CODASYL Data-Base Management Systems

ROBERT W. TAYLOR

IBM Research Laboratory, San Jase, California 95193

ond

RANDALL L. FRANK

Compuler Science Department, University of Uiah, Salt Lake City, Ulah 84112 -

This paper presents in tutorial fashion the concepts, notation, and data-base
languages that were defined by the CODASYL Data Deseription Language and
Programming Language Committees. Data structure dmgtam nothtion is ex-
plained, and sample data-bage definition is developed along with several aample

programs.

"Advanced features of the languages are diseussed, together with

examples of their use. An extensive bibliography is ineluded.

Keywords and Phrases: data base, data-base management, data-base definition, data
deseription language, data independence, data structure diagram, data model,
DBTG Report, data-base machines, information structure design

CR Categories: 3.51, 4.33, 4.34

NTRODUCTION

The data base management system (DBMS)
gpecifications, as published in the 1971
Report of the CODASYL Data Base Task
Group (DBTG) [81], are a landmark in the
development of data base technology. These
specifications have been the subject of much
debate, both pro and con, and have served
as the basis for several commercially avail-
able systems, as Fry and Sibley noted in
their paper in this issue of CompuTING
Surveys, page 7. Future national and
international standards will certainly be
influenced by this report.

This article presents in tutorial fashion
the concepts, notation, and data-base lan-
guages that are deﬁned by the “DBTG
Report.” We choose the term DBTG to
describe these concepts, even though since
1971 the role of the original Task Group
has been assumed by the CODASYL Data
Description Language Committee and the

Data Base Language Task Group of the
CODASYL Programming Language Com-
mittee. In faet, this article uses the syntax
of the more recent reports [S2, 83, S4].
However, because the fundamental system
architecture remains essentially the same
as that gpecified in the 1971 Report, we
still use the abbreviation DBTG; though
not strietly aceurate, “DBTG:” does reflect
popular usage.

This article explaing the specifications; it
will not attempt to debate the merits and /or
demerits of the specific approaches taken to
implement them or of the features of the
different approaches. Such debates have
taken place and they will continue to be
held. Michaels, Mittman and Carlson sur-
vey in their paper [see page 125] many of the
points that have been debated. It should
be remembered, however, that the initial
role of the DBTG was to recommend
language and system specifications for data-

Copyright © 1978, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted, provided that ACM’s copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.

Computing Surviepa, Vol. 8, No. 1, March 1978

63 . R.W. Taylor and B. L. Frank

CONTENTS

INTRODUCTION
1. DESIGN OF A DATA BASE
Concepin of Information Structure Design
Conceptn of Data Structure Design
Data Strueture Diagrams
Hiernrchiea (I-to-n relationships}
Many-to-Many Kelstionshipa
Complex Relationships Using Data Structure Diagrams
Presidential Data Base
2. SAMPLE DATA-BASE APFLICATION
Presidential Data Base in the DDL
Sub-sch of the Presideniial Data Base
Sample Retrieval Program
Sample Update Program
‘T'raversing an m:n Relation in the Conor DML
Other ConoL DML Facilities
3. ADVANCED FEATURES
Data-Base Procedures
Atean
Loeation Mode
Search Keya
Bet Seleotion
Currency Indicators
4. IMPLEMENTATIONS OF THE DBTG SPECIFICA-
TIONS
GUIDE TO FURTHER READING
REFERENCES
ACKNOWLEDGMENTS

e e]

base processing in the CoBoL programming
language. Data-base applications written
in a host programming language are often
associated with both large data bases which
contain 10° characters or more and a weli
known set of applications or transactions,
perhaps run hundreds of times a day,
triggered from individual terminals. Such
extensive processing must be efficient, and
the designers of the DBTG system took
care that its applications could be tuned to
ensure efficiency. Although the DBTG
recognized the importance of supporting
other language interfaces for a data base,
especially “self-contained” languages for
unanticipated queries, it did not directly
address the problem of other interfaces.

Computing Surveys, Vol. 8, No. 1, March 1976

This paper presents concepts and language
statements that are characteristic of DBTG-
like systems. Where possible, we point cut
how a particular feature or option might
be used.

1. DESIGN OF A DATA BASE

Two of the most difficult areas of data-base
management are the design of an informa-
tion structure and the reduction of that
structure to a data structure which is
compatible with and managed by the
DBMS. This section deals with both of
these topics, though emphasis is placed on
the data structure design decisions which
must be made. Later on, we introduce and
provide examples of data structure diagrams,
a notation that is widely used to deal with
data and information.

Concepts of Information Structure Design

Data-base management systems are tools
to be applied by the users of these systems
to build an accurate and useful model of
their organization and its information
needs. To accomplish this, the information
structure must accurately define and char-
acterize the items of data and the relations
among them that are of interest to the users.
This is no small tagk, for it demands a
knowledge of the organization and the
distribution of information among its
various parts.

