

]
(6.39)

Identifying R+ × S3 with R4 \ {0}, the map p extends to

p : C2 → R3

(z1, z2) 7→
(
|z1|2 − |z2|2

2 ,Re(z1z2), Im(z1z2)
)

In particular, this identification allows us to identify the metric at the origin as precisely
the Euclidean metric, expressed as g = dr2 + r2(σ2

1 + σ2
2 + σ2

3). In any case, the fact
that the original metric agrees with the Euclidean one at the origin in no way allows us to
conclude that it is locally flat. As a final remark, note that one still needs to implement the
appropriate conformal factor sech2(ρ) in front of the metric for it to be the actual metric
for nCP2.

After this whole discussion, one might be tempted to try to set up the Ricci flow
equations for (6.39), or an approximation at the origin thereof. This is rather complicated.
Most importantly, while we could explicitly compute the function F , the one-form θ is
arbitrary. This prevents us from giving an explicit form of the metric, and thus from
making explicit computations with it. Because in the context of [39], the explicit form of
θ is irrelevant, no further properties are given for it. If one were to drastically simplify
the metric (6.39), and assume both that F is constant, and that p∗θ = 0, then the metric
that we would be dealing with would be very similar to the Euclidean metric, or the Burns
metric, with different prefactors, which have simple dependences on the coordinate r. With
this very drastic oversimplification, we obtain that R = 2+8F , which, by virtue of F being
positive, is itself positive. This tells us that this approximation is not terribly useful, since it
contradicts the argument given around (6.37), and thus renders the approximation invalid.
We could try to relax the conditions, and take p∗θ to have constant coefficients in the
{dr, σ1, σ2} basis for the base space. This indeed allows us to force R to vanish, depending
on the value of the coefficients. However, we are still approximating F for a constant, when
it should be a function of the coordinates in the base. Hence, the approximation seems too
drastic to be meaningful.

6.7 Addendum: why the behavior at the singularities may not matter

In the previous sections, we have tried to argue that the Ricci flow equations make the
whole nCP2 manifold, endowed with the metric (6.24) shrink. While we were able to check
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that this does indeed happen almost everywhere, we found some trouble on the set of points
{pi} ⊂ nCP2, where the monopoles are located, and the original space was blown up. In
this section, we argue that the behaviour of the manifold at these discrete points might
not be all that important.

What we know for sure is that the Ricci flow makes nCP2 \ {pi} shrink indefinitely
until, at the limit where the flow ends, it shrinks to a point. Notice that we have used the
word limit here, since turning an n-dimensional manifold to a point is a procedure that does
great violence to almost any conceivable topological property, and thus, cannot be a part
of a smooth deformation. However, the interpretation still stands. If we take the manifold
to shrink to a point, then taking so much care about the exact behavior at the monopole
locations might be pointless, since we are already heavily modifying the manifold.

Another argument that can support this claim is the following. Recall that, in order
to make sense of the idea of a manifold converging along the flow to some other manifold,
we introduced in section 4.3 the notion of smooth, pointed convergence. In this context,
we could pick precisely the set {pi} of points along the flow. Indeed, since the curvature
increases much faster away from the monopole locations than around them, we expect necks
to form, and to then pinch off. In this sense, the Ricci flow would perform a disconnected
sum decomposition of nCP2, in such a way that it would leave a point pi in each of the
remaining components. Then, under the notion of pointed convergence, we conclude that
the manifold would converge to a set of points, which are precisely the monopole locations.

7 Distances along the flow

The Swampland distance conjecture [2, 5] substantially asserts that large distances in
the effective field theory moduli space should be accompanied by asymptotically massless
towers of states, when quantum gravity is taken into account. This intuition was further
extended to the case of Ricci flow in [16], in which metric components themselves were
regarded as moduli of the theory. Exploiting the technical discussion presented [41], the
distance along a family of metrics g (t) on a Riemannian manifoldM, where t is a real flow
parameter, can be computed as

∆ (t1, t2) = c

∫ t2

t1

( 1
VM

∫
M

√
ggµνgαβ

dgµα
dt

dgνβ
dt

) 1
2
dt , (7.1)

where c is a real constant and VM is the volume ofM. When the family is taken to follow
Ricci flow, the above reduces to:

∆ (t1, t2) = 2c
∫ t2

t1

( 1
VM

∫
M

√
gRµνR

µν
) 1

2
dt . (7.2)

For a D-dimensional Einstein manifold, we get:

∆ (t1, t2) ∼ log R (t1)
R (t2) . (7.3)
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Therefore, it is clear that both flow singularities and flat spacetime fixed points lie at
infinite distance and should be accompanied by a tower of asymptotically massless states.
For a more general manifold, we can decompose the Ricci scalar as

Rµν = R

D
gµν + Tµν , (7.4)

where Tµν is its traceless part. Since

RµνR
µν = R2

D
+ TµνT

µν (7.5)

we obtain

∆ (t1, t2) = 2c
∫ t2

t1

(
D−1 〈R2〉+ 〈TµνTµν〉

) 1
2
dt , (7.6)

in which 〈A〉 referes to the average value of A onM. Let’s assume that the flow encounters
a singularity at t = ts, so that R → ∞ for t → ts. In the broad set of situations in which
it implies 〈R2〉 → ∞, we can expect that flow singularities sit at an infinite distance in
the moduli space. This is clearly the case for a positive-curvature manifold shrinking to a
point, as a CP2 term in a disjoint union. It would be interesting to assess this in a more
general setting and investigate what singularity resolutions imply from the perspective of
the distance along the flow. The fact that they connect cobordant manifolds gives hope that
one could somehow assign a meaningful moduli space length to the deformation connecting
the manifold which is about to pinch and the resolved one, even though a topology change is
involved. We expect that rephrasing (7.2) in a more general form, in which the deformation
parametrised by t can generally connect cobordant manifolds, could shed some light on the
issue at hand. The t-integral, in that sense, would have to be regarded as an integral over
the extra coordinate of the manifold of which the initial and the resolved one are boundaries.
In particular, one would like to assess whether singularity resolutions can avoid distance
divergencies. This would be consistent with the general expectation that quantum gravity
processes can naturally induce topology changes, implying that space-time manifolds with
different topological properties should belong to the same moduli space. Further discussions
will be required, but such an investigation goes beyond the scope of the current work.

8 The ADE singularities

One of the most striking features of K3 surfaces, which is also very relevant for physics
applications, is that all of their singularities are classified in terms of the ADE Lie groups.
However, when one considers only a generic blown-up surface, all information regarding the
ADE classification is lost. From the connected sum perspective, the manifold K3#CP2, for
example, contains no information about the singularity which was replaced by a smooth
manifold. In this section, we will try to elucidate how to recover the ADE information
from the blow-up of the singularities. The idea is that the cobordism conjecture states
that K3 is a valid background only when it is accompanied by a series of blow-ups of its
singularities. This is sometimes solved by adding a series of defects on the K3, sourcing
fluxes. Then, it could be that we can reconstruct, or find some restrictions on, the gauge
groups associated to said fluxes.
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8.1 A lightning fast overview of complex geometry

In this section we review/introduce some concepts in algebraic and complex geometry which
are needed to shape the discussion. They are not, however, necessary to understand the
general idea. We begin with the concept of a holomorphic line bundle.

