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ABSTRACT

We introduce COBRA, a GPU-accelerated Bayesian analysis package for performing pulsar

searching, that uses candidates from traditional search techniques to set the prior used for

the periodicity of the source, and performs a blind search in all remaining parameters. COBRA

incorporates models for both isolated and accelerated systems, as well as both Keplerian

and relativistic binaries, and exploits pulse phase information to combine search epochs

coherently, over time, frequency or across multiple telescopes. We demonstrate the efficacy

of our approach in a series of simulations that challenge typical search techniques, including

highly aliased signals, and relativistic binary systems. In the most extreme case, we simulate

an 8 h observation containing 24 orbits of a pulsar in a binary with a 30 M⊙ companion.

Even in this scenario we show that we can build up from an initial low-significance candidate,

to fully recovering the signal. We also apply the method to survey data of three pulsars

from the globular cluster 47Tuc: PSRs J0024−7204D, J0023−7203J and J0024−7204R. This

final pulsar is in a 1.6 h binary, the shortest of any pulsar in 47Tuc, and additionally shows

significant scintillation. By allowing the amplitude of the source to vary as a function of

time, however, we show that we are able to obtain optimal combinations of such noisy data.

We also demonstrate the ability of COBRA to perform high-precision pulsar timing directly on

the single pulse survey data, and obtain a 95 per cent upper limit on the eccentricity of PSR

J0024−7204R of ǫb < 0.0007.

Key words: methods: data analysis – pulsars: general – pulsars: individual: PSRs

J0024−7204D, J0023−7203J and J0024−7204R.

1 IN T RO D U C T I O N

Formed from the inevitable gravitational collapse that comes when

a giant star runs out of nuclear fuel, neutron stars are amongst the

most extreme objects that exist in the Universe. Their large (108–

1015 G) magnetic fields accelerate electrons in the magnetosphere

of the neutron star to relativistic velocities, producing beams of

radiation that are emitted from above their magnetic poles. When

the rotational axis and the magnetic axis of the neutron star are

misaligned, then this beam of radiation is swept through space in

much the same way as the cone of light from a light-house. If this

beam of radiation passes over the Earth then the pulsar becomes

visible to us as a regular pulsing beacon in space (see e.g. Lorimer

& Kramer 2005 for a detailed overview of the properties of pulsars).

Since the discovery of the first pulsar almost 50 yr ago (Hewish

et al. 1968), over 2000 pulsars have been discovered,1 with recent

surveys having been carried out from 100 MHz (Coenen et al. 2014)

⋆ E-mail: lindleylentati@gmail.com
1 http://www.atnf.csiro.au/people/pulsar/psrcat

up to gamma-ray energies (Abdo et al. 2009). More than 10 times

this number, however, are expected to be observable in our Galaxy

(e.g. Smits et al. 2009).

The study of these extraordinary objects has resulted in a host

of groundbreaking discoveries and exciting scientific research. This

includes the first evidence for the existence of gravitational waves

(Taylor & Weisberg 1989), and the first detection of a planet orbiting

another star (Wolszczan & Frail 1992). Pulsars allow us to map the

density of the plasma that separates the stars in our Galaxy (e.g.

Keith et al. 2013), they provide insights into the physics of star

formation and binary evolution (e.g. Tauris & Savonije 1999) and

they can even be used to measure the mass of the planets in the

Solar system (Champion et al. 2010).

Clearly, the more pulsars that are discovered the greater the po-

tential for scientific progress, with systems like the double pulsar

providing high-precision tests of general relativity (GR; Kramer

et al. 2006), and ‘holy-grail’ systems, such as a pulsar in orbit

around a black hole, potentially allowing for further tests of gravity,

including GR’s ‘no-hair’ theorem (Liu et al. 2014).

Pulsars are known to have steep spectral indices (Sν ∝ ν−1.8

on average, Maron et al. 2000), and many pulsars have been
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observed to have spectra that turn over at lower frequencies, peaking

in the 100–200 MHz band (Malofeev, Malov & Shchegoleva 2000)

which means they will appear bright in low-frequency surveys. De-

spite this, the majority of large-scale surveys for new pulsars are

performed at approximately 1400 MHz, e.g. the PALFA survey

(Cordes et al. 2006) and the HTRU survey (Keith et al. 2010; Barr

et al. 2013). This is because the sky temperature also increases

as one goes to lower frequencies, and the impact of scattering in

the interstellar medium (ISM), which has the effect of broadening

the pulse profile, also becomes extremely important at low fre-

quencies. Scattering in particular presents a significant challenge

to existing search techniques (e.g. PRESTO, Ransom 2011; SIGPROC,

Lorimer 2011), as it spreads out the power in the signal.

While going to much higher frequencies (≫2 GHz) will largely

mitigate the effects of the ISM, pulsars tend to be much fainter

at such frequencies, and it becomes increasingly challenging to

distinguish real candidates from local radio-frequency-interference

(RFI). This is because the frequency-dependent delay induced by the

ISM actually provides one of the most stringent tests for separating

out local from celestial signals.

One location of particular interest in pulsar searching are globular

clusters (GCs), which are known to have up to a factor 100 increased

density of millisecond pulsars (MSPs) compared to the Galactic

plane (e.g. Ransom et al. 2005). In total, 146 radio pulsars have

been found in GCs, accounting for more than 5 per cent of the total

known pulsar population and a large fraction of the fastest rotating

MSPs. Fermi gamma-ray observations, however, suggest that sig-

nificantly larger numbers of yet undetected MSPs could still reside

in these clusters (Abdo et al. 2010). Simulations have also shown

that Galactic GCs could house between 600 and 3700 pulsars (Turk

& Lorimer 2013). GC searches also have the advantage of being the

target of repeated pointings made over many years, although this is

an advantage that is poorly leveraged by the community, with only

simple procedures having been used to incoherently combine dif-

ferent epochs (Sulman, Ransom & Stinebring 2005; Aulbert 2007;

Pan et al. 2016, see also Lorimer & Kramer 2005 and references

therein), or by performing semicoherent searches were information

about candidates from coherent searches of short segments of data

are combined afterwards incoherently (e.g. Smith 2016).

In this paper, we will introduce COBRA, which provides a funda-

mentally different approach to performing a search for new pulsars.

An outline of the analysis method used is shown in Fig 1. First,

COBRA does not perform any analysis using the power spectrum.

Instead, we construct a pulse train using a physically motivated

timing model and a simple Gaussian profile, which is then com-

pared directly to the search data. COBRA therefore makes full use of

phase information in the data set, which makes it possible to co-

herently combine multiple epochs that may be separated by weeks

or months, in order to maximize the sensitivity of the search to the

pulsar without the need for padding extremely large Fourier trans-

forms. By constructing a model for the pulse train, we can directly

incorporate the effect of (i) pulse-broadening due to scattering in the

ISM, (ii) aliasing of the signal that results from a pulse-width that

is narrower than the sampling time-scale of the survey data and (iii)

the effect of a binary companion on the arrival time of the pulses.

cOBRA, however, is not a blind-search technique – the prospect of

exploring the full pulsar parameter space (i.e. from approximately

1 ms to 10 s) through Bayesian methods is still impractical compu-

tationally. We therefore make use of existing tools, such as SIGPROC
2

2 http://sigproc.sourceforge.net

and PRESTO,3 to first produce a list of candidates for each epoch in

the survey, and use the period and DM of these candidates to restrict

our prior for these parameters in the Bayesian search. Using COBRA,

we can set a threshold for the signal to noise (S/N) of candidates

from each epoch separately, such that if that source were present

in all the data at a similar significance, then a coherent analysis

of all the survey data would result in a detection. Although this

requires that existing tools return some small hint of a signal, we

will show that from that point onwards, COBRA then enables supe-

rior modelling of effects such as scintillation, aliasing, scattering

and relativistic binary (RB) effects, not only when there have been

repeated observations, but also using only single pointings.

