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ABSTRACT

Data augmentation has been demonstrated as an effective strategy for improving
model generalization and data efficiency. However, due to the discrete nature of
natural language, designing label-preserving transformations for text data tends
to be more challenging. In this paper, we propose a novel data augmentation
framework dubbed CoDA, which synthesizes diverse and informative augmented
examples by integrating multiple transformations organically. Moreover, a con-
trastive regularization objective is introduced to capture the global relationship
among all the data samples. A momentum encoder along with a memory bank is
further leveraged to better estimate the contrastive loss. To verify the effective-
ness of the proposed framework, we apply CoDA to Transformer-based models
on a wide range of natural language understanding tasks. On the GLUE bench-
mark, CoDA gives rise to an average improvement of 2.2% while applied to the
RoBERTa-large model. More importantly, it consistently exhibits stronger results
relative to several competitive data augmentation and adversarial training base-
lines (including the low-resource settings). Extensive experiments show that the
proposed contrastive objective can be flexibly combined with various data aug-
mentation approaches to further boost their performance, highlighting the wide
applicability of the CoDA framework.

1 INTRODUCTION

Data augmentation approaches have successfully improved large-scale neural-network-based mod-
els, (Laine & Aila, 2017; Xie et al., 2019; Berthelot et al., 2019; Sohn et al., 2020; He et al., 2020;
Khosla et al., 2020; Chen et al., 2020b), however, the majority of existing research is geared towards
computer vision tasks. The discrete nature of natural language makes it challenging to design effec-
tive label-preserving transformations for text sequences that can help improve model generalization
(Hu et al., 2019; Xie et al., 2019). On the other hand, fine-tuning powerful, over-parameterized
language models1 proves to be difficult, especially when there is a limited amount of task-specific
data available. It may result in representation collapse (Aghajanyan et al., 2020) or require special
finetuning techniques (Sun et al., 2019; Hao et al., 2019). In this work, we aim to take a further step
towards finding effective data augmentation strategies through systematic investigation.

In essence, data augmentation can be regarded as constructing neighborhoods around a training
instance that preserve the ground-truth label. With such a characterization, adversarial training (Zhu
et al., 2020; Jiang et al., 2020; Liu et al., 2020; Cheng et al., 2020) also performs label-preserving
transformation in embedding space, and thus is considered as an alternative to data augmentation
methods in this work. From this perspective, the goal of developing effective data augmentation
strategies can be summarized as answering three fundamental questions:

i) What are some label-preserving transformations, that can be applied to text, to compose useful
augmented samples?

∗Work was done during an internship at Microsoft Dynamics 365 AI.
1To name a few, BERT (Devlin et al., 2019): 340M parameters, T5 (Raffel et al., 2019): 11B parameters,

GPT-3 (Brown et al., 2020): 175B parameters.
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ii) Are these transformations complementary in nature, and can we find some strategies to consoli-
date them for producing more diverse augmented examples?

iii) How can we incorporate the obtained augmented samples into the training process in an effective
and principled manner?

Previous efforts in augmenting text data were mainly focused on answering the first question (Yu
et al., 2018; Xie et al., 2019; Kumar et al., 2019; Wei & Zou, 2019; Chen et al., 2020a; Shen
et al., 2020). Regarding the second question, different label-preserving transformations have been
proposed, but it remains unclear how to integrate them organically. In addition, it has been shown
that the diversity of augmented samples plays a vital role in their effectiveness (Xie et al., 2019;
Gontijo-Lopes et al., 2020). In the case of image data, several strategies that combine different
augmentation methods have been proposed, such as applying multiple transformations sequentially
(Cubuk et al., 2018; 2020; Hendrycks et al., 2020), learning data augmentation policies (Cubuk
et al., 2018), randomly sampling operations for each data point (Cubuk et al., 2020). However, these
methods cannot be naively applied to text data, since the semantic meanings of a sentence are much
more sensitive to local perturbations (relative to an image).

As for the third question, consistency training is typically employed to utilize the augmented samples
(Laine & Aila, 2017; Hendrycks et al., 2020; Xie et al., 2019; Sohn et al., 2020; Miyato et al., 2018).
This method encourages the model predictions to be invariant to certain label-preserving transfor-
mations. However, existing approaches only examine a pair of original and augmented samples in
isolation, without considering other examples in the entire training set. As a result, the representa-
tion of an augmented sample may be closer to those of other training instances, rather than the one
it is derived from. Based on this observation, we advocate that, in addition to consistency training, a
training objective that can globally capture the intrinsic relationship within the entire set of original
and augmented training instances can help leverage augmented examples more effectively.