8.1.1 Holomorphic line bundles and the Picard group

In general terms, a line bundle is simply a vector bundle or rank 1, so the fibers at any
point are lines. Note the difference on the nature of the bundle when its dimension is
complex rather than real. We now give the definition of a holomorphic vector bundle

Definition 8.1. Let X be a complex manifold. A holomorphic vector bundle of rank r
on X is a complex manifold E together with a holomorphic projection map π : E → X,
and such that each fibre E(x) := π−1(x) is an r-dimensional complex vector space, which
further satisfies the following condition: there exists an open covering X = ⋃

i Ui and
biholomorphic6 maps ψi : π−1(Ui) ∼−→ Ui × Cr commuting with the projections from the
bundle to Ui such that the induced map π−1(x) ∼−→ Cr is complex linear.

The above definition os basically that of a regular vector bundle, but we further require
that the so-called local trivializations (the ψi above) are holomorphic. Now, we can just
define a holomorphic line bundle as a holomorphic vector bundle of rank r = 1. One last
comment on this definition is that the induced transition functions on the vector bundle

ψij(x) :=
(
ψi ◦ ψ−1

j

)
(x, ) : Cr → Cr (8.1)

are complex linear for all x ∈ Ui∩Uj . In the same way as for differentiable real or complex
bundles, a holomorphic rank r vector bundle is determined by the set of holomorphic
cocycles {Ui, ψij : Ui → GL(r,C)}. This will be important in the following, when we
introduce the Picard and the Néron-Severi (NS) groups.

We now turn to a very specific (and unique) type of line bundle. Over an n-dimensional
complex projective space CPn, there is (up to isomorphism) only one holomorphic line
bundle. It is called the tautological line bundle, and denoted O(1). Its dual is defined as
follows:

Proposition 8.1. The set O(−1) ⊆ CPn×Cn+1, consisting of all pairs (l, z) ∈ CPn×Cn+1

such that z ∈ l forms in a natural way a holomorphic line bundle over CPn.

The proof of this proposition is not terribly complicated, and hence we will skip it. The
basic idea is to just take an element in CPn, which is a complex line, and define the fibre
over that point as the line itself. Rigorously, it can be shown that the fibre O(−1)→ CPn

over l ∈ CPn is naturally isomorphic to l ⊂ Cn+1. The above construction gives rise to the
following definition

Definition 8.2. The line bundle O(1) is defined as the dual of O(−1), namely O(−1)∗.
This can be extended. For k ∈ Z+, let O(k) be the line bundle O(1)⊗ k). . . ⊗O(1). One
defines O(−k) in an analogous way. It is standard notation to write E(k) := E⊗O(k) for
any vector bundle E → CPn.

6A biholomorphic function is a function f : U → Cn which is both holomorphic and injective.
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Finally, if one defines O(0) := CPn×C (i.e. the trivial line bundle), the tensor product
and the dual endow the set of all isomorphism classes of holomorphic line bundles over a
complex manifold X with the structure of an Abelian group. Being that this groups is
infinite cyclic, it must be isomorphic to Z. This is the Picard group of X, Pic(X).

There is a consequence of the above definition which will help us build up to our
end goal. It is the fact that Pic(X) ' H1(X,O∗X). Here, O∗X denotes the subsheaf of
nonvanishing holomorphic functions on X. The precise definition of a sheaf is not necessary
here. To understand the general argument it is enough to think about it in terms of
homology with coefficients which are nonvanishing holomorphic functions. The proof for the
previous statement, which we skip here, relies on two facts. The first one is that line bundles
are described in terms of cocycles, given by the transition functions. These are in fact not
any type of cocycles, but fall under the classification of Čech cocycles. The association is
clear with the definition of the Čech cohomology groups. We will skip this definition for
reasons that will be clear in a moment. Because of this definition in terms of cocycles, one
has that Pic(X) ' Ȟ1(X,O∗X), where Ȟ denotes Čech cohomology. The second fact that
this proof relies on, is that for p = 1, the homomorphism Ȟp(X,F) → Hp(X,F) is an
isomorphism. Therefore, in the end, we have that Pic(X) ' H1(X,O∗X).

8.1.2 The Néron-Severi group

We will now introduce one of the last concepts which are needed to start discussing the
blowup of singularities on K3 surfaces. It builds up from the previous section in the sense
that it is a construction which is defined in terms of the Picard group of a complex manifold.
This is the so-called Néron-Severi group.

We beign by the fact that there is a short exact sequence of sheaves, called the expo-
nential sequence (for reasons that will be clear in a moment). It is the following

0→ Z→ OX → O∗X → 0. (8.2)

Again, OX denotes the sheaf of holomorphic functions on X, and O∗X the subsheaf of
nonvanishing holomorphic functions on X. We may check for exactness as follows. The
first map, Z→ OX is an inclusion, so it is trivially injective. The map in the middle is the
one that gives the name to the sequence. It is given by

exp : OX → O∗X
f 7→ e2πif .

Thus, it is clear that im(Z→ OX) = ker(OX → O∗X). Finally, surjectivity of OX → O∗X is
granted by the (local) existence of the complex logarithm.

The exponential sequence gives rise in the usual sense to a long exact sequence in
cohomology. We look in particular at

. . .→ H1(X,Z)→ H1(X,OX)→ H1(X,O∗X)→ H2(X,Z)→ . . . (8.3)

Inserting the Picard group explicitly, we have

. . .→ H1(X,Z)→ H1(X,OX)→ Pic(x)→ H2(X,Z)→ . . . (8.4)
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The last map above is known, it is precisely the first Chern class c1 : Pic(X)→ H2(X,Z).
A map which is related to this will give us the definition of the Néron-Severi group.

The canonical boundary map in the long exact sequence above, arising from the expo-
nential map, Pic(X) → H2(X,Z) can be composed with the map H2(X,Z) → H2(X,C),
which is simply induced by the inclusion Z ↪→ C. On the other hand, a standard result of
Hodge theory is that, for compact Kähler manifolds, one has the following decomposition

Hn(X,C) =
⊕

p+q=n
Hp,q(X) (8.5)

In particular, for n = 2,

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X) (8.6)

Before going further, note that due to complex conjugation on Hn(X,C), we have that
Hp,q(X) = Hq,p(X). This, combined with the fact that OX is the sheaf of holomorphic
functions on the manifold, yields H2(X,OX) = H0,2(X).

With this information, we know that the long exact sequence given by the exponential
sequence (8.2) shows that the composition

Pic(X)→ H2(X,Z)→ H2(X,C)→ H2(X,OX)
(
= H0,2(X)

)
(8.7)

is trivial, precisely because it fits into an exact sequence. Moreover, we have that

Im
(
Pic(X)→ H2(X,C)

)
⊆ Im

(
H2(X,Z)→ H2(X,C)

)
We also have that Im

(
Pic(X)→ H2(X,C)

)
⊆ ker(H2(X,C) → H0,2(X)), where the last

map is the usual projection given by the Hodge decomposition. Consider now H2(X,R) ⊆
H2(X,C). It is invariant under complex conjugation, and further contains Im(H2(X,Z)→
H2(X,C)), which must therefore also be invariant under complex conjugation, and hence
fall into H1,1(X) in the Hodge decomposition. As a conclusion of all this, one finds that
the image Pic(X)→ H2(X,C) is contained in the following homology group

H1,1(X,Z) :=
(
Im(H2(X,Z)→ H2(X,C))

)
∩H1,1(X). (8.8)

The above definition is sometimes abbreviated as H1,1(X,Z) := H2(X,Z) ∩ H1,1(X). It
is a standard result (Lefschetz theorem on (1, 1) classes), that for X a compact Kähler
manifold, the map Pic(X)→ H1,1(X,Z) is surjective.

