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Abstract	1	

Objectives.	The	data	logs	of	Cochlear™	Nucleus®	cochlear	implant	(CI)	sound	processors	2	

show	large	interindividual	variation	in	children’s	daily	CI	use	and	auditory	environments.	3	

This	study	explored	whether	these	differences	are	associated	with	differences	in	the	4	

receptive	vocabulary	of	young	implanted	children.		5	

Design.	Data	of	52	prelingually	deaf	children,	who	had	received	a	CI	before	three	years	of	6	

age,	were	obtained	from	their	clinical	records.	In	total,	73	Peabody	Picture	Vocabulary	7	

Tests	(PPVT)	and	CI	data	logs	for	one	year	preceding	each	test	were	collected.	The	data	logs	8	

were	used	to	determine	the	children’s	average	daily	amount	of	CI	use	and	exposure	to	9	

speech,	speech	in	noise,	noise,	music,	and	quiet.	Additionally,	information	was	collected	10	

about	other	potential	predictors	of	language	abilities,	namely	gender,	age,	age	at	11	

implantation,	etiology	of	deafness,	educational	placement,	and	implantation	mode	12	

(unilateral,	bilateral).	Model	selection	with	Akaike’s	information	criterion	was	used	to	13	

determine	which	data-logging	metrics,	other	variables,	and	combinations	of	both	best	14	

predict	receptive	vocabulary	scores.		15	

Results.	The	data	showed	a	strong	positive	association	between	receptive	vocabulary	and	16	

daily	CI	use,	and	a	negative	association	between	receptive	vocabulary	and	daily	exposure	to	17	

music.	Associations	with	the	data	logs’	speech	and	noise	metrics	were	less	clear.	The	most	18	

important	other	variable	was	educational	placement.	The	best	model	performance	was	19	

achieved	when	data	logs	and	other	information	were	combined.	20	

Conclusions.	The	results	emphasize	the	importance	of	consistent	CI	use	and	a	rich	21	

auditory	environment	for	the	early	language	development	of	young	CI	users.	The	study	also	22	
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shows	that	CI	data	logs	capture	information	about	children’s	environment	and	CI	use	that	1	

are	related	to	language	performance	and	can	help	to	detect	and	address	problems	and	2	

improve	their	auditory	rehabilitation.3	
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Cochlear	Implant	Data	Logs	Predict	Children’s	Receptive	Vocabulary	1	

Worldwide,	around	215,000	children	with	profound	hearing	loss	(HL)	use	a	cochlear	2	

implant	(CI)	to	access	their	auditory	environment	(Cochlear	Ltd.,	2017).	These	children	can	3	

achieve	spoken	language	outcomes	on	par	with	their	normal	hearing	(NH)	peers,	but	their	4	

performance	scores	show	large	interindividual	variation,	and	not	all	children	with	CIs	5	

reach	age-adequate	language	levels	(Kral,	Kronenberger,	Pisoni,	&	O’Donoghue,	2016;	van	6	

Wieringen	&	Wouters,	2015).	Some	variation	in	the	performance	of	children	who	use	a	CI	7	

or	hearing	aid	(HA)	can	be	explained	by	environmental	factors	(Houston	et	al.,	2012;	8	

Markman	et	al.,	2011)	such	as	socioeconomic	status	(SES;	Geers	et	al.	2011;	Le	Normand	&	9	

Moreno-Torres	2014),	educational	placement	(Moog	&	Geers,	2010;	Sparreboom,	10	

Langereis,	Snik,	&	Mylanus,	2015;	Wie,	Falkenberg,	Tvete,	&	Tomblin,	2007),	family	11	

composition	(Geers	et	al.,	2011;	Macaulay	&	Ford,	2013),	communication	mode	(Boons	et	12	

al.,	2012;	Le	Normand	&	Moreno-Torres,	2014;	Wie	et	al.,	2007),	parent-child	interactions	13	

(Holt,	Beer,	Kronenberger,	&	Pisoni,	2013;	Niparko	et	al.,	2010;	Quittner	et	al.,	2013),	or	14	

linguistic	input	(Cruz,	Quittner,	Marker,	DesJardin,	&	the	CDaCI	Investigative	Team,	2013;	15	

DesJardin	&	Eisenberg,	2007;	VanDam,	Ambrose,	&	Moeller,	2012).	To	some	extent,	these	16	

factors	are	reflected	in	children’s	daily	auditory	environment―for	instance,	the	amount	of	17	

exposure	to	spoken	language,	or	the	presence	of	background	noise.		18	

CI	users’	auditory	environment	and	CI	use	can	be	analyzed	automatically	with	the	19	

Cochlear™	Nucleus®	Z	CI	sound	processor	(NZ;	Cochlear	Ltd.,	Sydney,	Australia).	NZ	keeps	20	

a	data	log,	in	which	it	tracks—among	other	things—time	spent	in	different	auditory	21	

environments	(speech,	speech	in	noise,	noise,	quiet,	music,	and	wind),	use	of	accessories	22	
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like	personal	frequency	modulation	(FM)	systems,	and	overall	CI	use	(also	known	as	time	1	

on	air).	To	distinguish	between	auditory	environments,	NZ	uses	an	auditory	scene	classi1ier	2	

that	has	been	trained	through	supervised	machine	learning―that	is,	using	a	database	of	3	

labeled	recordings	(Mauger,	Warren,	Knight,	Goorevich,	&	Nel,	b[;_).	Knowing	the	user’s	4	

current	auditory	environment	allows	the	sound	processor	to	automatically	optimize	the	5	

signal	path,	for	example,	by	activating	noise	reduction	in	noisy	environments	or	enabling	6	

directional	microphones	when	speech	is	presented	in	background	noise.	The	data	log	is	7	

stored	on	the	sound	processor	and	can	be	read	out	at	the	CI	clinic	(for	more	details	see	the	8	

Methods	section).	Clinicians	can	use	data	logs	to	monitor	CI	users’	daily	auditory	9	

environment	and	usage	behavior	between	clinic	visits.	With	pediatric	CI	patients,	such	10	

measurements	might	help	to	detect	and	address	problems	before	they	affect	language	11	

acquisition,	social	and	cognitive	development,	or	academic	achievement	(Ambrose,	12	

VanDam,	&	Moeller,	b[;_;	Barker	et	al.,	b[[];	Connor	&	Zwolan,	b[[_;	Holt	et	al.,	b[;\).		13	

Similar	technology	has	long	been	available	in	hearing	aids	(Mueller,	b[[V).	Moreover,	14	

there	are	dedicated	tools	for	automatic	naturalistic	measurements	of	the	auditory	15	

environment—perhaps	the	best-known	of	which	is	the	Language	Environment	Analysis	16	

system	(LENA;	Gilkerson	et	al.,	b[;V).	Researchers	have	used	such	methods	to	explore	the	17	

inTluence	of	the	environment	on	language	development	(Ambrose	et	al.,	b[;_;	Gilkerson	et	18	

al.,	b[;`;	Walker,	Holte,	et	al.,	b[;v),	and	clinicians	are	using	them	for	the	Titting	of	hearing	19	

devices,	counseling,	and	intervention	(Archbold	et	al.,	b[;v;	Leffel	&	Suskind,	b[;\;	A.	20	

McMillan,	Durai,	&	SearchTield,	b[;V;	Muñoz,	Preston,	&	Hicken,	b[;_;	Suskind	et	al.,	b[;Z).	21	

To	determine	whether	NZ	CI	data	logs	can	help	improve	the	auditory	rehabilitation	of	22	

children	with	CI,	it	is	crucial	to	understand	how	the	captured	information	relates	to	23	
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rehabilitation	outcomes.	Regarding	language	development,	three	data	logging	metrics	are	1	

particularly	interesting:	daily	CI	use,	exposure	to	spoken	language,	and	exposure	to	noisy	2	

environments.	3	

Daily	CI	Use	4	

Several	studies	have	investigated	the	impact	of	hearing-device	use	on	rehabilitation	5	

outcomes―either	through	data	logs	or	through	subjective	reports―and	have	found	that	6	

consistent	hearing-device	use	is	associated	with	better	functional	language	outcomes	and	7	

language	growth	in	children	with	a	HA	(Tomblin	et	al.,	2015;	Walker,	Holte,	et	al.,	2015)	8	

and	with	better	speech	perception	in	children	with	CIs	(Easwar,	Sanfilippo,	Papsin,	&	9	

Gordon,	2018;	Wie	et	al.,	2007).	One	explanation	for	this	is	that	hearing-device	use	creates	10	

opportunities	for	language	exposure	and	learning.	Furthermore,	low	or	inconsistent	11	

hearing-device	use	might	indicate	trouble	adjusting	to	the	device	or	a	lack	of	support,	and	12	

can	foreshadow	poor	use	or	nonuse	(Archbold,	Nikolopoulos,	&	Lloyd-Richmond,	2009).	13	

Inconsistent	use	can	also	be	related	to	the	child’s	state	(e.g.,	mood,	fatigue,	or	illness;	14	

Walker	et	al.,	2013),	frequent	removal	of	the	CI’s	magnetic	coil	(Easwar,	Sanfilippo,	Papsin,	15	

&	Gordon,	2016),	and	caregivers	struggling	to	manage	the	hearing	device	(Muñoz	et	al.,	16	

2015)	or	monitoring	its	use	(Walker,	McCreery,	et	al.,	2015;	Walker	et	al.,	2013).	17	

The	amount	of	CI	use	can	be	measured	automatically	and	objectively	with	NZ	data	18	

logs.	Busch	et	al.	(b[;V),	for	example,	analyzed	NZ	data	logs	of	v;[	children	and	found	that	it	19	

increased	from	a	median	of	`.v	hrs/day	in	the	Tirst	Z	years	of	life	to	more	than	;;	hrs/day	for	20	

older	children	(Busch	et	al.,	b[;V).	The	interindividual	variation	was	considerable,	with	21	

interquartile	ranges	(IQRs)	beyond	\	hrs/day,	and	a	difference	of	roughly	;[	hrs/day	22	

between	the	top	and	bottom	v%	of	the	distribution	in	all	age	groups	(Busch	et	al.,	b[;V).	23	



CI	DATA	LOGS	PREDICT	CHILDREN’S	VOCABULARY	 V	

	 	

	 	

Similar	distributions	of	daily	CI	use	were	found	in	other	large	samples	of	NZ	CI	data	logs	1	

(Cristofari	et	al.,	b[;V;	Easwar	et	al.,	b[;Z,	b[;`;	Oberhoffner	et	al.,	b[;`;	Wiseman	&	2	

Warner-Czyz,	b[;`).		3	

Exposure	to	Spoken	Language	4	

Child	language	development	is	driven	by	language	input	and	facilitated	by	qualitative	5	

aspects―such	as	child-directedness,	linguistic	scaffolding,	and	interactivity	(Hoff,	2006;	6	

Tamis-LeMonda,	Kuchirko,	&	Song,	2014;	Zauche,	Thul,	Mahoney,	&	Stapel-Wax,	2016).	7	

