
Coda: An End-to-End Neural Program Decompiler

Cheng Fu, Huili Chen, Haolan Liu
UC San Diego

{cfu,huc044,hal022}@ucsd.edu

Xinyun Chen
UC Berkeley

xinyun.chen@berkeley.edu

Yuandong Tian
Facebook

yuandong@fb.com

Farinaz Koushanfar, Jishen Zhao
UC San Diego

{farinaz,jzhao}@ucsd.edu

Abstract

Reverse engineering of binary executables is a critical problem in the computer
security domain. On the one hand, malicious parties may recover interpretable
source codes from the software products to gain commercial advantages. On the
other hand, binary decompilation can be leveraged for code vulnerability analysis
and malware detection. However, efficient binary decompilation is challenging.
Conventional decompilers have the following major limitations: (i) they are only
applicable to specific source-target language pair, hence incurs undesired develop-
ment cost for new language tasks; (ii) their output high-level code cannot effectively
preserve the correct functionality of the input binary; (iii) their output program does
not capture the semantics of the input and the reversed program is hard to interpret.
To address the above problems, we propose Coda1, the first end-to-end neural-based
framework for code decompilation. Coda decomposes the decompilation task into
of two key phases: First, Coda employs an instruction type-aware encoder and a
tree decoder for generating an abstract syntax tree (AST) with attention feeding
during the code sketch generation stage. Second, Coda then updates the code sketch
using an iterative error correction machine guided by an ensembled neural error
predictor. By finding a good approximate candidate and then fixing it towards
perfect, Coda achieves superior performance compared to baseline approaches. We
assess Coda’s performance with extensive experiments on various benchmarks.
Evaluation results show that Coda achieves an average of 82% program recovery
accuracy on unseen binary samples, where the state-of-the-art decompilers yield 0%
accuracy. Furthermore, Coda outperforms the sequence-to-sequence model with
attention by a margin of 70% program accuracy. Our work reveals the vulnerability
of binary executables and imposes a new threat to the protection of Intellectual
Property (IP) for software development.

1 Introduction

Decompilation is the process of translating a binary executable to the corresponding high-level code.
This technique has been widely used in various security applications, such as malware analysis and
vulnerable software patching [1, 2]. Malicious attackers can also use decompilers to reverse engineer
(RE) the commercial off-the-shelf (COTS) software products and reproduce it for illegal usage [3].
Decompilation is a challenging task since the semantics in the high-level programming language (PL)
is obliterated during compilation. Existing decompilers are language-specific and incur tremendous
engineering overhead when extending to new PLs. Furthermore, they fail to preserve the semantic
information in the target high-level PL (see Appendix F), thus the output is hard to interpret.

It is intuitive that decompilation can be formulated as a general program translation task. Recently,
an increasing number of neural network (NN)-based approaches have been proposed to tackle natural
language translation problems. For instance, sequence-to-sequence (Seq2Seq) based models achieve

1 Coda is the abbreviation for CodeAttack.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

the state-of-the-art performance on program translation [4, 5]. We identify three main subroutines
in code decompilation: (i) learning control dependency from the connections between basic blocks
in the low-level code; (ii) learning data dependency from the register usage and memory access;
(iii) learning the grammar of the target PL. A straightforward neural-based solution is to use an
autoencoder-decoder for translating the low-level program to the high-level code. Katz et al. [6]
present a Recurrent Neural Network (RNN)-based method for decompilation. However, we observe
that the naive Seq2Seq models are not suitable for decompilation due to the following reasons. First,
the inputs to the decompiler are structured low-level statements2 that have different construction
formats (e.g., number and type of operands). Processing the program as sequence inputs ignores the
statement boundaries, thus breaks the modular property of the input program. Second, the output
program of the Seq2Seq model has a lower probability of capturing the grammar of the target PL
since the output is sequentially generated without explicit boundaries. Third, the three subroutines
mentioned above are entangled together in the Seq2Seq model, making the learning process hard.

In this work, we propose Coda, a neural program decompilation framework that resolves the above
limitations. The requirement to yield a perfect program recovery is very hard to fulfill using a
single autoencoder, especially for long programs. As such, Coda decomposes decompilation into
two sequential phases: code sketch generation and iterative error correction. By finding a good
approximate program and then iteratively updating it towards the perfect solution using dynamic
information, Coda engenders superior performance compared to the single-phase decompilers.

Phase 1. Coda uses an instruction type-aware encoder and a abstract syntax tree (AST) decoder
for translating the input binary into the target PL. Our encoder deploys separate RNNs for different
types of statements, thus the statement boundaries are preserved. Furthermore, the control and data
dependency in the input program are translated to the connections between the hidden states of
corresponding RNNs. The output from the AST decoder maintains the dependency constraints and
statement boundaries using terminal nodes, which facilitates learning the grammar of the target PL.

Phase 2. In this stage, Coda employs an RNN-based error predictor (EP) to identify potential

prediction mistakes in the output program from Phase 1. Ensembling method can be used to boost
the performance of the error prediction. The EP is used to guide the iterative correction of the output
program. Unlike traditional decompilers which utilize only the syntax information from the input,
Coda leverages the Levenshtein edit distance (LD) [7] between the compilation of the updated output
program and the ground-truth low-level code to prevent false alarms induced by the EP.