In Section 2, we briefly introduce Bayesian analysis methods,

and relate them to the Frequentist methods typically used in pul-

sar searching. In Section 3, we describe our approach to Bayesian

pulsar searching, including the models used for scattering, and to

incorporate the effects of both Keplerian and RB orbits. We then

apply this method to simulations in Section 4, briefly consider op-

timizations of the Graphical Processing Unit (GPU) likelihood in

Section 5 and then analyse several known pulsars in the GC 47Tuc

in Section 6. Finally, in Section 7, we describe how COBRA can use

phase information to better discriminate against sources of RFI,

before we offer some concluding remarks in Section 8.

2 BAY ESI AN A NA LY SI S AND MODEL

S E L E C T I O N

For a complete discussion of Bayesian methods, see for example,

Sivia & Skilling (2006). Here, we will only introduce some basic

terminology, and draw some simple comparisons with Frequentist

methods, as these have thus far dominated in pulsar searching.

When performing a Frequentist analysis, the quantity of interest

is typically the likelihood, L(θ ) = Pr(D | θ,H), which is the prob-

ability of our data set, D, given our model parameters, θ , in a model

or hypothesis H. Here then, the model parameters are assumed to

be a fixed quantity, and the observed data is assumed to be a random

variable. In a simple case, where our data set is a single point, d,

subject to known Gaussian noise σ , the likelihood that our data is

described by some model parameter m will be given by

Pr(d | m) = exp

(

(d − m)2

σ 2

)

. (1)

In Bayesian analysis, we are interested in the inverse of this quantity,

referred to as the posterior distribution P(θ ). The posterior is the

probability of our parameters, given our observed data and our

model, i.e. P(θ ) = Pr(θ |D,H). Here then, we assume the data is a

fixed quantity, and our model parameters are the random variables.

The posterior can be obtained using Bayes equation:

Pr(θ |D,H) =
Pr(D | θ,H)Pr(θ |H)

Pr(D |H)
. (2)

The term Pr(θ |H) is referred to as the prior probability distri-

bution of our parameters. These are often uniform in the param-

eter, or the log of the parameter over some range, but can also

be more constraining if there is more prior information available.

The final term in Bayes equation, Pr(D |H) is referred to as the

Evidence, and is critical in performing selection between different

hypotheses.

3 http://www.cv.nrao.edu/∼sransom/presto
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Figure 1. From top to bottom, an overview of the three main steps in the analysis process that takes place using COBRA. (1) We first build a pulse train in time

domain assuming a Gaussian profile, and a physical timing model. (2) This pulse train is then Fourier transformed (red lines) and compared to the Fourier

transformed data (black lines). (3) The residuals are obtained by subtracting the model from the data, and the likelihood of the model is evaluated using

equation (54).

The evidence is given by the integral of the likelihood over the

full parameter space, weighted by the prior:

Pr(D |H) =
∫

Pr(D | θ,H)Pr(θ |H)dnθ, (3)

where n is the number of parameters in the model. The Evidence

automatically implements Occam’s razor, in that a simpler model

that spans a smaller volume of parameter space will have a larger

Evidence than a more complex model, unless that more complex

model is able to describe the data significantly better.

Thus, while for Frequentist methods we would be interested in the

number of templates that must be searched over in order to construct

a measure of significance, in Bayesian analysis we compute the

Evidences for two models and use them to obtain their relative

probabilities. While in principle we could discretize our parameter

space as in the case of a template bank, in all the following work we

vary the parameters smoothly within the prior range quoted, unless

explicitly stated. For example, if we have the two scenarios:

H1 : There is a pulsar in the data set

H2 : There is no pulsar in the data set

we can compute the Evidence for each model, and calculate the

‘odds ratio’ of H1 compare to H2 directly, via:

R =
Pr(D |H1)

Pr(D |H2)
. (4)

An odds ratio of <1 would imply no support for the presence of a

pulsar in the data set, while an odds ratio of �20 would begin to

suggest significant support (see e.g. Kass & Raftery 1995 for more

information on the interpretation of odds ratios).

In the following, rather than discuss changes in the Evidence it-

self, we will be computing the log Evidence, and thus will quote

differences in this quantity. Therefore, an increase in the log Evi-

dence for H1 of three, is considered significant.

MNRAS 473, 5026–5042 (2018)
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Figure 2. One- and two-dimensional posterior distributions for phase, period and period derivative when using equation (7) (left-hand panel), and when

using equation (11) (right-hand panel) as defined in Section 3. Posteriors are shown after subtracting the mean, and scaling by the standard deviation of the

distribution. By decorrelating the parameter space, we decrease the number of samples required (and thus the run time) by a factor of 3.

3 PU L S A R SE A R C H I N G L I K E L I H O O D

We first consider our data, d, to be a single de-dispersed time series

consisting of Nd data points, di, observed at a topocentric time ti,

where henceforth the subscript i will refer to a specific index in the

associated vector. We then calculate the Fourier transform of the

data, d̃, which will contain Nd/2 + 1 real and imaginary values,

and discard both the dc-offset, and nyquist terms, leaving us with

Nd/2 − 1 complex values. As henceforth we will only refer to the

Fourier representation of the data, we will simply denote it d.

While our time series is defined in the topocentre, our model for

the pulse train will be defined at the Solar system Barycenter (SSB),

and so we must obtain the transformation that takes our sampled

times from the topocentre to the SSB. We obtain this transformation

using the PYTHON interface to the TEMPO2 timing package, LIBSTEMPO.4

For each time series we construct a fake data set which includes:

(i) a simple timing ephemeris that includes the true sky position of

the pointing, and an arbitrary period and dispersion measure and

(ii) a series of site arrival times spaced at intervals of 10 s over

the observation period. LIBSTEMPO then directly returns the required

conversion. Note that in doing this correction to the SSB we are

at no point modifying the data, as opposed to PRESTO and SIGPROC,

which alters the time series data itself in order to have it match the

barycentered time. In COBRA, this transformation is only applied to

the time stamps t , and is used to adjust the model pulse train.

3.1 Isolated and weakly-accelerated pulsars

In the simplest model, we will include only a model period P, a

phase offset φ and the width, σ p, of a Gaussian pulse shape used to

construct the pulse train. We first adjust the barycentered times, b,

using the phase offset to compute the signal times, s:

s(φ)i = bi − φ. (5)

4 https://github.com/vallis/libstempo

We then transform these times to the range − P
2

to P
2

to obtain the

phase-wrapped time coordinates s̄:

s̄i =
si

P
− trunc

( si

P

)

− trunc
( si

P
− trunc

( si

P
+ 1

))

− 0.5. (6)

In order to include a period derivative, Ṗ , in the model, we then

simply alter equation (5):

s(φ, Ṗ )i = bi − φ − Ṗ b2
i . (7)

Written as in equation (7) the phase, period and period derivative

parameters have the potential to be extremely correlated, which can

significantly decrease the sampling efficiency, increasing the time

it takes to evaluate the model for a particular candidate.

We can, however, project out a large fraction of this covariance.

We first consider the phase and period parameters, which we can

decorrelate by adding the term:

δφp =
1

P

(

T

2
+ b0

)

(8)

to the phase offset, where b0 is the barycentered time of the first bin

in the time series. For the period derivative we need to consider the

contribution to both the phase offset, δφ, given by

δφṖ =
∫ bN

b0

Ṗ x2
i dx =

Ṗ

3

(

b3
N − b3

0

)

, (9)

where bN is the barycentered time of the last bin in the time series,

and to the period, δPṖ :

δPṖ =
Ṗ (b2

N − b2
0)

T
. (10)

We can then simply rewrite equation (7) as

s(φ, P , Ṗ )i = bi − φ − Ṗ b2
i + δφP + δφṖ + δPṖ (bo − bi), (11)

where bo is the weighted mean of the barycentered arrival times. In

Fig. 2, we compare the one- and two-dimensional posterior distribu-

tions for phase, period and period derivative when using equation (7)

(left-hand panel), and when using equation (11) (right-hand panel).