In this paper, we introduce a novel Contrast-enhanced and Diversity-promoting Data Augmentation
(CoDA) framework for natural language understanding. To improve the diversity of augmented
samples, we extensively explore different combinations of isolated label-preserving transformations
in an unified approach. We find that stacking distinct label-preserving transformations produces par-
ticularly informative samples. Specifically, the most diverse and high-quality augmented samples
are obtained by stacking an adversarial training module over the back-translation transformation.
Besides the consistency-regularized loss for repelling the model to behave consistently within lo-
cal neighborhoods, we propose a contrastive learning objective to capture the global relationship
among the data points in the representation space. We evaluate CoDA on the GLUE benchmark
(with RoBERTa (Liu et al., 2019) as the testbed), and CoDA consistently improves the generaliza-
tion ability of resulting models and gives rise to significant gains relative to the standard fine-tuning
procedure. Moreover, our method also outperforms various single data augmentation operations,
combination schemes, and other strong baselines. Additional experiments in the low-resource set-
tings and ablation studies further demonstrate the effectiveness of this framework.

2 METHOD

In this section, we focus our discussion on the natural language understanding (NLU) tasks, and par-
ticularly, under a text classification scenario. However, the proposed data augmentation framework
can be readily extended to other NLP tasks as well.

2.1 BACKGROUND: DATA AUGMENTATION AND ADVERSARIAL TRAINING

Data Augmentation Let D = {xi, yi}i=1...N denote the training dataset, where the input ex-
ample xi is a sequence of tokens, and yi is the corresponding label. To improve model’s robust-
ness and generalization ability, several data augmentation techniques (e.g., back-translation (Sen-
nrich et al., 2016; Edunov et al., 2018; Xie et al., 2019), mixup (Guo et al., 2019), c-BERT (Wu
et al., 2019)) have been proposed. Concretely, label-preserving transformations are performed
(on the original training sequences) to synthesize a collection of augmented samples, denoted by
D′ = {x′i, y′i}i=1...N . Thus, a model can learn from both the training set D and the augmented set
D′, with pθ(·) the predicted output distribution of the model parameterized by θ:

θ∗ = arg min
θ

∑
(xi,yi)∈D

L
(
pθ(xi), yi

)
+

∑
(x′

i,y
′
i)∈D′

L
(
pθ(x

′
i), y

′
i

)
(1)
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Figure 1: Illustration of data augmentation combined with adversarial training.

Several recent research efforts were focused on encouraging model predictions to be invariant to
stochastic or domain-specific data transformations (Xie et al., 2019; Laine & Aila, 2017; Tarvainen
& Valpola, 2017; Sohn et al., 2020; Miyato et al., 2018; Jiang et al., 2020; Hendrycks et al., 2020).
Take back-translation as example: x′i = BackTrans(xi), then x′i is a paraphrase of xi. The model
can be regularized to have consistent predictions for (xi,x

′
i), by minimizing the distribution dis-

crepancyRCS(pθ(xi), pθ(x
′
i)), which typically adopts KL divergence (see Fig. 1a).

Adversarial Training In another line, adversarial training methods are applied to text data (Zhu
et al., 2020; Jiang et al., 2020; Cheng et al., 2020; Aghajanyan et al., 2020) for improving model’s
robustness. Compared with data augmentation techniques, adversarial training requires no domain
knowledge to generate additional training examples. Instead, it relies on the model itself to produce
adversarial examples which the model are most likely to make incorrect predictions. Similar to
data augmentation, adversarial training also typically utilizes the cross-entropy and consistency-
based objectives for training. As the two most popular adversarial-training-based algorithms, the
adversarial loss (Goodfellow et al., 2015) (Eqn. 2) and virtual adversarial loss (Miyato et al., 2018)
(Eqn. 3) can be expressed as follows (see Fig. 1b):

RAT(xi, x̃i, yi) = L
(
pθ(x̃i), yi

)
, s.t., ‖x̃i − xi‖ ≤ ε , (2)