Empowered by the two-phase design, Coda achieves an average program accuracy of 82% on various
benchmarks. While the Seq2Seq model with attention and the commercial decompilers yield 12%
and 0% accuracy, respectively. We demonstrate that Coda’s output preserves both the functionalities
and the semantics. In summary, this paper makes the following contributions:

Presenting the first neural-based decompilation framework that maintains both semantics and
functionalities of the target high-level code.

Incorporating various design principles to facilitate the decompilation task. More specifically, Coda
deploys instruction type-aware encoder, AST tree decoder, attention feeding, iterative error correction
that leverages both the static syntax and dynamic information.

Enabling an efficient end-to-end decompiler design. Coda can be easily generalized to RE executable
in a different hardware instruction set architecture (ISA) or PL with negligible engineering overhead.

Corroborating Coda’s general applicability and superior performance on various synthetic bench-
marks and real-world applications.

This is the first paper that provides a holistic and effective solution to the decompilation problem using
deep learning. Our work sheds new light on the vulnerability of open sourcing binary executables
without any protection. More specifically, we show that the attacker can recover interpretable high-
level code with correct functionality from the binary file, which imposes a significant threat on the
Intellectual Property (IP) of the program developer.

2 Program Decompilation Problem

We introduce the background of low-level code construction and potential challenges in decompilation
in Section 2.1. The formal definition of code decompilation and our threat model is given in
Section 2.2 and Section 2.3, respectively.

2 We refer each line of the code as a statement.

2

2.1 Preliminaries and challenges

Contemporary software development consists of the following steps: high-level programming, code
compilation, deploying the obtained binary files to the pertinent hardware. During the execution,
a sequence of instructions is carried out on the hardware. There are three main instruction types,
namely, memory, arithmetic, and branch operations. Different instruction types feature different
instruction fields, indicating various types and numbers of operands. Figure 1 (a) shows an example
of the high-level code snippet and the corresponding low-level code. Line 0 is a memory instruction
which fetched a word into register $1 from the memory address computed from register $fp and 24.
Line 3 is an arithmetic operation which multiplies the value stored in $1 and $2. Line 8 refers
to an unconditional branch requiring one operand as opposed to three. Note that lw,mul,j are
the opcodes of the instructions. Program decompilation is challenging since there are two types of
dependencies existing in the low-level program that shall be preserved by the decompiler.

Intra-statement dependency. Each instruction has a strict structure restriction on the operands as
required by the grammar of the low-level ISA. For example, in the instruction lw $2,8($fp), the
first and the third operand represent registers while the second operand is an instant value.

Inter-statement dependency. Besides the constraints in a single instruction, control flow and data
dependency exist across multiple instructions. For instance, line 2 and line 3 has data dependency
since the mul operation needs to consume the value from the load destination register.

Figure 1: (a) Example low-level assembly code snippet and its corresponding high-level C program.
The red line indicates the instruction type and its encoded hidden state. (b) The expanding nodes
from the AST decoder. (c) The red node is an example of how the prediction is computed.

2.2 Problem definition

We define the task of Program Decompilation as follows:

Problem Decompilation Definition: Let P denote an arbitrary program in the high-level language
and Γ denote the compiler. Given the low-level code φ = Γ(P), the mission of decompilation is to
develop a decompiler Γ−1 that satisfies Γ(P) = Γ(P ′) where P ′ = Γ−1(φ).

We observe that traditional decompilers such as RetDec or Hex-Rays are only targeted to maintain
the functionality of the binary code during decompilation. Coda is motivated to address the above
limitation by recovering a high-level program with both correct functionality and semantics. Besides,
we identify two types of constraints of the high-level program that can be explored to verify the
correctness of the decompiler’s output.

Input-output Behavior Constraint: Given a set of input-output pairs {(Ik, Ok)}Kk=1
where Ok =

φ(Ik) is obtained by executing the low-level program φ, the decompiler shall output a program P ′

such that φ′(Ik) = Ok for every k ∈ 1, ...,K where φ′ = Γ(P ′).

Compilation Matching Constraint: The ideal LD between the compilation result φ′ of the correctly
recovered program and the input low-level code φ is zero under the same compiler configuration.

2.3 Threat Model

We assume the attacker has the following information: (i) the compiler configuration that is used to
generate the input program; (ii) the interface of static/dynamic libraries included in the high-level
code; (iii) the disassembler for the pertinent hardware. The above information can be easily obtained
using binary analysis techniques in previous work [8–10]. Our objective is to RE a high-level program
that depicts the correct computation graph (control and data dependency) and preserves semantic
information and functionality as the source high-level program. Reconstruction of data types [3],
finding the function entry point in binary [10, 11, 8] or reconstruct meaningful variable names [12]
are different research directions that have been studied in prior works.

3

3 Coda Overview

Figure 2 shows the global flow of Coda. Coda framework consists of two key phases: (i) High-level
code sketch generation and (ii) iterative error correction. We detail these two phases as follows.

Figure 2: The global flow of Coda decompilation. The denoising and tokenization steps are omitted
in this figure for simplicity (See Appendix A.1).

3.1 Code Sketch Generation

We employ the neural encoder-decoder architecture for generating the sketch code from the low-level
program φ. In this paper, the encoder takes the assembly program generated from the disassembler as
the input and output an AST that can be equivalently converted to the high-level program. We discuss
the key modules of Coda’s code sketch generation below.

