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Abstract. Southern Ocean waters are projected to undergo
profound changes in their physical and chemical properties in
the coming decades. Coccolithophore blooms in the South-
ern Ocean are thought to account for a major fraction of
the global marine calcium carbonate (CaCO3) production
and export to the deep sea. Therefore, changes in the com-
position and abundance of Southern Ocean coccolithophore
populations are likely to alter the marine carbon cycle, with
feedbacks to the rate of global climate change. However,
the contribution of coccolithophores to CaCO3 export in the
Southern Ocean is uncertain, particularly in the circumpo-
lar subantarctic zone that represents about half of the areal
extent of the Southern Ocean and where coccolithophores
are most abundant. Here, we present measurements of an-
nual CaCO3 flux and quantitatively partition them amongst
coccolithophore species and heterotrophic calcifiers at two
sites representative of a large portion of the subantarctic
zone. We find that coccolithophores account for a major frac-
tion of the annual CaCO3 export, with the highest contribu-
tions in waters with low algal biomass accumulations. No-
tably, our analysis reveals that although Emiliania huxleyi

is an important vector for CaCO3 export to the deep sea,
less abundant but larger species account for most of the an-
nual coccolithophore CaCO3 flux. This observation contrasts
with the generally accepted notion that high particulate inor-
ganic carbon accumulations during the austral summer in the
subantarctic Southern Ocean are mainly caused by E. hux-

leyi blooms. It appears likely that the climate-induced migra-
tion of oceanic fronts will initially result in the poleward ex-
pansion of large coccolithophore species increasing CaCO3
production. However, subantarctic coccolithophore popula-
tions will eventually diminish as acidification overwhelms
those changes. Overall, our analysis emphasizes the need for
species-centred studies to improve our ability to project fu-
ture changes in phytoplankton communities and their influ-
ence on marine biogeochemical cycles.
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1 Introduction

The emissions of carbon dioxide (CO2) into the atmosphere
by anthropogenic industrial activities over the past 200 years
are inducing a wide range of alterations in the marine envi-
ronment (Pachauri et al., 2014). These include ocean warm-
ing, shallowing of mixed layer depths, changes in nutrient
supply to the photic zone and decreasing carbonate ion con-
centrations and pH of the surface ocean, a process known as
ocean acidification (Rost and Riebesell, 2004; IPCC, 2013).
Substantial evidence from CO2 manipulation experiments in-
dicates that many species of corals, pteropods, planktonic
foraminifera and coccolithophores will reduce their calcifi-
cation rates under future ocean acidification scenarios (Bi-
jma et al., 2002; Langdon and Atkinson, 2005 among oth-
ers; Orr et al., 2005; Bach et al., 2015; Meyer and Riebesell,
2015). Owing to their moderate alkalinity and cold temper-
atures, Southern Ocean waters are projected to become un-
dersaturated with respect to aragonite no later than 2040 and
to calcite by the end of the century (Cao and Caldeira, 2008;
McNeil and Matear, 2008; Shadwick et al., 2013). This de-
cline in the saturation state of carbonate, together with other
changes in carbonate chemistry speciation, will enhance dis-
solution of both aragonite and calcite shells and will make the
biological precipitation of carbonate difficult in some marine
calcifying organisms (Fabry et al., 2008; Gattuso and Hans-
son, 2011). Since such thresholds will be reached sooner in
polar regions, Southern Ocean ecosystems have been pro-
posed as bellwethers for prospective impacts of ocean acidifi-
cation on marine organisms at mid- and low latitudes (Fabry
et al., 2009).

Coccolithophores are a major component of phytoplank-
ton communities in the Southern Ocean, particularly in its
northernmost province, the subantarctic zone, where they of-
ten exhibit maximum abundances and diversity (e.g. Graval-
osa et al., 2008; Saavedra-Pellitero et al., 2014; Malinverno et
al., 2015; Charalampopoulou et al., 2016). Coccolithophores
play an important and complex role in the Southern Ocean
carbon cycle (Salter et al., 2014). On the one hand, the
production of calcite platelets (termed coccoliths) decreases
the alkalinity of surface waters, thereby reducing the atmo-
spheric uptake of CO2 from the atmosphere into the surface
ocean. On the other hand, the production of organic mat-
ter through photosynthesis, and its subsequent transport to
depth in settling particles, enhances carbon sequestration via
the biological carbon pump (Volk and Hoffert, 1985). Addi-
tionally, due to their high density and slow dissolution, coc-
coliths act as an effective ballast for organic matter, increas-
ing organic carbon sequestration depths (Buitenhuis et al.,
2001; Boyd and Trull, 2007; Ziveri et al., 2007). Therefore,
changes in the abundance, composition and distribution of
coccolithophores could have an extensive impact on ocean
nutrient stoichiometry, carbon sequestration and nutrition for
higher trophic levels in the Southern Ocean (Deppeler and
Davidson, 2017).

The remoteness and vastness of the Southern Ocean, to-
gether with the inherent temporal and spatial variability of
pelagic ecosystems, hampers accurate characterization and
quantification of Southern Ocean phytoplankton communi-
ties. Advances in satellite technology and modelling algo-
rithms have allowed a circumpolar and year-round coverage
of the seasonal evolution of major phytoplankton functional
groups within the Southern Ocean (e.g. Alvain et al., 2013;
Hopkins et al., 2015; Rousseaux and Gregg, 2015). In par-
ticular, ocean-colour satellite reflectance observations have
been used to quantitatively estimate coccolithophore partic-
ulate inorganic carbon (PIC) concentrations throughout the
Southern Ocean (Gordon et al., 2001; Balch et al., 2005b).
These satellite estimates suggest apparent high PIC values
during summer near the major Southern Ocean fronts at-
tributed to coccolithophores (Balch et al., 2011, 2016). This
band of elevated reflectance and PIC that encircles the entire
Southern Ocean was termed the “Great Calcite Belt” by these
authors. However, comparison of satellite remote-sensing
data with ship-based observations (Holligan et al., 2010;
Trull et al., 2018) indicates that satellite ocean-colour-based
PIC estimates could be unreliable, particularly in Antarctic
waters where they erroneously suggest high PIC abundances.
Shipboard observations, on the other hand, provide a detailed
picture of phytoplankton community composition and struc-
ture but are dispersed, both temporally and geographically,
and provide rather heterogenous data in terms of taxonomic
groups investigated and the sampling scales and methodolo-
gies used (e.g. Kopczynska et al., 2001; de Salas et al., 2011;
Poulton et al., 2013; Patil et al., 2017, among others). In
situ year-round monitoring of key strategic regions is crit-
ically needed to establish baselines of phytoplankton com-
munity composition and abundance and to validate and im-
prove ocean biogeochemical models (Rintoul et al., 2012).
This information is also essential if we are to detect possi-
ble climate-driven changes in the structure of phytoplankton
communities that could influence the efficiency of the biolog-
ical carbon pump, with consequent feedbacks to the rate of
deep-water carbon sequestration and global climate change
(Le Quéré et al., 2007; Deppeler and Davidson, 2017).