By decorrelating the parameter space, we decrease the number of

MNRAS 473, 5026–5042 (2018)
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samples required (and thus the run time) by a factor of approxi-

mately three.

3.2 Binary models

In the following section, we describe our implementation of four

different binary models:

(i) A three-parameter circular binary (CB), which requires a bi-

nary amplitude, Ab, binary phase, φb and binary period, Pb.

(ii) A five-parameter eccentric binary (EB), for which we include

the eccentricity, ǫb, and longitude of periastron, ωb.

(iii) A seven-parameter RB, which assumes GR, and in addition

to the EB model requires the pulsar mass Mp, and the companion

mass Mc.

(iv) A six- to ten-parameter post-Keplerian (PK) binary (PKB),

in which we directly include the PK terms (see Section 3.2.3).

3.2.1 Circular binaries

For the CB model, the modification to the barycentric times, b, is

given by Damour & Deruelle (1986), henceforth DD:

Bc(Ab, φb, Pb)i = C1 (1 − C2 + C3) , (12)

where

C1(Ab, φb, Pb)i = Ab sin

(

2πbi

Pb

+ φb

)

, (13)

C2(Ab, φb, Pb)i =
2π

Pb

Ab cos

(

2πbi

Pb

+ φb

)

, (14)

C3(Ab, φb, Pb)i =
1

2

[

2π

Pb

Ab sin

(

2πbi

Pb

+ φb

)]2

. (15)

When only sampling a small fraction of a binary orbit, as with

the period derivative in Section 3.1, the binary parameters become

extremely covariant with the overall phase offset and period of

the pulsar. Approximating equation (12) as only the C1 term, we

analytically compute the contribution of the binary signal to the

phase offset, δφc, and the period, δPc:

δφc =
Pb

2T π

[

cos

(

2πb0

Pb

+ φb

)

− cos

(

2πbN

Pb

+ φb

)]

, (16)

and

δPc =
1

T

[

sin

(

2πbN

Pb

+ φb

)

− sin

(

2πb0

Pb

+ φb

)]

. (17)

Further, the amplitude of the binary signal is extremely covariant

with the other binary parameters, all of which can significantly de-

crease the sampling efficiency. To mitigate this, we subtract δφc

and δPc from the binary signal, and then normalize it by its stan-

dard deviation. While this correlates the binary amplitude with the

phase and period parameters, we find this to be more efficient than

sampling from the binary amplitude directly.

In order to avoid evaluating trigonometric functions on the GPU,

we interpolate Bc as a function of binary phase. For a CB this is

straight forward, as the interpolation is independent of all three

binary parameters. We therefore pre-compute 100 000 uniformly

sampled points for sin (θ ) and cos (θ ), with θ between zero and 2π ,

and linearly interpolate between these values in the likelihood func-

tion. In Fig. 3 (top), we show the difference between the interpolated

function and the true binary model as a function of binary phase.

Figure 3. Fractional errors introduced as a result of interpolating the circu-

lar (top) and eccentric (ǫ = 0.9, bottom) binary orbit in phase.

For a binary signal with a maximum amplitude of 1 s, the largest

deviation is less than 50 ns, which is sufficient for the purposes of

a search.

3.2.2 Eccentric binaries

The EB system requires that we solve Kepler’s Equation for the

eccentric anomaly of the orbit. Given the mean anomaly, M, which

for barycentric time bi is defined as

Mi =
2πbi

Pb

+ φb, (18)

we can arrive at the eccentric anomaly, E by iterating with the

Newton–Raphson technique. This requires an initial guess of E ,

which we take to be

E0 = Mi +
ǫb sin (Mi)

√

1 − 2ǫb cos (Mi) + ǫ2
b

(19)

and uses the gradient:

dEi =
Ei − ǫb sin (Ei) − Mi

1 − ǫb cos (Ei)
(20)

to converge on E within a few iterations.

Following DD we then define the following quantities:

η =
2π

Pb(1 − ǫb cos (E))
, (21)

α = Ab sin (ωb), (22)

MNRAS 473, 5026–5042 (2018)
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β = Ab

√

1 − ǫ2
b cos (ωb), (23)

E1 = α(cos (E) − ǫb) + β sin (E), (24)

E2 = −α sin (E) + β cos (E), (25)

E3 = −α cos (E) − β sin (E), (26)

and write the modification to the barycentric times due to the EB

as

Be = E1

(

1 − ηE2 + η2

(

E2
2 +

1

2
E1E3 −

1

2

ǫb sin (E)E1E2

1 − ǫb cos (E)

))

.

(27)

As with the circular orbit we compute the contribution of the

orbit to the period and phase parameters in the model. In this case,

however, we must do this numerically as opposed to analytically.

We also pre-compute cos(E) and sin(E) for a series of different

eccentricities. When first including the eccentric model in an anal-

ysis, we pre-compute our eccentricity grid in steps of 0.01 up to

a maximum of 0.99. This grid can then be refined in subsequent

analyses as the constraints improve. In Fig. 3 (bottom), we show

the deviation from the true orbit for an eccentricity of 0.9 where,

as for the circular orbit, we interpolate in binary phase in 100 000

steps. The maximum error is less than a microsecond, which given

the typical sampling time of search data of tens of µs, is still over

an order of magnitude less than one sample bin.

3.2.3 Relativistic binaries

Finally, we consider relativistic binaries, for which we include sev-

eral additional PK corrections to the change in arrival time, which

describe:

(i) Ṗb – first time derivative of the binary period,

(ii) ω̇b – first time derivative of the longitude of periastron,

(iii) γ – gravitational redshift and time dilation as the pulsar

moves around its common centre of mass,

(iv) r, s – Shapiro delay ‘range’ and ‘shape’, caused by the grav-

itational field of the companion,

(v) δθ , δr – relativistic deformation of the orbit from an ellipse.

Under GR (and indeed more generally, see Damour & Taylor 1991),

these contributions can all be derived using just the mass of the

pulsar, Mp, and the mass of the companion, Mc, as in DD:

Ṗb = −
192π

5
T

5/3

⊙

(

Pb

2π

)−5/3

f (ǫb)
MpMc

(Mp + Mc)1/3
, (28)

ω̇b = 3T
2/3

⊙

(

Pb

2π

)−2/3
1

1 − ǫ2
b

(Mp + Mc)2/3, (29)

γ = T
2/3

⊙

(

Pb

2π

)1/3

ǫb

Mc(Mp + 2Mc)

(Mp + Mc)4/3
, (30)

r = T⊙Mc, (31)

s = T
−1/3

⊙

(

Pb

2π

)−2/3

Ab

(Mp + Mc)2/3

Mc

, (32)

δθ = T
2/3

⊙

(

Pb

2π

)−2/3 7
2
M2

p + 6MpMc + 2M2
c

(Mp + Mc)4/3
, (33)

δr = T
2/3

⊙

(

Pb

2π

)−2/3 3M2
p + 6MpMc + 2M2

c

(Mp + Mc)4/3
, (34)

where T⊙ = 4.925490947 µs, and

f (ǫb) =
1 + (73/24)ǫ2

b + (37/96)ǫ4
b

(1 − ǫ2
b )7/2

. (35)

While the impact of the relativistic deformation parameters (δr, δθ )

is extremely small, with measurements only now being made for a

small number of systems (Weisberg & Huang 2016; Kramer et al.

in preparation), under the assumption of GR they can be included at

practically zero computational cost, and so we use them in our RB

model regardless. In our PKB binary model, any of the PK terms

listed above can be included as free parameters, however the Shapiro

delay, s must be included in combination with the companion

mass Mc.

We note that in addition to those terms listed above, there are

further ‘aberration delays’ due to the difference between the proper

time of the pulse emission, and the emission time if the pulsar were

not a rotating body. However, as discussed in DD, these delays can

be absorbed by other orbital parameters, and so unless the binary

undergoes geodetic precession, they cannot be isolated in the timing

model. We therefore do not currently implement them in our binary

model.