Instruction-type Aware Program Encoding. Coda employs the N-ary Tree-LSTM presented
in [13] as the input encoder to handle different instruction types, namely, memory, arithmetic, and
branch. More specifically, each statement in the input low-level program is fed to the designated
LSTM that handles the corresponding instruction type for encoding.

Tree Decoder for AST Generation. We observe that PLs have more rigorous restrictions on
the syntax and semantics compared to natural languages. Coda opts to use tree decoder for AST
generation because of the following advantages: (i) The code statement boundary is naturally
preserved by the tree decoder using the terminal node representation. (ii) The nodes that are connected
in the AST indicate that their corresponding statements in the input program have dependency
constraint. Note that the spatial distance for these statements in the program might be large. (iii) The
error propagation problem during code generation is mitigated using the tree decoder compared to
sequential generation. (iv) AST representation facilitates the verification of syntax restriction.

Attention Feeding. Our evaluation result shows that code sketch generation is ineffective without
attention mechanism (achieving a token accuracy of only 55%). Coda applies parent attention and
input instruction attention feeding mechanism [14, 15] that feed the information of the parent node
and the input nodes during node expansion performed by the decoder.

3.2 Iterative Error Correction

The output AST from the code sketch generation phase might contain prediction errors. As such, we
construct an error predictor (EP) and an iterative error correction machine (EC machine) as shown in
Figure 2. Specifically, we freeze the autoencoder-decoder from the previous stage and reuse them to
generate the states of the input nodes hk, k = 0, ...,K and output nodes ht, t = 0, ..., T . Here, K
and T denote the total number of input states and output states from sketch generation stage. These
states (hk and ht) are fed as the input to the EP. Furthermore, Coda leverages compiler verification
to remove false alarm made by the EP. Note that the input-output behavior of the ground-truth
binary executable can also be used as constraints that eliminate false alarms from EPs. To push the
performance even further, we ensembled multiple EPs to cover more errors in the decompiled code.

Iterative Error Correction machine. The output of the ensembled EP (containing the location
and error type information in the code sketch) is passed to the EC machine. Note that the EC machine
prioritizes the potential correction strategies based on the confidence scores obtained from the EP.
During each iteration of the error correction process, Coda first corrects a single error and validate
the resulting high-level code sketch by checking the LD between the compiled code sketch and
ground-truth as mentioned above. If the error correction is successful, Coda proceeds to the next
iteration where EP generates new guidance for the EC machine.

4 Methodology

In this section, we detail two key phases of Coda’s design as shown in Figure 2: autoencoder based
code sketch generation, and neural-based iterative error correction.

4.1 Autoencoder-based Code Sketch Generation

We introduce the main modules of Coda’s code sketch generation phase as follows.

4

Instruction-aware encoding. The computation flow of Coda’s input program encoding is shown
in Equation (1) where the subscript n refers to nth instruction statements. To capture the intuition
of learning the intra and inter-dependency of the instruction statements as discussed in Sec 2, Coda
employs an N-ary Tree Encoder [13] which is suitable for encoding task where the children are
structured. The input states are fed into the N-ary Tree Encoder with a consistent order of the
corresponding instruction type. As such, the intra-statement dependency can be effectively captured.
Particularly, Coda designates a specific N-ary encoder for each instruction type, i.e., memory, branch
and arithmetic instructions (LSTMi where i ∈ {mem, br, art}). Note that in Coda’s code encoding
process, each non-terminal node has at most 4 children, consisting of the embedded states of up to 3
operands in the current instruction (h

op
i , c

op
i where i = 0, 1, 2), and the context vector of the previous

instruction (hn, cn). Coda encodes the input instructions with the maximal number of operands (i.e.,
3) and pads short statements with zero states. The input x is the embedding of the instruction opcode
of the current statement. The basic block header (e.g., $B2 in line 9 of Figure 1 (a)) are also handled
as branch instructions.

(hn+1, cn+1) = LSTMi(([hn;h
op
0 ;hop

1 ;hop
2], [cn; c

op
0 ; cop1 ; cop2]), x), i ∈ {mem, br, art} (1)

Binary Abstract Syntax Tree decoder. The output states of the last instruction in the low-level
code is used as the input to Coda’s tree decoder for AST generation. Non-leaf nodes in general AST
structures may have multiple children, which complicates the high-level code generation process
since the number of children varies for different nodes. To address this uncertainty in the decoding
stage, Coda generates a binary tree in Left-Child Right-Sibling representation which is equivalent
to the target AST output. As a result, each sub-tree in the AST output has a regulated structure that
is consistent with the root. We deploy two LSTMs that predict the left and the right child of the
current node separately. The states (h, c) from a given AST node will be fed into the left/right LSTM
to generate the left/right child, as shown in Equation (2) and (3). These two expanded nodes will
become the new parent nodes to generate its children using the left/right LSTM. The obtained binary
AST tree will be transformed back to its equivalent AST tree. Note that Coda’s output AST does
not contain the statement ending token as the termination is naturally represented by the terminal
nodes. For example, a complete statement a = b ∗ c can be recovered from the AST subtree without
an explicit ending token as shown in Figure 1. The state transition equations of Coda’s AST decoder
are shown as follows:

(hL, cL) = LSTML((h, c), [Hot; et]) (2)

(hR, cR) = LSTMR((h, c), [Hot; et]) (3)

Here, the subscript t denotes the current expanding node Nt in the output AST. The symbols ot and
et indicate the predicted token value and the attention vector (explained later) of the node Nt. H
is a trainable token embedding matrix with dimension d × V , where d and V are the embedding
dimension and the vocabulary size of the high-level PL, respectively.