Here, we document coccolithophore and carbonate parti-
cle fluxes collected over a year by four sediment trap records
deployed at two strategic locations of the Australian and
New Zealand sectors of the Southern Ocean considered rep-
resentative of a large portion of the SAZ (see Sect. 2.2 for
further details). Our measurements provide coccolith mass
estimates of the main coccolithophore species and quanti-
tatively partition annual carbonate fluxes amongst coccol-
ithophore species and heterotrophic calcifiers. We find that
coccolithophores are a major vector for CaCO3 export out of
the mixed layer and that the largest contribution to CaCO3
export is not from the most abundant species Emiliania hux-

leyi but rather from larger coccolithophores species with sub-
stantially different physiological traits (e.g. Calcidiscus lep-

toporus). Our results emphasize the urgent need for diag-
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nostic fitness response experiments on other coccolithophore
species aside from E. huxleyi (e.g. Feng et al., 2017) in or-
der to be able to predict the impacts of anthropogenically in-
duced changes in Southern Ocean ecosystems and biological
carbon uptake mechanisms.

2 Material and methods

2.1 Oceanographic setting

The SAZ alone accounts for more than half of the South-
ern Ocean area (Orsi et al., 1995) and represents a transi-
tional boundary between the warm, oligotrophic waters of
the subtropical gyres to the north and the cold, silicate-rich
waters south of the polar front (PF). The SAZ is arguably
the largest high-nutrient, low-chlorophyll (HNLC) province
in the world’s ocean and is central to the linkages between
the ocean–atmosphere CO2 exchange and climate. The deep
winter convection in the SAZ, which exceeds 400 m, results
in the formation of high-oxygen water masses known as Sub-
antarctic Mode Water and Antarctic Intermediate Water that
connect the upper and lower limbs of the global overturning
circulation (Sloyan and Rintoul, 2001a, b). The formation of
these water masses is responsible for the sequestration of a
large fraction of anthropogenic CO2 (Sabine et al., 2004),
with an estimated 1 Gt C yr−1 transported to intermediate
depths annually (Metzl et al., 1999). Macronutrient concen-
trations display pronounced seasonal changes in the SAZ,
with fully replete levels during winter to substantial deple-
tion during summer, particularly for silicate (Dugdale et al.,
1995; Rintoul and Trull, 2001; Bowie et al., 2011). The phy-
toplankton community in the subantarctic zone is dominated
by pico- and nannoplankton including cyanobacteria, coc-
colithophores and autotrophic flagellates, with lower abun-
dances of diatoms than polar waters south the polar front
(Chang and Gall, 1998; Kopczynska et al., 2001; de Salas
et al., 2011; Rigual-Hernández et al., 2015b; Eriksen et al.,
2018).

2.2 Field experiments

Here we report on the coccolithophore and biogeochemical
fluxes collected over a year at the Australian Southern Ocean
Time Series (SOTS) observatory (Trull et al., 2010) and
the New Zealand Subantarctic Mooring (SAM) site (Nod-
der et al., 2016) (Fig. 1). The SOTS observatory is located in
the abyssal plane of the central SAZ approximately 530 km
southwest of Tasmania (46◦56′ S, 142◦15′ E) within an anti-
cyclonic gyre in a region characterized by weak circulation
(Trull et al., 2001; Herraiz-Borreguero and Rintoul, 2011).
The SOTS site was equipped with three vertically moored,
conical time-series sediment traps (McLane Parflux Mk7G-
21) placed at ∼ 1000, 2000 and 3800 m depth between Au-
gust 2011 and July 2012. The physical, chemical and bio-
logical parameters of the SOTS site are regarded as repre-

sentative for large portion of the Indian and Australian sec-
tors of the SAZ (∼ 90 and 140◦ E; Trull et al., 2001). The
SAM site is located in the Bounty Trough in the subantarctic
waters south-east of New Zealand (46◦40′ S, 178◦30′ E) and
was equipped with a conical, time-incremental sediment trap
(McLane Parflux Mk7G-21) placed at 1500 m depth, with
samples used in the present study collected between Novem-
ber 2009 and November 2010. The SAM site is considered
to be representative of a wide area of the northern sector of
the SAZ off eastern New Zealand, approximately 171◦ E to
179◦ W and 45 to 47◦ S (Law et al., 2014; Fig. 1). Full details
of the field experiments from these two localities in the Aus-
tralian and New Zealand sectors of the SAZ can be found in
Trull et al. (2001) and Nodder et al. (2016), respectively.

2.3 Sample processing

In short, the recovered trap bottles were refrigerated upon
recovery and then allowed to settle. The sample slurry was
then wet-sieved through a 1 mm screen in the case of SOTS
(no attempt to extract zooplankton “swimmers” was made for
the < 1 mm fraction analysed here) and through a 200 µm
sieve to remove swimmers for the SAM site. The remain-
ing fraction was then split using a McLane wet sample di-
vider; the SOTS samples were subdivided into 1/10 aliquots
while 1 / 5 splits were made for the SAM samples. For the
SOTS samples, a total of 55 samples were processed for cal-
careous nannoplankton analysis. The 1/10 splits dedicated
to phytoplankton analysis were further subdivided into four
aliquots with the McLane splitter. One aliquot was used for
calcareous nannoplankton analysis, and the remaining three
were kept refrigerated for biomarker and non-calcareous mi-
croplankton analyses. In the case of the SAM samples, the
one-fifth aliquots were further subdivided into five sub-splits,
and one of those was used for calcareous nannoplankton
analysis. Two different types of glass slides per sample were
prepared. The first preparation was used for the estimation
of coccosphere and calcareous dinocyst (calcispheres of tho-
racosphaerids) fluxes and for coccolith imaging. A volume
ranging between 1000 and 5000 µL of the raw sample was
mounted on a glass slide using Canada balsam following
Flores and Sierro (1997). This technique produces random
settling of the coccoliths for microscopic identification and
enumeration. The second type of glass slide was prepared
following a modified protocol for non-destructive disintegra-
tion of aggregates modified from Bairbakhish et al. (1999).
The objective of this chemical treatment is to reduce biases in
the coccolith flux estimations associated with the presence of
different types of aggregates and coccospheres (Bairbakhish
et al., 1999). In brief, a total of 2000 µL was extracted from
the aliquot for calcareous nannoplankton analysis and then
treated with a solution comprising 900 µL sodium carbonate
and sodium hydrogen carbonate, 100 µL ammonia (25 %),
and 2000 µL hydrogen peroxide (25 %). The sample was agi-
tated for 10 s every 10 min and this process was repeated over
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Figure 1. Chlorophyll a composite map of the Australian–New Zealand sector of the Southern Ocean (July 2002 to July 2012) from the
MODIS Aqua sensor showing the location of the sediment trap moorings sites: SOTS, 61◦ S and SAM. The regions for which the SOTS and
SAM sites are representative are marked with light- and dark-blue areas, respectively. Abbreviations: subtropical zone – STZ, subtropical
front – STF, subantarctic zone – SAZ, subantarctic front – SAF, polar frontal zone – PFZ, polar front – PF, Antarctic zone – AZ, southern
Antarctic Circumpolar Current front – SACCF, and southern boundary of the ACC – SB. Oceanic fronts follow Orsi et al. (1995). Ocean
Data View software (Schlitzer, 2018) was used to generate this figure.

an hour. Then, the reaction was stopped with catalase en-
zyme, and samples were allowed to settle for at least 48 h be-
fore preparation on microscope slides. pH controls indicate
that the solution kept pH levels near 9, therefore precluding
coccolith dissolution. Finally, trap samples were mounted on
microscope slides following the same decantation method as
used for the first type of glass slides (i.e. Flores and Sierro,
1997).