As for the EB, we must solve Kepler’s equation for the eccentric

anomaly. We do this as in Section 3.2.2, however, in this case, the

definition of the mean anomaly, M, includes a contribution from

the period derivative, Ṗb:

Mi =
2πbi

Pb

+ φb −
1

2

Ṗb

2π

(

2πbi

Pb

+ φb

)2

. (36)

Additionally, the change in ωb as a function of time means that we

must now also compute the true anomaly, T , via:

Ti = 2 arctan

[

√

1 + ǫb

1 − ǫb

tan

(

Ei

2

)

]

, (37)

so that the value of ωb at a particular barycentric time, i, is given

by

ω = ωb + ω̇bTi . (38)

Using the above PK terms, and the expressions for ω and E , we

can then define the following quantities:

ǫr = ǫb(1 + δr), (39)

ǫθ = ǫb(1 + δθ ), (40)

η =
2π

Pb(1 − ǫb cos (E))
, (41)

α = Ab sin (ω), (42)

β = Ab

√

1 − ǫ2
θ cos (ω) + γ, (43)
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G1 = α(cos (E) − ǫr) + β sin (E), (44)

G2 = −α sin (E) + β cos (E), (45)

G3 = −α cos (E) − β sin (E), (46)

G4 = −2r ln
[

1 − ǫb cos(E) − s (sin(ω)(cos(E) − ǫb)

+
√

1 − ǫ2 cos(ω) sin(E)
) ]

, (47)

so that the final modification to our barycentric arrival times due to

the RB motion is given by

Bgr = G1

(

1 − ηG2 + η2

×
(

G2
2 +

1

2
G1G3 −

1

2

ǫb sin (E)G1G2

1 − ǫb cos (E)

) )

+ G4. (48)

For the relativistic model, in addition to pre-computing cos(E)

and sin(E), we also store the true anomaly for each of the eccentric-

ities in the interpolation grid.

3.3 Forming the pulse train

Given a signal model for the arrival times we then assume a Gaussian

model for the pulse profile with a standard deviation denoted by σ p.

We can therefore construct our model pulse train by

m(s̄, σp) = exp

[

−
1

2
s̄

2/σ 2
p

]

, (49)

which we FFT to get our Fourier domain model m̃. As with the

data vector, as we will only deal with the Fourier representation of

the signal we drop the tilde and denote the Fourier domain model

simply as m, and as before, we remove the dc-offset and Nyquist

terms. Note that here we explicitly assume that the pulse profile is

a Gaussian. As such any non-Gaussianity in the pulse shape will

result in a mismatch between the data and the model, and thus will

reduce the overall S/N of the detection. We explore this loss in

signal in Section 6 in the context of PSR J0024−7204R.

3.4 Scattering

The effect of scattering due to the ISM is to broaden the observed

pulse profile by convolving the intrinsic profile with a pulse broad-

ening function (PBF). In the Fourier domain, this convolution is

therefore simply a multiplication of our model signal, with the

Fourier transform of the model PBF.

We assume a simple thin screen model for the PBF

(Williamson 1972), using a single parameter for the time-scale,

τ , which in the time domain will be given by

PBF(t, τ, ν) = H (t) exp

(

−
t

ν̄−4τ

)

. (50)

where ν̄ = ν/ν0 is the observing frequency, ν, normalized by an

arbitrary reference frequency, ν0, and H(t) is the Heavyside step

function. The analytic Fourier transform of equation (50) is then

given by

PBF(f , τ, ν) =
1

(2πf ν̄−4τ )2 + 1
+

−2πf ν̄−4τ

(2πf ν̄−4τ )2 + 1
i, (51)

where i indicates a complex number. We can multiply the Fourier

representation of our signal, m, by equation (51) to get the scattered

signal model.

3.5 Marginalizing over the amplitude

We can now write our likelihood as a function of the overall ampli-

tude, A, of our model vector m, and the parameters that went into

m, which for convenience we will collectively refer to as � as

Pr(A, �|d) = exp

(

−
1

2σ 2
n

(d − Am)T (d − Am)

)

. (52)

Here, σ n is an estimate of the white noise in the data set, for which

we obtain an estimate from the high-frequency end of the Fourier

data. While this model therefore currently explicitly assumes that

the noise in the Fourier data is well described by an uncorrelated,

uniform Gaussian process, RFI will mean that this assumption is

not true. Ideally one would like to incorporate a model for the RFI

directly into the analysis, and achieving this in a computationally

efficient manner will be the subject of future work.

Rather than sampling numerically over the overall amplitude

parameter, we marginalize over it analytically. We define � = m
T

m

and d̄ = d
T

m, and n =
√

�/2/Nf so that our marginalized log-

likelihood is then given by

L(�|d) =
1

2
d̄ �−1d̄ −

1

2
log � − log n. (53)

We can now trivially extend equation (53) to incorporate additional

epochs or observing frequencies by simply writing it as

L(�|d) =
Nd
∑

i

1

2
d̄i �−1

i d̄i −
1

2
log �i − log ni, (54)

where the sum is over the Nd different time series included in the

full analysis.

4 A P P L I C AT I O N TO SI M U L AT I O N S

In the following subsections, we apply COBRA to a series of simula-

tions designed to challenge existing search techniques. In particular

we consider:

(i) Noisy signals (Section 4.1), where the pulsar suffers signifi-

cant scintillation.

(ii) Highly aliased signals (Section 4.2), where the pulse width

is a small fraction of the sampling time of the survey data.

(iii) Binary systems (Section 4.3), for circular, eccentric and rel-

ativistic orbits.

In all cases, we produce the simulations using the SIGPROC functions

FASTFAKE and INJECTPULSAR. These use TEMPO2 to evaluate the timing

model for a particular ephemeris, and produce a time series given

that ephemeris and a model for the profile. We specify in each sub-

section the specific details of the simulations, such as the integrated

S/N of the data set which is equivalent to the S/N of the folded

profile, the sampling time and observation length.

4.1 Combining noisy data

When previous attempts have been made to combine multiple

epochs, the addition is performed incoherently or semicoherently,

and the stacking is performed assuming that the amplitude of the

signal is the same in every epoch. However, effects such as scintilla-

tion, inclement weather or RFI can cause the amplitude of the signal
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Figure 4. Cumulative S/N when one search epoch that contains a significant

detection is combined with an increasing number of noise-only data sets.

We compare models that (i) assumes the same amplitude of the signal in

each epoch (red line) or (ii) includes a different amplitude in each epoch

(black line).

to vary by orders of magnitude. If epochs are added in which the

source is experiencing a minimum in the observed brightness, then

simply adding this to a high S/N observation under the assumption

that the source is equally bright in both, will decrease the overall

S/N of the combined detection by ∼
√

2, equivalent to simply adding

noise to the original data set.

In equation (54) one can see that, in our framework, different

epochs are each assigned an overall amplitude parameter for the

signal. As such, epochs that are ‘just noise’ will be effectively down-

weighted, and will not contribute to the overall S/N of the signal.

In Fig. 4, we show the cumulative S/N for a significant detection,

after adding a series of additional epochs into our analysis that only

contain noise (black line). The significance is seen to suffer a slight

random walk around that obtained when including no additional

epochs. The red line shows the impact of combining noisy epochs

when the model assumes the same amplitude in each epoch. In this

case, the significance drops at a rate of
√

N , with N the total number

of epochs, as expected in this case. By allowing the amplitude to vary

in each epoch, we therefore correctly account for our uncertainty in

the scintillation properties of the source, and obtain a significantly

more optimal result.