Input Instruction and Parent Attention Feeding. To make better use of the information encoded
from the input program and the parent context of the current expanding node, we employ instruction
and parent attention feeding during AST decoding [16, 14]. Intuitively, predicting the current node
while leveraging the relevant information from the input instructions and the node’s parent provides a
richer context for high-level code generation. Parent attention feeding is performed using Equation (2)
and (3) during the state transition of the AST decoder. As for input instruction attention feeding, we
first compute the probability that a node Nk in the input program corresponds to the expanding node
Nt as shown in Equation (4). Coda’s input instruction attention is obtained from the expectation
value of the hidden states of all nodes in the input program as shown in Equation (5).

stk = P (Nk|Nt) ∝ exp{hT
k · ht} (4)

ct = E[hk|Nt] =

K∑

k=0

hk · s
t
k (5)

ct is then incorporated into the hidden state of the current node ht using Equation (6) where W1 and
W2 are two trainable matrices with dimension d× d, resulting in the attention vector et of the current
node. The final prediction output ot of the current expanding node is then be computed from the
linear mapping of et as shown in Equation (7). Wout is a trainable matrix of size V × d.

et = tanh(W1ct +W2ht) (6)

ot = argmax softmax(Woutet) (7)

5

4.2 Neural-based Iterative Error Correction

We propose iterative Error Correction as the second phase of Coda framework to further improve
the quality of decompilation as discussed in Sec. 3.2. There are two key modules in this stage: an
ensembled neural EP and an Iterative EC machine. We characterize possible errors in Coda’s code
sketch into three types: (i) Nodes in the AST may be mispredicted to other tokens. For example, the
‘while’ might be misclassified into ‘if’ token. (ii) A redundant line of code. (iii) A Missing line of
code. For error (i), the EP shall output the correct token value to guide the EC machine for updating
the node. For error (ii) and (iii), the EC machine removes/randomly adds a non-terminal node with
leaf children in the predicted error location, thus converting the error type into a misprediction error
(i). (See Appendix B for details) Equation (8) shows the hidden state transition of Coda’s EP. We
deploy the fixed autoencoder from phase 1 followed by gated recurrent units (GRUs) with attention
as the EP’s architecture. Given the ground-truth input (φ) and the compiled code sketch (φ′), the EP
returns the error status (‘0/1’) and the error types for each node in the output AST. The input to the
GRU consists of two parts: (i) the hidden state of the parent node (hEP

t−1); and (ii) the concatenation

of the hidden states (denoted by h
φ
t and h

φ′

t) obtained by forwarding φ and φ′ to the autoencoder.

hEP
t = GRU(hEP

t−1, [h
φ
t ;h

φ′

t]) (8)

The attention layer in EP following the mechanism discussed in Sec. 4.1. Particularly, the input to
the attention layer ht in Equation(4) is now replaced by the hidden state hEP of the current node.

The state of source input (hk) is substituted with the combination of the encoded states h
φ
k and h

φ′

k .
Furthermore, Coda ensembles multiple EPs to cover larger error space. The correction suggestion
provisioned by the EP is accepted if and only if the LD between the golden low-level code and the
compilation of the updated code sketch does not increase.

The workflow of Coda’s iterative EC machine is shown in Algorithm 1. The detail of the function
FSM_Error_Correct in line 9 is presented in Appendix B.

Algorithm 1 Workflow of iterative EC Machine.

INPUT: NEP Ensembled Error Predictors EP ; Source assembly φ; Decompiled Sketch pro-
gram P ′; Compiler Γ; Maximum iterations Smax and steps in each iteration cmax;

OUTPUT: Error corrected program P ′

f .

1: si ← 0
2: while si < Smax do
3: Q← [], φ′ = Γ(P ′), ∆′ ← Edit_loss(φ,Γ(P ′))
4: if ∆′ = 0 then break
5: Q← EPi(P

′) for i = 1,...,NEP // Attach all the detected error to queue Q

6: Q̃← Prob_sort(Q, cmax) // Rank Q using output probabilities, keep cmax results.

7: while Q̃ is not empty do

8: err, node← Q̃.pop()
9: P ′

t ← FSM_Error_Correct(P ′, err, node) // correct the error in the program
10: ∆ = ∆′ − Edit_loss(φ,Γ(P ′

t))
11: if ∆ ≥ 0 then
12: P ′ ← P ′

t

13: Return: P ′

f ← P ′

5 Evaluation

5.1 Experimental Setup

We assess the performance of Coda on various synthetic benchmarks with different difficulty levels
and real-world applications as summarized in Table 1 (Stage 1) and Table 2 (Stage 2). Given the
binary executable as the input, we use an open-source disassembler [17, 18] for MIPS [19] and
x86-64 [20] architecture to generate the corresponding assembly code that is fed to Coda.

Benchmarks. We describe the four main tasks in our evaluation as follows.