Various	studies	have	recorded	and	analyzed	naturalistic	parent-child	interactions,	and	8	

some	of	them	have	used	LENA	to	make	comprehensive	naturalistic	measurements.	Their	9	

results	indicate,	that	the	language	development	of	children	with	CIs	is	related	to	their	10	

parents’	mean	length	of	utterance	(MLU;	DesJardin	&	Eisenberg	2007),	lexical	diversity,	11	

and	use	of	facilitative	language	techniques	(Cruz	et	al.,	2013;	DesJardin	&	Eisenberg,	2007),	12	

as	well	as	maternal	sensitivity	and	linguistic	quality	of	parent-child	interactions	(Quittner	13	

et	al.,	2013).	To	our	knowledge,	an	association	between	the	sheer	quantity	of	language	14	

input	and	language	performance	has	not	been	observed	for	children	with	a	CI,	but	for	15	

children	with	NH	and	HAs	(Hurtado,	Marchman,	&	Fernald,	2008;	VanDam	et	al.,	2012;	16	

Weisleder	&	Fernald,	2013).	17	

Compared	to	their	NH	peers,	children	with	CIs	face	additional	challenges	in	language	18	

learning.	First,	they	experience	sensory	deprivation	during	a	crucial	phase	of	neuronal	19	

development:	Cortical	pathways	begin	to	form	in	utero,	and	synaptogenesis	peaks	between	20	

the	Tirst	and	fourth	year	of	life.	Hearing	deprivation	during	this	sensitive	period	affects	the	21	

development	of	the	auditory	system	and	higher-order	neurocognitive	and	psychosocial	22	

processes	(Kral	et	al.,	b[;Z).	Second,	HL	disrupts	social-affective	processes	behind	peer	23	
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communication	and	caregiver-guided	language	learning	(Markman	et	al.,	b[;;).	Although	1	

caregivers	often	compensate	for	a	child’s	HL—for	example	by	speaking	more	clearly	2	

(Houston	et	al.,	b[;b)—the	amount	and	interactivity	of	spoken	language	interactions	3	

between	caregivers	and	children	decrease	with	increasing	severity	of	HL	(VanDam	et	al.,	4	

b[;b).	Moreover,	parental	spoken	language	input	to	children	with	a	HL	is	often	more	5	

directive	and	less	responsive—which	is	associated	with	poorer	language	outcomes	6	

(Ambrose,	Walker,	UnTlat-Berry,	Oleson,	&	Moeller,	b[;v;	Nittrouer,	b[;[).	Additionally,	the	7	

high	prevalence	of	behavioral	problems	among	children	with	HL	(Barker	et	al.,	b[[];	8	

Quittner	et	al.,	b[;[;	Topol,	Girard,	Pierre,	Tucker,	&	Vohr,	b[;;)	might	contribute	to	9	

parenting	stress,	which	in	turn	affects	mother-infant	interactions	and	children’s	language	10	

skills	(Quittner	et	al.,	b[;[;	Vohr	et	al.,	b[;[).	11	

Children’s	exposure	to	spoken	language	(speech	and	speech	in	noise)	can	be	12	

quantiTied	with	NZ	data	logs.	Busch	et	al.	(b[;V)	showed	that,	before	the	age	of	six,	children	13	

with	CI	were	exposed	to	around	_	hrs/day	of	speech,	while	Z-;`	year-olds	heard	around	v	14	

hours	of	speech	per	day.	Similar	results	were	reported	by	others	(Cristofari	et	al.,	b[;V;	15	

Easwar	et	al.,	b[;Z;	Oberhoffner	et	al.,	b[;`).	Note	however,	that	NZ’s	speech	counts	include	16	

not	only	the	spoken	language	that	is	presented	to	children	by	their	environment,	but	also	17	

their	own	language	production.	All	studies	showed	large	variability	within	age	groups:	In	18	

Busch	et	al.	(b[;V),	for	example,	the	difference	in	average	daily	exposure	to	speech	between	19	

children	in	the	top	and	bottom	quartiles	of	the	distribution	was	b	hrs/day.	This	variation	20	

likely	reTlects	sustained	differences	rather	than	temporary	Tluctuations,	because	NZ	data	21	

logs	normally	represent	long	time	periods―namely	the	period	between	the	CI	user’s	visits	22	

to	their	CI	clinic.	In	the	sample	used	by	Busch	et	al.	(b[;V),	data	logs	covered	between	two	23	
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weeks	and	over	a	year,	with	a	median	of	_`.]	days.	Moreover,	most	participants	had	1	

contributed	multiple	data	logs.		2	

Exposure	to	Noisy	Environments	3	

Background	noise	can	impede	auditory	and	cognitive	performance,	and	affect	language	4	

learning	(Klatte,	Bergström,	&	Lachmann,	2013;	Kujala	&	Brattico,	2009;	B.	T.	M.	McMillan	5	

&	Saffran,	2016).	CI	users	are	particularly	vulnerable	to	noisy	listening	conditions,	because,	6	

compared	to	NH	listeners,	the	signal	that	they	receive	is	highly	degraded.	This	affects	7	

speech	comprehension	in	noise	(Davies,	Yellon,	&	Purdy,	2001;	Moreno-Torres,	Madrid-8	

Cánovas,	&	Blanco-Montánez,	2016),	hampers	incidental	learning	(Vermeulen,	De	Raeve,	9	

Langereis,	&	Snik,	2012),	and	causes	more	cognitive	fatigue	(Pichora-Fuller	et	al.,	2016).		At	10	

the	same	time,	noise	is	omnipresent	in	many	children’s	environments	(Evans,	2004;	Pujol	11	

et	al.,	2012;	Shield	&	Dockrell,	2008)	and	children	with	CIs	are	no	exception:	Data	log	data	12	

of	Busch	et	al.	(2017)	show	that	the	time	spent	in	noisy	environments	was	around	3.4	13	

hrs/day	for	children	under	six	years	of	age,	and	around	5	hrs/day	for	school-aged	children.	14	

The	variation	in	exposure	to	speech	was	large,	too:	The	25%	of	children	who	spent	the	15	

most	time	in	noisy	environments	were	exposed	to	around	2	hrs/day	more	noise	than	the	16	

25%	of	children	who	spent	the	least	time	in	noisy	environments.	On	average,	around	2.5–17	

3.5	hrs	of	children’s	daily	exposure	to	noisy	environments	were	accounted	for	by	speech	in	18	

noise.	In	fact,	about	two	thirds	of	the	speech	that	children	were	exposed	to	was	presented	19	

in	background	noise.	Again,	similar	numbers	were	reported	by	other	studies	(Cristofari	et	20	

al.,	2017;	Oberhoffner	et	al.,	2018).	21	

Assistive	listening	devices	like	remote	microphones	can	alleviate	the	effects	of	noise	22	

in	the	classroom	(Bertachini	et	al.,	b[;v;	Davies	et	al.,	b[[;)	and	facilitate	parent-child	23	
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communication	in	difTicult	acoustical	situations	(Allen	et	al.,	b[;V).	Yet,	Busch	et	al.	(b[;V)	1	

found	that	before	the	age	of	six,	only	one	in	Tive	children	with	a	CI	was	using	assistive	2	

listening	devices,	and	among	those	who	did,	the	median	duration	of	use	was	just	around	;V	3	

min	per	day.	Furthermore,	only	half	of	the	school-aged	children	used	such	devices,	and	4	

most	of	those	who	did,	only	used	them	for	around	\[–_[	min	per	day.	Notably,	some	sounds	5	

that	NZ	classiTied	as	noise	could	be	speech	with	a	low	signal-to-noise	ratio	(SNR),	such	as	6	

background	conversations	and	might	actually	contribute	to	language	learning,	because	it	7	

has	been	shown	that	children	can	pick	up	new	words	from	overheard	speech	(Boderé	&	8	

Jaspaert,	b[;V).	9	

Can	Data	Logs	Predict	Language	Outcomes?	10	

In	summary,	better	spoken	language	outcomes	would	be	expected	for	children	who	use	11	

their	CI	consistently,	receive	enough	spoken	language	input,	and	experience	little	12	

background	noise.	In	all	three	aspects,	N6	data	logs	show	large	variation,	and	it	stands	to	13	

reason	that	this	explains	some	variance	in	language	outcomes.	However,	there	is	still	little	14	

evidence	for	associations	between	children’s	CI	data	logs	and	their	language	performance.	15	

The	only	published	study	is	one	by	Guerzoni	and	Cuda	(2017),	who	logged	speech	exposure	16	

for	the	first	year	after	implantation.	Although	all	ten	participants	had	received	their	CI	17	

between	10	and	24	months	of	age,	and	used	it	throughout	waking	hours,	there	were	vast	18	

differences	in	their	average	daily	exposure	to	speech	(0.9–2.6	hrs/day)	and	speech	in	noise	19	

(0.8–4.8	hrs/day).	Exposure	to	speech	below	70	dB	explained	72%	of	the	variance	in	20	

vocabulary	skills	one	year	after	implantation.	However,	the	environmental	differences	and	21	

their	correlation	with	language	outcomes	may	have	been	driven	by	uncontrolled	mediating	22	

variables―such	as	the	amount	of	CI	use.	A	multivariate	analysis	is	required	to	further	23	
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explore	associations	between	the	auditory	environment	and	rehabilitation	outcomes	of	1	

children	with	CIs,	and	the	explanatory	value	of	N6	data	logs.		2	

Aim	of	the	Study	3	

This	study	investigates	associations	between	children’s	N6	CI	data	logs	and	their	language	4	

performance,	specifically	their	receptive	vocabulary.	We	conducted	a	multivariate	analysis	5	

to	determine	whether	data	logs	can	explain	variance	beyond	that	explained	by	other	6	

common	predictors	of	language	development―such	as	chronological	age,	age	at	7	

implantation,	educational	placement,	or	implantation	mode	(i.e.,	unilateral	vs.	bilateral	8	

implantation).	Because	little	is	known	about	potential	associations	between	CI	data	logs	9	

and	language	performance,	we	used	model	selection	to	explore	a	wide	range	of	competing	10	

hypotheses,	and	model	averaging	to	account	for	modeling	uncertainty.		11	

If	differences	in	data	logs	are	associated	with	differences	in	vocabulary,	this	would	12	

provide	further	evidence	for	an	association	between	the	auditory	environment	and	the	13	

language	outcomes	of	children	with	CI.	It	would	also	show	that	CI	data	logs	can	help	to	14	

identify	and	address	problems	in	children’s	environments,	making	them	a	useful	tool	for	15	

intervention	and	naturalistic	research.	The	absence	of	such	associations	might	indicate	that	16	

the	link	between	environment	and	language	outcomes	is	weak	or	that	the	current	data	17	

logging	system	does	not	capture	these	associations	and	requires	further	improvements.	18	