RVAT(xi, x̃i) = RCS
(
pθ(x̃i), pθ(xi)

)
, s.t., ‖x̃i − xi‖ ≤ ε . (3)

Generally, there is no closed-form to obtain the exact adversarial example x̂i in either Eqn. 2 or
3. However, it usually can be approximated by a low-order approximation of the objective function
with respect to xi. For example, the adversarial example in Eqn. 2 can be approximated by:

x̂i ≈ xi + ε
g

‖g‖2
,where g = ∇xi

L
(
pθ(xi), yi

)
. (4)

2.2 DIVERSITY-PROMOTING CONSISTENCY TRAINING

As discussed in the previous section, data augmentation and adversarial training share the same
intuition of producing neighbors around the original training instances. Moreover, both approaches
share very similar training objectives. Therefore, it is natural to ask the following question: are
different data augmentation methods and adversarial training equal in nature? Otherwise, are they
complementary to each other, and thus can be consolidated together to further improve the model’s
generalization ability? Notably, it has been shown, in the CV domain, that combining different data
augmentation operations could lead to more diverse augmented examples (Cubuk et al., 2018; 2020;
Hendrycks et al., 2020). However, this is especially challenging for natural language, given that the
semantics of a sentence can be entirely altered by slight perturbations.

To answer the above question, we propose several distinct strategies to combine different data trans-
formations, with the hope to produce more diverse and informative augmented examples. Specifi-
cally, we consider 5 different types of label-preserving transformations: back-translation (Sennrich
et al., 2016; Edunov et al., 2018; Xie et al., 2019), c-BERT word replacement (Wu et al., 2019),
mixup (Guo et al., 2019; Chen et al., 2020a), cutoff (Shen et al., 2020), and adversarial training
(Zhu et al., 2020; Jiang et al., 2020). The 3 combination strategies are schematically illustrated
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Figure 2: Illustration of different strategies to combine various label-preserving transformations.

in Figure 2. For random combination, a particular label-preserving transformation is randomly se-
lected, among all the augmentation operations available, for each mini-batch. As to the mixup
interpolation, given two samples xi and xj drawn in a mini-batch, linear interpolation is performed
between their input embedding matrices ei and ej (Zhang et al., 2017): e′i = aei+(1−a)ej , where
a is the interpolation parameter, usually drawn from a Beta distribution.

Moreover, we consider stacking different label-preserving transformations in a sequential manner
(see Figure 2c). It is worth noting that due to the discrete nature of text data, some stacking orders
are infeasible. For example, it is not reasonable to provide an adversarially-perturbed embedding se-
quence to the back-translation module. Without loss of generality, we choose the combination where
adversarial training is stacked over back-translation to demonstrate the sequential stacking operation
(see Fig. 1c). Formally, given a training example (xi, yi), the consistency training objective for such
a stacking operation can be written as:

x′i = BackTrans(xi), x̂i ≈ argmaxx̃i
RAT(x′i, x̃i, yi) , (5)

Lconsistency(xi, x̂i, yi) = L
(
pθ(xi), yi

)
+αL(pθ(x̂i), yi) + βRCS(pθ(xi), pθ(x̂i)) , (6)

where the first term corresponds to the cross-entropy loss, the second term is the adversarial loss,
RCS denotes the consistency loss term between (xi, x̂i). Note that x̂i is obtained through two
different label-preserving transformations applied to x, and thus deviates farther from x and should
be more diverse than x′i. Inspired by (Bachman et al., 2014; Zheng et al., 2016; Kannan et al.,
2018; Hendrycks et al., 2020), we employ the Jensen-Shannon divergence forRCS, since it is upper
bounded and tends to be more stable and consistent relative to the KL divergence:

RCS(pθ(xi), pθ(x̂i)) =
1

2

(
KL(pθ(xi)‖M) + KL(pθ(x̂i))‖M)

)
, (7)

where M = (pθ(xi) + pθ(x̂i))/2. Later we simply use x′i to represent the transformed example.

2.3 CONTRASTIVE REGULARIZATION

query 
encoder

momentum
key 

encoder

similarity

contrastive loss

memory
bank

update

reuse

Figure 3: Illustration of the contrastive learn-
ing module.