To conclude this section, we look at a slightly different map from the Picard group of
a complex manifold. The image of the map Pic(X)→ H2(X,R) is called the Néron-Severi
group of the manifold X, denoted NS(X). It spans a finite dimensional real vector space
NS(X) ⊂ H2(X,R) ∩ H1,1(X). Because of the surjectivity of Pic(X) → H1,1(X,Z), it
turns out that the natural inclusion NS(X) ⊆ H1,1(X,Z) is actually an equality. Finally,
the rank of NS(X) is denoted by ρ(X) and called the Picard number.

In the following, we will not work with general complex manifolds, but rather with
very specific and well behaved ones. In particular, we will deal with Calabi-Yau manifolds,
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for which we have that H1(X,OX) = 0. This can in fact be read off from the Hodge
diamond of any Calabi-Yau n-fold. Because of the exact sequence (8.4), this means that
c1 : Pic(X)→ H2(X,Z) is injective. This in turn implies that

NS(X) = Pic(X)

Hence, once we introduce blow-ups from the perspective of algebraic geometry and line
bundles, it will follow that said blow-ups are described by the Néron-Severi group of the
manifold.

8.2 Blow-ups from algebraic geometry

In order to make a connection with the rest of the work, we will now introduce the blowups
of a K3 manifold in a perspective more akin to algebraic geometry, and using the notions
which we have introduced in the previous chapter. Before going any further, we have to
introduce a bit of nomenclature.

The first definition is that of a complex analytic hypersurface

Definition 8.3. An analytic hypersurface of an analytic variety X is an analytic subvariety
Y ⊂ X of codimension one, namely dim(Y ) = dim(X)− 1.

Above, an analytic variety is a sort of generalization of complex manifolds, which allows
for singularities on the space. More concretely, a complex analytic variety is locally given
as the zero locus of a certain (finite) set of holomorphic functions. In other words, it is the
union of a certain set of components, which are zero loci of holomorphic functions. In the
same fashion, a hypersurface inherits this property from its ambient variety. Hence, every
hypersurface Y is the union ∪iYi of its so-called irreducible components. If the ambient
manifold X is compact, this union is finite, but such in general we only have that the union
is locally finite.7 This very property is what allows us to (pointwise) define a formal linear
combination of hypersurfaces as follows

Definition 8.4. Given {Yi}i∈I a collection of irreducible hypersurfaces of X, a divisor D
on X is a formal linear combination

D =
∑
i∈I

ai[Yi] (8.9)

with ai ∈ Z.

Note that local finiteness implies that for any x ∈ X there exists an open neighbour-
hood of x on which ai 6= 0 and Yi ∩U 6= ∅ for only finitely many i ∈ I. In other words, the
sum can be defined because it is pointwise finite.

Given the previous sections, one can see the importance of introducing hypersurfaces
and divisors. We would like to understand complex manifolds with tools as simple as

7A locally finite collection of subsets of a topological space (in this case {Yi} as subsets of X) is one in
which every point y ∈ ∪iYi has a neighbourhood which intersects at most finitely many elements of the
collection.
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possible. One such tool is the idea of line bundles, which as we have seen can be studied
by means of their cohomology. Now, if we consider sections of said line bundles, it turns
out that hypersurfaces are always given as some global holomorphic zero section of a line
bundle. This makes sense, since the fibers of line bundles are by definition one dimensional,
and so their complement has codimension one. In fact, we state without proof that there
exists a natural group homomorphism between the group of divisors of a complex manifold
X, Div(X), and Pic(X).

8.2.1 Blow-ups and line bundles

Previously, we have seen how to construct the blow-up of C2 at the origin, by considering
tangent lines at the origin. Now, we realize that in order to do so, we had to define the
blow-up of our original space in a very similar way to how we later on defined holomorphic
line bundles, in the sense that in both cases we had subsets of CPn × Cn+1. However, in
one case we had a blow-up of Cn at some point, and in the other a line bundle over CPn.
We will now see how both are related. Again, blow-ups can be performed along complex
subvarieties, but for the purposes of this work, we will only consider blow-ups along points.

For a line bundle O(−1)→ CPn we can write down the following diagram of maps

CPn O(−1) CPn × Cn+1 CPn

{0} Cn+1 Cn+1

σ

The line at the top comprises the usual line bundle map, where the fibre over a l ∈ CPn is
precisely the line itself. However, instead of working with CPn as the base, we can just as
well use σ : O(−1)→ Cn+1, while keeping the bundle construction from before exactly the
same. To make everythign match, we define the fibres of σ as follows. For z 6= 0, σ−1 is
the unique line lz ∈ CPn that passes through z ∈ Cn+1. For z = 0, this preimage must be
σ−1(0) = CPn, since all lines contain the origin. As a matter of fact, this preimage is the
zero section of O(1) → CPn, as it represents l 7→ (l, 0), where we are using the notation
from our introduction of line bundles. This allows us to define a blow-up as follows:

Definition 8.5. The blow-up σ : Bl0(Cn+1)→ Cn+1 of Cn+1 at the origin is the holomor-
phic line bundle O(−1)→ CPn together with the natural projection σ : O(−1)→ Cn+1

For the sake of completeness, we will now give the general definition of a blow-up along
an arbitrary submanifold.

Definition 8.6. Let Y be a complex submanifold of X. Then there exists a complex
manifold X̂ = BlY (X), the blow-up of X along Y , together with a holomorphic map σ :
X̂ → X such that σ : X̂ \ [σ−1(Y )] ' X \ Y , and σ : σ−1(Y ) → Y is isomorphic to
P(NY \X)→ Y .

Above, NX denotes the normal bundle of X. The two conditions above may be inter-
preted as follows. Away from the submanifold along which the blow-up is performed, the
procedure does nothing. On the contrary, this submanifold is replaced by (a bundle map
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from) the projectivization of the normal bundle of that submanifold. If we again consider
the particular case of Y = {x0}, and use the fact that P(Cn) = CPn−1, we recover the
definition from above.

Definition 8.7. The hypersurface σ−1 = P(NY \X) ⊆ BlY (X) is called the exceptional
divisor of the blow-up σ : BlY (X)→ X

In the particular case that we are dealing with, in which Y is just a point in an n

dimensional manifold x ∈ X, then the blow-up replaces x by CPn−1. The exceptional
divisor σ−1(x) is usually denoted E.

8.3 The ADE classification of K3 singularities

In this short section, we briefly review how singularities are classified on a K3 surface. In
contrast with other sections, we will not go into much detail, as a lot of these concepts are
known from F -theory. A standard reference for this is [42].