(i) Karel. Karel [21] is a C-based library that can be used to control the movement of a robot in a 2D
grid and modify the status of the environment. The assembly description of Karel programs has only
callback functions (no arguments) and global control flags as shown in Appendix E. As such, Karel
is suitable to evaluate Coda’s capability of recovering the control flow graphs (CFGs) of the source
code (see possible CFGs in Appendix A.2).

6

(ii) Math Library (Math). We generate synthetic benchmarks using math.h library [22] to assess
Coda’s performance for recovering both data and control dependencies.

(iii) Normal Expression (NE). Common operations such as ”+,−, ∗, \, ‖,≫,&,==,∧” are the
main components of NEs in high-level PL. We observe that reconstructing normal expressions is
more difficult compared to function calls since the former one has less explicit structures.

(iv) Composition of Functional Calls and Normal Expressions (Math+NE). We also construct
synthetic benchmarks consisting of both NEs and library functions calls. The dataset is constructed
by replacing the variables in NE with the return value of a random math function (see Appendix E).

(v) Real-world implementations. We test Coda’s performance on real-world projects: (1) neural
network construction programs in pytorch C++ API [23] (2) Hacker’s Delight loop-free programs [24]
provided in [25]. These programs are used for encoding complex algorithms as small loop-free
sequences of bit manipulating instructions.

Training Data Generation. To build the training dataset for stage 1, we randomly generate 50,000
pairs of high-level programs with the corresponding assembly code for each task. The program is
compiled using clang with configuration -0O which disables all optimizations. The subscript S and
L in Table 1 denotes short and long programs with an average length of 15 and 30, respectively. The
tree representation of each statement in the high-level code has a maximum depth of 3.

The training dataset for the error correction stage is constructed by injecting various types of errors
into the high-level code. In our experiments, we inject 10 ∼ 20% token errors whose locations are
sampled from a uniform random distribution. To address the class imbalance problem during EP
training, we mask 35% of the tokens with error status ‘0’ (i.e., no error occurs) when computing the
loss. Detailed statistics and examples of the dataset can be found in Appendix A.2 and E.

Error Predictor Training. We manually inject three types of errors (Sec. 4.2) into the ground-truth
code sketch and set the training target for each EP to the corresponding error types. Note that the EP
also learns to output the correct substitution token when the target is the misprediction error type.

Metrics. We evaluate the performance of the Coda using two main metrics: token accuracy and
program accuracy. Token accuracy is defined as the percentage of the predicted tokens in high-level
PL that match with the ground-truth ones. Program accuracy is defined as the ratio between the
number of predicted programs with 100% token accuracy and the number of total recovered programs.

5.2 Results

Performance of Sketch Generation. Coda yields the highest token accuracy across all benchmarks
(96.8% on average) compared to all the other methods as shown in Table 1. The NE task appears to be
the hardest one while Coda still engenders 10.1% and 80.9% margin over a naive Seq2Seq model with
and without attention, respectively. More importantly, the result demonstrates that our Inst2AST+Attn
method is more tolerant of the growth of the program length compared to the Seq2Seq+Attn baseline.
We hypothesize that this is because Inst2AST with attention focuses on the states of each instruction
as a whole instead of every input token. As such, it is less sensitive to the growth of assembly token
length. Note that Coda achieves higher token accuracy on Math+NE benchmarks compared to NE
ones. This is due to the fact that the assembly description of function calls has a prologue of argument
preparation [11] that is easy to identify than NE which directly operates on variables.

We observe that the majority of the token errors are misprediction in the sketch, especially when
the program size is large. Besides, the sketch may have missing or repetition statements. The
imperfection of code sketch generation motivates the design of the error correction stage in Coda.
Our empirical results show that in the recovered code sketch from Stage 1 has very few syntax errors
that lead to decompilation failure. This further validates the capability of Coda to automatically learn
the syntax structure of the high-level language. A small portion of syntax errors exists in the sequence
decoding baseline and we use a script to check and fix these syntax bugs. The token accuracy reported
in Table 1 is measured before the script checking. Token errors that do not result in compilation
failure are corrected in the Phase 2.

Performance of Error Correction. Table 2 summarizes the performance of Coda’s iterative error
correction. We feed the recovered code sketch with imperfect token accuracy generated from stage 1
to the pretrained EP. Recall that the EP consists of the fixed autoencoder from stage 1 and a GRU
layer. Here, EPs that reuse the Seq2Seq+attn and Inst2AST+attn sketch generator are denoted as
EPs2s and EPi2a, respectively. We set Smax = 30 and cmax = 10 for EC machine in Algorithm 1.

7

Table 1: Token accuracy (%) comparison between Coda and alternative methods for code generation.
Columns 1-2 denotes the Seq2Seq baseline. The last two columns denote the instruction-aware
encoding (Inst) and AST decoding (AST) methods of Coda with and without attention (Attn)
mechanism. The combination of a sequence-based model with Inst or AST is shown in Columns 3-4.