Consistency loss only provides local regularization,
i.e., xi and x′i should have close predictions. How-
ever, the relative positions between x′i and other
training instances xj (j 6= i) have not been exam-
ined. In this regard, we propose to leverage a con-
trastive learning objective to better utilize the aug-
mented examples. Specifically, we assume that the
model should encourage an augmented sample x′i to
be closer, in the representation space, to its original
sample xi, relative to other data points xj (j 6= i)
in the training set. This is a reasonable assumption
since intuitively, the model should be robust enough
to successfully determine from which original data
an augmented sample is produced.

The contrastive learning module is illustrated in Fig. 3. As demonstrated by prior efforts on con-
trastive learning, adopting a large batch size is especially vital for its effectiveness (Chen et al.,
2020b; Khosla et al., 2020). Therefore, we introduce a memory bank that stores the history em-
beddings, thus enabling much larger number of negative samples. Moreover, to avoid the encoder
from changing too rapidly (which may result in inconsistency embeddings), a momentum encoder
module is incorporated into our algorithm. Concretely, let fθ(.) and fθ̄(.) denote the transformation
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parameterized by the query encoder and key encoder, respectively. Note that θ and θ̄ represent their
parameters. The momentum model parameters θ̄ are not learned by gradients. Instead, they are
updated through the momentum rule: θ̄ ← γθ̄ + (1− γ)θ at each training step. We omit the details
here and refer the interested readers to the work by (He et al., 2020) for further explanation. Given
a sample xi and its augmented example x′i, the query and key can be obtained as follows:

qi = fθ(xi), q′i = fθ(x
′
i), ki = fθ̄(xi) . (8)

Thus, the contrastive training objective can be written as:

Rcontrast(xi,x
′
i,M) = RCT(qi,ki,M) +RCT(q′i,ki,M), (9)

RCT(qi,ki,M) = −log
exp(sim(qi,ki)/τ)∑

kj∈M
⋃
{ki} exp(sim(qi,kj)/τ)

, (10)

where τ is the temperature, andM is the memory bank in which the history keys are stored. Cosine
similarity is chosen for sim(·). Note that RCT(q′i,ki,M) is similarly defined as RCT(qi,ki,M)
(with qi replaced by q′i in Eqn. 10). In Eqn. 9, the first term corresponds to the contrastive loss
calculated on the original examples (self-contrastive loss), while the second term is computed on
the augmented sample (augment-contrastive loss). Under such a framework, the pair of original
and augmented samples are encouraged to stay closer in the learned embedding space, relative to
all other training instances. As a result, the model is regularized globally through considering the
embeddings of all the training examples available.

By integrating both the consistency training objective and the contrastive regularization, the overall
training objective for the CoDA framework can be expressed as:

θ∗ = argminθ
∑

(xi,yi)∈D

Lconsistency(xi,x
′
i, yi) + λRcontrast

(
xi,x

′
i,M

)
. (11)

where λ is a hyperparameter to be chosen. It is worth noting that the final objective has taken both
the local (consistency loss) and global (contrastive loss) information introduced by the augmented
examples into consideration.

3 EXPERIMENTS

To verify the effectiveness of CoDA, We evaluate it on the widely-adopted GLUE benchmark (Wang
et al., 2018), which consists of multiple natural language understanding (NLU) tasks. The details
of these datasets can be found in Appendix B. RoBERTa (Liu et al., 2019) is employed as the
testbed for our experiments. However, the proposed approach can be flexibly integrated with other
models as well. We provide more implementation details in Appendix C. Our code will be released
to encourage future research.

In this section, we first present our exploration of several different strategies to consolidate vari-
ous data transformations (Sec 3.1). Next, we conduct extensive experiments to carefully select the
contrastive objective for NLU problems in Sec 3.2. Based upon these settings, we further evalu-
ate CoDA on the GLUE benchmark and compare it with a set of competitive baselines in Sec 3.3.
Additional experiments in the low-resource settings and qualitative analysis (Sec 3.4) are further
conducted to gain a deep understanding of the proposed framework.

3.1 COMBINING LABEL-PRESERVING TRANSFORMATIONS

We start by implementing and comparing several data augmentation baselines. As described in the
previous section, we explore 5 different approaches: back-translation, c-BERT word replacement,
Mixup, Cutoff and adversarial training. More details can be found in Appendix A. The standard
cross-entropy loss, along with the consistency regularization term (Eq. 6) is utilized for all meth-
ods to ensure a fair comparison. We employ the MNLI dataset and RoBERTa-base model for the
comparison experiments with the results shown in Table 1.