In the context of F -theory, one considers spacetime compactifications of type IIB string
theory of the following form

M1,9 = R1,9−2n ×Bn (8.10)

with Bn a manifold of (complex) dimension n. One further considers 7-branes which fill
the R1,9−2n factor, and that wrap an internal holomorphic cycle Σn−1 ⊂ Bn of codimension
one. The 7-branes imply the appeareance of the axion C0 in the theory which, together
with the dilaton, combine to give a complex field, the axio-dilaton

τ = C0 + ie−ϕ. (8.11)

Because of the nontrivial variation of the axio-dilaton around the D7-branes, and the fact
that Rab = ∇a∇bϕ 6= 0, we know that Bn cannot be Calabi-Yau. However, it turns out
that this variation of τ can be used to define an elliptic fibration over Bn. An elliptic
fibration is one in which each fibre has the structure of a torus with a marked base point
(an elliptic curve)

π : Eτ Yn+1

Bn

Here, the fact that each fiber π−1(b) for b ∈ Bn has a marked point is represented in the
requirement that there exists a section σ : Bn → Yn+1. The image of the section at each
point in the base is the marking of the fiber. It turns out, by calculations regarding the
first Chern classes of both Yn+1 and Bn, that c1(Yn+1) = 0, and hence Yn+1 is Calabi-Yau.
In the case of n = 1, we have that Y2 = K3, and B1 = CP1. Note that the K3 here is
generic. For the remainder of the work, we will stay in this context.

We will now see how singularities may occur on an elliptic fibration, and how they
are classified. We will try to be as simple as possible here. Most often, elliptic fibrations
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are described by a so-called Weierstrass model. The construction is as follows. First, one
considers a special type of projective space of dimension 3, namely P231, defined as

P231 := C3 \ {0}
∼

, where (x, y, z) ∼ (λ2x, λ3y, λz) for λ ∈ C∗ (8.12)

Then, the elliptic curve is defined pointwise as the zero-locus on P231 of

P = y2 − (x3 + fxz4 + gz6) (8.13)

Namely, the elliptic curve is defined as the hypersurface P = 0. Above, f and g are
technically understood as sections of a line bundle over the base Bn, namely

f ∈ Γ(Bn,L4)
g ∈ Γ(Bn,L6)

Where powers of a line bundle are understood as coming from tensor products with itself,
as in the definition of O(k). This technicality arises because both f and g are related to
the structure constant τ of the marked torus which defines the elliptic curve. They thus
have certain transformation properties under SL(2,Z), the isometry group of the torus,
and this is reflected in their definition as sections. In more practical terms, f and g can be
thought of as coefficients at each point in the base, which define a particular elliptic curve
at that point through (8.13). We would also like to stress the fact that this strange looking
polynomial is highly non-unique, and depending on certain mathematical details (such as
the characteristic of the field over which the curve is defined), it can be brought to simpler
forms. However, we would like to stick to the notation used in [42], as it is a very popular
reference.

With the Weierstrass model in mind, we will now see what it means for a singularity
to occur, and then we will discuss the sense in which they are classified. We say that
a hypersurface P = 0 is singular if its gradient also vanishes. That is, if we both have
that P = 0 and dP = 0. Let us see what this means for the Weirstrass model. First,
we check that the singularity cannot happen at z = 0, since then P = 0 would reduce to
y2 = x3, whose gradient is 2y = 3x2. Therefore, the only possible singularity would be
at x = y = z = 0, which is a point that is not on P231. By the rescaling properties of
this projective space, we can thus restrict ourselves to the case where z = 1, where the
Weierstrass equation P = 0 can be written as

y2 = x3 + fx+ g. (8.14)

The left hand side is just a degree 3 polynomial, which in these conditions can be decom-
posed as

y2 = K
3∏
i=1

(x− xi), (8.15)

where {xi} are the roots. A simple calculation of the gradient as above reveals that a
singularity occurs if and only if a root has multiplicity greater than 1. On the other hand,
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since we are dealing with a degree 3 polynomial, this only happens when its discriminant
∆ vanishes. For this polynomial, the explicit form of the determinant is

∆ = 4f3 + 27g2. (8.16)

There is a bit more to the singularities of the Weierstrass model. In the general case, only
∆ vanishes, and f and g take whichever nonzero values needed for this to happen. However,
it can happen that the zero of the discriminant is also a zero of both f and g as functions
of the base coordinate. In this case, the singularity is enhanced, and the Weierstrass model
becomes itself singular (whereas before, even if ∆ = 0 at some points, the whole elliptic
fibration Yn+1 is still smooth).

8.3.1 The ADE classification

In principle, an elliptically fibered K3 may present many types of singularities, depending
on how ∆, f , and g vanish. Fortunately, there is a way of classifying these singularities,
first introduced in two landmark works by Kodaira [43] and Néron [44]. We will now briefly
discuss this classification, in order to make our latter arguments clearer.

First, we should mention that the classification in question is over smooth, minimal
surfaces. The reason for smoothness, is that any singular surface can be made smooth by
means of so-called birational maps, of which blow-ups (as in definition 8.6) are a particular
example. This means that we can “smooth out surfaces in a non-intrusive way”. Thus,
once smooth surfaces are classified, the non-smooth ones are too. The second condition is
minimality. This is somewhat related to the last condition. We say that a smooth surface
is minimal whenever it is not birationally equivalent (there is a birational map between
them) to another smooth surface. In practical terms, it means that a minimal smooth
surface is one which cannot be obtained by blowing up smooth points of some other
smooth surface.

Once this technicality is understood, we proceed with the classification of K3 singular-
ities. Let X denote some elliptically fibered K3 surface, with a certain number of singular
points {p1, . . . , pn}, which we take to be distinct. In order to obtain the resolution of X,
which we denote by X, we need to perform m blow-ups, where n 6 m.8 This, as we
have said before, produces a set of m total exceptional divisors {E1, . . . , Em}. Given the
dimensionality, these Ei are nothing but rational curves, isomorphic to CP1. These are
sometimes referred to as degenerate fibers, as over the hypersurface defined by {∆ = 0},
they are degenerate.

Each of the curves that are produced in the blow-up can not only intersect itself, but
it can also intersect one or more of the other curves. When we use the term intersect, we
mean in the usual way in which cycles intersect in homology theory. This is captured in
the intersection product, which assigns to any two curves Ci and Cj an integer, Ci ·Cj ∈ Z.
We will come back to the intersection structure of a K3 in a later section. The punchline,
and the basis for the classification of ADE singularities, is the profoundly shocking fact

8It might be that a certain singular point has a higher order singularity and needs to be blown up more
than once.

– 35 –



J
H
E
P
0
1
(
2
0
2
3
)
1
2
6

that the intersection structure of these rational curves exactly mimics one of the extended
Dynkin diagrams of an ADE Lie algebra. Recall that the Dynkin diagram associated to a
Lie algebra is constructed from its simple roots {αi}, with i = 1, . . . , rk(g), by a pairing
dij = 〈αi, αj〉〈αj , αi〉. Because of technical details, which are discussed in [42], this leads
us to identify Ei ∼ (−αi), for i = 1, . . . , rk(g).

The above relation can be thought of in a very pictoric and intuitive way. If we use
the fact that CP1 ' S2, the Riemann sphere, a blow-up (or successive blow-ups) replaces
singular points with Riemann spheres. The intersection of rational curves from above
translates into the intersection of these Riemann spheres at a certain (finite) number of
points. Because of the identification of these spheres with the (negative of) the simple roots
of some ADE algebra, the spheres arrange themselves literally like in a Dynkin diagram.

There are certainly some subtleties about this classification, and some singularities
whose rational curves do not straightforwardly reproduce an extended Dynkin diagram, but
can nevertheless still be classified by an ADE group. For our purposes, and the extension
of this work, it is enough to have an intuitive idea of how this classification arises, and
the mathematics that are relevant to it. We redirect the interested reader to [42, 45, 46],
the latter one being the standard refence for F -theory in physics. We also note that a full
table with the classification of the ADE singulatrities of an elliptically fibered K3 can be
found on [42, Table 4.1].