There is currently very little theory
which can guide a designer in the construe-
tion of this model, though there are several
guidelines that can be formalized [M9].
We present here a more intuitive formula-
tion.

A data-base designer first has the problem
of identifying all the relevant entities (per-
son, place, thing or event) that are of in-
terest to his organization. For each entity,
the relevant attributes must be identified.
This is not an easy task in practice. Dif-
ferent users may call the same entity or
atfribute by different names or have dif-
fering views of it. Some users may call
different attributes by the same name. It
seems that resolution of such problems is
primarily & human activity, though some

CODASYL Data-Base Management Sustem .

asutomated help is available in the record-
keeping phase through the use of dale
dictionary software to catalog various
characteristics of the attributes—name,
length, type, who generates it, who uses it,
etc. Once the relevant attributes are identi-
fied, the data-base administrator has the
problem of grouping attributes together
inte proper entities. Some possible guide-
lings for doing this are:

1) Determine those attributes (or con-
catenations of attributes), occurrences
of which identify the entities being
modeled. Call these attributes ‘denti-
Jers or candidale keys. For example, if
students are the entity being modeled
and each student has 2 unique student
number as well as a social security
number, then both student number
and soeial security number are identi-
fiers. Group together all identifiers
for a particular entity.

2) Determine those other attributes of
an entity that deseribe it, and there
will be only one value of this attribute
for a given entity, but the attribute is
not part of an identifier. Consider
grouping these nonidentifier attributes
with the identifier or identifiers of the
entity. For example, if students have
a name and are admitted from a given
high school, the items name and high
school would be grouped with the
student number and social security
number.

3) If, for an identifier, there may be
several values of an attribute, con-
sider whether this “repeating item”
may be better modeled as part of a
separate entity, For example, if a
student is enrolled in several courses,
consider whether courses are not
themselves separate entities worthy
of being modeled. If they are, then
see guideline 4 below. If not (for
example, if educational degrees are
considered to describe a student but
are not entities in themselves), then
either allocate a scparate attribute
for each of the finite number of repe-
iitions (degree 1, degree 2, ete.), or
associate a dependent, repeating
structure with the entity.

69

4) If a one-to-many agsociation exists
between geparate entities (for ex-
ample, if there are student entities
and dormitory entities, and many
students reside at a dormitory but a
given student - does not reside at
more than one dormitory), then
place the identifier of the “one™ with
the “many” entity. In our example,
we would place the dormitory identi-
fier with the student entity. If there
is a many-to-many association (for
example, if a student is enrolled in
many courses and a course has many
students enrolled), then consider
creating a new entity which describes
this association. This entity will
contain the pair of identifiers (namely,
the student identifier and course
identifier) along with any attributes
that depend on both identifiers, for
example, the grade received by the
student in the course.

The three examples of one-to-one, one-to-
many, and many-to-many associations do
not exhaust all possibilities: a person has
exactly two natural parents (a one-to-two
association); Abrial [M1] has discussed such
cases. ,

At the end of the information design
process, the designer should have a full
specification of those. entities that are of
interest, their necessary attributes, and the
names of the entities and attributes; those
attributes that are entity identifiers; and
those attributes that identify other en-
tities. Data structure design can then
commence, '

Concepts of Data Structure Dasign

Ideally, an information structure can be
handled, as designed, by the DBMS. (Later
we give examples of situations for which
this is not the case). But there is still much
to be done to complete the design, One task
is to inform the system of the information
structure. This is generally achieved by
stating the design in' & formal computer
language (the data deseription language).
The data-base definition or schema,! written

1 The word schema i3 used because the definition
is a “schematic”” diagram of the data base.

Computing Suryeys, Yal. 8, No. 1, March 1976

70 . R. W. Taylor and R. L. Frank

in the data description language, is nor-
mally compiled into internal tables of the
DBMS. Before this is possible, however,
other design decisions must be made. In.
formation structure design deals with en-
tities and attributes. In contrast, data-base
management systems manage records which
are organized as indexed sequential files,
hashed or direct access files, inversions,
ring structures, or other structures [G1].
Thus it is necessary to reduce the entity
and attribute level of data-base design to
the world of computers, c.g., to choose
among storage allocation strategies; to
equate entities with records, perhaps repre-
senting associations with pointer structures;
to decide whether some attributes should be
indexed; and to choose betwecen one-way
and two-way lists. A DBMS offers a variety
of options during the data definition stage,
and the data-base administrator must
choose a reasonable (if not optimal) alterna-
tive. Further, if any validity, integrity, or
privacy constraints are to be enforced, these
must also be stated.

In later sections we detail some of the
options for the design of data structures
(and the accompanying data description
language) as specified in the CODASYL
Data Description Language Journal of De-
velopment [32]. However, we must make the
following point. Different DBMSs offer
different options for the design of data struc-
* tures. Usually options that require more
human decisions offer increased control and
thus the opportunity to tailor data structures
to improve overall operation. On the other
hand, some systems require less of the user,
for example, those systems that make data
structure choices “automatically’” (that is,
according to the algorithms that are in
operation). These systems are generally
“ensier to use,” but often operate inefli-
ciently in cases when the structure chosen
“automatically” is suboptimal.