2.4 Determination of CaCO3 fluxes

A detailed description of the geochemical analytical proce-
dures for the SOTS samples is provided in Trull et al. (2001)
and Rigual-Hernández et al. (2015a), while more detailed
procedures of the SAM trap can be found in Nodder et
al. (2016). In short, for the SOTS site three of the 1/10
splits were filtered onto 0.45 pore size filters. Then the mate-
rial was removed from the filter as a wet cake of material,
dried at 60 ◦C and ground in an agate mortar. This mate-
rial was used to determine the total mass and composition
of the major components of the flux. Particulate inorganic
carbon content was measured by closed system acidification
with phosphoric acid and coulometry. For the SAM site, a
one-fifth split was analysed for elemental calcium (Ca) con-
centration using inductively coupled plasma mass spectrom-
etry (ICP-MS) techniques. The samples were oven-dried, di-
gested in nitric / hydrochloric acid and then analysed accord-
ing to the methods under US EPA 200.2. Ca was used to es-
timate CaCO3 content in the samples assuming a 1 : 1 molar
ratio in CaCO3.

2.5 Quantification and characterization of

coccolithophore sinking assemblages

Qualitative and quantitative analyses of coccospheres and
coccoliths were performed using a Nikon Eclipse 80i po-
larized light microscope at 1000× magnification. The tax-
onomic concepts of Young et al. (2003) and the Nannotax
website (Young et al., 2019) were used. A target of 100 coc-
cospheres and 300 coccoliths was established; however, ow-
ing to the pronounced seasonality in coccolithophore export,
there were some periods with very low abundance of coc-
cospheres in the samples, and therefore the target of 100
coccospheres was not always met. Coccosphere and coccol-
ith species counts were then transformed into relative abun-
dances and daily fluxes using the following formula:

F =
N ×

A
n×a

× V × S

d × T
,

where F is the coccolith flux, N is the number of coccoliths,
A is the area of the Petri dish, n is the number of fields of
view, a is the area of a field of view, V is the dilution volume,
S is the sample split, d is the number of days of collection
and T is the sediment trap aperture area.

2.6 Determination of coccolith mass and size

Birefringence and morphometric methods are the two most
commonly used approaches for estimating the calcite con-
tent of isolated coccoliths. The circularly polarized light-
microscopy-based technique (Fuertes et al., 2014) is based
on the systematic relationship between the thickness of a
given calcite particle (in the thickness range of 0–1.55 mm)
and the first-order polarization colours that it displays under
polarized light (Beaufort, 2005; Beaufort et al., 2014; Bolton
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et al., 2016). The advantages of this approach are that (i) it
directly measures complete coccoliths with no assumptions
regarding their shape or thickness and (ii) it allows for quan-
tification of calcite losses associated with missing parts or
etching of the coccoliths. The disadvantages of this technique
are the errors associated with the coccolith calcite calibration
and their consequent effect on the coccolith mass estimates
(Fuertes et al., 2014; González-Lemos et al., 2018). The mor-
phometric approach, on the other hand, allows better taxo-
nomic identification of the coccoliths and has smaller errors
in the length measurements (∼ 0.1 to 0.2 µm; Poulton et al.,
2011). However, this method does not allow for direct mea-
surement of coccolith thickness and assumes identical shape
and width proportions for all specimens of the same species,
among other uncertainties (see Young and Ziveri, 2000, for
a review). Since the two methods have different associated
errors (Poulton et al., 2011), we applied both approaches to
our coccolith flux data in order to obtain two independent
estimates of the fractional contribution of coccolithophores
species to total carbonate export in the SAZ.

For the birefringence-based approach, a minimum of 50
coccoliths of each of the main coccolithophore species were
imaged using a Nikon Eclipse LV100 POL light micro-
scope equipped with circular polarization and a digital cam-
era (Nikon DS-Fi1 8 bit colour). The only exception was E.

huxleyi, for which coccolith mass values had already been es-
timated in all the same samples at high resolution by Rigual-
Hernández et al. (2020). For the minor components of the
flux assemblage, a lower number of coccoliths were mea-
sured (Table 1). A photograph of the same apical rhabdolith
of the genus Acanthoica was taken and used for calibration
at the beginning of each imagining session during which mi-
croscopy light and camera settings were kept constant. A dif-
ferent number of fields of view of multiple samples represen-
tative of different seasons were photographed until the tar-
get number of coccoliths for each species was reached. Pho-
tographs were then analysed by the image-processing soft-
ware C-Calcita. The output files for single coccoliths were
visually selected and classified into the lowest possible tax-
onomic level. Length and weight measurements were auto-
matically determined by C-Calcita software. Morphometric
measurements of all the species are summarized in Table 1.
For further methodological details, see Fuertes et al. (2014)
and Bolton et al. (2016).

The second approach consisted of performing morphome-
tric measurements on the coccoliths followed by the esti-
mation of their coccolith mass assuming a systematic rela-
tion between length and thickness (Young and Ziveri, 2000).
Young and Ziveri (2000) proposed that the calcite content of
a given coccolith could be estimated using the following for-
mula:

Coccolith calcite (pg) = 2.7 × ks × l3,

where 2.7 is the density of calcite (CaCO3; pg µm3), ks is a
shape constant that varies between species and morphotypes

and whose value is based on the reconstruction of coccolith
cross profiles, and l is the distal shield length (DSL). In or-
der to undertake coccolith measurements on the same coccol-
iths used for the birefringence-based approach, we employed
the distal shield length values measured by C-Calcita using
circularly polarized light instead of morphometric measure-
ments on scanning electron micrographs (SEMs) as made in
Young and Ziveri (2000).

Since coccolith distal shield length has been reported to
be systematically underestimated using cross-polarized light
microscopy (e.g. D’Amario et al., 2018), we evaluated the
possible errors in the DSL measurements made by C-Calcita.
For this assessment, we measured 40 detached coccoliths of
C. leptoporus under the SEMs from samples of the SOTS
sediment traps using the image-processing software ImageJ.
Average DSL measurements under the SEMs were then com-
pared with those made by C-Calcita on 40 randomly selected
C. leptoporus coccoliths. The average coccolith length ob-
tained with the SEM analysis (6.37 ± 1.02, n = 40) was ∼

4 % shorter than that estimated with C-Calcita (6.62 ± 1.47,
n = 40). Therefore, we assumed the error for the DSL mea-
surements with circularly polarized light is < 5 %. Given the
low numbers of the rest of species in the samples, we consid-
ered that this error is applicable for the rest of the taxa mea-
sured in the current study. The subtle differences in coccol-
ith distal length measurements between techniques are most
likely due to the fact that the peripheral limit of the coc-
colith shield under the circularly polarized light microscope
(LM) is not as sharp as is the case for SEM images. It fol-
lows that differences in DSL measurements between SEM
and LM techniques will be likely similar or smaller in the
case of larger species. Since the majority of coccolith species
identified in the current study display a similar (e.g. Gephy-

rocapsa oceanica, Syracosphaera pulchra, Umbellosphaera

tenuis and Umbilicosphaera sibogae) or larger size (e.g. Coc-

colithus pelagicus and Helicosphaera carteri) than C. lep-

toporus, it could be assumed that the < 5 % error on DSL
estimates for C. leptoporus is applicable for the rest of the
species found in the current study. For the ks value of each
taxa, data from the literature were employed (Table 1). E.

huxleyi assemblages in the SAZ are composed of a mixture
of five different morphotypes: A, A overcalcified, B, B/C and
C, each of which is characterized by different shape factors
(ks). Since ks is not available for all the morphotypes found in
the SAZ and it is not possible to differentiate between mor-
photypes in our light microscopy images, we used the mean
shape factor constant for E. huxleyi (i.e. ks = 0.0275) to pro-
vide a range of coccolith mass estimates for this species (Ta-
ble 1 and Fig. 4).