MATERIALS	AND	METHODS	19	

This	was	a	cross-sectional,	retrospective	analysis,	based	on	a	convenience	sample	of	20	

pediatric	CI	patients.	The	children’s	data	had	been	collected	as	part	of	the	clinical	routine	at	21	

the	Radboud	UMC	Nijmegen	(The	Netherlands).	Prior	to	the	data	collection,	parents	of	all	22	
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participants	had	given	informed	consent	for	the	use	and	publication	of	their	child’s	1	

assessment	data.	The	study	was	approved	by	the	UZ	Leuven	/	KU	Leuven	Medical	Ethical	2	

Committee	(approval	number	B322201523779)	and	was	conducted	in	accordance	with	the	3	

Radboud	UMC’s	ethical	standards.	4	

Final	Sample	5	

The	final	sample	contained	n	=	73	Peabody	Picture	Vocabulary	Test	(PPVT)	results,	data	6	

logs	for	the	year	preceding	each	test,	and	other	information	about	the	children	from	n	=	52	7	

children	with	CIs	(21	female,	31	male).		The	dependent	variable	was	the	children’s	8	

receptive	vocabulary.	It	was	measured	with	the	PPVT	Standard	Score	(SS),	which	has	a	9	

mean	of	100	and	a	SD	of	15	in	the	age-matched	norm	population.	Details	on	the	data	10	

selection	and	pre-processing	are	provided	below.	11	

Selection	of	Participants	and	PPVT	Test	Results	12	

At	the	Radboud	UMC,	there	were	211	children	who	used	an	N6	CI	sound	processor.	From	13	

these,	we	excluded	children	who	were	implanted	after	the	age	of	three	(n	=	49),	14	

postlingually	deaf	(i.e.,	after	1.5	years	of	age;	n	=	2),	not	from	a	predominantly	orally	15	

communicating	Dutch	speaking	home	(n	=	16),	or	diagnosed	with	intellectual	disability	or	16	

severe	motor	deficits	(n	=	10).	For	all	others,	we	gathered	their	Peabody	Picture	17	

Vocabulary	Test	(PPVT)	results	from	the	clinical	records	and	extracted	their	sound	18	

processor	data	logs	from	the	clinic’s	Custom	Sound®	CI	fitting	software	(Cochlear	Ltd.,	19	

Sydney,	Australia).	We	included	results	from	all	PPVTs	taken	before	14	years	of	age,	and	20	

where	CI	data	logs	were	available	for	the	year	before	the	test.	Nine	of	the	85	PPVT	results	21	

that	met	these	criteria	were	excluded,	because	less	than	70%	of	the	preceding	year	were	22	

covered	by	data	logs—likely,	because	the	children	had	only	recently	received	their	CI	or	23	
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upgraded	their	sound	processor.	For	the	remaining	PPVT	results,	the	preceding	year	was	1	

completely	or	almost	completely	covered	by	data	logs	(M=98%,	SD=0.06).	2	

Furthermore,	three	PPVT	results	were	excluded	because	the	average	daily	CI	use	in	3	

the	year	before	the	test	was	below	b.\	hrs/day.	A	mean	daily	CI	use	of	b.\	hrs/day	is	more	4	

than	;.v	IQRs	below	the	mean	daily	CI	use	in	the	large	sample	used	by	Busch	et	al.	(b[;V),	5	

and	might	have	been	the	result	of	technical	or	medical	problems.	It	is	also	possible,	that,	6	

between	their	regular	visits	at	UMC	Nijmegen,	the	CI	had	been	Titted	at	a	different	clinic,	7	

which	would	have	reset	the	data	log	and	therefore	decreased	the	daily	averages.	However,	8	

to	the	knowledge	of	the	audiologists	at	Radboud	UMC,	this	was	not	the	case	for	any	of	the	9	

children	in	the	sample.	In	one	of	the	three	cases	in	question,	the	child	had	been	ill,	and	10	

hence	used	their	CI	for	just	[.\V	hrs/day.	In	the	other	two	cases,	we	were	unable	to	Tind	an	11	

explanation	for	the	low	CI	use	([.][	and	b.bV	hrs/day,	respectively),	but	we	nevertheless	12	

chose	to	exclude	them	because	a	simple	;b-month	average	would	likely	misrepresent	these	13	

children’s	day-to-day	auditory	input:	Our	analysis	is	based	on	the	assumption	that	children	14	

receive	a	more	or	less	steady	auditory	input	over	the	course	of	a	year,	with	a	relatively	15	

stable	mix	of	the	various	auditory	environments.		16	

Aggregation	of	CI	Data	Logs	17	

The	final	sample	contained	456	N6	CI	data	logs,	with	a	median	duration	of	96	days	(IQR	=	18	

235,	range:	1–779	days).	On	average,	each	child	contributed	8.33	data	logs	(SD	=	5.52),	19	

with	a	mean	length	of	203	days	(SD	=	109).	Based	on	these	data	logs,	we	calculated	20	

children’s	average	daily	amount	of	CI	use	for	the	year	leading	up	to	each	PPVT	test	moment,	21	

and	obtained	information	about	their	auditory	environment―namely	their	average	daily	22	
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exposure	to	speech,	speech	in	noise,	noise,	all	speech	(speech	in	quiet	+	speech	in	noise),	all	1	

noise	(speech	in	noise	+	noise),	music,	and	quiet.	2	

Each	NZ	CI	data	log	covers	the	time	between	two	consecutive	clinic	visits,	and	3	

contains	a	counter	for	each	auditory	environment	that	NZ	can	distinguish.	These	counters	4	

track	the	time	that	users	spend	in	these	environments,	even	if	the	scene	classiTier	is	not	5	

used	to	adjust	the	signal	path—that	is,	if	the	so-called	SCAN	feature	is	not	activated.	6	

However,	when	accessories,	such	as	FM	or	telecoil,	are	used,	all	input	is	counted	towards	a	7	

dedicated	accessory	counter.	Total	CI	use	can	be	calculated	as	the	sum	of	the	time	spent	in	8	

all	auditory	environments	plus	the	time	using	accessories.	Whenever	the	sound	processor	9	

is	connected	to	the	clinic’s	Custom	Sound	CI	Titting	software,	the	counter	values	are	10	

transferred	to	a	database	on	the	clinic’s	computer,	and	the	sound	processor	data	log	is	11	

reset.	Because	the	duration	of	the	data	log	is	known	(i.e.,	the	time	since	the	last	clinic	visit),	12	

the	counters	can	be	converted	into	daily	averages.	13	

To	aggregate	all	data	logs	from	a	given	;b-month	window	into	a	single	average,	some	14	

preprocessing	was	necessary:	If	a	data	log	exceeded	the	;b-month	window,	we	Tirst	reduced	15	

its	counter	values	for	CI	use	and	time	spent	in	each	auditory	environment	proportional	to	16	

the	excess.	If	the	;b-month	window	was	not	fully	covered	by	data	logs,	counters	for	the	gap	17	

were	estimated	from	the	average	of	the	previous	and	next	log,	weighted	by	their	respective	18	

durations.	If	two	data	logs	overlapped	(e.g.,	data	logs	from	bilateral	CI	users),	the	higher	19	

one	of	the	corresponding	counters	was	used	for	the	overlap,	respectively.	Eventually,	the	20	

corrected	counters	for	each	;b-month	window	were	summed	and	divided	by	\Zv	to	obtain	21	

average	hrs/day	for	all	data-logging	variables.		22	
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Other	Variables	1	

For	each	child,	information	was	retrieved	from	clinical	records	about	their	date	of	birth,	2	

gender,	age	at	implantation,	and	etiology	of	deafness.	We	also	determined	the	children’s	3	

implantation	mode—that	is,	whether	they	were	currently	using	one	or	two	CIs	(i.e.,	4	

bilateral	implantation),	and	what	their	educational	placement	was	at	the	time	of	the	data	5	

collection.	Table	1	shows	the	sample	characteristics.	6	

We	categorized	etiology	of	deafness	as	either	genetic	(n	=	bv),	infection	(n	=	]),	or	7	

unknown	(n	=	;`).	The	children’s	implantation	mode	was	categorized	as	unilateral	(n=;Z)	if	8	

they	were	using	only	one	CI,	bilateral	simultaneous	(n	=	;V)	if	there	had	been	less	than	one-9	

year	between	implantations,	and	bilateral	sequential	(n	=	;])	if	there	was	more	than	one	10	

year	between	implantations.	This	grouping	is	in	line	with	results	from	Gordon	&	Papsin	11	

(b[[]),	who	found	that	outcomes	of	bilateral	implantation	were	best—and	similar	to	those	12	

of	simultaneous	implantation—when	the	inter-implant	delay	was	one	year	or	less.	A	child’s	13	

educational	placement	was	categorized	as	mainstream	(n	=	bV)	if	the	child	attended	a	14	

mainstream	school	or	daycare	with	at	most	a	so-called	light	educational	arrangement.	This	15	

means	that	the	child	follows	a	regular	curriculum	in	a	mainstream	classroom,	potentially	16	

with	some	special	measures	to	compensate	for	the	HL	and	occasional	support	from	a	co-17	

teacher,	sign	language	interpreter,	or	note-taker.	All	other	educational	arrangements	were	18	

categorized	as	special	(n	=	bv), including	one	child	who	did	not	yet	attend	daycare	at	b.`	19	

years	of	age.	Since	all	children	in	our	sample	were	predominantly	orally	communicating,	all	20	

education	placements	were	also	predominantly	oral.	Notably,	implantation	mode	and	21	

educational	placement	could	only	be	determined	for	the	time	of	the	data	collection	and	22	

could	have	been	different	for	a	child’s	earlier	PPVT	test	moments,	for	example	if	the	23	
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children	had	since	changed	their	educational	setting	or	received	a	second	CI.	We	had	1	

initially	planned	to	use	audiological	test	results	as	a	surrogate	for	factors	like	pre-implant	2	

and	residual	hearing,	or	the	quality	of	the	electro-neural	interface.	Unfortunately,	these	3	

tests	had	not	been	conducted	uniformly	enough	to	be	used	in	the	analysis.	4	

For	each	PPVT	test	result,	we	calculated	the	child’s	chronological	age	and	hearing	5	

age	at	the	test	moment,	where	hearing	age	refers	to	the	time	since	the	implantation	of	the	6	

Tirst	CI.	The	mean	chronological	age	at	the	PPVT	test	moment	was	M	=	V.b	years	(SD	=	\.Z,	7	

range:	b.;–;\.]	years	of	age).	The	age	distribution	was	bimodal,	with	a	gap	around	six	years.	8	