The associations that the DBMS can make
among records may not be sufficient to
represent the associations at the informa-
tion structure level. For example, the in-
formation structure may demand a many-
to-many association between entities, while
the system offers only hierarchical associ-
ations. In such cases, the data-base admin-

Computing Surveys, Vol. 8, No. 1, March 1076

istrator may either have to adapt the in-
formation structure model so that it can be
accommodated by the system, or find a
way to simulate (by using a special pro-
cedure library) the capabilities not directly
available in the DBMS,)

Clearly, data structure design is a de-
tailed, highly technical process which re-
quires the expertise of a professional, During
the design process, there is an immediate
need for a notation that can be used to
detail entitics and their associations. One
of the notations most widely used to model
entities and their associations (and the one
on which the DBTG system is based) is the
dafa structure diagram.

Data Structure Diagrams

The data structure diagram wag introduced
by Bachman [N1]. This graphic notation
uses two fundamental components—a rec-
tangle and an arrow. A rectangle enclosing
a name denotes an entity or record type
that is dealt with in the data base. Thus:

President

indicates that there are occurrences of the
record type named PRESIDENT. Each
record type is composcd of data items; but
the particular item names are suppressed
in this degeription, though they are defined
in the full data-base description.

It is important to distinguish between a
record type and an occurrence of a record
of that type. I'or example, WASHINGTON
and JEFFERSON denote two record oe-
currences within the record type PRESI-
DENT. We use the term record to denote a
record occurrence and we use the term
record type explicitly.

The second component in a data structure
diagram is a directed arrow connecting
two record types. The record type located
at the tail of the arrow is called the
owner-record type, and the record type
located at the head is called the member-
record type. This arrow directed from
owner to member is called a set type and
it is named. For example,

CODASYL Dala-Base Managemept -System . 71

State

1 Native-Sons

President

declares that a set type named NATIVE-
SONS exists between the STATE (owner)
and PRESIDENT (member) record types.
The declaration that a sei type exists speci-
fies that there are associations between
records of heterogencous types in the data
base. This allows the designer to interrelate
diverse record types and thus to model asso-
ciations between diverse entities in the real
world.

Tt is also possible to have more than one
member-record type in a set-type declara-
tion. However, for simplicity of explana-
tion, we do not treat that case in detail.

Just as the distinction was drawn be-
tween a record type and a record (oe-
currence}, so a distinction is made between
a set type and a set occurrence, The exist-
ence of a set type is declared by naming it,
stating its owner-record type (exactly one)
and its member-record type or types. A set
occurrence is one occurrence of the owner-
record type together with zero or more
occurrences of each member-record type.
Thus there i3 an occurrence of a set type
whenever there is an occurrence of its
owner-record type, A set occurrence is an
association of one owner record with n (= 0)
member records. It is this 1-to-n associating
mechanism that is the basic building block
for relating diverse records.

In every set occurrence, the following
associations cxist among the tenants (i.e.,
owner or member records) of that set oc-
currence:

» Given an owner record, it is possible to
process the agsociated member records
of that set occurrence.

« Given a member record, it is possible to
process the associated owner record of
that set occurrence.

« Given a member record, it is possible
to process other member records in the
same set oceurrence,

Any implementation that satisfies these
three rules is a valid implementation of the

concept of a set type. Bachman [Al] has
surveyed a number of possible implementa-
tion strategies.

Another rule of set oceurrence is easily
seen by examining the following example.
Two oceurrences of the WATIVE-SONS set
type are shown in Figure 1, where each
circle denotes a set occurrence. The owner
record is denoted by its STATE-NAME
item. Member records are denoted by their
PRESIDENT-NAME item. In each set
occurrence, there is one STATE record and
the related PRESIDENT records. Since
there are no Presidents who were born in
Maine, the Maine set occurrence involves
only the owner record (recall that there is
a set occurrence whenever there is an owner-
record oceurrence). A set occurrence with
no member-record oceurrences is ealled an

“empty set.

The reader should reallze that sets, as
the term is used here, bear very httle re-
lationship to the sets used in mathematics.
For example, the empty set just defined
has an element! To avoid possible confu-
sion, some authors have preferred to call
these structures “data’ strueture sets” [D1]
or “‘owner-coupled sets” [D2].

There is one other rule of set oceurrence:
a given member record may be associated
with only one set oceurrence of a given type.
A member record cannot simultaneously
belong to two owner recards for the same
set type. In terms of the circle diagrams of
Figure 1, any overlap among two circles
of the same type is illegal; it would be il-
legal to make EISENHOWER a native
son of both KANSAS and NEBRASKA
(see Figure 2). We give other consequences
of this rule later, but we empbasize that
this rule is fundamental to the understand-
ing of sets. Because of this rule, it is possible

Ficure 1. NATIVESONS get occurrences.