2.7 Calculation of annual estimates

Since the trap collection periods encompassed a period
shorter than a calendar year, annual estimates of coccolith
and CaCO3 fluxes and species relative abundances had to
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Table 1. Coccolith mass estimates of the main coccolithophore species found at the SOTS and SAM sites using birefringence (C-Calcita)
and morphometrics. Additionally, length and mass estimates from the literature are also listed for most species. References: (1) Young and
Ziveri (2000), (2) Beaufort and Heussner (1999), (3) Samtleben and Bickert (1990), (4) Poulton et al. (2010), (5) Poulton et al. (2011),
(6) Holligan et al. (2010) and (7) Charalampopoulou et al. (2016). ∗ Coccolith mass range obtained applying the minimum and maximum ks
values for E. huxleyi found in the literature (i.e. 0.015 and 0.04, respectively).

Species and morphotypes n Length (µm) Mass CaCO3 (pg) ks Crystal units References

Average SD Average SD types

Calcidiscus Birefringence 210 6.39 1.49 33.65 21.11 V and R
leptoporus Morphometrics 210 6.39 1.49 66.23 53.28 0.080 1

Literature estimates 4.3–9.6 22.6–125.2 0.061–0.105 1, 2

Coccolithus Birefringence 54 13.28 1.14 170.90 32.33 V and R
pelagicus Morphometrics 54 13.28 1.14 387.96 99.64 0.060 1

Literature estimates 8.5–13.5 99.5–398.6 0.051–0.060 1, 2, 3

Emiliania huxleyi Birefringence 12 842 2.78 0.57 2.64 1.43 R
Morphometrics 12 842 2.78 0.57 0.99–2.64 0.60–1.60 0.015–0.04 (V-unit vestigial)

(1.81)∗ (0.0275)∗

E. huxleyi type A Literature estimates 3–4 1.50–3.50 0.02 1, 4, 5
E. huxleyi type A o/c Literature estimates 3.5 4.6 0.04 1
E. huxleyi type B/C Literature estimates 1.8–5.5 0.3–3.5 pg 0.015 5, 6, 7
E. huxleyi type B Literature estimates 3.5–5 2.30–6.81 0.02 1, 5

Gephyrocapsa Birefringence 51 5.87 0.62 26.70 5.64 R
oceanica Morphometrics 51 5.87 0.62 28.14 8.97 0.050 (V-unit vestigial)

Literature estimates 5–5.35 16.9–25.7 0.050–0.062 1, 2

Gephyrocapsa spp. Birefringence 10 4.03 0.59 9.00 2.51 R
Morphometrics 10 4.03 0.59 9.33 3.84 0.050 (V-unit vestigial) 1
Literature estimates

Helicosphaera Birefringence 64 11.20 1.12 100.10 20.34 V and R
carteri Morphometrics 64 11.20 1.12 194.95 56.45 0.050 1

Literature estimates 9.1–10 135–142.8 0.050–0.070 1, 2

Syracosphaera Birefringence 81 6.77 1.09 17.77 6.80 V, R and T
pulchra Morphometrics 81 6.77 1.09 26.94 11.16 0.030 1

Literature estimates 2.7–6 13.5–16.5 0.027–0.083 1, 2, 4

Umbellosphaera Birefringence 54 6.42 0.99 15.69 5.02 R
tenuis Morphometrics 54 6.42 0.99 11.45 4.61 0.015 1

Literature estimates 5–6 8.7–23.9 0.015–0.071 1, 2

Umbilicosphaera Birefringence 6 7.76 1.81 27.14 11.07 V and R
sibogae Morphometrics 6 7.76 1.81 78.93 51.38 0.055 1

Literature estimates 4.1–6 16–35 0.055–0.086 1, 2

be estimated. For the SOTS site, a total of 336 d were sam-
pled for the 1000 and 2000 m traps and 338 d for the 3800 m.
Since the unobserved interval occurred in winter, the miss-
ing sampling period was filled using an average flux value of
the winter cups (first and last trap bottles). In the case of the
SAM trap, the number of samples available for CaCO3 and
calcareous nannoplankton analyses was different, covering a
period of 313 and 191 d respectively. Since gaps were quasi-
equally distributed along the time series, annual fluxes were
estimated by filling the gaps in the record with average fluxes
calculated from the available data. The estimated range of
the annual contribution of coccolithophores to total CaCO3
export at the SOTS and SAM traps was calculated by mul-
tiplying the coccolith flux of each species in each sampling

interval by its average coccolith weight values obtained with
the birefringence and morphometric techniques.

2.8 Remotely sensed chlorophyll a and PIC

concentrations

Weekly chlorophyll a and PIC concentrations for the sam-
pling intervals at the SOTS and SAM sites were derived
from Giovanni online data system, developed and maintained
by the NASA Goddard Earth Sciences Data Active Archive
Center (Acker and Leptoukh, 2007). Each value is a weekly
value produced by computing spatial averages within the area
48.5–45.5◦ S and 130–150◦ E for the SOTS site and 47–45◦ S
and 171◦ E–179◦ W for the SAM site (Fig. 5).
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3 Results

3.1 Magnitude and seasonality of coccolithophore and

CaCO3 fluxes

Annualized coccolith fluxes were similar at the three SOTS
trap depths, with 8.6, 7.3 and 8.6×1011 coccoliths m−2 yr−1

at 1000, 2000 and 3800 m respectively, and about
3 times larger than those of the SAM site (3.0 ×

1011 coccoliths m−2 yr−1). The contribution of intact coc-
cospheres to the total coccolith export was low at both
sites, with annual coccosphere fluxes 2 orders of magni-
tude lower than coccolith fluxes at SOTS (3.5, 3.3 and
1.8 × 109 coccospheres m−2 yr−1 at 1000, 2000 and 3800 m,
respectively) and SAM (2.2 × 109 coccospheres m−2 yr−1).
Annualized CaCO3 export was similar at both sites with 14.6,
16.2 and 17.1 g m−2 yr−1 at 1000, 2000 and 3800 m at the
SOTS site and 13.9 g m−2 yr−1 at the SAM sediment trap
(1500 m).