9 Recovering the ADE singularities from the blow-ups

Now that we have introduced the necessary mathematics to properly discuss the topic, and
we have a general idea of how singularities occur and are classified on an elliptically fibered
K3, it is time to go backwards. In the end, our goal is to relate all this to the cobordism
conjecture, and try to draw some restrictions on the allowed backgrounds for our theories of
quantum gravity. The problem here is that cobordisms are, in a sense, “only sensitive to the
topology of a manifold”, and not even completely at that. By this we mean that the bordism
class of a manifold can be affected by such things as characteristic numbers (the Pontrjagin
and Stiefel-Whitney numbers), tangential structures, such as in [31], etc. However, the
main appeal of bordisms is that they may relate two manifolds whose topologies differ
completely. One explicit example of this is given in appendix A, where we check that,
while CP2#CP2 and CP2 t CP2 are bordant, their homology groups differ.

Throughout the last sections, we have seen that line bundles could be understood
through the Picard group of a manifold, and then, through its Néron-Severi group. In
particular, this leads us to the conclusion that blow-ups, defined in terms of holomorphic
line bundles, may be described in the same terms. Since the ADE classification of K3
singularities is based on how the exceptional divisors coming from the blow-ups of the
singularities intersect, it follows that some aspects of the ADE classification of a K3 have
to do with the cohomology structure of the manifold. This is really a problem, as these are
liable to change under bordisms. In particular, a bordism relation (or the bordism class of
a manifold) tells us nothing about its homology structute. It follows that, in order to fully
specify the ADE structure, or the exact allowed gauge groups for backgrounds which are
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allowed by the cobordism conjecture, one needs to add some extra information to what is
given by the cobordism conjecture. In particular, from the discussion in the last sections,
we would need to specify the way in which the exceptional divisors coming from the blow-
ups of the singularities intersect. In this section, we will see what kind of restrictions on
the allowed gauge groups are obtainable from this perspective.

9.1 Setting up the stage

In previous introductory sections, we have seen how blow-ups can be understood in terms of
holomorphic line bundles, and how these can be in turn understood from the Néron-Severi
group of the manifold X which has been blown up. Moreover, we have stated that NS(X) =
H1,1(X,Z) = H2(X,Z) ∩ H1,1(X). We can draw two conclusions from here: the first is
that NS(X) will inherit a lattice structure from H2(X,Z), and the second is that ρ(X) =
rk(NS(X)) 6 20. The second conclusion comes from knowing that the dimensionality of
the cohomology groups of a K3 surface is completely fixed, and encapsulated in the Hodge
diamond

1
0 0

1 20 1
0 0

1

(9.1)

In particular, we have that rk(H2(X,Z)) = h2,0 +h1,1 +h0,2 = 22, whereas rk(H1,1(X)) :=
h1,1 = 20. The reason why h1,1 only provides an upper bound on ρ(X) is that one is
allowed to consider complex structure deformations on a K3. These change the complex
structure of the manifold, which in turn modifies the decomposition (8.6). Thus, elements
of NS(X) could in principle pick up (2, 0) or (0, 2) components, and hence not belong to
NS(X) anymore. Thus, the best that we can say about the rank of the Néron-Severi group
is that ρ(X) 6 20.

Now we come to discussing lattice structures, and how NS(X) inherits one. This is a
consequence of the fact that it is a subgroup of H2(X,Z), which can itself be given the
structure of an even, self-dual lattice. In general, we recall that a lattice is essentially a
module9 over Z equipped with a non-degenerate symmetric bilinear form

〈·, ·〉 : L× L→ Z. (9.2)

We now proceed to explain how this comes about. Because of Poincaré duality, and the
dimension of the manifolds we are working with, this can be seen either form the point of
view of homology or cohomology. From the above discussion, we know that H2(X,Z) ' Z22

as a group, so as a module it will have finite rank. Because we are working with the so-called
middle cohomology,10 the cup product of forms (which in the case of de Rham cohomology

9For present purposes, one could substitute “module” by “vector space”.
10Namely, we have a manifold of dimension d = 4k, and the (co)homology groups taken into account

are H2k.
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is the wedge product) endows H2(X,Z) with a symmetric, bilinear form

〈·, ·〉 : H2(X,Z)×H2(X,Z)→ H4(X,Z) ' Z

(α, β) 7→ 〈α, β〉 =
∫
X
α ∧ β

(9.3)

where H4(X,Z) ' Z follows form Poincaré duality. The above defined pairing is usually
referred to as the intersection pairing. In the dual homology picture, this pairing is precisely
the one given by the intersection number, where the pairing between two cycles a, b ∈
H2(X,Z) is given by

a · b = #(a ∩ b),
where the symbol # denotes the cardinality of the set. With any of these two dual pairings,
we can endow H2(XZ) with the structure of a lattice, which we shall denote by ΛK3. We
have now come full circle. The starting point of this work is precisely that the Hirzebruch
signature theorem states that the signature of this lattice is σ(K3) = −16. Since its rank
is 22, the signature of the lattice must decompose as (3, 19).

The remaining properties of ΛK3 can be seen as follows. From Poincaré duality, we
know that for any basis {ei} of 2-forms, we can find a dual basis {e∗j} such that

ei · e∗j = δij

Again, by duality, we were able to define a basis for H2(X,Z) from {ei}. Thus, ΛK3 is
self-dual. Lastly, ΛK3 is even, meaning that for any α ∈ H2(X,Z), we have that

〈α, α〉 ∈ 2Z. (9.4)

In the dual picture, for a ∈ H2(X,Z), we have that

a2 := a · a ∈ 2Z. (9.5)

Rather surprisingly, this comes from the fact that K3 is spin, and thus c1(K3)2 = c2(K3) =
0 (mod 2). This is just a restatement of the fact that the first and second Stiefel-Whitney
classes w1 and W2 vanish. The proof of this is complicated, and relies on Wu’s formula.

The requirement that ΛK3 has to be even and self-dual severely restrict the possibilities
for the lattice. Combining this with the signature and rank of the lattice, we know from
intersection theory that the only (unique up to isometries with respect to the inner product
defined above) choice is

ΛK3 = (−E8)⊕2 ⊕H⊕3 (9.6)
Above, E8 denotes the root lattice associated to the Lie algebra of the same name, and H
represents the unique rank 2 hyperbolic lattice. With this explicit form of the K3 lattice,
its intersection form, which governs the inner product defined above, is box-diagonal. Two
of these boxes are 8×8 matrices given by minus the Cartan matrix associated to E8 (hence
the minus sign in (9.6)), and the three remaining boxes each contain the intersection form
associated to H, which is the following 2× 2 matrix:11

H =
(

0 1
1 0

)
(9.7)

11Note that we are denoting both the lattice and the intersection form by the same name.