Computing Surviys, Val. 8, No. 1, March 1978

72 . R. W. Taylor and R. L. Frank

Nebraska

Eisenhower

FI1GURE 2.

Illegal set occurrences.

to regard a set type as a function with a
domain which is the occurrences of the
member-record type or types and with a
range which is the occurrences of the owner-
record type.

- We now present some examples of data
structure diagrams. Set occurrences are
denoted here in terms of onc possible im-
plementation—ring structures. However,
it is important to understand that a set
declaration does mot imply a method of
implemcntation. Any implementation that
supports the rules just discussed is possible.

Hierarchies (1-to-n Relationships)

A hierarchy is a common data structure.
In this structure, one record owns 0 to »
oceurrences of another record type; each of
those cecurrences in turn owns 0 to n oe-
currences of & third record type, ete.: no
record owns any record that owns it, either
directly or indirectly. For example, STATE-
PRESIDENT-ADMINISTRATION, as
shown in Figure 3, is a hierarchy. A possible
occurrence of thiz hierarchy is shown in
Figure 4.

In the ring structure shown in Figure 4,
there is an access path directed from the
owner record to its “first” member record,
and from the first member record to the
“next” member record. Each member
record, except the last, has a “next” mem-
ber record, and each member record, except
the first, has a “prior’” member record ac-
cessed by traversing the ring. In addition,
there is an access path directed from each
member record back to the “owner’ record.
(Note, however, that a traversal to the
“next”’ member record from the last mem-
ber record or to the “prior’” member record
from the “first” member record yields a
diagnostic.) We have now satisfied all the
requirements which were stated.

Computing Surveys, Vol. 8, No. 1, March 1976

State

l Mative-Sons

President

l Administrations-Headed

Administration

Ficure 3. Daia structure diagram of hierarchy,

Massachusetts

J, Adams J.Q. Adams J.F. Kennedy
=P
cm—— Native-S0ns

ey Administrations-Headed

TrGure 4. Oeccurrence of a hierarchy.

Many-to-Many Relationships

A second common structure relates two
record types which stand in a many-to-
many relationship to cach other. Consider,
for example, STUDENT and COURSE
record types. A STUDENT may be taking
many courses and a COURSE may have
many students. To model this, it is not
possible to construct the diagram:

Enrolled-1n

-
»

Student Course

ik
-
Has-Earolled

since a COURSE with more than one
STUDENT would simultanecusly be a
member in two set occurrences of EN-
ROLLED-IN, violating the rule of unique
ownership. This is illustrated in Figure 5.
Similarly, when a student takes more than
one course, the HAS-ENROLLED set ¢on-
dition is violated (see Figure 6).

The usual way of representing many-to-
many relationships iz to define a third
record type, as shown in Figure 7. This new
record type is used to relate the two other
record types; it containg any information
that pertains specifically to both STUDENT
and COURSE, eg., GRADE.

Figure 8 shows an oceurrence of the many-

CODASYL Dala-Base Managemgnt System . « 73

History

Has-Enrolted #1 Has-Enrolied #2

FicuRE 5. Course with more than one student.
Two oceurrences of ENROLLED-IN with a
shared member.

Enroiled-In #2
Envolled-In #1

Froure 6. Student entolled in more than one
courge, Two oceurrences of HAS-ENROLLED
with a shared member.

to-many relationship structure, It is pos-
sible to ascertain the classes a given student
is enrolied in by following the ENROLLED-
IN set; whenever a GRADE record is
found, one switches to the HAS-EN-
ROLLED set to find the owner record.
Then one returns to the GRADE record,
switches back to the ENROLLED-IN set,
and continues to the next GRADE record,
if any, ete. The retrieval of enrolled stu-
dents given a class record ig similar. When
‘viewed in this way, it is clear that n-dimen-
sional assoctations are possible when the
“intersection record” in the array is a
member of n set types. If the set types
are implemented using ring structures, the
structure is like a sparse array; this is an
appropriate structure in many applications.

Another example, used in the presidential
data-base example, is shown in Figure 9.
A President may be agsociated with many
Congresses and a Congress may serve with
more than one President (as a result of a
death in office, for example). In this case,
a many-to-many relationship exists. Whether
or not the intersection record contains data
meaningful to the user, which is frequently
the case, the introduction of the third
record type is generally a necessity. In
this example, the number and dates of
speeches addressed to a joint session of a
Congress by a President are examples of

Student Course

Enrolied-In I | Has-Enrolled

Figtre 7. Repregentation of many-te-many re-
lationships.

Grade

possible data items within the CONGRESS-
PRES-LINK record type.

Complex Relationships Using Data Structure
Diagrams

The preceding sectionr presented examples
of cases where a record type was a member
in more than one set type. It is also possible
for a given record type to be the owner of
more than one set type. Figure 10 illustrates
such a case. As shown in this figure, each
President won a number of Elections and
headed a number of Administrations. By
using data structure diagram notation, s
data-base administrator can define “net-
works,” where a record {ype may serve as
a member in one or more set types and as
owner in one or more other set types.