All these methods have achieved improvements over the RoBERTa-base model, demonstrating the
effectiveness of leveraging label-preserving transformations for NLU. Moreover, back-translation,
cutoff and adversarial training exhibit stronger empirical results relative to mixup and c-BERT.

To improve the diversity of augmented examples, we explore several strategies to combine multi-
ple transformations: i) random combination, ii) mixup interpolation, and iii) sequential stacking, as
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shown in Fig. 2. In Table 1, the score of naive random combination lies between single transfor-
mations. This may be attributed to the fact that different label-preserving transformations regularize
the model in distinct ways, and thus the model may not be able to leverage different regularization
terms simultaneously.

Method MNLI-m
(Acc) MMD

RoBERTa-base 87.6 -
Single Transformation

+ back-translation 88.5 0.63
+ c-BERT 88.0 0.01
+ cutoff 88.4 0.02
+ mixup (ori, ori) 88.2 0.06
+ adversarial 88.5 0.65

Multiple Transformations
+ random (back, cut, adv) 88.4 -
+ mix (ori, back) 88.4 0.11
+ mix (back, adv) 88.6 0.81
+ stack (back, cut) 88.5 0.62
+ stack (back, adv) 88.8 1.14
+ stack (back, cut, adv) 88.5 1.14
+ stack (back, adv, cut) 88.4 1.14

Table 1: Comparison of different transformations
on the MNLI-m development set. Abbr: original
training instances (ori), back-translation (back),
cutoff (cut), mixup (mix), adversarial (adv).

Besides, among all the other combination
strategies, we observe that gains can be ob-
tained by integrating back-translation and ad-
versarial training together. Concretely, mixing
back-translation and adversarial training sam-
ples (in the input embedding space) slightly im-
prove the accuracy from 88.5 to 88.6. More
importantly, the result is further improved to
88.8 with these two transformations stacking
together2 (see Sec 2.2). With significance test,
we find stack (back, adv) performs consistently
better than other combinations (t-test of 10
runs, p-values < 0.02). This observation in-
dicates that the stacking operation, especially
in the case of back-translation and adversarial
training, can produce more diverse augment ex-
amples.

Intuitively, the augmented sample, with two se-
quential transformations, deviates more from
the corresponding training data, and thus tends
to be more effective at improving the model’s
generalization ability. To verify this hypothesis,
we further calculate the MMD (Gretton et al., 2012) between augmented samples and the original
training instances. It can be observed that stack (back, adv), stack (back, cut, adv) and stack (back,
adv, cut) have all produced examples the farthest from the original training instances (see Table 1).
However, we conjecture that the latter two may have altered the semantic meanings too much, thus
leading to inferior results. In this regard, stack (back, adv) is employed as the data transformation
module for all the experiments below.

3.2 CONTRASTIVE REGULARIZATION DESIGN

In this section, we aim to incorporate the global information among the entire set of original and
augmented samples via a contrastive regularization. First, we explore a few hyperparameters for the
proposed contrastive objective. Since both the memory bank and the momentum encoder are vital
components, we study the impacts of different hyperparameter values on both the temperature and
the momentum. As shown in Fig. 4a, a temperature of 1.0 combined with the momentum of 0.99
can achieve the best empirical result. We then examine the size effect of the memory bank, and
observe a larger memory bank size leads to a better capture of the global information and results in
higher performance boost3 (see Fig. 4b).

After carefully choosing the best setting based on the above experiments, we apply the contrastive
learning objective to several GLUE datasets. We also implement several prior works on contrastive
learning to compare, including the MoCo loss (He et al., 2020) and the supervised contrastive (Sup-
Con) loss (Khosla et al., 2020), all implemented with memory banks. Note that we remove the
consistency regularization for this experiment to better examine the effect of the contrastive regular-
ization term (i.e., α = β = 0, λ 6= 0). As presented in Table 2, our contrastive objective consistently
exhibits the largest performance improvement. This observation demonstrates for NLU, our data
transformation module can be effectively equipped with the contrastive regularization.