4.2 Aliasing

We simulate a simple isolated pulsar with a period of 3.99 ms, using

the pulse profile from the MSP J1909−3744, which has a full width

at half-maximum (FWHM) of approximately 120 µs. We initially

simulate this pulsar with a sampling time, τ b, of 80 µs, and then

down-sample by factors of 2 up to a factor of 32, which gives

a sampling time of 2560 µs. The FWHM of the pulse profile is

thus sampled from between 1.5 and 0.05 bins. In Fig. 5 (top-left

panel), we show the folded pulse profile using the injected period

for downsampling factors of 1, 2, 6 and 32. The observed width,

σ o, is given by approximately:

σo =
√

( τb

2

)2

+ σ 2
p , (55)

with σ p the intrinsic standard deviation of the pulse profile. We

would therefore expect that as we downsample the data, the max-

imum S/N that we could extract would decrease as
√

σp/σo. In

Fig. 5 (top-right panel), we show this decrease in the S/N (black

line) compared to the S/N extracted by our analysis with COBRA (red

line). Even in the most extreme case, we find that out our analysis

tracks the expected S/N. In the bottom panel of Fig. 5, we show

the real (left-hand panel) and imaginary (right-hand panel) parts of

the data and the model for the 80 µs sampled data. In this case,

the power is spread across a large number of harmonics, which is

problematic for search techniques that rely on ‘harmonic summing’,

where the powers in the N, lowest frequency, harmonics are added

together under the assumption of equal weighting. In COBRA, our

model for the pulsar is defined across the whole of the sampled

Fourier domain, and so we automatically recover all of the signal

present in the data. Further, as we include the pulse width as a free

parameter in our analysis, we are able to recover any signal that gets

aliased to lower frequencies when the data is FFT’ed, as that same

FFT is applied to the signal model.

We note that features in the pulse profile that are narrower than

the raw sampling rate will typically not manifest as aliasing, as the

signal is integrated over the specified time resolution, rather than

actually being sampled. However, extremely narrow features of the

order ∼10 ns have been observed in pulse profiles (e.g. Soglasnov

et al. 2004), and the power in those features will be spread across

an extremely large number of harmonics in the Fourier domain.

4.3 Binary systems

In the next three subsections, we simulate data sets that include

circular, eccentric and RB systems.

4.3.1 Circular binary

We first simulate 5 min, high S/N, data sets for four CB systems. We

use orbital periods of (i) 1 d, (ii) 0.1 d, (iii) 0.05 d and (iv) 0.01 d for

the four simulations, respectively. This means we are progressively

sampling larger portions of the binary orbit, initially only cover-

ing 0.35 per cent of the orbit, and increasing up to 35 per cent. In

each case, we use the Bayesian Evidence to perform a comparison

between a simple acceleration model, and the full CB model.

As introduced in Section 2, the Evidence is the average of the

likelihood over the prior, and so is larger for a model if more of

its parameter space is likely and smaller for a model where large

areas of its parameter space have low likelihood values, even if

the likelihood function is very highly peaked. The Evidence thus

automatically implements Occam’s razor: a simpler theory with a

compact parameter space will have a larger evidence than a more

complicated one, unless the latter is significantly better at explaining

the data.

We find that for the longest period, the simpler acceleration model

is sufficient to describe the data, with a change in the log Evidence

of −4 when using the more complex binary model. Beyond this,

however, the evidence favours the CB model, with a change in the

log Evidence of over 5000 even when sampling only 3.5 per cent of

the orbit. The difference between the models is clear in Fig. 6, where

we show a subsection of the real (left-hand panels) and imaginary

(right-hand panels) data, zoomed in around the first harmonic of

the signal for each of the four simulations. While in the top panel

the two models are indistinguishable, differences already become

apparent by eye for the 0.1 d orbit, which increase significantly as

the orbital period shrinks. In all cases, when using the CB model

we recover orbital parameters that are consistent with the injected

values.

The purpose of these first simulations was simply to show

that, as expected, the acceleration-only model breaks down after a
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Figure 5. (Top-left) The observed pulse profile when using a sampling time of 80 µs (black lines), 160 µs (red lines), 640 µs (blue lines) and 2560 µs

(magenta lines). The FWHM of the intrinsic pulse profile is 120 µs. (Top-right) Predicted S/N loss as a result of the observed pulse width increasing as the

sampling time, τ b increases (black line), and the S/N of the signal extracted by our analysis with COBRA (red line). (Bottom) The real (left) and imaginary

(right) part of the model (red lines) and data (black lines) for the 80 µs sampled data in our simulation. In this case, the signal is spread across a large number

of harmonics across the sampled Fourier space. Our analysis recovers all the available power in this, and the more extreme cases.

relatively short fraction of the orbit (see e.g. Ransom, Cordes &

Eikenberry 2003 for other examples of this in the literature). How-

ever, in this instance we are including only a single epoch in our

analysis, and thus, as seen in equation (54), we are equally weighting

the entire data set. In the following simulation, we will show that,

when more optimally weighting the orbit as a function of time, an

acceleration model is able to extract an order of magnitude greater

S/N compared to the equally weighted scenario.

4.3.2 Eccentric binary

We next simulate one complete orbit of an EB system with parame-

ters as given in Table 1 for PSRA, and show the induced perturbation

in the arrival time of the pulses in the top panel of Fig. 7. We gen-

erate the simulation using 200 µs sampling, and split the data set

up into 10, 12 min epochs, each with 222 samples and a S/N of

approximately 20.

As stated previously, the purpose of this simulation is to show

that, even with a short period, highly EB, COBRA is able to obtain

much more optimized results using simple acceleration-only, or CB

models by automatically weighting the different parts of the orbit,

compared to equally weighting the data. In particular, this means

that faster models can be applied to longer data sets, without being

concerned with losing the majority of the signal from smearing out

the pulse. While this simulation is still high S/N, we will explore

how COBRA behaves with low significance observations in Sections 6

and 7 (cf. also Section 4.1).

In the bottom three panels of Fig. 7, we show the cumulative

(black lines), and individual (red lines) S/N of the ten epochs from

analyses using (i) an acceleration-only model (top), (ii) the CB

model (middle) and (iii) the EB model. In each case, the analysis was

performed when including all ten epochs simultaneously. As each

epoch has its own overall amplitude parameter (cf. equation 55),

this means that the global analysis is able to down-weight parts of

the orbit that are a poor match to the model. In this case, as both

the simulated instrumental noise, and amplitude of the signal was

uniform across the observation, these weights are directly propor-

tional to the individual S/N contributed by each epoch, shown by

the red lines.

This is clearly seen in Fig. 7 by comparing the individual S/N

that each epoch contributes to the global fit for both the accel-

eration, and CB models. Both down-weight the epochs near pe-

riastron, where the impact of the large eccentricity (0.6) is most

apparent. As can be expected, the CB model still fairs better,

with a cumulative S/N of approximately 60, compared to 50 for

the acceleration-only model. The EB model naturally results in
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Figure 6. From top to bottom: Simulated 5 min observations of a CB with orbital periods of (i) 1 d, (ii) 0.1 d, (iii) 0.05 d and (iv) 0.01 d. In each case, we show

the real (left-hand panels) and imaginary (right-hand panels) components of the data (black lines), and the model when assuming just acceleration (blue lines)

and when including a CB (red lines). For the 1 d orbit, both the two models are identical, while for the 0.01 d orbit we plot only the CB model for clarity.
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Table 1. Timing model parameters for two simulated eccentric systems.

Name PSRA PSRB

Right ascension, α (hh:mm:ss) 00:00:00 00:00:00

Declination, δ (dd:mm:ss) 00:00:00 00:00:00

Pulse period, P (ms) 20.833333 4.35

Orbital period, Pb (d) 0.14286 0.013889

Epoch of periastron, T0 (MJD) 56000.0 56000.0

Longitude of periastron, ω0 (deg) 50.0 90.0

Orbital eccentricity, e 0.6 0.1

Projected semimajor axis of orbit, x (s) 0.1 1.6998085

Sine of inclination angle, sin i – 0.9997

Mass of the pulsar, Mp (M⊙) – 1.4

Mass of the companion, Mc (M⊙) – 30

S/N of simulation 70 225

Figure 7. Comparison of the recovered S/N for three different models of

the highly eccentric system (ǫ = 0.6) analysed in Section 4.3.2. The change

in the pulse arrival times across the simulated orbit as a result of the binary

is shown in the top panel. In the following three panels we then show: (i) the

S/N contributed per 12 min epoch (red line), (ii) the cumulative S/N (black

line) and (iii) the S/N returned by PRESTO from a search of the full 2 h data

set (blue line) for the acceleration model (second panel), CB model (third

panel) and EB model (bottom panel).

the highest overall S/N, with all epochs contributing equally to

the fit, resulting in a total S/N of 70 over the course of the

orbit.