It is also possible {o represent “recursive”
structures such as the parts explosion or bill
of materials structure by using daia struc-
ture diagram notation. In the parts ex-
plosion structure, a part is eomposed of
other parts, which in turn are composed of
other parts, ete. While data structure dia-
gram notation does not forbid the same
record type from being both owmer and
member in the same set {ype, this rule has
been adopted by the Date Description
Language Journal of Development [52], For
example,

Part Used-in

is an illegal structure. However, it is still
possible to represent this structure through a
“relationship record type,” as shown in
Figure 11. The ASY record type represents
an assembly of subparts. This structure has
an occwrrence diagram as shown in Figure
12 (where horizontal lines are HAS-SUB-
STRUCTURE set oceurrences and vertical

Computing uﬁm&. 8, No. 1, March [974

74 . R, W. Taylor and R. L. Frank

Math English History
1
| 4 | 4 4
L] | DI 1 I
(I I : 1 |
B ep A 1
Bob] 'L ljl ' |
- 1
1 I 1
| i1
i
Carol -E . EJ:
* t *
1 ! [
p | 1
0 ! ! '
N | r‘-
Ted i o] !
< y |
P
————gp Enroiled-in
o en e om o Has-Enrolled

Ficure 8. Occurrence of many-to-many relationship.

President

Congress-Served I

Frgure 9. Many-to-many association in Presi-
dential data base.

Congress

President-Sarved

Congress~
Pres-Link

F 3

lines are HAS-SUPERSTRUCTURE set
oceurrences.)

Note that as a first approximation, we
can consider Figure 11 a special case of the
many-to-many relationship, That is, the
diagram: :

Part Part

has been “merged” because both sides are
of the same record type. By using the array
notation for the occurrence diagram (see
Figure 12), we can accomplish a “parts
explosion traversal” using the “find next,

switch sets, and find the owner in the other
set” traversal. The reader should be able

asy g

Computing Surveys, Yol. 8, No. 1, March 1076

President
T Administrations-
Elections-Won 1 Hesded
Election Administration

Figure 10. Multiple set ownership.

Part

Hag-Substructure Has-Suparstructure

y

Asy

Figure 11. Parts explosion structure.

to determine how a “parts implosion” tra-
versal could be aceomplished.

Figure 12 does not illustrate one concept:
that there is only one occurrence (not two)
of a part; that is, there 15 one bike, one
frame, ete. By “folding” the array, we ob-
tain Figure 13, where there is only one
occurrence of each part, with one part
deseription, quantity on hand, ete., no
matter where the part is used. The structure
can also be regarded as an acyclic directed
graph, as shown in Figure 14, where the

CODASYL Daig-Base Management Systeme » 75
Bike Wheel Frame Paint Fenders Body Nutslﬁolts ‘
14 14 14 14 14 14
— 1 1 L)] L] § T 1 LA | | I |
Ty 1 b by 1y 1
. ———— 5 - | —ASY - } 4 - ASY-
Bike i ' A:—‘s ,2 H e —iSvi
- iner ASY- ll‘l } 1’_ :] : :
Whee! L ! 1 ns.V-1_.21
H I,] H
[] § |
Frame ———ASY-L1—ASY-2.2 = ASY-23 =y
| IR B LB] -1
P! La L I I
Paint (|] :
LR 1,
ASY-2.2.1 ASY.-2.2.2
Fenders 1 11 -1
- t L)
Body | S]
el Hat-Substructure
Nuts/Bolts
- o= o= e =y Has-Superstructure
Fraure 12. Occurrence of parts explosion.
| 1o !
Bike = AS:’-I_AYS2 AS\I(-S
| | | 1
1 | I ;
Wheel T “—— T ; ASYl-1.| ASY|-1.2
+ ! ASY.2. 1= ASY-2 2-AS\!-2 3 m—
L A —— - | v v Vo
I I | I
I | i ! «
ASY-2.2.1 ¥ b ASY-2.2,0 wmn
Fenders] H L] t
- - - H H
| | I
PaiNt evehom = = == - PR ——— 1 [
| |
] |
BOAdY am o m e e o o e o e ow - o o - ——— — _! :
[}
-
i
NULS/BOILS wmm ot o i e e o o o e i e o o o e - - an - d

—— 25 SubStrUCtUTE

-t o wns Has-Superstructure
Fraure 13. Parts explosion with records merged.

contents of the ASY records are shown as
labels on the edges of the graph.