Both coccolith and coccosphere fluxes displayed a
marked seasonality that followed the general trend of
algal biomass accumulation in the surface waters at
the SOTS and SAM sites (Fig. 2). Coccolith fluxes at
1000 m started to increase in early October and remained
above the threshold of 1 × 109 coccoliths m−2 d−1 until
mid-April (Fig. 2). Three maxima were recorded dur-
ing the period of high coccolith export: October–early
November 2011 (4 × 109 coccoliths m−2 d−1), late Decem-
ber 2011 (9 × 109 coccoliths m−2 d−1) and March 2012 (4 ×

109 coccoliths m−2 d−1). Coccolith fluxes of the main coc-
colithophore species generally followed the similar seasonal
pattern to that of the total coccolith flux (Fig. S1 in the
Supplement) and are not discussed further. Coccolithophore
fluxes registered by the 2000 and 3800 m sediment traps fol-
lowed a generally similar seasonal pattern to those of the
shallower trap at the SOTS site (Fig. 2). At SAM, coccol-
ith fluxes exhibited a strong seasonality with peak fluxes in
early January 2010 (up to 6 × 109 coccoliths m−2 d−1) and a
secondary peak in August 2010 (3×109 coccoliths m−2 d−1).
Coccosphere fluxes at both sites displayed maximum fluxes
during the austral summer and minima during winter; how-
ever maximum coccosphere export peaks did not always
match those of coccolith export (Fig. 2). The seasonality of
total CaCO3 followed a similar pattern to coccolith fluxes
with peak values in the spring–summer and minima during
winter at both study sites.

3.2 Coccolithophore assemblage composition

Coccolith sinking assemblages were overwhelmingly dom-
inated by Emiliania huxleyi for all sediment trap records
analysed (Fig. 3a). At the SOTS site, the annualized
flux-weighted relative contribution of E. huxleyi decreased
slightly with depth, comprising 88 % of the total coccol-
ithophore assemblage at 1000 m, 82 % at 2000 m and 80 %

at 3800 m. Secondary components of the coccolith sink-
ing assemblage were Calcidiscus leptoporus (sensu lato)
(6.8 %, 10.1 % and 9.6 % at 1000, 2000 and 3900 m, re-
spectively), Helicosphaera carteri (1.4 %, 2 % and 1.3 %)
and small Gephyrocapsa spp. (< 3 µm) (1.4 %, 1.5 % and
4.7 %). Background concentrations (≤ 1 %) of Calciosole-

nia spp., Coccolithus pelagicus, Gephyrocapsa muellerae,
Gephyrocapsa oceanica, Gephyrocapsa spp. (> 3 µm), Syra-

cosphaera pulchra, Syracosphaera spp., Umbellosphaera

tenuis (sensu lato) and Umbilicosphaera sibogae were also
registered. At the SAM site, E. huxleyi accounted for 83 % of
the annualized coccolith flux, with subordinate contributions
of C. leptoporus (12.2 %) and Gephyrocapsa spp. (< 3 µm)
(1.5 %). Background concentrations (< 1 %) of Calciosole-

nia spp., Coccolithus pelagicus, G. oceanica, Gephyrocapsa

muellerae, Gephyrocapsa spp. (> 3 µm), H. carteri, Syra-

cosphaera pulchra, Syracosphaera spp., U. sibogae and U.

tenuis were observed.

3.3 Calcite content per species

Coccolith length and mass for all species measured using
birefringence and morphometric techniques are provided in
Table 1. Overall, the average coccolith mass estimates for the
coccolithophore species at SOTS and SAM sites using both
approaches are within the range of values in the published lit-
erature. The Noelaerhabdaceae family members, G. oceanica

and Gephyrocapsa spp., display almost identical mass values
with both approaches (Fig. 4). In contrast, substantial dis-
crepancies are identifiable for C. pelagicus, C. leptoporus,
H. carteri and U. sibogae, for which coccolith mass estimates
are about 2-fold greater using morphometrics than with the
birefringence approach. The range of annual contributions of
coccolithophores to carbonate is illustrated in Fig. 5.

4 Discussion

4.1 Coccolithophore phenology in the SAZ: satellite

versus sediment trap records

Total coccolith flux seasonality at the SOTS site shows good
congruence with satellite-derived PIC in the surface layer,
with both parameters suggesting enhanced coccolithophore
productivity between October and March (austral mid-spring
to early autumn; Fig. 2a). Interestingly, substantial cocco-
sphere export (> 1×107 coccospheres m−2 d−1) does not oc-
cur until January, indicating that coccolith and coccosphere
export are not tightly coupled in the subantarctic waters south
of Australia. Two different processes could be invoked to
explain the mismatch between coccolith and coccosphere
fluxes at this site. Firstly, E. huxleyi, the dominant coccol-
ithophore species in the Southern Ocean, is able to produce
coccoliths rapidly (up to three coccoliths per hour; Paasche,
1962; Balch et al., 1996) and shed the excess of coccol-
iths into the surrounding water under certain environmental
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Figure 2. Ocean-colour satellite-derived chlorophyll a and particulate inorganic carbon (PIC) concentration in the surface layer and total
CaCO3, coccolith and coccosphere fluxes registered by the sediment traps at the SOTS (a) and SAM (b) sites.

conditions (Paasche, 2002). Although the coccolith shedding
rate of E. huxleyi increases linearly with cellular growth rate
(Fritz and Balch, 1996; Fritz, 1999), the tiny size and low
weight of detached coccoliths allow them to remain in the
upper water column long after cell numbers have begun to
decline. It follows that high concentrations of detached coc-
coliths do not necessary imply a proportional abundance of
coccospheres in the surface layer (Tyrrell and Merico, 2004;
Poulton et al., 2013) or in the traps. Additionally, a sub-
stantial fraction of the coccospheres produced in the surface
layer may experience substantial mechanical breakage by
zooplankton before reaching the trap depths. Indeed, micro-
zooplankton grazing pressure can remove up to 82 % of the
primary production in midsummer in the subantarctic waters
south of Tasmania (Ebersbach et al., 2011) and about 60 %
of the daily coccolithophore growth in the North Atlantic
(Mayers et al., 2019), therefore suggesting a strong top-down
control on coccolithophore populations. Additionally, a poly-
acrylamide gel sediment trap study in the subantarctic wa-
ters south of Tasmania by Ebersbach et al. (2011) revealed
that most of the particles exported out the mixed layer during
the productive period occur in the form of faecal aggregates.
Therefore, it is highly likely that (i) the intensity of cocco-
sphere export registered by the traps is influenced by graz-
ing pressure in the surface layer and (ii) the impact of graz-
ing on coccolithophores varies throughout the year (Calbet et

al., 2008; Lawerence and Menden-Deuer, 2012; Quéguiner,
2013).

In contrast, seasonal variations in satellite-derived PIC
concentration and coccolith fluxes at SAM show some dis-
crepancies not observed at SOTS. While maximum PIC con-
centrations in the surface layer and coccolith and cocco-
sphere fluxes co-occur in December and January (austral
early to midsummer), satellite-derived PIC suggests a sec-
ondary maximum in February–early March not recorded by
the trap (Fig. 2b). One possibility is that the satellite sec-
ondary maximum is not coccoliths. The higher chlorophyll a

levels at the SAM site (Fig. 2) suggest that other phytoplank-
ton groups, such as diatoms, are more abundant than in the
subantarctic waters south of Tasmania. Empty and broken di-
atom valves have been suggested to display similar spectral
characteristics to those of coccolithophore blooms (Broerse
et al., 2003; Tyrrell and Merico, 2004; Winter et al., 2014).
Therefore, the second peak in satellite-derived PIC could
have been caused by a senescent diatom bloom. This hypoth-
esis is likely, since diatom blooms in the SAZ are known to
develop early in the productive season (Rigual-Hernández et
al., 2015b) and rapidly decay following the depletion of sil-
icate and/or iron stocks in the surface layer (Lannuzel et al.,
2011). However, no secondary late summer maximum was
observed in biogenic silica fluxes in the SAM. Another pos-
sible explanation is a contribution to the satellite record from
lithogenic material or storm-induced microbubble injection
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Figure 3. (a) Annualized integrated relative abundance of the most important coccolithophore species in the SOTS and SAM sediment trap
records. (b) Fractional contribution of coccolithophore species to total coccolithophore CaCO3 export in the SOTS and SAM sediment traps.