For comparison, in each of the three panels we show a blue hor-

izontal line with a value of 5.4, which is the S/N obtained when

performing an acceleration search across the full orbit under the

assumption of equal weighting. This, in precisely the same way as

in Section 4.1, is because after a very short period of time the ac-

celeration model is a sufficiently poor fit that the data starts ‘adding

noise’ to the fit, reducing the S/N that can be achieved from the

analysis. By appropriately weighting the different parts of the or-

bit, however, we can achieve a much greater S/N of 50 for the

acceleration-only model, which is only a factor of 1.4 less than

the optimal EB model, compared to the over one order of magni-

tude reduction in S/N achieved from the simpler equally weighted

model.

4.3.3 Relativistic binary

In our final simulation, we create an 8 h search mode observation, in

which we include a highly relativistic system with parameters given

in Table 1 for PSRB. These parameters are chosen such that we

maximize the relativistic contributions to the signal. For example,

the extreme companion mass (30 M⊙) will result in a significant ω̇b,

and in combination with being almost edge-on to our line of sight

will induce a large Shapiro delay. Given the short, 20 min orbital

period we have 24 complete orbits in the full 8 h data set. While we

acknowledge that such a system will be short lived, with a merger

time of approximately 4000 yr, the purpose of this simulation is

simply to show that even for such systems our analysis method is

capable of fully modelling the data.

In the top panel of Fig. 8, we show the difference between the

full RB signal, and a purely Keplerian EB model, after refitting for

the binary parameters in order to absorb as much of the difference

as possible. Even after refitting for the Keplerian parameters the

residuals still cover a period in pulse phase. We indicate with red

lines the FWHM of the simulated pulse profile. Any residual outside

these lines can be regarded as a near complete loss of signal.

Unlike the previous examples, we approach this simulation as

we would a blind search. We initially split the data set up into 512,

1 min epochs, each containing 219 samples, and perform a standard

acceleration search using PRESTO. These epochs are chosen to be suf-

ficiently short that an acceleration-only model will still be sufficient

to describe the data, and we find that the search recovers multiple

candidates at the 7σ confidence level. While this is still relatively

large, and would likely be detected in such a short observation using

phase-modulation techniques with PRESTO, we will explore lower

S/N data in Section 7. We choose the most significant of these can-

didates, and use the period returned to constrain the prior in our

analysis, with a width of ±1 per cent around that value.

In the second panel of Fig. 8, we show how the S/N grows as

we include more 1 min epochs into the analysis, and progressively

increase the complexity of the model used. For example, even just

using a single 1 min epoch, the CB model is able to better describe

the data. We find the difference in the log Evidence for the CB

model compared to the acceleration-only model is 22 for this first

epoch, and correspondingly, the S/N obtained increases from 7.5σ

to 10σ .

As we incorporate more data, and the precision of the parame-

ter estimates we obtain improves, we can use the posteriors from

the current analysis to update the size of the priors we use in the

subsequent stage of analysis that includes more data. As such, even

though the parameter space for the full relativistic model may seen

extreme in the context of the blind search, by the time the EB model

is no longer sufficient to model the data appropriately, we have al-

ready significantly reduced our priors on the Keplerian parameters,

and thus only need broad priors for the pulsar mass of [0.5, 3 M⊙],

and the companion mass, of [0.1, 30 M⊙]. As an example, for our

initial analysis of the first 1 min epoch, our prior on the binary pe-

riod covered a range of 10−3 up to 1 d. When including two epochs

we could already set an upper limit on the binary period of 0.1 d,

and after ten epochs our prior only covered a range from 0.005 to

0.02 d.

We find that the EB model is preferred by the data after approxi-

mately 10 epochs, corresponding to half an orbit, and that after only

one complete orbit the RB model is already preferred, owing to

the significant contribution to the binary signal from Shapiro delay,

which is clearly visible in the top panel of Fig. 8 as the periodic

spikes in the residuals.
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Figure 8. (Top) The difference between the signal induced by the RB system in Table 1 for PSRB, and a purely Keplerian system, after refitting for the binary

parameters in order to minimize the difference between the two. Red lines indicate the FWHM in pulse phase of the injected system. Any residual outside

these lines can be regarded as a near complete loss of signal. (Bottom) The S/N of our analysis of the RB system as more 1 min epochs are included, and

progressively more complex models are used. These models included acceleration-only (black lines), a CB (red lines), an EB (blue lines) and the full relativistic

model (magenta lines).

In Fig. 9, we show the one- and two-dimensional posterior prob-

ability distributions for the pulsar and companion masses from our

analysis of the full 8 h data set using the RB model, as well as

the derived posterior probability distributions for three of the PK

parameters, ω̇b, sin i and γ (black lines). The extreme nature of

this system is evident by comparing the magnitude of these mea-

surements to the most RB pulsar system currently known (Kramer

et al. 2006). In this case, ω̇b = 2490 ± 8 deg yr−1, compared to

16.9 deg yr−1 for the double pulsar. This implies that the orbit has

precessed 2.3 deg over the course of the 8 h observation, and so

it is not surprising that the relativistic timing model was preferred

over the Keplerian model within a single orbit. In the same figure,

we also plot the posterior probability distributions for an analysis

using the PKB model, where we included the Keplerian parameters

directly as free parameters in the analysis (red lines). Both sets of

analyses result in consistent parameter estimates.

5 O P TIM IZATION O F EPOCH SIZE

Given our ability to combine different epochs coherently, we can

check to see at what stage the computing cost of calling the GPU

kernels to evaluate the signal model for each epoch overtakes gains

made in performing smaller Fourier transforms. In Table 2, we list

the run times in seconds for 10 000 calls of the likelihood using

models for an isolated pulsar (Iso), accelerated pulsar (Acc), CB,

EB, and finally the RB model, as we split an observation with a

total of 225 samples into a larger number of separate epochs.

We find that for a Kepler K40 GPU the optimal run time is for

epochs with 221 → 222 samples. For a sample length of 64 µs, as is

typical for most modern surveys, this corresponds to approximately

5 min of data. We note that these exact values will depend both on

the GPU architecture used to run the search code, and the version of

the code used, as optimizations will result in more time being spent

performing FFTs as opposed to building the signal model. Note

that there is a second factor that impacts the run time, which is the

number of samples required to perform the analysis. The number

of samples required by MultiNest scales roughly exponentially as

the number of dimensions increases, and so while it is extremely

efficient for low-dimensional problems (<10) it rapidly becomes a

limiting factor for more complex problems. The more recent Poly-

Chord (Handley, Hobson & Lasenby 2015) scales as roughly d3,

with d the number of dimensions which may be preferable for the

RB model. Further advances in sampling technology will naturally

improve this aspect of the problem.
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Figure 9. One- and two-dimensional posterior distributions from our analysis of the RB system in Section 4.3.3 when including the full 8 h of search data,

using the RB model (black lines) and PKB model (red lines). We show the posterior distributions for the two system masses, and for the three PK parameters

that were detected at greater than 3σ significance in the PKB model. For the RB model, the posterior distributions on the PK parameters have been derived

directly from the posterior distributions for the two masses.

Table 2. Run times in seconds for 10 000 likelihood evaluations for the

different pulsar models described in Section 3.