Benchmarks Seq2Seq Seq2Seq+Attn Seq2AST+Attn Inst2seq+Attn Inst2AST Inst2AST+Attn

KarelS 51.61 97.13 99.81 98.83 74.80 99.89

MathS 23.12 94.85 99.12 96.20 56.29 99.72

NES 18.72 87.36 90.45 88.48 55.59 94.66

(Math+NE)S 14.14 87.86 91.98 89.67 56.62 97.90

KarelL 33.54 94.42 98.02 98.12 64.42 98.56

MathL 11.32 91.94 96.63 93.16 45.63 98.63

NEL 11.02 81.80 85.92 85.97 46.43 91.92

(Math+NE)L 6.09 81.56 85.32 86.16 43.77 93.20

A single EP achieves 66% (EPs2s) and 69% (EPi2a) accuracy on average across benchmarks for
predicting the error type in the sketch programs. Note that we only consider the prediction of the first
error due to the iterative nature of the EC machine.

When ensembling 10 EPs (NEP = 10), the detection rate of first error can be enhanced to 84% and
89% on average for EPs2s and EPi2a, respectively. Note that EPi2a achieves a higher accuracy on
error prediction across benchmarks compared to EPs2s. That is because the component of the EPi2a,
i.e., Inst2AST+attn, achieves a better token accuracy compared to Seq2Seq+attn in EPs2s.

The ensembled EPs will guide our iterative EC machine as detailed in Algorithm 1. Coda’s EC
machine increases the program accuracy from 12% to 61% and from 30% to 82% on average for
Seq2Seq+Attn-based and Inst2AST+attn-based code sketch generation, respectively. In summary,
Coda’s best configuration (Inst2AST+attn with EC) achieves an average of 82% final program accu-
racy while the Seq2Seq model with or without attention approach yields 12% and 0%, respectively.

Table 2: (i) First error prediction accuracy with various ensembled number of ensembled EPs. (ii)
Program accuracy before and after error correction (EC) when NEP =10. Note that NEP stands for
the number of ensembled EPs and model refers to the architecture of sketch generation.

BenchMarks
(i) First Error Detection Rate (EP,NEP) (ii) Befor EC After EC

s2s, 1 i2a,1 s2s,5 i2a,5 s2s,10 i2a,10 s2s i2a s2s i2a
MathS 69.6 74.1 84.9 88.5 91.4 94.2 40.1 64.8 91.2 100.0

NES 64.2 67.6 76.0 79.2 83.5 88.7 6.6 12.2 53.0 78.6

(Math+NE)S 65.1 67.3 78.4 84.4 83.6 90.1 3.5 43.2 63.6 89.2

MathL 65.4 71.7 80.9 83.1 87.5 91.3 21.7 51.8 83.9 99.5

NEL 60.3 64.7 71.6 76.5 78.1 84.5 0.2 2.6 33.1 56.4

(Math+NE)L 61.0 66.5 73.9 77.5 80.2 85.3 0.1 4.9 38.3 67.2

Results on Real-world Applications. We assess Coda on two real-world applications: Pytorch C++
API-based [23] model architecture construction and bit twiddling hack in Hacker’s Delight [24]. The
model definition and the bit twiddling task programs consist of a sequence of function calls and a
sequence of loop-free normal expressions, respectively. Examples of these two applications are given
in Appendix E. Coda achieves 100% program accuracy across all benchmarks for these two tasks.

Comparison to Previous Works. We demonstrate that Coda outperforms two state-of-the-art
decompilers: RetDec [26] open-source tool and sequence-to-sequence based decompiler [6]. The
output from RetDec has a large LD to the ground-truth low-level code after compilation. Furthermore,
the high-level program recovered by RetDec fails to preserve the functionality of the input and is
hard to interpret. (See Appendix F for examples). The Seq2Seq-based approach proposed in [6] takes
a sequence of bytes or bits directly from the binary executable as the input. We re-implement their
technique and assess its performance on Math+NE synthetic benchmarks. Empirical results show that
their Seq2Seq-based method achieves 11% token accuracy and 0% program accuracy on average.

5.3 Discussion

We discuss the factors that might influence the performance of Coda framework as follows.

Recover complex ISA. We identify that the performance of Coda decreases when the input low-
level code is buit from more complicated ISA, such as x86-64 (details shown in Appendix D). This
is mainly because: (i) x86-64 has more advanced instruction types that support different levels of

8

granularity for memory read/write while MIPS supports only 32-bits read/write operations. As such,
the number of input token types in x86-64 is much larger than the one in MIPS ISA when compiling
the same high-level program; (ii) the branch flag is not visible as part of the branch instructions in
x86-64 since it is stored in the condition register. In MIPS ISA, Coda can extracts the branch flag
directly from the input instruction. Therefore, it is harder to recover the control dependencies in
x86-64 compared to MIPS.

Recover complicated structures. In Section 5.2, we evaluate Coda on synthetic benchmarks that
have the same program components as the previous decompiler works [27]. These benchmarks
include function calls, normal expressions, nested control graphs, variables with different types
and data dependencies. Complex data structures/control graph/static library reliance impose greater
challenges to the program decompilation task. Data type and structure identification is an individual
research direction which has been widely studied in previous works [3, 28]. Coda is sufficient to
resolve real-world applications such as Pytorch API or Hacker’s delight applications. Combining
Coda with these works can recover more complicate programs.

Recover long programs. We assess Coda on programs (NE and Math+NE) with the average code
length (L) of 45 and 60. The token accuracy in Phase 1 drops by -5.4%/-13.5% (Inst2AST) on average
compared to the results on benchmarks with L = 30. We identify two challenges to decompile long
programs: (i) Unlike natural language with period as the end of sentence, there is no clear boundary
to divide assembly code. The length of the input tokenized assembly grows to a very large value
(Appendix A.2). (ii) Also, training the auto-encoder in Coda is more challenging for long encoding
sequences due to the limited GPU memory.