Presidential Data Base

Figure 15 shows our example, the Presi-
dential data base, using data structure

diagram notation, Record types are PRESI-
DENT, CONGRESS, ADMINISTRA-
TION, STATE, ELECTION, AND CON-
GRESS-PRES-LINK, These record types
represent the corresponding entities. In
addition, the following associations are
modeled using set types:

Computing Eurvi‘am,:]m. 5.,'.?10- 1, March 1076

76 . R. W. Taylor and R. L. Frank

Bike
ASY-1 ASY-2 ASY-3
Wheel Frame
|)
ASY-2.1 ASY-2.2 ASY-2.3
ASY-1.2 ASY-1.1
AsYz.2.1 Fenders Body
1
Paint ASY-2.2.2
v —
Nuts/Bolts §
dk
L -
Ficure 14, Parts explosion as a graph.
“Gystem®
All-Presidents-58
Administrations-Headed
Elections-Won President _{_’ Administration
Con ress-Sen:ed k Admﬁted Ouri
=LuUrin
9 Native-Sons 9
AY
Election Conagrass-Pres-L.ink State

Ali»Elec:ions—SS

President-Served
i

All-Strates-SS
L

System™ Congress

“System”

Freure 15. Data structure diagram of Presidential data base.

¢ Each President is associated with the
Elections he won.

® Each President is associated with his
Adminigtrations in the ADMINISTRA-
TIONS-HEADED set type.

® Each President is associated with a
number of Congresses in a many-to-
many relationship.

® EFach State is associated with a number
of Presidents who are its native sons.

Camputing Surveys, Vol. 8, No. 1, March 1976

® Each State (except the original thirteen)
was admitted during an Administration.
Figure 15 also ghows three set types
where the owner is “the system.” These are
called singular sets and are discussed in
more detail in Section 2, Sample Data-Base
Application. Based on the rules regarding
member-record accessibility, it is sufficient
to note here that the singular set type
implies that there are three access paths

CODASYL Daia-Base Maﬂagm'rt SM . 77

(however encoded physically), an access
path that passes through all occurrences
of PRESIDENT (ALL-PRESIDENTS-
88), an access path that passes through all
oceurrences of ELECTION (ALL-ELEC-
TIONS-8S), and an access path that
passes through all STATE records (ALL-
STATES-3S). These singular sets represent
entry points inte the data base in the sense
that particular Presidents, Elections, or
States may be located by values of their
constituent items, with no need to have ac-
cessed other records in the data base.

2. SAMPLE DATA-BASE APPLICATION

The DBTG specifications include several
languages which are to be used to describe
and manipulate data. In this section we
present an example of a data base which
uses these languages. The subsection titled
Presidential DataBase in the DDL dis-
cusses the use of the Schema data descriplion
language (DDL) to deseribe a data strue-
ture. The sub-schema of the Presidential
Data Base subsection presents a Sub-schema
longuage description of that part of the data
base which is to be processed by an applica-
tion program. Subsection Sample Retrieval
Program through subsection Traversing an
m:n Relation in the Coror DML illustrate
the use of the CoBoL programming language,
as augmented by the DBTG dats manipu-
lation languoge (DML), to access and up-
date the stored data. Some of the more
complex issues, particularly in the DML,
are not discussed here, though some are
presented in Section 3, Advanced Features.

Presidential Data-Base in the DDL

At the end of the preceding section we in-
troduced the components of the Presi-
dential data base, by using a data structure
diagram. We use this sample data base to
illustrate the concepts presented in the
remainder of this paper.

Here we give a description of the Presi-
dential data base in the Schema DDL. The
syntax is that adopted by the 1973
CODASYL Data Description Language
(DDL) Journal of Development [S2].

A description of a dl.tl bns&m the Sﬂhema
DDL, congists of four niajor gertions:

® an introductory clause

¢ one or more AREA elauses

® one or more RECORD elauses

® one or more SET e¢lauses.

The intreductory ¢lause is used to name the
data base and to state certain global se-
curity and integrity constraints.

An area is a logical subdivision of the
data hase, which in many implementations
corresponds to a file or data set in an operat-
ing system. While we usually think of a
data base as being a single integrated col-
lection of data, it is often desirable to sub-
divide such a data base into multiple logical
subunits, in order to implement special
security and integrity’ constraints and to
provide s mechanism to control the per-
formanee and c¢ost ‘of implementation.
Data-base security csn be increased by
placing highly sensitive data in logically
separate areas and by placing special con-
trols over those areas. Of eourse, physical
separation of the areas may be used to in-
crease security. Data-base integrity can be
improved by placing critical data in areas
that are safe from harm or are often dupli-
cated, while high performance areas may
need to reside on high 'speed devices. Simi-
larly, costs can be minimized by placing
infrequently used data im aress which reside
on less costly devices, Any logieal or physical
reason for splitting the data can utilize the
area concept.

The area description in the Schema DDL
allows the data-base administrator to name
these subdivistons of the data base and to
gpecify which of the aress eontain which
record types. The actual mapping of areas
to one or more physical storage volumes is
under the control of a separate device-
media control language (DMCL). The
peed for a DMCL was noted but has been
left unspecified by the DBTG and its sue-
cessor cominitiees., In many implementa-
tions of the DBTG specifications, the fune-
tions of the DMCL are. incorporated in the
job control or command language of the
operating system. Several advanced fea-
tures of areas are deseribed in detail in Bee-
tion 3, Subsection Areas.