Figure 4. Average and standard deviation of the coccolith mass es-
timates of the most important coccolithophore species captured by
the SOTS and SAM sediment traps using birefringence (C-Calcita)
and morphometric approaches. For E. huxleyi, the morphometrics-
based coccolith mass estimate was calculated by applying a mean
shape factor constant (ks) value estimated from the range of all the
morphotypes found at the SAZ (i.e. ks = 0.0275, Table 1).

Figure 5. Total annual CaCO3 export (chemically determined) and
fractional contribution of coccolithophores to CaCO3 estimated us-
ing birefringence (C-Calcita) and morphometric approaches for the
SOTS and SAM sites.
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(Zhang et al., 2002). Fully resolving causes of mismatches
between in situ and satellite PIC estimates is not achievable
for the SAM site (nor more broadly for the Southern Ocean;
Trull et al., 2018).

A second difference between the SAM and SOTS sites is
that maximum annual coccosphere export occurred 1 week
earlier than maximum coccolith fluxes at SAM (Fig. 2). The
different seasonalities between the sites suggest that different
export mechanisms may operate. The formation of rapidly
sinking algal aggregates by diatoms is known to scavenge
particles they have collided with and increase particle sinking
(Alldredge and McGillivary, 1991; Passow and De La Rocha,
2006); thus, the formation of such rapidly sinking aggregates
could potentially facilitate the preservation of coccospheres
early in the productive season at the SAM site. However, the
lack of accompanying in situ information on plankton com-
munity structure in the study region precludes the assessment
of these hypotheses.

Despite the uncertainties involved in our interpretations,
the overall picture that emerges from our comparison of
satellite and sediment trap flux data is that the duration of
the coccolithophore bloom based on ocean-colour-based PIC
concentrations most likely provides an overestimation of the
coccolithophore productive season. Our observations moti-
vate caution in describing coccolithophore phenology solely
based on satellite-derived PIC concentrations (e.g. Hopkins
et al., 2015).

4.2 Magnitude and composition of subantarctic

coccolithophore assemblages

Annual coccolith export across the major zonal systems
of the Australian sector of the Southern Ocean exhibits
a clear latitudinal gradient, with maximum fluxes at the
SAZ (8.6×1011 coccoliths m−2 yr−1) and 8-fold lower fluxes
in the polar waters of the Antarctic zone (AZ; 1.0 ×

1011 coccoliths m−2 yr−1; Rigual Hernández et al., 2018).
Coccolithophore species occurrence documented by our sub-
antarctic sediments traps is consistent with previous reports
on coccolithophore assemblage compositions in the surface
layer (Findlay and Giraudeau, 2000; Saavedra-Pellitero et al.,
2014; Malinverno et al., 2015; Chang and Northcote, 2016)
and sediments (Findlay and Giraudeau, 2000; Saavedra-
Pellitero and Baumann, 2015) and are more diverse than
those found in the AZ (Rigual Hernández et al., 2018). The
southward decline in coccolithophore abundance and diver-
sity is most likely due to the decrease in sea-surface temper-
ature (SST) and light availability moving poleward (Char-
alampopoulou et al., 2016; Trull et al., 2018). In particular,
the close relationship between temperature and growth rates
has been demonstrated in a range of coccolithophore species
and strains (Buitenhuis et al., 2008) and seems to be a critical,
if not the most important, control on the biogeographical dis-
tribution of coccolithophore species in the Southern Ocean
(Trull et al., 2018). This pronounced latitudinal change in

coccolithophore assemblage composition contrasts with the
little longitudinal variability between the subantarctic SOTS
and SAM sites (Fig. 3). These observations underscore the
role of circumpolar fronts as natural physical barriers for
plankton species distribution in the Southern Ocean (Medlin
et al., 1994; Boyd, 2002; Cook et al., 2013).

Notably, the rare occurrence of the cold-water species
Coccolithus pelagicus at the SOTS and SAM sites contrasts
with the high contribution of C. pelagicus to the living coc-
colithophore communities in the subpolar and polar waters of
the North Atlantic and North Pacific oceans, where it is often
the second most abundant species after E. huxleyi (McIntyre
and Bé, 1967; Baumann et al., 2000; Broerse et al., 2000a, b;
Ziveri et al., 2000). This important difference in species com-
position between Northern and Southern Hemisphere subpo-
lar ecosystems could have important implications in the cali-
bration of the satellite PIC signal in the Southern Ocean. Pre-
vious research in the Southern Ocean comparing satellite and
shipboard observations identified a substantial overestima-
tion of coccolithophore PIC in the Southern Ocean waters by
satellite ocean-colour-based PIC algorithms (Holligan et al.,
2010; Trull et al., 2018). Since satellite reflectance observa-
tions are mainly calibrated against Northern Hemisphere PIC
results (Balch et al., 2011, 2016), the lower calcite content of
the dominant E. huxleyi morphotypes (B/C) in the Southern
Ocean compared to their northern hemispheric counterparts
has been suggested as a possible factor causing the overes-
timation of PIC concentrations in the Southern Ocean. Fol-
lowing this reasoning, we speculate that differences in other
components of the coccolithophore assemblages, and partic-
ularly differences in C. pelagicus numbers, could contribute
to the overestimation of PIC concentrations by the satel-
lite PIC algorithm in the Southern Ocean. Indeed, the scal-
ing of reflectance (in satellite images) to PIC (in ocean) is
very dependent on coccolith area : mass ratios (Gordon and
Du, 2001; Balch et al., 2005a). Coccolithus pelagicus has
remarkably heavier and thicker coccoliths (100–400 pg per
coccolith; Table 1) than E. huxleyi (∼ 3 pg per coccolith),
i.e. about 100 times heavier. However, the average coccol-
ith area of C. pelagicus is only about 10 times greater than
that of E. huxleyi. Thus, this lack of a proportional relation-
ship between area and mass between these species should be
taken into consideration when calibrating the satellite signals
of coccolithophore-related PIC in the Southern Ocean. How-
ever, it should be noted that this is only one possible factor
contributing to the overestimation of PIC concentrations in
Southern Ocean waters. Other factors such as the presence of
microbubbles – which are a source of enhanced reflectance –
must also play an important role (Balch et al., 2011).