6 Related Work

Conventional Program Decompilation. There has been a long line of research on reverse engineer-
ing of binary code [29–31, 8, 10, 27, 2, 32]. Many decompilers such as Phoenix [27], Hex-rays [33]
and RetDec [26, 34] (the most recent one) have been developed. Other works, such as TIE [3] or RE-
WARDS [35], target at reconstructing the correct variable types, which is different from the objective
of Coda. Learning-based methods have been proposed for identifying function entry point [8, 10, 11]
for disassembling binary code. These methods are orthogonal to Coda and can be integrated into our
framework to tackle a wider range of decompilation tasks. To the best of our knowledge, no practical
deep learning-based techniques have been proposed for program decompilation.

Neural Networks for Code Generation. Neural networks have been used for code generation in
prior works [36–38, 14, 39]. Instead of recovering the high-level program from the corresponding
assembly code, these works synthesize the program from the collected input-output pairs [40, 39],
natural language [37], or other domain-specific languages [14, 4]. In [6], they use a sequence-to-
sequence model for decompilation with direct Byte-by-byte sequence input which yields a low
accuracy as shown in Sec. 5. Coda demonstrates the first effective program decompilation framework.

Neural Networks for Error Correction. The idea of iteratively fixing errors in the program using
neural networks has been proposed [41–43]. In [42], they suggest using GRUs for embedding the
execution trace in order to identify bugs in the target program. DeepFix [41] deploys an autoencoder
to fix typos that leads to a compilation failure. Note that the error correction stage of Coda has a
different objective from the above works. More specifically, we use an autoencoder-based error
predictor to identify the token errors in output from the code sketch generation stage.

7 Conclusions and Future Work

In this paper, we present Coda, the first neural-based decompilation framework that is corroborated
to preserve both the semantics and the functionality of the high-level program. Coda consists of two
key phases for program RE. First, Coda generates the high-level program with a high token accuracy
leveraging an instruction-aware encoder and an AST decoder network architecture with attention.
Next, Coda iterative correct errors with the guidance of the ensembled EP which further improves
Coda’s token and program accuracy. Extensive experiments on various benchmarks corroborate that
Coda outperforms the Seq2Seq model and traditional decompilers by a large margin. We believe that
our work is a milestone for program security and decompilation.

Meanwhile, we observe that several challenges remain in our current framework that can be addressed
in the future work: (i) There are no explicit ending symbols in decompilation task. Future research
can tackle this issue to RE large-size binary file. (ii) Previous works on the identification of more
complicated data structures can be incorporated into Coda to RE more complicated applications.

9

References

[1] “Effective and efficient malware detection at the end host,” in Presented as part of the 18th
USENIX Security Symposium (USENIX Security 09). Montreal, Canada: USENIX, 2009.
[Online]. Available: https://www.usenix.org/node/

[2] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith, “Helping johnny to analyze
malware: A usability-optimized decompiler and malware analysis user study,” in 2016 IEEE
Symposium on Security and Privacy (SP), May 2016, pp. 158–177.

[3] J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse engineering of types in binary
programs,” 2011.

[4] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Lexical statistical machine translation for
language migration,” in Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2013. New York, NY, USA: ACM, 2013, pp. 651–654. [Online].
Available: http://doi.acm.org/10.1145/2491411.2494584

[5] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Divide-and-conquer approach for multi-phase
statistical migration for source code (t),” in 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Nov 2015, pp. 585–596.

[6] D. S. Katz, J. Ruchti, and E. Schulte, “Using recurrent neural networks for decompilation,” in
2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2018, pp. 346–356.

[7] H. Hyyrö, “Explaining and extending the bit-parallel approximate string matching algorithm of
myers,” Citeseer, Tech. Rep., 2001.

[8] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “{BYTEWEIGHT}: Learning to
recognize functions in binary code,” in 23rd {USENIX} Security Symposium ({USENIX}
Security 14), 2014, pp. 845–860.

[9] A. Rahimian, P. Shirani, S. Alrbaee, L. Wang, and M. Debbabi, “Bincomp: A stratified approach
to compiler provenance attribution,” Digital Investigation, vol. 14, pp. S146–S155, 2015.

[10] N. E. Rosenblum, X. Zhu, B. P. Miller, and K. Hunt, “Learning to analyze binary computer
code.” 2008.

[11] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in binaries
with neural networks,” in 24th USENIX Security Symposium (USENIX Security 15).
Washington, D.C.: USENIX Association, 2015, pp. 611–626. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/shin

[12] A. Jaffe, J. Lacomis, E. J. Schwartz, C. L. Goues, and B. Vasilescu, “Meaningful variable
names for decompiled code: A machine translation approach,” in Proceedings of the 26th
Conference on Program Comprehension, ser. ICPC ’18. New York, NY, USA: ACM, 2018,
pp. 20–30. [Online]. Available: http://doi.acm.org/10.1145/3196321.3196330

[13] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic representations from tree-
structured long short-term memory networks,” arXiv preprint arXiv:1503.00075, 2015.

[14] X. Chen, C. Liu, and D. Song, “Tree-to-tree neural networks for program translation,” in
Advances in Neural Information Processing Systems, 2018, pp. 2547–2557.