– 38 –



J
H
E
P
0
1
(
2
0
2
3
)
1
2
6

After having briefly described ΛK3, the lattice defined by H2(X,Z), we move on to
seeing how NS(X) ⊂ H2(X,Z) inherits a lattice structure. As we have stated before, the
possibility of deforming the lattice structure of the surface means that we can only give
an upper bound on the rank of this lattice, namely ρ(X) 6 20. Because of the natural
inclusion, the symmetric bilinear pairing on NS(X) is exactly the same as the one defined
on H2(X,Z) by the intersection product, but just restricted to NS(X). The only thing left
that we can determine about the Néron-Severi lattice is the signature of its intersection
form. The answer to this is given by the Hodge index theorem [47, Corollary 3.3.16], which
we repeat here

Proposition 9.1. Let X be a compact Kähler surface. Then the intersection pairing (9.3)
has index (2h2,0 + 1, h1,1 − 1). Restricted to H1,1 it is of index (1, h1,1 − 1)

We will not provide a proof, but just note in passing that the offset of 1 in both indices
has its roots in the appeareance of the Kähler class [ω] ∈ H1,1(X). As a consequence of this,
given that NS(X) = H2(X,Z) ∩H1,1(X), we have that the signature of the Néron-Severi
lattice is (1, ρ− 1)

9.2 Introducing the blow-ups

The only information that the cobordism conjecture gives us, working in ΩSO
4 , is that for a

generic K3 to be a valid background, it must be accompanied by a certain number of copies
of CP2, which we interpret (through passing from disjoint unions to connected sums under
the bordism relation) as coming from a number of blow-ups performed on ADE singularities
on the original K3. We note in passing that a connected sum CP2# n). . . #CP2 is interpreted
as coming from resolution of m points p1, . . . , pm in the manifold, for m 6 n. While we
know exactly how many blow-ups are needed, we will keep the number arbitrary for the
time being. Now, we need to see how these blow-ups might relate to the ADE structure
of the original K3. In the following, we will name the original K3 (with singularities) X,
and the resolved K3 will be called X̂.

As we have seen before, blow-ups are understood in terms of line bundles. For each
blow-up, we produce an exceptional divisor Ei on the blown-up manifold X̂, as in defini-
tion 8.7. Each of these exceptional divisors is given by a CP1, and so they are rational
curves. Thus, if we blow up n points, we will end up with n exceptional divisors E1, . . . , En,
which should fit in the Néron-Severi lattice of the blow-up surface, NS(X̂). This, in par-
ticular, forces them to satisfy (9.5). The fact that they do is guaranteed by the so-called
adjunction formula. This formula deals with the canonical bundle of a manifold and that
of a hypersurface which is embedded in said manifold. In particular, for a curve C of genus
g embedded on a surface Y with canonical divisor12 K, it states that

C · (C +K) = 2g − 2 = −χ(C) (9.8)

However, since we are dealing with a Calabi-Yau, the canonical bundle is by definition
trivial, so its canonical divisor is K = 0, and thus we have that the self-intersection of a

12The canonical divisor is the divisor associated to the canonical (line) bundle of a manifold.
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curve is given by its genus g. Since CP1 ' S2, g = 0, and hence

Ei · Ei = −2 (9.9)

so all of these exceptional divisors fit nicely into NS(X̂) ⊂ ΛK3.
In summary, we have seen that all of the exceptional divisors are algebraic curves of self-

intersection−2, which fit into the Néron-Severi latice of X̂. Therefore, they themselves span
an even sublattice M := SpanZ{E1, . . . , En} ⊂ NS(X). The ADE classification that we
introduced in section 8.3.1, which had to do with how these exceptional divisors intersect,
is now reflected in the fact that M must be isometric to a direct sum of lattices of the same
ADE type as the original singularities (i.e. given by the Cartan matrices of said algebras).
Since isometry type of a lattice is determined by its intersection form, this is the same as
requiring the singular fibers to intersect in a way that reproduces the extended Dynkin
diagram of the ADE algebras. All in all, the lattice M spanned by the exceptional divisors
induces a decomposition of the Néron-Severi lattice as NS(X) = M ⊕M⊥, whose rank is
n 6 rk(M⊥) 6 20.

There is however a problem with this line of thought, and it is the fact that we have
no information about the ADE type of the singularities. Said in another way, we do not
know how the exceptional divisors intersect, or the isometry type of M . The cobordism
conjecture says nothing about this, but only about the number of exceptional divisors that
are present. Thus, it follows that we would need to add information by hand in order to
distinguish the type of ADE algebras to which the singularities correspond. The way of
doing this might be through lattice polarizations.13

9.3 Lattice polarizations

The answer to endowing the sub-lattice M with the information necessary to recover the
ADE singularities might come from lattice polarizations. The idea underlying this is to
specify the way in which the Néron-Severi lattice embeds into ΛK3. In turn, this specifies
the intersection structure of the exceptional divisors, and hence the ADE singularities.

Definition 9.1. Let L be an even, non degenerate lattice of signature (1, t). An L-polarized
K3 surface is a K3 surface Y together with a primitive lattice embedding i : L ↪→ NS(X)
such that i(L) contains a pseudo-ample class.

Definition 9.2. A sublattice L ⊆ M is said to be primitive if the quotient M/L is a
torsion-free Abelian group. A lattice embedding i : L ↪→M is said to be primitive if i(L) is
a primitive sublattice of M . Presently, this implies that the short exact sequence of Abelian
groups 0 → L → M → M/L → 0 always splits, and hence there is an isomorphism of
Abelian groups

M ' L⊕ (M/L) (9.10)

As we have seen in the previous section, the exceptional divisors span an even sublattice
M ⊂ NS(X). This then leads to a decomposition of the Néron-Severi lattice by considering

13D.M. would like to thank Michael Schultz for discussion on these notions.
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the complement of M , namely NS(X) = M ⊕M⊥. Thus, we could use the tool of lattice
polarizations, and take L to be (isometric to) a direct sum of lattices of ADE type. In
this way, L would play the role of M in the decomposition of NS(X). Hence, the lattice
polarization would specify the intersection structure of the exceptional divisors, and in
turn would characterize the ADE type of the singularities on the K3 surface. This whole
procedure allows us to complement the cobordism conjecture with the information that it
does not provide. We will come back to this particular case in the next section.

Now, we need a way to find out which ADE lattices can polarize a K3 surface, and if,
further, they can be realized as coming from the singularities of an elliptically fibered K3.
This in fact not an easy question, since we have the requirement that i(L) must contain a
pseudo-ample class (which we have in fact not defined). One of the first conditions that we
can anticipate for our polarizing lattice is that, due to the requirement that its signature
must be that of a so-called hyperbolic lattice, namely (1, t). Hence, purely positive-definite
or negative-definite lattices are off the table, as those would have signatures (n, 0) and (0, n),
respectively. One way to include them would be to consider their direct sum with H, the
unique hyperbolic rank 2 lattice which we introduced a few paragraphs above. Namely,
we would look for lattices L which decomposed as L = H ⊕M , with M some positive or
negative definite lattice. In fact, it turns out that a lattice polarization is equivalent to an
elliptic fibration whenever the polarizing lattice L admits a decomposition L = H ⊕M (or
is isometric to one such decomposition).

One publication that might shed some light with this issue is [48, Table 1, pg. 1434].
In particular, the table that we have cited contains all of the hyperbolic, even, 2-elementary
lattices which admit a primitive embedding into ΛK3. A 2-elementary lattice L is one in
which its discriminant group, L∗/L satisfies

L∗/L ' (Z/2Z)a (9.11)

Here, L∗ denotes the dual lattice, and we have used the fact that due to the symmetric
bilinear product there is an inclusion L ⊆ L∗. In the publication we have cited, these kind
of lattices are characterized by three integers, namely (rk(L), a(L), δL). The first is the
rank of the lattice, the second one is related to the discriminant group as above,14 and δL,
defined as follows. For an even, 2-elementary lattice L, consider its dual, L∗, and consider
the pairing on L∗ defined by the extension of the pairing on L by means of the inclusion
L ⊆ L∗. Then

δL =

0 if 〈α, α〉 ∈ Z ∀ α ∈ L∗

1 otherwise

With the above defined data, one is able to determine which lattices can and cannot be
embedded into ΛK3. This is done for example in the original reference [48], but also in
the more recent [49]. We will work off of the latter reference from now on, as it contains a
broader set of data.