2In practice, we can use Machine Translation (MT) models trained on large parallel corpus (e.g., English-
French, English-German) to back-translate the input sentence. Since back-translation requires decoding, it
can be performed offline. If the input contains multiple sentences, we split it into sentences, perform back-
translation, and ensemble those paraphrases back.

3We set the default memory bank size as 65536. As to smaller datasets, we choose the size no larger than
the number of training data (e.g., MRPC has 3.7k examples, and we set the memory size as 2048).
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Figure 4: Hyperparameter exploration for the contrastive loss, evaluated on the MNLI-m develop-
ment set. Note: All models use the RoBERTa-base model as the encoder.

Method MNLI-m QNLI SST-2 RTE MRPC
(Acc) (Acc) (Acc) (Acc) (Acc)

RoBERTa-base 87.6 92.8 94.8 78.7 90.2
+ MoCo (He et al., 2020) 88.2 93.3 95.1 80.8 90.9
+ SupCon (Khosla et al., 2020) 88.1 93.2 95.2 80.5 90.2
+ Contrastive (ours) 88.1 93.6 95.3 82.0 91.7

Table 2: Comparison among different contrastive objectives on the GLUE development set.

3.3 GLUE BENCHMARK EVALUATION

With both components within the CoDA algorithm being specifically tailored to the natural language
understanding applications, we apply it to the RoBERTa-large model (Liu et al., 2019). Compar-
isons are made with several competitive data-augmentation-based and adversarial-training-based
approaches on the GLUE benchmark. Specifically, we consider back-translation, cutoff (Shen et al.,
2020), FreeLB (Zhu et al., 2020), SMART (Jiang et al., 2020), and R3F (Aghajanyan et al., 2020)
as the baselines, where the last three all belong to adversarial training. The results are presented
in Table 3. It is worth noting that back-translation is based on our implementation, where both the
cross-entropy and consistency regularization terms are utilized.

Method MNLI-m/
mm (Acc)

QQP
(Acc/F1)

QNLI
(Acc)

SST-2
(Acc)

MRPC
(Acc/F1)

CoLA
(Mcc)

RTE
(Acc)

STS-B
(P/S) Avg

RoBERTa-large 90.2/- 92.2/- 94.7 96.4 -/90.9 68 86.6 92.4/- 88.9
Back-Trans 91.1/90.4 92/- 95.3 97.1 90.9/93.5 69.4 91.7 92.8/92.6 90.4
Cutoff 91.1/- 92.4/- 95.3 96.9 91.4/93.8 71.5 91.0 92.8/- 90.6
FreeLB 90.6/- 92.6/- 95 96.7 91.4/- 71.1 88.1 92.7/- -
SMART 91.1/91.3 92.4/89.8 95.6 96.9 89.2/92.1 70.6 92 92.8/92.6 90.4
R3F 91.1/91.3 92.4/89.9 95.3 97.0 91.6/- 71.2 88.5 - -
CoDA 91.3/90.8 92.5/89.9 95.3 97.4 91.9/94 72.6 92.4 93/92.7 91.1

Table 3: Main results of single models on the GLUE development set. Note: The best result on each
task is in bold and “-” denotes the missing results. The average score is calculated based on the
same setting as RoBERTa.

We find that CoDA brings significant gains to the RoBERTa-large model, with the averaged score on
the GLUE dev set improved from 88.9 to 91.1. More importantly, CoDA consistently outperforms
these strong baselines (indicated by a higher averaged score), demonstrating that our algorithm can
produce informative and high-quality augmented samples and leverage them effectively as well.
Concretely, on datasets with relatively larger numbers of training instances (> 100K), i.e., MNLI,
QQP and QNLI, different approaches show similar gains over the RoBERTa-large model. However,
on smaller tasks (SST-2, MRPC, CoLA, RTE, and STS-B), CoDA beats other data augmentation
or adversarial-based methods by a wide margin. We attribute this observation to the fact that the
synthetically produced examples are more helpful when the tasks-specific data is limited. Thus,
when smaller datasets are employed for fine-tuning large-scale language models, the superiority of
the proposed approach is manifested to a larger extent.