This	was	because	children	who	were	implanted	about	v	years	prior	to	the	data	collection	9	

were	still	using	a	sound	processor	of	the	previous	generation,	without	the	data	logging	10	

feature.		11	

Model	Selection	and	Averaging	12	

To	find	the	best	combinations	of	data-logging	variables	and	other	variables	to	predict	13	

receptive	vocabulary	(i.e.,	PPVT	SS)	we	used	model	selection	based	on	the	small-samples	14	

corrected	Akaike’s	information	criterion	(AICc;	Burnham	&	Anderson,	2002).	The	AICc	15	

combines	a	likelihood-based	measure	of	model	fit	with	a	penalty	for	model	complexity.	We	16	

used	AICc	to	evaluate	a	set	of	candidate	models	and	rank	them	by	their	difference	in	AICc	17	

from	the	best	model	in	the	set	(ΔAICc).	Models	with	ΔAICc<2	are	commonly	considered	to	18	

be	as	well	supported	by	the	data	as	the	best	model	(Symonds	&	Moussalli,	2011).	Using	this	19	

threshold,	we	obtained	three	subsets	of	models	that	best	predicted	the	PPVT	SS:		20	

(;)	Models	that	did	not	include	data-logging	variables,	but	any	combination	of	21	

other	variables	22	

(b)	Models	using	a	combination	of	data-logging	variables	and	age	23	
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(\)	Models	combining	data-logging	variables	and	other	variables	1	

Additionally,	AICc-weights	were	computed	for	each	model,	representing	the	degree	2	

of	belief	that	it	is	the	best	model	in	its	set	(Wagenmakers	&	Farrell,	b[[_).	These	weights	3	

were	used	to	determine	the	relative	importance	of	each	predictor	and	compute	a	weighted	4	

average	model	for	each	of	the	three	sets.	For	the	calculation	of	the	averages,	coefTicients	5	

that	did	not	occur	in	a	submodel	were	treated	as	if	it	they	were	zero.	These	so-called		full	6	

averages	cause	shrinkage	and	thus	produce	more	conservative	average	coefTicients.	7	

All	continuous	predictors	were	z-standardized.	Because	some	children	had	taken	8	

multiple	PPVT	tests,	all	models	contained	random	intercepts	for	participants	(most	9	

children	had	taken	one	[n	=	\_]	or	two	[n	=	;Z]	PPVTs.	For	two	children,	results	were	10	

available	from	three	and	four	tests,	respectively).	Due	to	the	limited	number	of	repeated	11	

measurements,	random	slopes	for	age	could	not	be	estimated.	Notably,	PPVT	SSs	lower	12	

than	vv	had	been	recorded	as	vv	(i.e.,	left-censored).	Because	this	only	concerned	three	data	13	

points,	we	used	these	left-censored	scores	as	is.	To	quantify	variance	in	PPVT	SSs	explained	14	

by	each	model,	we	used	marginal	Rb	for	mixed	models,	!"# 	(Nakagawa	&	Schielzeth,	b[;\).	15	

All	analyses	were	carried	out	in	R	(version	\.v.[;	R	Core	Team,	b[;`).	The	models	were	Tit	16	

using	lme_	(version	;.;-;V;	Bates,	Mächler,	Bolker,	&	Walker,	b[;v)	and	maximum-likelihood	17	

estimation.	Model	selection	was	performed	with	the	MuMIn	package	(version	;._[._;	18	

Bartón,	b[;V).		19	
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RESULTS	1	

Descriptive	Statistics	2	

For	each	of	the	n	=	73	PPVT	SSs	in	our	sample	(see	also	Table	1),	we	aggregated	3	

information	about	the	12	months	before	the	test	from	the	child's	CI	data	logs, namely	their	4	

average	daily	exposure	to	different	auditory	environments	and	overall	CI	use.	The	variation	5	

in	the	data	logs	was	large:	For	example,	CI	use	ranged	from	3.04–14.18	hrs/day	(IQR	=	6	

4.07),	exposure	to	speech	(all	speech)	from	1.37–7.43	hrs/day	(IQR	=	1.95),	and	exposure	7	

to	noise	(all	noise)	from	0.87–5.86	hrs/day	(IQR	=	1.46;	see	Table	2	and	Supplemental	8	

Digital	Content,	Figure	S1,	which	shows	the	distributions	of	the	data	logging	variables).	9	

There	were	strong,	positive	associations	between	many	data	logging	variables.	Accordingly,	10	

a	given	data	logging	variable	could	often	be	used	to	predict	other	data	logging	variables—11	

with	standardized	regression	coefficients	that	were	frequently	far	exceeding	β	=	.5,	(e.g.,	12	

speech	in	noise	and	CI	use,	β	=	0.89,	p<.05;	see	Supplemental	Digital	Content,	Figure	S2,	13	

which	shows	pairwise	associations	between	data	logging	variables).	14	

Descriptively,	children	in	mainstream	education	used	their	CI	for	about	;	hr/day	15	

more	than	children	in	special	education	(mainstream:	;[.vZ	hrs/day,	SD	=	b.Zv,	special:	].v_	16	

hrs/day,	SD	=	b._V),	and	it	was	therefore	no	surprise	that	they	also	had	slightly	higher	17	

average	daily	exposure	to	almost	all	auditory	scenes―with	music	being	the	only	exception	18	

(mainstream:	M	=	[.]Z	hrs/day,	SD	=	[.vb,	special:	M	=	;.;v	hrs/day,	SD	=	[._v;	see	Table	b	19	

and	Figure	;).	This	difference	in	music	exposure	was	especially	pronounced	for	older	20	

children	(>Z	yrs	of	age;	Figure	;).	21	

The	age-related	changes	in	children's	average	auditory	environments	were	similar	to	22	

those	in	Busch	et	al.	(b[;V)'s	much	larger	sample.	There	were,	for	example,	an	increase	in	23	
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noise	and	speech	in	noise	exposure	during	primary	school	age,	and	a	decrease	of	music	1	

exposure	throughout	childhood.	Nevertheless,	for	any	auditory	scene,	children	with	very	2	

low	or	high	exposure	could	often	be	found	across	the	entire	age	range	(Figure	;).	3	

The	PPVT	SS―our	dependent	variable―was	approximately	normally	distributed,	4	

with	M	=	];._	and	SD	=	;Z.v	(Figure	ba).	Descriptively,	there	was	no	discernible	effect	of	5	

chronological	age	on	PPVT	SSs	(Figure	bb),	which	is	unsurprising	because	the	PPVT	SS	is	6	

normalized	by	chronological	age.		However,	SSs	of	children	in	special	education	(M	=	`\.v,	7	

SD	=	;V.v)	differed	from	those	of	children	in	mainstream	education	(M	=	]`.Z,	SD=;;.Z;	see	8	

Table	;).	While	the	lowest	SS	of	any	child	in	mainstream	education	was	`;,	_[%	of	children	9	

in	special	education	had	scores	that	were	lower	than	that	(Figure	b).		10	

With	regards	to	the	aim	of	our	study,	we	were	most	interested	in	the	association	11	

between	data-logging	variables	and	the	PPVT	SS.	The	scatterplots	in	Figure	\	give	some	12	

indications	of	such	associations:	for	example,	there	appears	to	be	a	positive	association	13	

between	average	daily	CI	use	and	the	PPVT	SS.	Moreover,	it	seems	that	the	children	who	14	

have	had	the	least	exposure	to	music	tended	to	have	the	highest	PPVT	SSs.	However,	as	15	

mentioned	above,	to	fully	understand	the	connection	between	the	environment	and	the	16	

language	outcomes	one	should	consider	all	data-logging	variables	and	other	variables	(e.g.,	17	

age,	educational	placement)	simultaneously.	Moreover,	the	clustering	of	observations	18	

within	subjects	must	be	accounted	for.	To	this	end,	we	used	hierarchical	linear	models,	19	

model	selection,	and	model	averaging	to	determine	how	well	PPVT	SSs	can	be	predicted	20	

from	different	combinations	of	data-logging	variables,	other	variables,	and	both.	21	
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Best	Models	Without	Data-Logging	Variables	1	

The	first	set	of	models	predicted	the	PPVT	SS	without	using	data-logging	variables	but	2	

using	any	possible	combination	of	the	other	variables―that	is,	chronological	age,	3	

educational	placement	(special	vs.	mainstream),	gender,	age	at	implantation,	implantation	4	

mode	(unilateral	CI	vs.	bilateral	CI),	and	etiology	(genetic,	infection,	other).	Hearing	age	5	

was	not	used	as	a	predictor,	because	it	was	strongly	correlated	with	chronological	age,	6	

r(70)	=	.99,	(p	<	.001).		7	

The	model	with	the	best	(lowest)	AICc	explained	!"# 	=	b_%	of	the	variance	in	PPVT	8	

SSs,	using	only	educational	placement	as	a	predictor.	The	other	two	models	in	the	best	9	

model	subset	(i.e.,	with	ΔAICc<b)	also	included	chronological	age	and	gender,	respectively,	10	

but	they	did	not	Tit	substantially	better	and	had	lower	AICc-weights.	Accordingly,	the	most	11	

important	predictor	in	the	average	model	was	educational	placement.	The	predicted	12	

difference	in	PPVT	SSs	between	a	child	in	special	and	mainstream	education	was	b	=	;Z.;	13	

points	(SE	=	\.]),	whereas	chronological	age	and	gender	had	comparatively	small	effect	14	

sizes	and	large	standard	errors	(see	Table	\).	15	

Best	Models	with	Only	Data-logging	Variables	16	

The	second	set	of	models	predicted	the	PPVT	SS	using	any	combination	of	chronological	17	

age	and	data-logging	variables,	namely	daily	CI	use	and	average	daily	exposure	to	speech,	18	

speech	in	noise,	all	speech,	noise,	music,	and	quiet.	We	did	not	include	exposure	to	all	noise	19	

as	a	potential	predictor,	because	it	was	strongly	correlated	with	exposure	to	speech	in	20	

noise,	r(70)	=	.99,	p	<	.001	(see	also	Supplemental	Digital	Content,	Figure	S2).	We	also	21	

allowed	for	interactions	of	chronological	age	with	any	data-logging	variables,	interactions	22	
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of	daily	CI	use	with	exposure	to	speech,	speech	in	noise,	and	all	speech,	and	interactions	of	1	

exposure	to	all	speech	with	exposure	to	speech	and	speech	in	noise.		2	

All	but	one	of	the	seven	best	models	contained	chronological	age,	daily	CI	use,	daily	3	

exposure	to	music	and	an	interaction	between	music	exposure	and	age.	This	combination	of	4	

predictors	also	had	the	lowest	ΔAICc	and	explained	!"# =	\b%	of	the	variance	in	PPVT	SSs.	5	

In	addition	to	these	variables,	other	models	also	included	daily	exposure	to	speech,	speech	6	

in	noise,	all	speech,	and	noise―yet	never	at	the	same	time.	All	these	models	had	a	similar	7	

model	Tit.	Only	model	Z	Tits	the	data	considerably	better	(!"# = %&%),	albeit	at	the	cost	of	8	

parsimony:	Compared	to	the	model	with	the	lowest	ΔAICc,	this	model	additionally	included	9	

daily	exposure	to	speech,	as	well	as	interactions	of	chronological	age	with	daily	CI	use	and	10	

daily	exposure	to	speech.	The	penalty	that	is	associated	with	this	high	number	of	11	

parameters	is	the	reason	why	model	Z	did	not	outperform	other	models	in	terms	of	AICc.	12	