14Note that in the publication this parameter is denoted by l(AS), with S being the lattice in question.
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9.4 Restrictions on the allowed ADE singularities from lattice polarizations
and the cobordism conjecture

We will now try to put everything together. Firstly, as we have said, the cobordism
conjecture states that in order for a K3 surface to be a valid background for a theory
of quantum gravity, it must come accompanied by a connected sum of 16 copies of CP2.
Namely, the K3 surface that we must consider is X̂ = X#CP2# 16). . . #CP2, with X being
our original K3 surface. We used the fact that a connected sum of some manifold X with
copies of CP2 is diffeomorphic to X blown up a certain number of times to interpret this
as the condition that the original K3 surface must be blown up exactly 16 times. From
our discussion of line bundles and blow-ups, we know that this produces 16 exceptional
divisors, which span a latticeM = SpanZ{E1, . . . , E16}. The intersection structure of these
divisors then determines the ADE type of the singularities that were blown-up. However,
the cobordism conjecture contains no such information about the intersection structure of
the divisors. Hence, we resorted to lattice polarizations in order to try to extract some
conditions on the allowed ADE type of the singularities.

As we have said before, from the perspective of lattice polarizations, the presence of a
factor of H, the unique hyperbolic rank 2 lattice, whose intersection form is given by (9.7)
is equivalent to the fact that the K3 surface is elliptically fibered. Moreover, as we have
preiously stated, the fact that the signature of this lattice is (1, 1) allows for polarizing
lattices which are not hyperbolic, but rather positive or negative definite, by considering
their direct sum with H. Thus, we may break the polarizing lattice down as L = H ⊕M ,
where M is the lattice which determines the ADE structure of the singularities. Then, the
cobordism conjecture states that rk(M) = 16, and therefore the polarizing lattice must
have rk(L) = 18.

A priori, the fact that the rank of the ADE part of the polarizing lattice should have
rank 16 should start ringing some bells. Indeed, there are two such lattices which are of
great importance for string theory, as they are the only two lattices which are allowed as
gauge groups in heterotic string theory. If we further require that the automorphism group
of the resulting (resolved) K3 surface be finite, we can check in [49, Table 3] that the two
possibilities for the polarizing lattice L = H ⊕K are indeed

K =

(−E8)⊕ (−E8),
−D16.

(9.12)

Note that the minus signs come form the fact that the curves over which the polarized lattice
acts must be of self-intersention −2. Given the structure of ΛK3, it was expected that, if the
ranks matched, we could embed two copies of E8 into it. Lastly, we comment on one piece
of data present on the table we have referenced. In this publication, an explicit difference
is made between K, the polarizing lattice itself, and Kroot, the sub-lattice spanned by the
roots of K. Namely, Kroot ⊆ K is the lattice spanned by the elements of self intersection
−2. The quotient between the two is denoted by15 W := K/Kroot. For the two cases
above, we have that for (−E8) ⊕ (−E8), W = 1, and hence both lattices are one and the

15We note in passing that this quotient is related to the Mordell-Weil group of the elliptic fibration.
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same. However, for D16, W = Z2. Since D16 is the lattice defined by the Lie algebra
corresponding to SO(32), the root lattice is in fact given by SO(32)/Z2. Thus, the two
gauge groups associated to the singularities for a K3 surface under the assumptions of the
cobordism conjecture (assuming that the automorphism group is finite) are precisely the
only ones allowed for the heterotic string.

To close this chapter off, we note that the rank of the polarizing lattice (rk(L) = 18)
does not exhaust the upper bound on the rank of NS(X), which is ρ(X) 6 20. Hence,
there are still some possibilities to “fill out” the remainder of the polarizing lattice.

10 Other scenarios of interest

Staying in the SO-structure, we could also consider ΩSO
8 , which is generated by CP4 and

CP2 × CP2. This could give us more freedom to play with the two generators to kill the
cobordism class.

If we decide to leave the SO-structure, we could apply the same logic to more com-
plicated structures, such as ΩSpin

d , ΩString
d , etc. As shown in [31], these particular ones

mentioned can be obtained by further constraining the vanishing of certain charactersitic
numbers. For example, ΩSpin

d is obtained from ΩSO
d by requiring that w2 = 0, as expected.

11 Conclusions and outlook

In our work, we have applied the techniques of the Ricci flow equations with surgery, as
introduced by Hamilton and later brought to full fruition by Perelman, and tried to com-
bine them with the techniques of algebraic geometry in order to study possible implications
of the cobordism conjecture. After having given a reasonable introduction to the relevant
mathematical tools, it was argued -and explicitly shown for the simple cases of Einstein
manifolds and Ricci solitons- that Ricci flow preserves Ponryagin and Stiefel-Whitney num-
bers. This holds even in the presence of a “neckpinch”, as the proper treatment of it under
the Ricci flow is to perform a particular type of surgery: substituting the pinched neck
by two smooth caps. Since these characteristic numbers unambiguously fix an element of
ΩSO

4 , the above statement implies that Ricci flow preserves the corresponding cobordism
class. It is nevertheless interesting and reasonable, from a more physical perspective, to
investigate the effects of completely removing one of the two components resulting from
the surgery. In general, this can imply the necessity of balancing such a modification out
by the introduction of defects, that mimic the contribute of the removed component to the
overall cobordism class. Therefore, focusing on the specific string-theory inspired exam-
ple of a K3, it was argued that its cobordism class can be trivialised by adding to it the
connected sum of 16 copies of CP2.

In the later sections of the present work, the trivialization of the K3 class in ΩSO
4

is studied from two complementary perspectives. On the one hand, we tried to apply
the Ricci flow equations to the resulting manifold, in order to see if we could recover the
topological defects (as the shrinking of parts of the manifold to points) by means of the
flow. That is, to see if the Ricci flow is the bridge connecting the perspectives of adding
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connected sums of manifolds and adding topological defects. This was done by means of
a metric constructed on CP2# n). . . #CP2, obtained by Claude Lebrun as a generalization
of the so-called Burns metric. We give arguments as to why this manifold shrinks under
the Ricci flow, thus producing singularities and infinite distance limits in the moduli space
of space-time metrics, of the kind which are discussed in the context of the Swampland
distance conjecture.

On the other hand, after the realization that taking connected sums of a manifold with
CP2 is equivalent to considering a blow-up of said manifold, and that the singularities of K3
surfaces are classified by the ADE Lie Algebras, we try to complement the information given
by the cobordism conjecture. Namely, we realize that we can recover the singularities by
flowing the CP2s that they produce, but we realize that the cobordism conjecture contains
no information whatsoever regarding the ADE nature of these singularities. Hence, this is a
piece of data that we must introduce by hand, and might tell us about possible restrictions
on the ADE nature of the singularities. After introducing the necessary tools from algebraic
geometry, and reviewing how the ADE classification comes about, we propose that this
extra information might be added by means of lattice polarizations of K3 surfaces. Upon
doing so, and given the conditions imposed by the cobordism conjecture, we recover the
only two groups which are allowed as gauge groups for the heterotic string.