Gomputing Surveys, Yol. &, No. 1, March 1076

78 . R. W. Taylor and R. L. Frank

For every record type in a data base
there exists a description in the Schema
DDL. A schema record description consists
of information about the record type, such
as its storage and location mechanism, and
information about the area or areas in which
occurrences of the record type may be
placed.

The record description contains a de-
seription of all data items that constitute
the record type. A record occurrence in the
stored data base consists of occurrences of
each data-item type that constitute the
record type. These record occurrences are
the units of data transfer between the
stored data base and an application ‘pro-
gram. Thus the application programmer
interface uses a ‘“‘record at a time” logic
(one record oceurrence is delivered or stored
for each command) in accessing the data
base.

For each set type in a data base, a sepa-
rate set description is written in the Schema
DDL. Each set description names the set
type, specifies the owner-record type and
member-record type or types, and states
detailed information on how occurrences of
the set are to be ordered and selected.

The introductory section of a schema
deseription consists of a statement naming
the schema, and certain security and
integrity constraints. For our sample data
base, this introductory section is:

SCHEMA NAME I8 PRESIDENTIAL;
PRIVACY LOCK FOR COPY IS ‘COPY PASSWORD'

into a Sub-schema (zee subsection Sub-
schema of the Presidential Data Base).
DISPLAY similarly eontrols the printing
of the stored schema. LOCKS controls the
altering of privacy locks in the schema,
which is analogous to controling who may
change the key to the key cabinet.

In the preceding example we speclfy that
when the Sub-schema processor is requestmg
a copy of the schema for use in processing a
sub-schema, it must supply the literal
‘COPY PASSWORD' as a privacy key.
Similarly, to modify the schema, a person
must satisfly the privacy constraints im-
posed by the procedure named CHICK-
AUTHORIZATION, (which is written by
the data-base administrator). Such a pro-
cedure iz automatically invoked every time
anyone attempts to modify the stored
schema. Buch a procedure is termed a
dala-base procedure (see Section 3, subsection
Data-Base Procedures).

Following the introductory section, we
can intermix descriptions of the areas,
records, and sets that make up the data base,
subject to the constraint that an area de-
seription must precede the description of all
records that may be placed in that area and
the constraint that all records that make
up & set must be described before the de-
seription of the set using them. For sim-
plicity, we present all ares descriptions,

PRIVACY LOCK IF'GR ALTER IS PROCEDURE CHECK-AUTHOKRIZATION;

This pames the schema (PRESIDEN-
TIAL) and specifies certain privacy criteria
(LOCKS) that must be met when attempt-
ing to access the stored copy of this schema.
In fact, the schema language provides four
types of privacy associated with accessing
the schema: ALTER, COPY, DISPLAY,
and LOCKS. ALTER controls the condi-
tions under which the contents of the stored
schema may be altered. (Note that this is
not the same ag altering the data hase.
Here we are controling the ability to modify
the schema itgelf, e.g., to add a new record
type to the data-base description.) COPY
controls who may copy the stored schema

Computing Surveys, Vol. 8, No. 1, March 1978

followed by all record descriptions, followed
by all set descriptions.

In cur exarnple we restrict attention to a
single area. Alf record occurrences are in
this single area, which is deseribed ag fol-
lows:

AREA NAME IS PRESIDENTIAL-AREA;
ON OPEN FOR UPDATE CALL UPDATE-CHECK;

Thig names the area as PRESIDENTIAL-
AREA and specifies that, if the area is
opened for update, a data-base procedure
(UPDATE-CHECK) will be invoked.

As shown in Figure 15 the Presidential

CODASYL Daia-Base Maﬂag&md%# Syﬂm . 79

data base consists of six record types: PRES-
IDENT, ADMINISTRATION, STATE,
CONGRESS, CONGRESS-PRES-LINK,
and ELECTION. We illustrate several of
these records in detail and then give a
short description of the remaining records.

The PRESIDENT record may now be
defined as:

RECORD NAME I8 PRESIDENT
LOCATION MODE 1S CALC

The Schemsa langnage also provides for the
inclusion of many additional data-item
attributes, some of which are discussed in
Section 3, Advanced :Features. The PIC-
TURE clause deseribes the number and
type of character positions that make up
the data item. For example, a picture of
A(10) gpecifies in a way similar to CosolL
or PL/I that the corresponding item is