Conversely,	model	v	had	a	comparable	AICc	value	to	the	best	model	in	the	set,	but	a	much	13	

poorer	Tit	(!"# = #&%),	using	nothing	but	daily	exposure	to	quiet	as	a	predictor.	Because	14	

daily	exposure	to	music	and	daily	CI	use	were	consistently	included	in	the	best	models,	the	15	

averaged	model	coefTicients	further	emphasized	their	relative	importance	compared	to	16	

other	data-logging	variables	(see	Table	_).		17	

Best	Models	Combining	Data-logging	Variables	and	Other	Variables	18	

The	third	set	of	models	predicted	the	PPVT	SS	using	any	combination	of	data-logging	19	

variables	and	other	variables	that	appeared	in	the	previous	two	best-model	sets―namely	20	

chronological	age,	educational	placement,	gender,	daily	CI	use,	and	daily	exposure	to	21	

speech,	speech	in	noise,	noise,	music,	all	speech,	and	quiet.	We	also	allowed	for	interactions	22	

of	data-logging	variables	with	age	and	educational	placement.		23	
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All	of	the	best	models	(i.e.,	with	ΔAICc<b)	included	chronological	age,	music,	daily	CI	1	

use,	and	educational	placement―the	same	four	variables	that	had	consistently	appeared	in	2	

the	best	models	with	only	data-logging	variables	and	only	other	variables.	Notably,	all	3	

models	also	contained	at	least	one	of	the	three	speech	metrics.	The	model	with	the	lowest	4	

(best)	AICc	included	daily	exposure	to	speech	in	noise,	its	interaction	with	educational	5	

placement	and	an	interaction	of	chronological	age	and	daily	exposure	to	music;	it	explained	6	

!"# 	=	v;%	of	the	variance	in	PPVT	SSs.	The	other	models	achieved	comparable	!"# ,	including	7	

daily	exposure	to	all	speech	or	daily	exposure	to	speech	as	predictors.	Because	the	AICc-8	

weights	were	similar	across	all	models	in	the	set,	the	average	model	emphasized	the	9	

importance	of	the	four	predictors	that	occurred	in	all	models,	whereas	the	less	consistently	10	

included	speech	metrics	had	small	average	coefTicients	with	large	standard	errors	(see	11	

Table	v).	We	used	the	average	model	to	predict	mean	PPVT	SSs	as	a	function	of	daily	CI	use	12	

and	music	exposure	for	both	kinds	of	educational	placement	and	for	different	exemplary	13	

ages,	namely	at	the	sample’s	mean	chronological	age	and	approximately	;	SD	above	and	14	

below	the	mean.	The	predictions	are	shown	in	Figure	_.	15	

Decision	Boundaries	of	the	Auditory	Scene	ClassiPier	16	

When	interpreting	the	data	logs,	it	should	be	kept	in	mind,	that	NZ’s	auditory	scene	17	

classiTier	relies	on	a	combination	of	acoustical	features	and	might	activate	the	same	18	

environment	in	very	different	environments.	For	example,	to	distinguish	speech,	speech	in	19	

noise,	and	noise,	the	classiTier	relies—to	some	extent—on	the	modulation	depth	of	the	20	

signal	as	an	approximation	of	the	signal-to-noise	ratio	(SNR).	This	means	that	an	21	

environment	classiTied	as	noise	might	contain	spoken	language	at	a	low	SNR	(e.g.,	speaking	22	

in	a	noisy	restaurant).	Similarly,	the	music	environment	might	be	activated	in	situations	23	
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which	merely	contain	music	as	background	noise,	for	example,	from	radio	or	TV.	In	order	to	1	

better	understand	the	auditory	scene	classiTier’s	behavior,	we	determined	the	SNRs	at	2	

which	it	switches	between	the	speech,	speech	in	noise,	and	noise	scenes.	To	that	end,	we	3	

positioned	an	NZ	sound	processor	in	a	sound	booth	and	presented	it	with	concatenated	4	

LIST	sentences	(Van	Wieringen	&	Wouters,	b[[`)	at	V[	dBA.	The	speech	signal	was	mixed	5	

with	four-talker	babble	noise	at	decreasing	SNRs.	We	found	that	the	classiTier	transitioned	6	

from	the	speech	environment	to	the	speech	in	noise	environment	at	around	;v	dB	SNR,	and	7	

from	speech	in	noise	to	noise	at	around	-vdB	SNR.		8	

DISCUSSION	9	

Like	previous	studies,	we	found	wide	interindividual	variation	in	data	logs	of	children	with	10	

CI	(Busch	et	al.,	2017;	Cristofari	et	al.,	2017;	Easwar	et	al.,	2016;	Oberhoffner	et	al.,	2018;	11	

Wiseman	&	Warner-Czyz,	2018).	Moreover,	we	showed	that	these	differences	are	12	

correlated	with	differences	in	language	performance,	particularly	receptive	vocabulary.	13	

Effects	of	Data-logging	Variables	14	

The	most	strongly	associated	with	vocabulary	scores	were	the	average	daily	amount	of	CI	15	

use	and	exposure	to	music.	In	the	models	that	used	data-logging	variables	and	other	16	

variables	(Table	5),	a	1	SD	increase	in	daily	CI	use	was,	on	average,	associated	with	an	17	

increase	in	the	PPVT	SS	of	b	=	13.2	points,	which	is	almost	1	SD	of	the	PPVT	SS	in	the	norm	18	

population.	This	finding	is	in	line	with	the	literature,	which	stresses	the	importance	of	19	

consistent	hearing	device	use	for	auditory	rehabilitation	(Walker,	Holte,	et	al.,	2015;	Wie	et	20	

al.,	2007).	For	example,	Easwar	et	al.	(2018)	have	found	that	longer	daily	CI	use	is	21	

associated	with	better	speech	perception	abilities	in	children	with	a	CI.	Specifically,	a	one	22	
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hour	increase	in	daily	CI	use	was	associated	with	a	2.6%	increase	in	speech	perception	test	1	

scores	when	factors	like	age	and	length	of	CI	experience	were	controlled	for.	2	

The	strong	negative	effect	of	music	exposure,	on	the	other	hand,	came	as	a	surprise.	3	

A	;	SD	increase	in	daily	music	exposure	was	associated	with	a	decrease	in	PPVT	SSs	of	(	 =4	

	-+.-	points.	One	possible	explanation	for	this	is	that	background	music	effectively	acts	as	5	

noise	which	hinders	language	learning.	It	is	also	possible	that	some	part	of	what	was	6	

classiTied	as	music	was	actually	TV,	because	NZ	tends	to	classify	children’s	TV	programs	as	7	

music	(Hanvey	&	DeBold,	b[;v).	Higher	amounts	of	TV	in	children’s	homes	have	been	8	

associated	with	decreased	quality	of	parent-child	communication	and	decreased	child	9	

language	performance	(Ambrose	et	al.,	b[;_;	Christakis	et	al.,	b[[]).	10	

The	connection	between	the	speech	exposure	metrics	and	PPVT	SSs	was	less	clear:	11	

In	the	best	models,	daily	exposure	to	speech,	speech	in	noise,	and	all	speech	appeared	as	12	

predictors,	but	in	various	combinations	(Table	v).	This	uncertainty	was	reTlected	in	the	13	

small	average	coefTicients.	Thus,	while	the	three	speech	scenes	do	seem	to	contribute	to	14	

predicting	PPVT	SSs,	their	contribution	is	small,	and	they	appear	to	be	somewhat	15	

interchangeable.	In	part	this	might	be	due	to	the	strong	correlations	between	them	(see	16	

Supplemental	Digital	Content,	Figure	Sb).	While	there	is	no	doubt	that	meaningful	language	17	

input	is	crucial	for	language	development	(e.g.,	Hoff,	b[[Z),	it	is	possible	that	the	NZ	18	

classiTier’s	speech	classes	are	not	well	aligned	with	those	aspects	of	the	language	19	

environment	that	drive	language	development.	For	example,	NZ	does	not	distinguish	20	

between	language	input	and	output,	thus	mixing	environmental	inTluences	and	their	effects.	21	

Furthermore,	sheer	quantity	of	language	input	may	not	be	as	predictive	as,	for	example,	22	

interactivity	of	parent-child	communication	(Ambrose	et	al.,	b[;_;	VanDam	et	al.,	b[;b).	23	
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Separating	own	and	external	speech	and	adding	information	about	the	quality	of	spoken	1	

language	interactions	(e.g.,	their	interactivity)	could	bring	more	clarity	into	these	issues	2	

and	improve	the	predictive	power	of	data	logs.		3	

Additional	uncertainty	is	introduced	to	the	speech	metrics	because	of	varying	4	

accessory	use.	When	accessories	such	as	FM,	telecoil,	or	wireless	audio	streaming	are	being	5	

used,	the	classiTier	is	inactive,	and	all	input	is	instead	counted	towards	a	dedicated	6	

accessory	scene.	Thus,	it	remains	unclear	how	much	speech	the	children	have	heard	7	

through	accessories.	However,	the	children	in	our	sample	barely	used	accessories:	The	8	

median	accessory	use	was	just	[.[;	hrs/day	(Table	b).	Similar	to	the	results	of	Busch	et	al.	9	

(b[;V),	accessory	use	differed	between	preschool	and	school-aged	children.	Of	\[	data	10	

points	taken	before	the	age	of	six,	only	one	indicated	more	than	v	min/day	of	accessory	use,	11	

whereas	b]	out	of	_\	data	points	from	the	Z–;_	year	old	children	did	(median	=	[.Zb	12	

hrs/day,	IQR	=	;.[v,	range:	[–b.VZ).	On	the	one	hand,	this	means	that	the	auditory	scene	13	

classiTier	has	categorized	almost	all	auditory	input	that	the	children	have	received,	and	that	14	

the	data	logs	provide	a	relatively	complete	picture	of	their	auditory	environments.	On	the	15	

other	hand,	the	low	accessory	use	is	concerning,	because	accessories	can	support	CI	users	16	

in	adverse	listening	conditions:	in	noisy	classrooms,	FM	or	similar	remote	microphone	17	

systems	can	help	by	directly	streaming	the	teacher’s	voice	to	the	child’s	hearing	device	18	