3.4 ADDITIONAL EXPERIMENTS AND ANALYSIS

Low-resource Setting To verify the advantages of CoDA when a smaller number of task-
specific data is available, we further conduct a low-resource experiment with the MNLI
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Figure 5: Low-resource setting experiments on the MNLI (left) and QNLI (right) dev sets.

and QNLI datasets. Concretely, different proportions of training data are sampled and
utilized for training. We apply CoDA to RoBERTa-base and compare it with back-
translation and adversarial training across various training set sizes. The corresponding re-
sults are presented in Fig. 5. We observe that back-translation and adversarial training ex-
hibit similar performance across different proportions. More importantly, CoDA demonstrates
stronger results consistently, further highlighting its effectiveness with limited training data.
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Figure 6: Evaluation of the proposed con-
trastive objective while applied to different
data augmentation approaches.

The Effectiveness of Contrastive Objective To
investigate the general applicability of the proposed
contrastive regularization objective, we further ap-
ply it to different data augmentation methods. The
RoBERTa-base model and QNLI dataset are lever-
aged for this set of experiments, and the results are
shown in Fig. 6. We observe that the contrastive
learning objective boosts the empirical performance
of the resulting algorithm regardless of the data aug-
mentation approaches it is applied to. This further
validates our assumption that considering the global
information among the embeddings of all examples
is beneficial for leveraging augmented samples more
effectively.

4 RELATED WORK

Data Augmentation in NLP Different data augmentation approaches have been proposed for text
data, such as back-translation (Sennrich et al., 2016; Edunov et al., 2018; Xie et al., 2019), c-BERT
word replacement (Wu et al., 2019), mixup (Guo et al., 2019; Chen et al., 2020a), Cutoff (Shen et al.,
2020). Broadly speaking, adversarial training (Zhu et al., 2020; Jiang et al., 2020) also synthesizes
additional examples via perturbations at the word embedding layer. Although effective, how these
data augmentation transformations may be combined together to obtain further improvement has
been rarely explored. This could be attributed to the fact that a sentence’s semantic meanings are
quite sensitive to small perturbations. Consistency-regularized loss (Bachman et al., 2014; Rasmus
et al., 2015; Laine & Aila, 2017; Tarvainen & Valpola, 2017) is typically employed as the training
objective, which ignores the global information within the entire dataset.
Contrastive Learning Contrastive methods learn representations by contrasting positive and neg-
ative examples, which has demonstrated impressive empirical success in computer vision tasks
(Hénaff et al., 2019; He et al., 2020). Under an unsupervised setting, Contrastive learning ap-
proaches learn representation by maximizing mutual information between local-global hidden rep-
resentations (Hjelm et al., 2019; Oord et al., 2018; Hénaff et al., 2019). It can be also leveraged
to learn invariant representations by encouraging consensus between augmented samples from the
same input (Bachman et al., 2019; Tian et al., 2019). He et al. (2020); Wu et al. (2018) proposes to
utilize a memory bank to enable a much larger number of negative samples, which is shown to ben-
efit the transferability of learned representations as well (Khosla et al., 2020). Recently, contrastive
learning was also employed to improve language model pre-training (Iter et al., 2020).

5 CONCLUSION
In this paper, we proposed CoDA, a Contrast-enhanced and Diversity promoting data Augmenta-
tion framework. Through extensive experiments, we found that stacking adversarial training over a
back-translation module can give rise to more diverse and informative augmented samples. Besides,

8
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we introduced a specially-designed contrastive loss to incorporate these examples for training in a
principled manner. Experiments on the GLUE benchmark showed that CoDA consistently improves
over several competitive data augmentation and adversarial training baselines. Moreover, it is ob-
served that the proposed contrastive objective can be leveraged to improve other data augmentation
approaches as well, highlighting the wide applicability of the CoDA framework.
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A DATA AUGMENTATION DETAILS

We select the following representative data augmentation operations as basic building blocks of
our data augmentation module. We denote xi = [xi,1, . . . , xi,l] as the input text sequence, and
ei = [ei,1, . . . , ei,l] as corresponding embedding vectors.

• Back translation is widely applied in machine translation (MT) (Sennrich et al., 2016; Hoang
et al., 2018; Edunov et al., 2018), and is introduced to text classification recently (Xie et al.,
2019). Back-Trans uses 2 MT models to translate the input example to another pivot language,
and then translate it back, xi → Pivot Language→ x′i.