No. of epochs Epoch size Iso Acc CB EB RB

1 225 360 360 440 480 520

2 224 350 350 440 480 520

4 223 340 340 430 470 510

8 222 330 330 420 460 500

16 221 350 350 440 480 470

32 220 400 400 490 540 580

64 219 490 490 600 650 700

6 A P P L I C AT I O N TO O B S E RVAT I O N S O F T H E

G L O BU L A R C L U S T E R 4 7 T uc

We now apply the techniques described in Sections 3 and 4 to a

series of observations of the GC 47Tuc, taken with the 64-m Parkes

Telescope at a central frequency of 1.4 GHz, with a bandwidth of

256 MHz. The spread in Dispersion Measure (DM) for all known

pulsars in the cluster is less than 1 cm−3 pc, and so for the purposes

of this analysis, we simply dedisperse all the data to a reference DM

of 24.6 cm−3 pc, which is the DM of the pulsar J0023−7204C. All

the data analysed in this section is publicly available on the CSIRO

data archive.5

5 https://data.csiro.au/dap/public/atnf/pulsarSearch.zul

In particular, we use COBRA to analyse observations that con-

tain three known pulsars in 47Tuc, the isolated pulsar PSR

J0024−7204D (47TucD, Manchester et al. 1990), and the bi-

nary pulsars PSR J0023−7203J (47TucJ, Manchester et al. 1991),

and PSR J0024−7204R (47TucR, Camilo et al. 2000, henceforth

C2000). A summary of the timing parameters for these pulsars are

given in Table 3.

First, we use 47TucD to demonstrate the ability of our method

to coherently combine sparsely sampled data, where observations

have been made over a 100 d period, each separated by weeks. In

particular, we include 22 min of data from an observation at MJD

52526.8, and 11 min of data from observations at MJDs 52571.4

and 52630.3. In each case, the data is sampled at a rate of 160µs,

and we include epochs containing 219 samples each, which results in

16 epochs from the first day, and eight epochs for the second 2 d of

observing. In Fig. 10 (top-left panel), we show the cumulative S/N

as we include more epochs (black line) as well as the S/N of each

individual epoch (red line). As this is one of the brighter pulsars

in 47Tuc the detections are consistently significant (6–7σ ) even in

these short, 80 s epochs, and so the cumulative S/N grows smoothly

as we include more data. In the top-right panel of Fig. 10, we

show the one- and two-dimensional posterior parameter estimates

for the period and period-derivative from our analysis of the full

data set. Due to the extremely sparse coverage of data there are

a significant number of equally probable solutions, each shown

as an island in the two-dimensional plot. While navigating such
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Table 3. Timing model parameters for PSRs J0024−7204D, J0023−7203J and J0024−7204R.

Parameters from long-term timing

J0024−7204D J0023−7203J J0024−7204R

Right ascension, α (hh:mm:ss) 00:24:13.8776 00:23:59.4040 00:24:05.67

Declination, δ (dd:mm:ss) −72:04:43.8323 −72:03:58.7720 −72:04:52.62

Pulse period, P (ms) 5.3575732850382 2.1006335458586 3.480463

First derivative of pulse period, Ṗ (10−20) −0.333 −0.9787 –

Orbital period, Pb (d) – 0.1206649386 0.0662

Orbital eccentricity, e – <0.0003 –

Projected semimajor axis of orbit, x (s) – 0.0404087 0.0334

a parameter space is challenging for standard MCMC methods,

MULTINEST
6 excels in such areas (cf. the ‘eggbox’ problem in Feroz,

Hobson & Bridges 2009). As in Section 4.3.3, we decrease the size

of the priors on the parameters included in the model as we include

more data into the analysis. As such, being able to explore the full

range of solutions at every stage is critical to ensure that the global

maximum remains in our prior.

The two binary pulsars chosen, 47TucJ and 47TucR, have the two

shortest binary periods of any known pulsar in 47Tuc, of 2.9 and

1.6 h, respectively. In our analysis, we use 1 h of data for 47TucJ

taken at MJD 52572.6, and 2 h of data for 47TucR taken at 52462.0,

and so will be sampling approximately one-third of an orbit, and

over one complete orbit respectively for these two pulsars. We split

the data into 12 min epochs of 222, 160 µs samples, for both pulsars,

and as for 47TucD, in Fig. 10 (left-middle, left bottom panels) we

plot the cumulative S/N achieved as we perform our analysis using

the CB model, while including an increasing number of blocks

(black lines) along with the S/N of each 12 min epoch individually

(red lines). While 47TucJ is consistently bright across the included

observations, 47TucR provides a more robust test of our analysis

method, as it can be seen to dip significantly in brightness in epochs

six and seven. Comparing this with the cumulative S/N, we can see

that when these epochs are included in the analysis they do not lead

to a decrease in the cumulative S/N, as would be the case if they

were combined under the assumption of equal weighting. Rather, as

in Section 4.1, by weighting these noisy epochs appropriately in the

global fit, the cumulative S/N simply flattens across those epochs

as they do not contribute significantly to the analysis.

In the right-panels of Fig. 10, we show the one- and two-

dimensional marginalized posterior distributions for the binary am-

plitude, binary phase and binary period, as the number of epochs in

the analysis is increased. For 47TucJ we include results from two,

three and five epochs (middle), and for 47TucR we show the results

for three, six and ten epochs.

In all three cases, the parameter estimates are consistent with

values determined from long-term timing regardless of the number

of epochs included in the analysis. For 47TucR in particular we

achieve higher precision than that published in C2000, where, for

example, we find the binary period to be 0.066260(12) d compared

to 0.0662(1) d in C2000. We stress, however, that in neither case

has there been detailed modelling of the noise in the search mode

observations, and so it is not clear to what extent this will bias the

parameter estimates and their uncertainties. Despite this, it is still of

interest to test more complex models, and in particular we perform a

model comparison between the circular, and EB models. We obtain

a difference in the log Evidence of −1 when using the EB model,

6 https://ccpforge.cse.rl.ac.uk/gf/project/multinest

indicating the data does not support the use of the more complex

model. This can be seen in the parameter estimates for eccentricity,

which we show in Fig. 11 for both a prior that is uniform in the

log of the eccentricity (black lines) and uniform in the eccentricity

(red lines). In both cases, we simply recover the prior, and set a

95 per cent upper limit on the eccentricity of 0.0007, indicated by

the red line in Fig. 11.

Finally, we use 47TucR to explore the impact of using a simple

Gaussian model for the pulse profile, given that in this case the

profile has two clear peaks (cf. C2000 Fig. 5). In principle, the

maximum loss in S/N that we could expect is 50 per cent for the case

where both peaks are equal in amplitude. We use the PSRCHIVE tool

PADD to combine the ten epochs used in our analysis, and compute the

S/N loss due to the mismatch from our Gaussian template. We find

a 40 per cent loss, consistent with our expectation given the relative

area of the two peaks. Given this loss, a more optimal search would

include the option for more complex models for the pulse profile,

either a double Gaussian which would increase the dimensionality

by three, or a more general shapelet model (Refregier 2003), which

could result in an arbitrary increase in dimensionality depending

on the complexity of pulse shape desired. Such extensions will be

considered in the future, and will only become more tractable as

sampling technology improves.

7 U S I N G P H A S E IN F O R M AT I O N TO

DI SCRI MI NATE AG AI NST R FI

In Section 2, we discussed how, in Bayesian analysis, the signif-

icance of a potential source can be determined by comparing the

Evidence for two different models (such as a pulsar being present

in the data, compared to no pulsar).

As for Frequentist statistics, this significance depends heavily

on the noise model used in the analysis. If there is significant RFI

present in the data set, which is not incorporated into the model for

the noise, then the significance of a source will likely be overstated.

Clearly, however, modelling RFI is not trivial, and one would like

to have an objective means of determining the significance of a

candidate source, independent of how well one can model the noise.