(Bertachini	et	al.,	b[;v;	Davies	et	al.,	b[[;;	Iglehart,	b[[_;	Razza,	Zaccone,	Meli,	&	Cristofari,	19	

b[;V),	and	even	at	home,	they	can	promote	parent-child	interactions	by	allowing	spoken	20	

language	communication	in	situations	in	which	it	would	otherwise	be	difTicult―for	21	

example	in	the	car	(Allen	et	al.,	b[;V).		22	
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We	also	found	no	clear	evidence	of	an	association	between	daily	exposure	to	noisy	1	

environments	and	the	PPVT	SS.	Noise	decreases	speech	understanding	of	CI	users	(Davies	2	

et	al.,	b[[;),	increases	listening	effort	(Pichora-Fuller	et	al.,	b[;Z),	and	interferes	with	3	

language	learning	(Klatte	et	al.,	b[;\;	Kujala	&	Brattico,	b[[];	B.	T.	M.	McMillan	&	Saffran,	4	

b[;Z;	Vermeulen	et	al.,	b[;b).	Hence,	chronic	exposure	to	noise	would	be	expected	to	5	

interfere	with	cognitive	and	language	development	(Klatte	et	al.,	b[;\;	Kujala	&	Brattico,	6	

b[[]).	Perhaps,	the	association	between	daily	noise	exposure	and	language	performance	is	7	

too	ambiguous:	a	noisy	environment	can	be	an	obstacle	for	language	learning	or	a	sign	of	8	

robust	language	skills	and	good	integration	in	the	mainstream.	Moreover,	the	effects	of	9	

background	noise	might	be	ameliorated	by	the	sound	processor’s	noise	reduction	(NR)	10	

features.	Plasmans	et	al.	(b[;Z)	have	found	that	with	NR,	pediatric	CI	users	were	able	to	11	

understand	around	]._%	more	words	and	;Z.V%	more	sentences	in	noise.	Mauger	et	al.	12	

(b[;_)	have	shown	that	NR	helped	adult	NZ	users	to	achieve	v[%	sentence	understanding	13	

at	SNRs	as	low	as	-V.Z	dB	(as	opposed	to	-b.`	dB	when	NR	was	deactivated).	Yet,	the	14	

classiTier	already	transitions	from	the	speech	environment	to	the	speech	in	noise	15	

environment	at	around	;v	dB,	and	from	speech	in	noise	to	noise	at	around	-v	dB	SNR	(see	16	

methods	section).	Thus,	it	is	possible	that	a	lot	of	what	is	classiTied	as	speech	in	noise	by	NZ	17	

can	be	understood	well,	due	to	NR	(cf.	Razza	et	al.,	b[;V,	who	found	no	signiTicant	beneTit	of	18	

NZ’s	NR	on	children’s	speech	in	noise	performance).	The	association	between	exposure	to	19	

noisy	environments	and	language	performance	might	be	further	weakened	because	some	20	

children	have	NR	activated	while	others	do	not.		21	

Although	we	found	no	clear	association	between	the	speech	and	noise	metrics	and	22	

receptive	vocabulary,	this	does	not	preclude	the	existence	of	such	associations	for	other	23	
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language	domains.	While	word	learning	certainly	depends	on	language	input	(e.g.,	Hoff	&	1	

Naigles	b[[b)	and	can	be	hampered	by	background	noise	(B.	T.	M.	McMillan	&	Saffran,	2	

b[;Z),	it	is	conceivable	that	vocabulary	is	more	robust	against	environmental	inTluences	3	

than	other	domains	of	language.	Morphosyntax,	for	example,	relies	on	subtle	acoustical	4	

cues	which	are	difTicult	to	pick	up	with	a	CI	to	begin	with	(Markman	et	al.,	b[;;),	and	might	5	

therefore	beneTit	more	from	repetition	and	noise-free	presentation.	Similarly,	more	subtle	6	

language	deTicits	might	be	revealed	by	more	complex	tasks	like	narrative	production	7	

(Boons	et	al.,	b[;\;	Rinaldi,	Baruffaldi,	Burdo,	&	Caselli,	b[;\).	Thus,	associations	between	8	

other	language	domains	and	data	logs	should	be	investigated.	9	

Effects	of	Other	Variables	10	

We	found	that	children	in	mainstream	education	had	higher	PPVT	SSs	than	those	in	special	11	

education.	Similar	group	differences	have	been	reported	by	others	(Boons	et	al.,	2013;	12	

Geers,	Nicholas,	&	Moog,	2007).	It	is	possible	that	this	reflects	a	beneficial	effect	of	13	

mainstream	education	on	language	development,	or	that	it	merely	indicates	that	children	14	

with	age	appropriate	language	levels	are	more	likely	to	be	placed	in	mainstream	education.	15	

Age	was	not	an	important	predictor	in	the	models	without	data-logging	variables.	16	

This	is	no	surprise,	since	PPVT	SSs	are	normalized	for	age.	A	missing	age	effect	also	17	

indicates	that	there	was	no	evidence	that	the	CI	users,	as	a	group,	were	developing	at	a	18	

signiTicantly	different	pace	than	their	NH	peers	in	the	test’s	normative	sample.	However,	age	19	

became	an	important	factor	when	data-logging	variables	were	included	in	the	models,	often	20	

in	an	interaction	with	one	of	them	(Tables	_	and	v).	That	is,	age	mostly	helped	to	improve	21	

predictions	when	combined	with	data-logging	variables,	but	not	by	itself.	Such	interactions	22	

might	indicate	that	the	effect	of	the	data-logging	variables	on	language	performance	23	
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changes	with	age.	This	is	not	surprising,	given	the	age-related	changes	in	the	children’s	1	

auditory	environments	that	we	found.	For	example,	while	it	was	normal	for	a	\-year	old	to	2	

have	an	average	of	around	_	hrs	of	exposure	to	speech	per	day,	this	would	be	rather	low	for	3	

a	child	above	six	years	of	age	(Figure	;).	4	

Besides	educational	placement	and	age,	none	of	the	other	variables	(i.e.,	gender,	age	5	

at	implantation,	implantation	mode,	and	etiology)	had	a	clear	effect	on	PPVT	SSs,	even	6	

though	all	of	them	were	previously	found	to	be	important―for	example,	gender	(Le	7	

Normand	&	Moreno-Torres,	b[;_),	implantation	mode	(Boons	et	al.,	b[;b;	Sparreboom	et	al.,	8	

b[;v),	age	at	implantation	(Holt	&	Svirsky,	b[[`;	Svirsky,	Teoh,	&	Neuburger,	b[[_),	and	9	

hearing	age	(Walker,	Holte,	et	al.,	b[;v).	This	discrepancy	could	be	due	to	measurement	10	

error	or	due	to	the	homogeneity	of	our	sample	with	respect	to	these	factors.		11	

Complementarity	of	Data-logging	Variables	and	Other	Variables	12	

It	is	conceivable	that	data-logging	variables	and	other	variables	merely	capture	the	same	13	

information	in	different	form.	For	example,	special	schools	in	which	sign	language	is	used	14	

likely	also	provide	less	spoken	language	exposure.	Here	we	found	that	data-logging	15	

variables	explained	more	variance	in	PPVT	SSs	than	other	variables,	and	when	both	were	16	

combined,	predictions	improved	further.	This	supports	the	notion	that	the	data-logging	17	

variables	captured	information	that	was	not	contained	in	the	other	variables―at	least	not	18	

in	the	ones	we	have	assessed.	There	is,	however,	a	range	of	factors	that	we	did	not	19	

assess―or	only	coarsely.	No	information	was	available	for	some	well-established	20	

predictors	of	language	performance,	like	SES,	pre-implant	hearing	experience,	or	residual	21	

hearing	(Geers	et	al.,	2007;	Niparko	et	al.,	2010).	To	some	degree,	these	factors	might	have	22	

been	reflected	in	the	data	logs:	Low	SES,	for	example,	is	associated	with	poorer	language	23	
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environments	(Hart	&	Risley,	1995;	Hoff,	2015;	Huttenlocher,	Waterfall,	Vasilyeva,	Vevea,	&	1	

Hedges,	2010;	Rowe,	2008;	Vohr	et	al.,	2010),	more	noisy	environments	(Evans,	2004;	2	

Pujol	et	al.,	2012),	and	less	hearing	device	use	(Marnane	&	Ching,	2015;	Walker,	McCreery,	3	

et	al.,	2015;	Walker	et	al.,	2013).	Similarly,	complex	family	issues	(e.g.,	death	or	divorce)	are	4	

associated	with	decreased	daily	CI	use	(Archbold	et	al.,	2009;	Marnane	&	Ching,	2015).	5	

Thus,	if	we	had	been	able	to	add	these	factors	into	the	analysis,	they	might	have	explained	6	

additional	variance	and	altered	the	estimates	of	the	links	between	data	logs	and	7	

vocabulary.	8	

Limitations	9	

We	explored	a	wide	range	of	models	for	the	association	between	data	logs	and	language	10	

performance.	While	some	argue	that	this	approach	to	model	selection	is	appropriate	when	11	

exploration	is	the	primary	goal	(Symonds	&	Moussalli,	2011),	Burnham	and	Anderson	12	

(2002)	warn	that	fitting	too	many	candidate	models	can	lead	to	spurious	findings.	In	any	13	

case,	the	associations	we	found	should	be	interpreted	carefully	and	must	be	targeted	more	14	

directly	and	rigorously	in	the	future.	Most	importantly,	the	causal	relation	between	15	

environment	and	language	performance	remains	unclear:	It	is	possible	that	certain	16	

environments	facilitate	language	development,	or	that	children	are	placed	in	environments	17	

according	to	their	skills,	either	because	of	self-selection	or	due	to	decisions	made	by	their	18	

caregivers.	After	all,	whether	young	children	go	to	mainstream	education,	for	example,	is	19	

usually	decided	by	their	parents,	teachers,	and	other	caregivers	based	on	their	behavior	20	

and	abilities.	21	

Another	limitation	is	our	relatively	homogenous	sample.	All	children	were	22	

prelingually	deaf,	early	implanted,	mainly	communicating	orally,	and	had	no	known	severe	23	
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cognitive	or	motor	deTicits.	All	these	factors	might	affect	the	association	between	1	

environment	and	language	outcomes.	This	means,	that	it	is	not	clear,	whether	the	2	

associations	we	found	hold	true	for	the	broader	pediatric	CI	population.	In	the	future,	it	3	

should	be	explored	how	the	environment	interacts	with	such	child	characteristics	in	4	

shaping	the	language	outcomes.	5	

Another	concern	is	that	there	is	little	information	about	the	validity	of	NZ’s	auditory	6	

scene	classiTier	(Hanvey	&	DeBold,	b[;v;	Mauger	et	al.,	b[;_).	The	classiTier	has	been	trained	7	

on	a	large	sample	of	labeled	examples,	so	that	it	should	generally	agree	with	the	8	

categorization	made	by	humans,	and	the	;b-month	windows	we	used	should	have	made	the	9	

averages	robust	against	short-term	and	seasonal	Tluctuations.	However,	empirical	evidence	10	

for	the	classiTier’s	validity	and	reliability	in	real-world	applications	is	needed.		11	

Conclusion	12	

We	have	shown,	that	CI	data	logs	can	be	used	to	make	comprehensive,	naturalistic	13	

observations	of	children’s	daily	CI	use	and	aspects	of	their	auditory	environments,	and	that	14	

the	information	that	data	logs	capture	is	associated	with	children’s	language	performance.	15	