4.3 Coccolith calcite content of subantarctic

coccolithophore species

Multiple methodological biases associated with each of the
methods used for estimating coccolith calcite content (i.e.
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birefringence, morphometrics) could be invoked to explain
the different estimates observed for some of the species
(see Young and Ziveri, 2000; Fuertes et al., 2014, and ref-
erences therein). However, the fact that these discrepancies
vary greatly across species suggests that the composition of
the crystal units of the coccoliths could be the most impor-
tant factor causing these differences. All the heterococcoliths
of the species analysed are mainly composed of either V- or
R-calcite crystal units or a combination of both (Young et
al., 2003; Table 1). R units are characterized by sub-radial
c axes that are reasonably well measured by the birefrin-
gence technique, but the almost vertical optical axes of the
V units (Young, 1992; Young et al., 1999) make the same
thickness less birefringent (Fuertes et al., 2014). Thus, it is
likely that differences in the birefringence properties of the
R and V units could be responsible for the different esti-
mates provided by the two approaches. This is supported by
our results, which show coccolith mass estimates of those
species composed of R units, such as G. oceanica and Gephy-

rocapsa spp., exhibit almost identical values with both tech-
niques (Table 1). In contrast, those species with coccoliths
composed by a combination of R and V units, such as C.

pelagicus, C. leptoporus, H. carteri and U. sibogae, display
divergent mass estimates between approaches. The case of E.

huxleyi is more complex due to the large intraspecific genetic
variability that results in substantial differences in the profile
and degree of calcification between specimens (Young and
Ziveri, 2000). Our birefringence mass estimate for E. hux-

leyi (2.67 ± 1.49 pg) is less than 1 pg lower than the mean
range value calculated with the morphometric technique (i.e.
1.81 ± 1.10 pg with an average ks value of all the morpho-
types found at the SAZ; i.e. ks = 0.0275) but identical to the
maximum (2.64 ± 1.60 pg; using ks = 0.04). These results
suggest a reasonably good consistency between techniques
for E. huxleyi.

Taking into consideration all the above, it is likely that
the coccolith mass of some species is underestimated by the
birefringence technique, and therefore the fractional contri-
bution of coccolithophores to total PIC using this approach
should be taken as a conservative estimate. Since both meth-
ods for estimating calcite content have inherent uncertainties,
the range of values provided by both techniques is used here
as an approximation of the fractional contribution of coccol-
ithophores to total annual CaCO3 export to the deep sea in
the Australian and New Zealand sectors of the SAZ.

4.4 Contribution of coccolithophores to carbonate

export in the Australian–New Zealand sectors of

the Southern Ocean

The magnitude of the total PIC export in the subantarctic wa-
ters was similar between the SOTS and SAM sites (range
14–17 g m−2 yr−1) and thus slightly above the global aver-
age (11 g m−2 yr−1; Honjo et al., 2008). Our estimates indi-
cate that coccolithophores are major contributors to CaCO3

export in the Australian and New Zealand waters of the SAZ,
accounting for 40 %–60 % and 15 %–25 % of the annual
CaCO3 export, respectively (Fig. 5). Heterotrophic calcifiers,
mainly planktonic foraminifera (Salter et al., 2014), must
therefore account for the remainder of the annual CaCO3
export at both sites. Previous work on foraminifera fluxes
in our study regions allows for an approximate estimate of
the contribution of foraminifera to total CaCO3 flux that can
be used to assess the validity of our estimates. Combining
counts of foraminifera shells (King and Howard, 2003) with
estimates of their average shell weights (20–40 µg per shell
depending on size; Moy et al., 2009) suggests contributions
of one-third to two-thirds of planktonic foraminifera to the
total CaCO3 flux in the Australian SAZ (Trull et al., 2018).
In the subantarctic waters south of New Zealand, Northcote
and Neil (2005) estimated that planktonic foraminifera ac-
counted for about 78 %–97 % of the total CaCO3. Thus, esti-
mations of the contribution of heterotrophic calcifiers to total
carbonate in both study regions are in reasonable agreement
with our coccolithophore CaCO3 estimates at both sites. The
lower contribution of coccolithophores to CaCO3 export at
the SAM site in comparison with that of SOTS may be ex-
plained by differences in the ecosystem structure between
sites. Algal biomass accumulation in the surface waters of the
SAM region (average chlorophyll a concentration between
2002 and 2018 is 0.31 mg m−3) is substantially higher than
that at SOTS (0.23 mg m−3). We speculate that the higher
abundance of non-calcareous phytoplankton (e.g. diatoms)
in the subantarctic waters south of New Zealand could si-
multaneously reduce coccolithophore biomass through re-
source competition (Le Quéré et al., 2005; Sinha et al., 2010)
while stimulating foraminifera growth (Schiebel et al., 2017).
The combination of both factors could be responsible for the
lower coccolithophore productivity at the SAM site despite
similar total CaCO3 export. Assuming that both the SOTS
and SAM sites can be considered representative of a broad
longitudinal swath of the SAZ south of Australia and New
Zealand (ca. 1 % of areal extent of the global ocean), the
coccolithophore CaCO3 export in these two regions together
accounts for approximately 0.4 Tmol Cinorg yr−1. This value
represents approximately 1 % of the global annual PIC ex-
port to the deep ocean (Honjo et al., 2008) and underscores
the notion that the high-nutrient, low-chlorophyll waters of
the circumpolar SAZ should not be taken as indicative of low
biological activity or export.

Our results indicate that although E. huxleyi overwhelm-
ingly dominates the coccolithophore sinking assemblages at
both study sites, other species with lower relative contribu-
tion but substantially heavier coccoliths are more important
contributors to the annual coccolithophore CaCO3 export
budget (Fig. 3). Particularly relevant is the case of C. lep-

toporus, which despite its relatively low abundance (∼ 10 %
of the annual assemblage at both sites; Fig. 3) accounts for
between 30 %–50 % and 60 %–70 % of the annual coccol-
ithophore CaCO3 export at the SOTS and SAM sites, re-
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spectively (Fig. 3). Similarly, other species with heavy coc-
coliths, such as H. carteri and C. pelagicus, are important
contributors to the annual coccolithophore PIC export to the
deep sea (up to ∼ 30 % and ∼ 10 % of the annual coccol-
ithophore PIC, respectively) despite their low annual relative
abundance (< 2 % at both sites) (Fig. 3). These results serve
as an important reminder that it is often not the most abun-
dant species but rather the largest coccolithophore species
that account for the greatest contribution to coccolithophore
CaCO3 production and export (Young and Ziveri, 2000; Bau-
mann et al., 2004; Daniels et al., 2016).

The important contribution made by the coccolithophore
community in setting the magnitude of carbonate production
and export to the deep sea is evidenced when we compare
the coccolith and total CaCO3 fluxes of the SOTS sediment
trap with those deployed in the AZ along the 140◦ E merid-
ian (Fig. 1). Although both total and coccolithophore CaCO3
export decrease with increasing latitude, these changes are
largely uneven. While total CaCO3 decreases 2-fold from the
SAZ to the AZ, coccolithophore CaCO3 export decreases 28-
fold (Fig. S2). This lack of proportional latitudinal change
can be attributed to two main factors. First, subantarctic coc-
colithophore populations are diverse and relatively rich in
species with large and heavy coccoliths such as C. lepto-

porus or H. carteri that account for a large fraction of the
annual carbonate production and export. South of the PF,
assemblages become monospecific, or nearly monospecific,
dominated by the small and relatively lightly calcified E. hux-

leyi. Second, latitudinal variations in the abundance of het-
erotrophic calcifiers (mainly foraminifera but also pteropods)
must play a major role in modulating the observed variations
in CaCO3 export. In particular, our data suggest that the frac-
tional contribution of heterotrophic calcifiers to CaCO3 pro-
duction increases from ∼ 40 %–60 % in the Australian SAZ
to up to 95 % in the AZ (Rigual Hernández et al., 2018).
This pattern is consistent with previous shipboard and sed-
iment trap studies that reported higher abundances of plank-
tonic foraminifera at the PFZ and AZ compared to that of
the SAZ in the Australian sector (King and Howard, 2003;
Trull et al., 2018). Controls on the biogeographic distribution
of foraminifera species are complex and beyond the scope
of this paper; however, we provide a few observations. Both
temperature and diet are critical factors controlling the spa-
tial distribution of planktonic foraminifera species. In par-
ticular, the lower temperatures south of the SAF seem to
favour the development of Neogloboquadrina pachyderma

sin. and Turborotalita quinqueloba as indicated by the high
abundance of these species in the PFZ (> 80 % of the annual
integrated flux for both species together; King and Howard,
2003). Additionally, the dramatically different algal commu-
nities dwelling in each zonal system may also play a role
in planktonic foraminifera species distributions. In particu-
lar, diatoms can account for a major part of the diet of some
foraminifera species, including N. pachyderma (Schiebel and
Hemleben, 2017). Therefore, it is likely that the preferential

grazing on diatoms of some foraminifera species may play
an important role in the increase in foraminifera CaCO3 pro-
duction moving poleward.