While the technique of lattice polarizations is best understood for K3 surfaces, this
work could be expanded by considering more complicated structures, such as those on
Ωspin
d or Ωstring

d . In this context, one could find which manifolds are needed to trivialize
the bordism class, and try to apply the Ricci flow equations to them. This would be
easiest when staying in the SO-structure, since we know that ΩSO

8 is generated by CP4

and CP2 × CP2. Not only are these manifolds well-known, but also the fact that we have
more than one generator might allow us more freedom to encounter different scenarios for
the trivialization of a given bordism class.
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A The (co)homology of CP2#CP2

In this somewhat more technical section, we will work out the homology and cohomology
groups of CP2#CP2. We will use a collection of results which are fundamental in the
context of algebraic topology, but nonetheless require some degree of familiarity with the
topic. Due to this technical nature, we will not introduce these concepts here, but rather
point the reader to standard references such as [50].

To begin the discussion, we note that the orientation of an n-dimensional manifold
does not affect its homological structure, but rather only the choice of generator of the top
homology group Hn. We refer to this generator as the fundamental class of the manifold.
Hence, in particular, we have that Hp(CP2) = Hp(CP

2), for p = 1, . . . , 4, all other homology
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groups being automaticall trivial for dimensional reasons. Furthermore, as a consequence
of the CW structure of CP2, we have that

Hp(CP2) =

Z if p = 0, 2, 4
0 else.

(A.1)

However, in order to simplify calculations, we will not use the above (singular) homology,
but the so-called reduced homology, which we denote by H̃p. In this context of path
connected spaces, this simply means that we can set H̃p(CP2) = 0, and hence

H̃p(CP2) =

Z if p = 2, 4
0 else.

(A.2)

In the following, we will drop the tilde, as we will only be considering reduced homology
groups.

The actual computation of the homology groups of CP2#CP2 will be a two-step process
fo sorts. First, we will consider the long exact sequence of the pair (CP2#CP2

, S3). In said
pair, all of the points on the S3 over which we glue to define the connected sum are identified
as one, and thus (CP2#CP2

, S3) ' CP2 ∨CP2, where ∨ denotes the one-point union of two
spaces. Once this is done, we will use a simple Mayer-Vietoris argument that will allow
us to directly compute the homology groups of our original space in terms of those of the
original CP2 factors.

The long exact sequence of the pair (CP2#CP2
, S3) is given by

. . . −→ Hp(CP2#CP2
, S3) ∂∗−→ Hp(S3) −→ Hp(CP2#CP2) −→ Hp(CP2#CP2

, S3) −→ . . .

(A.3)
Because the homology groups of spheres are

Hp(Sn) =

Z if p = n

0 else.
(A.4)

Then, for p 6= 3, 4, we have that

. . . −→ 0 −→ Hp(CP2#CP2) '−→ Hp(CP2#CP2
, S3) −→ 0 −→ . . . (A.5)

Therefore, by exactness of the sequence, the map in the middle is an isomorphism, so
Hp(CP2#CP2) ' Hp(CP2#CP2

, S3) ' Hp(CP2 ∨ CP2) for p 6= 3, 4. For the special case
p = 3, 4, the interesting piece of the long exact sequence looks like

. . . −→ 0 −→ H4(CP2#CP2) −→ H4(CP2#CP2
, S3) −→ Z −→

−→ H3(CP2#CP2) −→ H3(CP2#CP2
, S3) −→ 0 −→ . . .

(A.6)

For the moment, we leave this as is.
Now that we have related the homology groups of CP2#CP2 to those of CP2∨CP2,

we can calculate the latter by a simple Mayer-Vietoris argument. Let U, V ⊆ CP2∨CP2

be two subsets such that
CP2∨CP2 = Int(U) ∪ Int(V ), (A.7)
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and that U ∩ V 6= ∅. To ensure that both of these conditions are satisfied, we pick U and
V to be neighbourhoods of CP2 and of CP2 in CP2 ∨ CP2 respectively. Furthermore, we
take the neighbourhood small enough so that U ∩ V is contractible to a point (said point
being the one that defines the one-point union). This will imply that the homology groups
of U ∩ V will all be trivial.

In the above conditions we have the so-called Mayer-Vietoris long exact sequence:

. . . −→ Hp(U ∩ V ) −→ Hp(U)⊕Hp(V ) −→ Hp(U ∪ V ) −→ Hp−1(U ∩ V ) −→ . . . (A.8)

As already stated before, we have that U ∩ V deformation retracts to a point, and hence
all of the homology groups are trivial (even H0(pt), since we are using reduced homology).
Furthermore, both U and V deformation retract to CP2 and CP2 respectively, so in total
we have that

. . . −→ Hp(pt) −→ Hp(CP2)⊕Hp(CP
2) −→ Hp(CP2 ∨ CP2) −→ Hp−1(pt) −→ . . . (A.9)

However, since all of the (reduced) homology groups of a point vanish, by exactness of the
sequence this implies that

Hp(CP2)⊕Hp(CP
2) ' Hp(CP2 ∨ CP2) (A.10)

for all p ∈ Z.
By the above argument, we can just plug Hp(CP2)⊕Hp(CP

2) into (A.3). By previous
arguments, we have that for p = 0, 1, 2 we have that Hp(CP2#CP2) ' Hp(CP2)⊕Hp(CP

2).
However, the really interesting case is that of (A.6). To study it, we will use the following
two facts [50, Th. 3.26]:

• IfM is an orientable, n-dimensional space, then

Hn(M) = Z. (A.11)

The choice of generator is called the fundamental class of M, and determines its
orientation.

• The connected sum of orientable spaces is again orientable.

Combining these two results, we have that (A.6) can be written as

0 −→ Z −→ Z⊕ Z ϕ−→ Z ψ−→ H3(CP2#CP2) −→ 0 (A.12)

The key to the above sequence is precisely the map ϕ. If we can show that it is surjective,
then it follows by exactness that Im(ϕ) = Ker(ψ), and hence ψ is the zero map. Further-
more, and also by exactness, ψ is itself surjective, for the last map is by force the zero map.
Thus, from the surjectivity of ϕ it would follow that

H3(CP2#CP2) = 0 (A.13)
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This would be the last piece in our calculation of the homology groups of CP2#CP2. The
only difference with (5.4) would be that there we used singular homology, so H0(CP2#CP2)
is nontrivial.

The fact that ϕ is surjective follows from the particular way in which one constructs
the long exact sequence of a pair. Given A ⊆ X, Hp(X,A) is defined as the pth homology
group with respect to the quotient space X/A, in which A is identified to a point. Thus,
cycles in the pair (X,A) either have no boundary, or their boundary lies in A. To construct
the sequence, the map ∂∗ : Hp(X,A) → Hp−1(A) is then defined by precisely taking the
boundary in A.

Now consider the fundamental class of the pair (CP2#CP2
, S3). It is that of CP2#CP2,

but with a S3 identified. Therefore, in the total space, this fundamental class has a bound-
ary, which is precisely the fundamental class of S3. In other words, one of the generators of
the Z⊕ Z (depending on which CP2 we take as a reference) gets mapped to the generator
of H3(S3), thus making ϕ surjective.
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