SpeciTically,	children’s	receptive	vocabulary	scores	were	predicted	by	their	average	daily	CI	16	

use	and	exposure	to	music.	Higher	amounts	of	daily	CI	use	were	associated	with	larger	17	

vocabularies,	and	children	who	were	exposed	to	more	music—as	labeled	by	the	NZ	18	

auditory	scene	classiTier—had	smaller	vocabularies.	Somewhat	surprisingly,	there	were	no	19	

clear	associations	between	the	data-logged	daily	exposure	to	speech	and	noise	and	20	

children’s	language	performance.	21	

These	Tindings	are	encouraging,	because	a	child’s	daily	CI	use	and	environment	22	

can―at	least	in	part―be	changed	through	intervention,	and	data	logs	can	be	used	to	guide	23	
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caregivers	in	making	such	changes.	In	fact,	there	already	are	intervention	programs	that	use	1	

LENA	in	such	a	way,	in	order	to	help	parents	increase	the	quality	of	their	child’s	language	2	

environment	(Leffel	&	Suskind,	b[;\;	Suskind	et	al.,	b[;Z).	While	LENA	provides	more	3	

detailed	and	accurate	measurements	of	the	child’s	auditory	environment,	CI	data	logs	have	4	

the	advantage	that	they	are	available	for	all	NZ	users,	and	that	they	can	easily	be	collected	5	

over	long	time	periods.	Even	outside	of	speciTic	interventions,	CI	data	logs	can	enrich	the	6	

communication	between	clinicians	and	CI	users	(or	their	caregivers),	and	encourage	the	7	

latter	to	take	a	more	active	role	in	the	rehabilitation	process	(Chiauzzi,	Rodarte,	&	8	

DasMahapatra,	b[;v;	McCurdy,	b[;Z).		9	

In	summary,	our	results	suggest	that	consistent	daily	CI	use	and	a	rich	auditory	10	

environment	play	an	important	role	in	the	language	development	of	children	with	CIs,	and	11	

that	CI	data	logs	are	a	valuable	clinical	tool,	that	can	help	to	understand	this	role	and	12	

support	the	auditory	rehabilitation	of	children	with	CIs.		13	

ACKNOWLEDGEMENTS	14	

This	study	was	supported	by	the	FP7	people	programme	(Marie	Curie	Actions),	REA	grant	15	

agreement	FP7-607139	(iCARE).16	



CI	DATA	LOGS	PREDICT	CHILDREN’S	VOCABULARY	 \b	

	 	

	 	

REFERENCES	1	

Allen,	S.,	Mulla,	I.,	Ng,	Z.	Y.,	&	Archbold,	S.	(b[;V).	Using	radio	aids	with	pre-school	deaf	2	

children	(white	paper).	https://doi.org/;[.;\;_[/RG.b.b.;[_;v.[bVb_	3	

Ambrose,	S.	E.,	VanDam,	M.,	&	Moeller,	M.	P.	(b[;_).	Linguistic	Input,	Electronic	Media,	and	4	

Communication	Outcomes	of	Toddlers	With	Hearing	Loss.	Ear	Hear,	MN(b),	;\]–;_V.	5	

https://doi.org/;[.;[]V/AUD.[b[;\e\;`baVZVZ`	6	

Ambrose,	S.	E.,	Walker,	E.	A.,	UnTlat-Berry,	L.	M.,	Oleson,	J.	J.,	&	Moeller,	M.	P.	(b[;v).	Quantity	7	

and	quality	of	caregivers’	linguistic	input	to	;`-month	and	\-year-old	children	who	are	8	

hard	of	hearing.	Ear	Hear,	MO,	_`S-v]S.	9	

https://doi.org/;[.;[]V/AUD.[[[[[[[[[[[[[b[]	10	

Archbold,	S.	M.,	Athalye,	S.,	Mulla,	I.,	Harrigan,	S.,	Wolters-Leermakers,	N.,	Isarin,	J.,	&	11	

Knoors,	H.	(b[;v).	Cochlear	implantation	in	children	with	complex	needs:	the	12	

perceptions	of	professionals	at	cochlear	implant	centres.	Cochlear	Implants	13	

International,	PO(Z),	\[\–\;;.	https://doi.org/;[.;;V]/;Vv_VZb`;vY.[[[[[[[[;b	14	

Archbold,	S.	M.,	Nikolopoulos,	T.	P.,	&	Lloyd-Richmond,	H.	(b[[]).	Long-term	use	of	cochlear	15	

implant	systems	in	paediatric	recipients	and	factors	contributing	to	non-use.	Cochlear	16	

Implants	Int,	PQ(;),	bv–_[.	https://doi.org/;[.;;V]/cim.b[[].;[.;.bv	17	

Barker,	D.	H.,	Quittner,	A.	L.,	Fink,	N.	E.,	Eisenberg,	L.	S.,	Tobey,	E.	A.,	&	Niparko,	J.	K.	(b[[]).	18	

Predicting	behavior	problems	in	deaf	and	hearing	children:	The	inTluences	of	language,	19	

attention,	and	parent–child	communication.	Dev	Psychopathol,	SP([b),	\V\.	20	

https://doi.org/;[.;[;V/S[]v_vV]_[][[[b;b	21	



CI	DATA	LOGS	PREDICT	CHILDREN’S	VOCABULARY	 \\	

	 	

	 	

Bartón,	K.	(b[;V).	Multi-Model	Inference	(R-package).	Retrieved	from	https://cran.r-1	

project.org/package=MuMIn	2	
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Figure	1.	Aggregated	data-logging	variables	for	the	12-month	time	window	before	each	

PPVT	test	moment	(n=73	test	results	from	52	subjects)	by	chronological	age	(scatter-plots),	

age	group	(boxplots),	and	educational	placement	(color).	In	the	scatterplots,	PPVT	standard	

scores	(SSs)	from	the	same	participant	are	connected	by	lines;	the	gray	dotted	lines	and	

areas	in	the	background	show	local	polynomial	regression	(LOESS)	Tits	and	their	95%	CIs.		 	
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Figure	2.	Distribution	of	the	PPVT	standard	scores	(SSs;	n=73)	by	chronological	age	and	

educational	placement.	(a)	Histogram	of	PPVT	SSs.	(b)	Relation	of	SSs	with	age	(scatterplot)	

and	age	group	(boxplot).	In	the	scatterplot,	PPVT	SSs	from	the	same	participant	are	

connected	by	lines;	the	gray	dotted	line	and	area	in	the	background	show	a	local	polynomial	

regression	(LOESS)	Tit	and	its	95%	CI.	
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Figure	3.	Relation	between	PPVT	standard	scores	(SSs)	and	aggregated	data-logging	

variables	for	the	12	months	preceding	the	PPVT	test	moment.	PPVT	SSs	from	the	same	

participant	are	connected	by	lines.	The	gray	dotted	lines	and	areas	in	the	background	show	

local	polynomial	regression	(LOESS)	Tits	and	their	95%	CIs.	 	
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Figure	4.	Raw	data	and	predicted	effect	of	daily	CI	use	(top)	and	daily	exposure	to	music	

(bottom)	on	PPVT	standard	scores	(SSs),	by	educational	placement	and	for	three	exemplary	

ages	(corresponding	to	the	sample’s	mean	age	±	1SD).	All	other	predictors	are	kept	at	the	

sample	mean.	Predictions	are	based	on	the	model	average	of	the	models	presented	in	Table	

5.	Gray	areas	show	95%	CI
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Table	1.		
Sample	characteristics,	summary	statistics	for	PPVT	results	and	other	variables	by	

educational	placement	(n=73	PPVT	test	results	from	n=52	participants). 

	 Mainstream	

Education	

Special	

Education‡		 Total	

N	participants	 bV	 bv	 vb	

Gender	(n)	 	 	 	

				Female	 ;_	 V	 b;	

				Male	 ;\	 ;`	 \;	

Etiology	(n)	 	 	 	

				Genetic	 ;[	 ;v	 bv	

				Infection	 Z	 \	 ]	

				Unknown	 ;;	 V	 ;`	

Age	at	CI	in	years,	M	(SD)	 ;._	([.v)	 ;.\	([.v)	 ;._	([.v)	

Implantation	mode	(n)	 	 	 	

				Unilateral	 Z	 ;[	 ;Z	

				Bilateral	simultaneous†	 ;;	 Z	 ;V	

				Bilateral	sequential	 ;[	 ]	 ;]	

PPVT	results§	 	 	 	

				N	test	results	 \`	 \v	 V\	

				Age	at	test	in	years,	M	(SD)	 V.Z	(\.Z)	 Z.V	(\.V)	 V.b	(\.Z)	

				Mean	SS	(SD)	 ]`.Z	(;;.Z)	 `\.v	(;V.v)	 ];._	(;Z.v)	

Note:	SS	=	PPVT	standard	score.	†	deTined	as	<1	y	time	difference	between	implantations;	§	some	
participants	contributed	multiple	PPVT	test	results.	‡	One	child	who	had	not	entered	school	or	daycare	at	2.8	

years	of	age	was	assigned	to	the	special	education	group.	
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Table	2.		
Summary	statistics	for	distribution	of	data-logging	variables	in	average	hrs/day,	aggregated	over	the	12-month	time	window	before	

each	PPVT	test	(n	=	73).	

	 Mainstream	Education	 	 Special	Education	 	 Total	

	 	 	 Percentile	 	 	 	 Percentile	 	 	 	 Percentile	

	 M	 SD	 X5%	 5Z%	 [5%	 	 M	 SD	 X5%	 5Z%	 [5%	 	 M	 SD	 X5%	 5Z%	 [5%	

CI	Use	 6Z.5\	 X.\5	 ].ZZ	 66.^\	 6Z.\	 	 ].5^	 X.^[	 [.^X	 ].[\	 66._`	 	 6Z.Z[	 X.\Z	 _.X6	 6Z.\^	 6X.X_	

Speech	 X.XX	 Z.[_	 6.5[	 X.XZ	 X.XX	 	 X.X6	 Z.\`	 6.[[	 X.X\	 X.\X	 	 X.X6	 Z.[6	 6.[Z	 X.XZ	 X.\^	

Speech	in	Noise	 X.[]	 Z.]5	 X.6`	 X.__	 X.[]	 	 X.^Z	 Z.__	 6.5_	 X.`[	 X.]Z	 	 X.\Z	 Z.]`	 6.__	 X.[6	 `.XZ	

All	Speech†	 5.ZZ	 6.`]	 ^.6`	 5.X5	 5.ZZ	 	 ^.5]	 6.X\	 `.\5	 ^.[_	 5.`_	 	 ^._Z	 6.`^	 `._6	 5.ZZ	 5.[\	

Noise	 Z.\Z	 Z.`Z	 Z.^Z	 Z.5X	 Z.\Z	 	 Z.5]	 Z.X_	 Z.`_	 Z.55	 Z.[`	 	 Z.\Z	 Z.X]	 Z.^Z	 Z.5X	 Z.[^	

All	Noise‡	 `.`]	 6.6]	 X.[X	 `.^`	 `.`]	 	 X.]]	 6.6X	 6.]5	 `.Z_	 `.\Z	 	 `.XZ	 6.6[	 X.`^	 `.6]	 `._Z	

Music	 Z.]\	 Z.5X	 Z.5]	 Z._^	 Z.]\	 	 6.65	 Z.^5	 Z.]Z	 6.6Z	 6.`_	 	 6.Z5	 Z.5Z	 Z.\^	 6.Z`	 6.`_	

Quiet	 `.\5	 6.`6	 X.[5	 `.`]	 `.\5	 	 X._6	 6.`Z	 X.Z5	 X.\[	 `.\6	 	 `.X^	 6.`\	 X.`[	 `.Z^	 ^.6_	

Accessory	Use§	 Z.^X	 Z.5_	 Z.ZZ	 Z.Z`	 Z.^X	 	 Z.^\	 Z.[^	 Z.ZZ	 Z.ZZ	 Z._\	 	 Z.^^	 Z.\\	 Z.ZZ	 Z.Z6	 Z._6	

Notes:	Some	participants	contributed	multiple	data	points	to	these	summaries.	†All	Speech	=	Speech	+	Speech	in	Noise,	‡All	Noise	=	Noise	+	Speech	in	Noise.	§	
The	time	using	accessories	is	not	counted	towards	environmental	scenes	because	the	Nucleus	6	scene	classigier	does	not	categorize	sound	that	is	received	
through	an	accessory.	
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Table	3.		
Most	parsimonious	models	predicting	PPVT	standard	scores	(SSs)	without	data-logging	variables	(ΔAICc<2).	Coefgicients,	model	git,	
and	average	coefgicients	(full	average,	with	shrinkage).	