• C-BERT Word Replacement (Wu et al., 2019) is a representative of the word replacement aug-
mentation family. C-BERT pretrains a conditional BERT model to learn contextualized represen-
tation P (xj |[xi,1 . . . xi,j−1[MASK]xi,j+1 . . . xi,l], yi) conditioning on classes. This method then
randomly substitutes words of x to obtain x′ ([xi,1 . . . x′i,j . . . xi,l])

4.

• Cutoff (DeVries & Taylor, 2017) randomly drops units in a continuous span on the input, while
Shen et al. (2020) adapts this method to text embeddings. For input embeddings ei, this method
randomly set a continuous span of elements to 0s, e′i = [ei,1 . . . ei,j−1, 0 . . . 0, ei,j+w . . . ei,l],
where the window size w ∝ l, and the start position j ∈ [1, l−w] is randomly selected. For trans-
former encoders that involve position embeddings, we also set input mask as 0s at corresponding
positions.

• Mixup (Zhang et al., 2017) interpolates two image as well as their labels. Guo et al. (2019)
borrows this method to text. For 2 input embeddings (ei, ej), mixup interpolates the embedding
vectors e′i = aei + (1 − a)ej where a is sampled from a Beta distribution. Also, the labels are
interpolated for the augmented sample y′i = ayi + (1− a)yj .

• Adversarial training generates adversarial examples for input embeddings, simply, e′i =
arg max‖ei−e′

i‖≤1 L(f(e′i), yi). We mainly follow the implementation of Zhu et al. (2020). Be-
sides, when computing the adversarial example e′i, the dropout variables are recorded and reused
later when encoding e′i.

Maximum mean discrepancy (MMD) (Gretton et al., 2012) is a widely used discrepancy measure
for 2 distributions. We adopt the multi-kernel MMD implementation based on Shen et al. (2018)5,
to quantify the distance of data distributions before and after DA transformations.

B DATASET DETAILS

The datasets and statistics are summarized in Table 4.

Corpus Task Sentence
Pair #Train #Dev #Test #Class Metrics

MNLI NLI X 393k 20k 20k 3 Accuracy
QQP Paraphrase X 364k 40k 391k 2 Accuracy/F1
QNLI QA/NLI X 108k 5.7k 5.7k 2 Accuracy
SST Sentiment × 67k 872 1.8k 2 Accuracy
MRPC Paraphrase X 3.7k 408 1.7k 2 Accuracy/F1
CoLA Acceptability × 8.5k 1k 1k 2 Matthews corr
RTE NLI X 2.5k 276 3k 2 Accuracy

STS-B Similarity X 7k 1.5k 1.4k - Pearson/Spe-
arman corr

Table 4: GLUE benchmark summary.

4EDA (Wei & Zou, 2019) uses synonym replacement, another word replacement technique. We choose
C-BERT for this family to take the advantages of contextual representation.

5https://github.com/RockySJ/WDGRL

13



Published as a conference paper at ICLR 2021

C IMPLEMENTATION DETAILS

Our implementation is based on RoBERTa (Liu et al., 2019). We use ADAM (Kingma & Ba, 2014)
as our optimizer. We follow the hyper-parameter study of RoBERTa and set as default the following
parameters: batch size (32), learning rate (1e-5), epochs (5), warmup ratio (0.06), weight decay
(0.1) and we keep other parameters unchanged with RoBERTa. For Back-Trans, we use the en-de
single models trained on WMT19 and released in FairSeq. More specifically, we use beam search
(beam size = 5) and keep only the top-1 hypothesis. We slightly tune Adversarial parameters on
MNLI based on FreeLB and fix them on other datasets, since adversarial training is not our focus.
For contrastive regularization, we implement based on MoCo. In GLUE evaluation, we mainly tune
the weights of 3 regularization terms, α ∈ [0, 1], β ∈ [0, 3], λ ∈ [0, 0.03] (Eq. 6, 11). Besides, for
smaller tasks (MRPC, CoLA, RTE, STS-B), we use the best performed MNLI model to initialize
their parameters6.

6RoBERTa: https://github.com/huggingface/transformers. FairSeq: https://github.com/pytorch/fairseq.
FreeLB: https://github.com/zhuchen03/FreeLB. MoCo: https://github.com/facebookresearch/moco. We will
release our model and code for further study.
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