4.5 Future predictions of coccolithophore community

response to environmental change in the

subantarctic zone

The response of E. huxleyi to environmental change has been
extensively studied in laboratory experiments (Meyer and
Riebesell, 2015; Müller et al., 2015; Feng et al., 2017), and
the available information is sufficient to propose possible
changes of its niche and calcification in the Southern Ocean,
as discussed in detail in Trull et al. (2018) and Krumhardt et
al. (2017). Due to the ubiquity and abundance of E. huxleyi,
the ecophysiology of this species is often regarded as typical
of all coccolithophores. However, E. huxleyi is rather differ-
ent from most other coccolithophore species in that its phys-
iological adaptations place it in the upper limit of the r − K

ecological gradient of these organisms (i.e. an opportunistic
species), while most of the other species are located at the
opposite end of the spectrum (i.e. conservative or K-selected
species) (Probert and Houdan, 2004). Our results demon-
strate that E. huxleyi plays an important but not dominant role
in CaCO3 export, with other species such as C. leptoporus,
H. carteri or C. pelagicus making a larger contribution to the
annual CaCO3 export in the SAZ (Fig. 3). Therefore, it is of
critical importance to evaluate how these other biogeochem-
ically important coccolithophore species will respond to pro-
jected climate-induced changes in the Southern Ocean. Here,
we now assess the response of large coccolithophore species
to projected changes in temperature and carbonate chemistry
that have been highlighted among the most important envi-
ronmental stressors expected to impact Southern Ocean coc-
colithophore physiological rates (Müller et al., 2015; Char-
alampopoulou et al., 2016; Feng et al., 2017; Trull et al.,
2018).

The Southern Ocean is warming rapidly (Gille, 2002; Bön-
ing et al., 2008), largely due to the southward migration of
the Antarctic Circumpolar Current (ACC) fronts (Sokolov
and Rintoul, 2009). Only between 1992 and 2007 the po-
sition of Southern Ocean fronts shifted by approximately
60 km to the south (Sokolov and Rintoul, 2009), and this
trend may continue throughout the next century. Therefore, it
is likely that any further southward migration of ACC fronts
will be coupled with an expansion of subantarctic coccol-
ithophore species towards higher latitudes. The poleward ex-
pansion of the E. huxleyi geographic range has already been
suggested in the Southern Ocean (Cubillos et al., 2007; Win-
ter et al., 2014; Charalampopoulou et al., 2016), and it also
appears to be occurring in the North Atlantic (Rivero-Calle
et al., 2015; Neukermans et al., 2018). Given the important
contribution of large subantarctic coccolithophore species
to CaCO3 export, the expansion of their ecological niche
could result in a substantial increase in CaCO3 production
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and export in the Southern Ocean. However, this may not be
the future scenario for the SAZ southeast on New Zealand,
where bathymetry strongly controls the location of ocean
fronts (Fernandez et al., 2014; Chiswell et al., 2015). If the
fronts are bathymetrically “locked”, then the SAZ will not
expand in areal extent, although the region is still predicted
to undergo significant physical, biogeochemical and biolog-
ical changes (Law et al., 2018) that will have likely flow-on
effects on coccolithophore productivity and export (Deppeler
and Davidson, 2017).

The available carbonate chemistry manipulation experi-
ments with C. leptoporus have come to different conclusions.
While some studies identified an increase in coccolith mal-
formations with increasing CO2 concentrations (Langer et
al., 2006; Langer and Bode, 2011; Diner et al., 2015), an-
other study (Fiorini et al., 2011) reported no changes in the
calcification of C. leptoporus at elevated pCO2. Interestingly,
C. leptoporus did not experience changes in its photosyn-
thesis rates over the tested CO2 range in any of the afore-
mentioned studies. The most likely explanation for the dif-
ferent results between the studies is a strain-specific vari-
able response to changing carbonate chemistry (Diner et al.,
2015). Strain-specific variability in response to changing car-
bonate chemistry has been previously reported in other coc-
colithophores, such as E. huxleyi (Langer et al., 2009; Müller
et al., 2015), and therefore it is likely that this also occurs in
other species. Given the fact that Southern Ocean fronts act
as barriers for species distributions and gene flows (Medlin
et al., 1994; Patarnello et al., 1996; Thornhill et al., 2008;
Cook et al., 2013), it is possible that the subantarctic C. lep-

toporus populations exhibit a different ecophysiology than
those used in the above-mentioned laboratory experiments.
Prediction of the responses of H. carteri and C. pelagicus is
even more challenging due to the lack of experiments testing
the response of these species to changing seawater carbonate
chemistry. The only available insights in the response of one
of these species to ocean acidification are found in the fossil
record. Both Gibbs et al. (2013) and O’Dea et al. (2014) re-
constructed the evolution of C. pelagicus populations during
the Palaeocene-Eocene Thermal Maximum (PETM), a pe-
riod arguably regarded as the best geological approximation
of the present rapid rise in atmospheric CO2 levels and tem-
peratures. These studies concluded that C. pelagicus most
likely reduced its growth rates and calcification during this
period. This limited number of studies suggests that the on-
going ocean acidification in the Southern Ocean could poten-
tially have a negative impact on the physiological rates of C.

leptoporus and C. pelagicus, while the effect on H. carteri is
unknown. Physiological response experiments (e.g. Müller
et al., 2015) with Southern Ocean strains of C. leptoporus,
H. carteri and C. pelagicus are, therefore, urgently needed to
be able to quantify the effect of projected changes in oceanic
conditions in the SAZ on their physiological rates and con-
sequent effects on carbon cycling in the Southern Ocean.

Our synthesis suggests opposing influence of environ-
mental stressors on subantarctic coccolithophore popula-
tions. Poleward migration of fronts will likely increase coc-
colithophore CaCO3 production in the Southern Ocean,
while changes in carbonate chemistry speciation will reduce
growth rates of subantarctic coccolithophores. It seems pos-
sible that coccolithophores will initially expand southward as
waters warm and fronts migrate but then eventually diminish
as acidification overwhelms those changes.

Data availability. Morphometric data of major coccolithophore
species generated during the current study are listed in Ta-
ble 1, while species relative abundance and species fluxes
(plotted in Fig. S1) can be accessed via the following link:
https://doi.org/10.26179/5ddf3db06a153 (Rigual-Hernandez et al.,
2019).
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