Model	 Int	 Edu	 Age	 Gnd	 k	 AICc	 ΔAICc	 AICc-w	 !"# 	
1	 *+.,	 -../	 	 	 ^	 5]_.^	 Z	 .5[	 .X^	

2	 *+.,	 -0.1	 6.`	 	 5	 \ZZ.X	 6._\	 .XX	 .X^	

3	 *,.-	 -0.2	 	 -2.4	 5	 \ZZ.`	 6.]\	 .X6	 .X5	

Avg.	 82.8	 16.1	 1.1	 -0.5	 	 	 	 	 	

		SE	 3.2	 3.9	 1.1	 2.1	 	 	 	 	 	

		Imp.	 -	 1	 .22	 .21	 	 	 	 	 	

Notes:	All	models	include	a	random	effect	for	participant.	Age	was	z-standardized.	Coefgicients	larger	than	two	times	their	SE	are	bold.	Coefgicients:	Int	=	
Intercept,	Edu	=	educational	placement	(reference	level:	special),	Gnd	=	gender	(reference	level:	male).	Model	git:	k	=	number	of	parameters	in	the	model,	AICc	=	

Akaike’s	information	criterion,	corrected	for	sample	sizes,	AICc-w	=	AICc-weights	(indicate	relative	support	for	each	model),	!"# 	=	coefgicient	of	determination	
for	mixed	models.	Average	Model:	Avg.	=	average	coefgicient,	SE	=	Standard	Error,	Imp.	=	relative	importance.	 	
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Table	4.		
Most	parsimonious	models	predicting	PPVT	standard	scores	(SSs)	with	only	data-logging	variables	(ΔAICc<2).	Coefgicients,	model	git,	
and	average	coefgicients	(full	average,	with	shrinkage).	

Model	 Int	 Age	 Use	 Music	
Age×	
Music	 SpNs	 Ns	 AllSp	 Quiet	 Sp	

Age×	
Use	

Age	
×Sp	

Age×	
SpNs	 k	 AICc	 ΔAICc	

AICc-
w	 !"# 	

1	 *1.-	 -..8	 1..	 -..1	 -,.8	 	 	 	 	 	 	 	 	 [	 5]5.^	 Z	 .X^	 .`X	

2	 *1.+	 -^.]	 -/.+	 -2.+	 -/.*	 -5.Z	 	 	 	 	 	 	 	 _	 5]5.5	 Z.6X	 .XX	 .`^	

3	 *1.-	 -^.]	 -8.2	 -..2	 -/.1	 	 -X._	 	 	 	 	 	 	 _	 5]\.5	 6.6]	 .6`	 .``	

4	 *1./	 -..8	 -+.,	 -...	 -/..	 	 	 -`.X	 	 	 	 	 	 _	 5]\.[	 6.`[	 .6X	 .``	

5	 18.2	 	 	 	 	 	 	 	 2..	 	 	 	 	 ^	 5][.6	 6.[\	 .6Z	 .X6	

6	 18.,	 -..+	 --./	 -2.2	 -0.,	 	 	 	 	 -6.Z	 -`.[	 0.-	 	 6Z	 5][.6	 6.[]	 .6Z	 .^6	

7	 18.-	 -0./	 -/.8	 -2./	 -/.2	 -^.[	 	 	 	 	 	 	 -6.^	 ]	 5][.`	 6.]_	 .Z]	 .`^	

Avg.	 *1.0	 -5.Z	 -8.,	 -../	 -`.\	 -6.5	 -Z.^	 -Z.^	 Z._	 -Z.6	 -Z.^	 Z.5	 -Z.6	 	 	 	 	 	

		SE	 X.6	 X.]	 ^.5	 X.]	 X.Z	 X.]	 6.`	 6.5	 X.^	 Z._	 6.`	 6.\	 Z.\	 	 	 	 	 	

		Imp.	 -	 .]	 .]	 .]	 .]	 .`6	 .6`	 .6X	 .6	 .6	 .6	 .6	 .Z]	 	 	 	 	 	

Notes:	All	models	included	a	random	effect	for	participant.	All	predictors	were	z-standardized.	Coefgicients	larger	than	two	times	their	SE	are	bold.	
Coef5icients:	Int	=	Intercept,	SpNs	=	Speech	in	Noise,	Sp	=	Speech,	AllSp	=	All	Speech.	Model	5it:		k	=	number	of	parameters	in	the	model,	AICc	=	Akaike’s	
information	criterion,	corrected	for	sample	sizes,	AICc-w	=	AICc-weights	(indicate	relative	support	for	each	model),	!"# 	=	coefgicient	of	determination	for	mixed	
models.	Average	Model:	Avg.	=	average	coefgicient,	SE	=	Standard	Error,	Imp.	=	relative	importance.	 	



CI	DATA	LOGS	PREDICT	CHILDREN’S	VOCABULARY	 5^	
	 	

	 	

Table	5.		
Most	parsimonious	models	predicting	PPVT	standard	scores	(SSs)	with	a	combination	of	data-logging	variables	and	other	variables	
(ΔAICc<2).	Coefgicients,	model	git,	and	average	coefgicients	(full	average,	with	shrinkage).		

Model	 Int	 Age	 Use	 Music	 Edu	 SpNs	

Age×	

Music	

Edu×	

SpNs	 AllSp	

Edu×	

AllSp	 Sp	

Edu×	

Use	 k	 AICc	 ΔAICc	

AICc-	

w	 !"# 	
1	 */.1	 -0./	 -+.*	 -0.1	 -+.0	 -6.[	 -/.8	 -2.8	 	 	 	 	 6Z	 5_`.^	 Z	 .X^	 .56	

2	 *,.-	 -..0	 -+.8	 -0.0	 --.1	 	 -X.\	 	 Z.^	 -2.8	 	 	 6Z	 5_^.[	 6.`^	 .6X	 .5Z	

3	 */.1	 -0.+	 -/.+	 -..+	 -+.,	 	 -X.[	 	 -^._	 -2.+	 ^.]	 	 66	 5_^._	 6.`[	 .6X	 .56	

4	 *0.8	 -,.1	 -/.8	 -0./	 13.3	 -6.]	 	 -2.2	 	 	 	 	 ]	 5_^._	 6.^X	 .6X	 .^_	

5	 */.1	 -0.+	 -/.-	 -..+	 -+./	 -\.`	 -X._	 	 ^.^	 -2./	 	 	 66	 5_^.]	 6.^_	 .66	 .56	

6	 *0.8	 -../	 -+.*	 -,.1	 -+.0	 	 	 	 -Z.X	 -2.2	 	 	 ]	 5_5.Z	 6.55	 .66	 .^_	

7	 *,.1	 -0.8	 -,.8	 -0.0	 -/.8	 	 	 	 -5.6	 -*.8	 ^.\	 	 6Z	 5_5.`	 6.]X	 .Z]	 .^]	

8	 */.1	 -0.8	 -0.2	 -0.*	 -+./	 -5.5	 -X.]	 	 	 	 	 -5.5	 6Z	 5_5.`	 6.]5	 .Z]	 .^]	

Avg.	 *,./	 -0.,	 -/.+	 -0.2	 -+.0	 -6._	 -6.]	 -X.\	 -Z.5	 -^.6	 6.Z	 -Z.5	 	 	 	 	 	

		SE	 X.^	 X.`	 `.6	 X.Z	 `.`	 `.`	 6._	 `.]	 `._	 ^.X	 X.^	 6._	 	 	 	 	 	

		Imp.	 6	 6	 6	 6	 .\_	 .5\	 .5\	 .5\	 .`5	 .X6	 .Z]	 6	 	 	 	 	 	

Notes:	All	models	included	a	random	effect	for	participant.	Continuous	predictors	were	z-standardized.	Coefgicients	larger	than	two	times	their	SE	are	bold.	
Coef5icients:	Int	=	Intercept,	Edu	=	educational	placement	(reference	level:	special),	SpNs	=	Speech	in	Noise,	AllSp	=	All	Speech,	Sp	=	Speech.	Model	5it:		k	=	number	
of	parameters	in	the	model,	AICc	=	Akaike’s	information	criterion,	corrected	for	sample	sizes,	AICc-w	=	AICc-weights	(indicate	relative	support	for	each	model),	

!"# 	=	coefgicient	of	determination	for	mixed	models.	Average	Model:	Avg.	=	average	coefgicient,	SE	=	standard	error,	Imp.	=	relative	importance.	
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Supplemental	Digital	Content	1(Figure	S1).	Figure	that	shows	the	distributions	of	the	

data	logging	variables.		pdf	

Supplemental	Digital	Content	2	(Figure	S2).	Figure	that	shows	the	pairwise	associations	

between	the	data	logging	variables	



Figure S1. Distribu�on of Data Logging Variables, aggregated over 12 months before each PPVT test moment
(n=73). Solid line and shaded area indicate the Median and central 50% of the data. Dashed line indicates the
posi�on of the Mean. Note that some par�cipants contributed mul�ple data points.



Figure S2. Pairwise Associa�ons between Data Logging Variables, aggregated over 12 months before each PPVT (n=73 PPVT
test results of 52 par�cipants). Data points from the same subject are connected by lines. Lines and shaded areas in the
background show the predic�ons and 95% CI from a simple regression with a random intercept for subject. The numbers in
the top le� corners indicate the corresponding standardized regression coefficients (β; pink: p < .05, grey: p ≥ .05).

).