In this section, we suggest one such approach towards achieving

this goal, which leverages the fact that COBRA does not just account

for the power in the signal, but fully incorporates phase information

into the analysis. It should therefore be possible to use this phase

information to discriminate between a pulsar, that is described by a

physical timing model, and a source of RFI, as long as that source of

RFI has less phase information over the observed time-scales than

the pulsar. Even if a source of RFI is pulsed at regular intervals,

by combining search data taken over many months the combination

of barycentering the data, and any additional corrections required
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Figure 10. (Left-hand panels) Cumulative S/N (black lines, left y-axis) as additional epochs are added into the analysis for PSRs J0024−7204D (top),

J0023−7203J (middle) and J0024−7204R (bottom). In each case, we compare this to the S/N obtained from each epoch (red lines, right y-axis). (Right-hand

panels) One- and two-dimensional marginalized posterior distributions for (i) the period and period derivative of PSR J0024−7204D from an analysis of the

full data set (top), (ii) the binary amplitude, binary phase, and binary period of PSR J0023−7203J (middle) for two (black lines), three (red lines) and five (blue

lines) epochs and (iii) the same binary parameters for PSR J0024−7204R for three (black lines), six (red lines) and ten (blue lines) epochs.
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Figure 11. One-dimensional marginalized posterior probability distribu-

tion for log10ǫb from our analysis of 47TucR using a prior that is uniform

in the log of the eccentricity (black line) and uniform in the eccentricity

(red line). No significant detection of eccentricity is made, with our analysis

returning the prior in both cases. Using the prior that is uniform in the ec-

centricity, we set a 95 per cent upper limit of 0.0007 indicated by the vertical

red line.

by the timing model either due to a binary companion or intrinsic

spin-down, will enable these signals to be discriminated from one

another.

Our goal is therefore to modify the data set in such a way that no

real pulsar signal should persist, but to keep the statistical properties

of the RFI and other sources of noise intact. We can then use the

Evidence for a pulsar in this modified data set to ‘calibrate’ our

significance. This kind of calibration has been performed in the

context of gravitational wave analysis using a pulsar timing array

(Taylor et al. 2016) and we apply it to our search method for new

pulsars.

In order to modify our data set, we simply multiply each Fourier

frequency by a complex number exp (iθ ), where θ takes a random

value from zero to 2π . Each frequency is assigned a different ran-

dom number, and this has the effect of ‘scrambling’ the phase of

the signal, without affecting the power. Thus, a reanalysis of this

modified data set with COBRA should results in the detection of only

noise-like signals.

We demonstrate the efficacy of this approach using two examples,

one using the pulsar 47TucD described previously, and second using

a source of RFI.

In Fig. 12 (left-hand panel), as for the data sets in Section 6,

we show the cumulative S/N as additional epochs are added into

an analysis of PSR 47TucD, and compare this to the S/N obtained

from each epoch individually. In this case, we have used only the

first eight epochs from MJD 52526, and have split the last seven

epochs up into blocks of four, so that the S/N contributed by each

one is decreased by approximately a factor of 2. Thus, while the

first epoch provides a ‘high’ S/N of 6.7σ , the remaining 28 epochs

have a S/N of only 3 ± 1σ , and so would likely not be considered

significant, especially in light of the potentially poorly modelled

noise estimate that has been used to determine these ratios.

In Fig. 12 (middle panel), we show a histogram for the change

in the log Evidence between a model for an isolated pulsar, com-

pared to no pulsar, for 50 independent phase scrambles of this data

set, where each epoch used in the analysis has also been scrambled

independently. These scrambles result in a distribution of �log Ev-

idences which we then shift so that the mean is at zero. We can

then compare this with the �log Evidence for the non-scrambled

data set, shifted by the same amount, for which we obtained a value

of 124 (vertical red line in the panel). This value is therefore com-

pletely inconsistent with the distribution of ‘noise-like’ Evidences,

indicating that there is significant phase information contributing

to the signal for this pulsar, as we would expect for a real source.

Thus, even when individual epochs contribute relatively little sig-

nal, by phase coherently combining these epochs we can still obtain

a significant detection.

We contrast this with the right-hand panel of Fig. 12, which shows

the equivalent histogram for a candidate pulsar at a frequency of

34.6 Hz. In this case, the �log Evidence of the candidate in the

non-scrambled data set was 430, which, if we believed our noise

model, would imply an extremely significant detection of a new

pulsar.

If we perform 50 phase scrambles of the data set, however, we find

a distribution of �log Evidences equal to 344 ± 46. Shifting both

values by the mean of this distribution, we see that the candidate

falls within the histogram of noise-like data sets, and thus we discard

the candidate as insignificant.

8 C O N C L U S I O N S

We have introduced COBRA, a Bayesian toolkit that can perform the

roles of both pulsar searching and pulsar timing on single pulse

time series data. Rather than work with the power spectrum, as is

common for pulsar search techniques, COBRA constructs a model

Figure 12. (Left-hand panel) Cumulative S/N (black lines, left y-axis) as additional epochs are added into an analysis of PSR 47TucD. In each case, we

compare this to the S/N obtained from each epoch (red lines, right y-axis). Compared to the data set used in Section 6 we have split the epochs into smaller

blocks so that the S/N contributed by each one is less, and only used the first eight epochs from MJD 52526. (Middle and right-hand panels) Histograms of the

change in log Evidence for a model that includes a pulsar, compared to a model that does not for 50 phase scrambles of the 47TucD data set (middle panel),

and a source of RFI (right-hand panel). In both cases, we indicate the change in log Evidence for the same models in the unscrambled data sets as a vertical

red line.
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pulse train that can incorporate effects such as aliasing, scattering

and binary motion, and compares this directly to the data. This

means that COBRA performs a fully phase coherent timing analysis,

allowing it to combine data over multiple epochs, frequencies, or

even telescopes.

We showed that our analysis methods can deal with the effects of

scintillation, where the brightness of the pulsar can dip by orders of

magnitude, by incorporating the amplitude of the signal at different

epochs as free parameters in the analysis. These amplitudes are then

marginalized over analytically to avoid increasing the dimensional-

ity of the parameter space that must be searched over numerically.

This provides an added benefit when fitting a model to the data that

is not sufficient to fully describe the system, for example, when

using a CB model to describe a highly eccentric system. In such

an analysis, the parts of the orbit that do not match the model will

be down weighted, ensuring that the maximum S/N ratio will be

extracted from the data.

We applied COBRA to a series of simulations that included aliased

signals, and highly relativistic binaries, using candidates from stan-

dard acceleration searches to limit the prior range on the source

periodicity, and performing a blind search in any remaining param-

eters in our Bayesian analysis. Even in an 8 h data set that contained

24 full orbits of a pulsar in a binary with a 30 M⊙ companion, we

showed that this approach allows us to build up a model that fully

describes the signal, including PK effects.

Finally, we then analysed observations of the GC 47Tuc that

contained the isolated pulsar, PSR J0024−7204D (47TucD), and the

binary pulsars PSR J0023−7203J (47TucJ) and PSR J0024−7204R

(47TucR). For 47TucD we performed the search coherently across

observations made over a period of 100 d, where each observation

was separated by weeks, while for the binary pulsars, we included

1 h of data for 47TucJ, and 2 h of data for 47TucR, which covered

one-third of an orbit, and over one complete orbit, respectively.

As with the simulations, we were able to go from an initial search

candidate, to obtaining full timing solutions from the search data

alone. For 47TucR, we also compared circular and EB models,

however found no evidence for eccentricity in the data analysed,

setting a 95 per cent upper limit of ǫb < 0.0007.

The recent discovery of merging stellar mass black holes (Abbott

et al. 2016) proved the existence of such extreme objects, but so

far no evidence has been found for a pulsar orbiting either a stellar

mass black hole, or the supermassive black hole in the centre of

our Galaxy. However, extremely long search baselines for both

GCs and the Galactic Centre have been established over the last

decade, and an optimal, coherent search of such data may provide a

means for proving the existence of such a system. In addition, new

endeavours to search for pulsars in extreme settings are going to

come online in the near future, such as the BlackHoleCam project

(Goddi et al. 2017). Advanced search algorithms like COBRA will

be key to fully exploiting the data obtained from these projects,

and maximizing the probability of detecting groundbreaking new

systems.
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