[15] L. Dong and M. Lapata, “Language to logical form with neural attention,” in Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Berlin, Germany: Association for Computational Linguistics, Aug. 2016, pp. 33–43.
[Online]. Available: https://www.aclweb.org/anthology/P16-1004

[16] B. McCann, J. Bradbury, C. Xiong, and R. Socher, “Learned in translation: Contextualized
word vectors,” in Advances in Neural Information Processing Systems, 2017, pp. 6294–6305.

[17] “mipt-mips,” https://github.com/MIPT-ILab/mipt-mips.

10

https://www.usenix.org/node/
http://doi.acm.org/10.1145/2491411.2494584
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/shin
http://doi.acm.org/10.1145/3196321.3196330
https://www.aclweb.org/anthology/P16-1004
https://github.com/MIPT-ILab/mipt-mips

[18] REDasm, https://github.com/REDasmOrg/REDasm, 2019.

[19] G. Kane, MIPS RISC Architecture. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[20] Intel, “Intel® 64 and ia-32 architectures software developer manuals,” 2017. [Online].
Available: https://software.intel.com/en-us/articles/intel-sdm

[21] R. E. Pattis, “Karel the robot,” https://www.cs.mtsu.edu/~untch/karel/.

[22] “Math c++ library,” http://www.cplusplus.com/reference/cmath/.

[23] P. C. API, https://pytorch.org/cppdocs/, 2019.

[24] H. S. Warren, Hacker’s delight. Pearson Education, 2013.

[25] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,” SIGPLAN Not., vol. 48,
no. 4, pp. 305–316, Mar. 2013. [Online]. Available: http://doi.acm.org/10.1145/2499368.
2451150

[26] RetDec, https://retdec.com/, 2017.

[27] D. Brumley, J. Lee, E. J. Schwartz, and M. Woo, “Native x86 decompilation using semantics-
preserving structural analysis and iterative control-flow structuring,” in Presented as part of the
22nd {USENIX} Security Symposium ({USENIX} Security 13), 2013, pp. 353–368.

[28] Z. Lin, “Reverse engineering of data structures from binary,” Ph.D. dissertation, Purdue Univer-
sity, 2011.

[29] C. Cifuentes, Reverse compilation techniques, 1994.

[30] M. Emmerik and T. Waddington, “Using a decompiler for real-world source recovery,” in 11th
Working Conference on Reverse Engineering. IEEE, 2004, pp. 27–36.

[31] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary analysis platform,” in
Computer Aided Verification, G. Gopalakrishnan and S. Qadeer, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 463–469.

[32] O. Katz, Y. Olshaker, Y. Goldberg, and E. Yahav, “Towards neural decompilation,” arXiv
preprint arXiv:1905.08325, 2019.

[33] Hex-Rays, https://www.hex-rays.com/, 2017.

[34] J. Kroustek and D. Kolár, “Retargetable analysis of machine code,” Ph.D. dissertation, PhD
thesis, Brno University of Technology, 2014.

[35] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtuoso: Narrowing the semantic
gap in virtual machine introspection,” in 2011 IEEE Symposium on Security and Privacy. IEEE,
2011, pp. 297–312.

[36] W. Ling, P. Blunsom, E. Grefenstette, K. M. Hermann, T. Kočiský, F. Wang, and A. Senior,
“Latent predictor networks for code generation,” in Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany:
Association for Computational Linguistics, Aug. 2016, pp. 599–609. [Online]. Available:
https://www.aclweb.org/anthology/P16-1057

[37] P. Yin and G. Neubig, “A syntactic neural model for general-purpose code generation,” in
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Vancouver, Canada: Association for Computational Linguistics, Jul.
2017, pp. 440–450. [Online]. Available: https://www.aclweb.org/anthology/P17-1041

[38] M. Rabinovich, M. Stern, and D. Klein, “Abstract syntax networks for code generation and
semantic parsing,” arXiv preprint arXiv:1704.07535, 2017.

[39] X. Chen, C. Liu, and D. Song, “Towards synthesizing complex programs from input-output
examples,” arXiv preprint arXiv:1706.01284, 2017.

11

https://github.com/REDasmOrg/REDasm
https://software.intel.com/en-us/articles/intel-sdm
https://www.cs.mtsu.edu/~untch/karel/
http://www.cplusplus.com/reference/cmath/
https://pytorch.org/cppdocs/
http://doi.acm.org/10.1145/2499368.2451150
http://doi.acm.org/10.1145/2499368.2451150
https://retdec.com/
https://www.hex-rays.com/
https://www.aclweb.org/anthology/P16-1057
https://www.aclweb.org/anthology/P17-1041

[40] ——, “Execution-guided neural program synthesis,” in International Conference on Learning
Representations, 2019. [Online]. Available: https://openreview.net/forum?id=H1gfOiAqYm

[41] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common c language errors by
deep learning,” in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[42] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati, M. Sahami, and L. Guibas, “Learning
program embeddings to propagate feedback on student code,” arXiv preprint arXiv:1505.05969,
2015.

[43] K. Wang, R. Singh, and Z. Su, “Dynamic neural program embedding for program repair,” arXiv
preprint arXiv:1711.07163, 2017.

12

https://openreview.net/forum?id=H1gfOiAqYm