USING LAST-NAME, FIRST-NAME, DUPLICATES ARE NOT ALLOWED

WITHIX PRESIDEXTIAL-AREA

02 PRES-KAME
03 LAST-NAME PIC “4(10)"
03 FIRST.NAME PIC “A(10)”

02 PRES-DATE-OF-BIRTH
03 MONTH-B PIC “A(9)”

03 DAY-B PIC "09"
03 YEAR-B PIC “0808”

02 PRES-HEIGHT PIC “X(10)"

02 PRES-PARTY PIC “A10)”

02 PRES-COLLEGE DIC “A(10)”

02 PRES-ANCESTRY DlIC “A(10)"

02 PRES-RELIGION PIC “A(10)”

02 PRES-DATE-OF-DEATH

03 MONTHM-D PIC “A(®)"

03 DAY-D PIC* 9"

03 YEAR-D PIC “gogp”

PRES-CAUSE-DEATH PIC “X(10)”

PRES-FATHER PIC “A{10)”

PRES-MOTHER PIC “A(10)"

ISEAT

After naming the record PRESIDENT,
the LOCATION MODE clause specifies
certain information about the way of placing
and retrieving record occurrences. In this
example, CALC is specified. CALC refers
to address calculation or hashing. The clause
specifies that a PRESIDENT record is
positioned according to the values of its
data items LAST-NAME and FIRST-
NAME. Note the addition of the DUPLI-
CATES ARE NOT ALLOWED clause,
which specifies that if an attempt is made to
store a new (but duplicate) cceurrence of
the PRESIDENT record the system should
reject the request and notify the application
program of the rejection. Of course, this
means that the data bage would not support
two presidents with same first and last
names!

The WITHIN clause specifies in which
ares Or areas occurrences of the record may
be placed: in our sample data base it is
PRESIDENTIAL-AREA, the ooly area.

Next, the data items that constitute the
record are specified. The names given for
the items are self-explanatory. Associated
with each data item name is a picture,

made up of 10 alphabetlc positiona. A pic-
ture code of X specifies an alphanumeric
position, and & picture code of 9 specifies a
numeric position. Data items can be col-
lected into groups, which are collections of
data items and (optionally) other groups
that are named. For example, the group
PRES-NAME consists of the data items
LAST-NAME and FIRST-NAME. Such
grouping provides for good documentation,
as well as easing the pmgrannmng task,
gince CosoL provides for pnnnuves for
manipulating groups a8 well as data items.

The ADMINISTRATION record is de-
fined ag follows:

RECORD NAME IS ADMIKISTRATION
LOCATION MODE IS Y1A ADmMS’l’RA‘Ho\s-HEADLD SET
WITHIN PRESIDENTIAL-AREA
02 ADMIN-KEY PIC "XXX"
02 ADMIN-INAUGURATION-DATE
63 MONTH PIC “98”
03 DAY PIC “go
03 YEAR PIC “9990"

This record uses a location mode of VIA,
which specifies that the record occurrences
are, where possible, to be located near other
record ocourrences in the ADMINISTRA-
TIONS-HEADED sst to which it is linked.
Thus all oceurrences of the ADMINISTRA-
TION record for a particular administration
would be placed near each other and the
owning PRESIDENT record. The VIA
specification advises the DBMS of the
desirability of clustering record oceurrences
on secondary storage. Of course, this is
only a request to attempt to cluster the
records; the system will follow an imple-
mentor-defined algorithm. The performance
of this algorithm will depend, in part, on
storage allocations made by the data—base
administrator.

The remaining record descnptmns are
presented without further discussion; they

Computing Burveye, Vel. 8, No. 1, March 1976

20 . R. W. Taylor and R. L. Frank

follow the same format as do the previous
two.

RECORD NAME 18 STATE
LOCATION MODE I8 CALC
USING STATE-XAME DUPLICATES ARE KOT ALLUWED
WITHIN PRESIDERKTIAL-AREA
02 STATE-NAME FIC “X(1)"
02 STATE-YEAR-ADMITTED FIC “999%”
02 STATE-CAFITAL PIC “X(10)"

RECORD NAME IS ELECTION
LOCATION MODE IS VIA ALL-ELECTIORS-58
WITHIK PRESIDENTIAL-ARE&
02 ELECTION-YEAR PIC 989"
02 ELECTION-WON-ELECTORAL-VOTES FPIC “999"

RECORD NAME I8 COKGRESS
LOCATION MODE 13 CALC
USING CONGRESS-KEY DUPLICATES ARE NOT ALLOWED
WITHIX FRESIDENTIAL-AREA
02 CONGRESS-KEY PIC “XXXX”
02 CONGRESS-NUM-PARTY-SENATE PIC “009”
02 CONGRESS-NUM-PARTY-HOUSE PIC ‘209"

RECORD KAME I8 CONGRESS-PRES-LINK
LOCATION MODE IS VIA CONGRESS-SERVED SET
WITHIN PRESIDENTIAL-AREA

When the record types that make up the
data base have been deseribed, the process
of relating record types through sets can
begin. The simplest type of set deseription,
termed a singular sef, is one where the
owner of the set is implicitly the “system.”
Because such a set has a unique owner,
there can be only one oceurrence of the set
{thug the term singular}. One way to use
the singular set is to collect all records of a
particular type for sequential access. In
the Presidential data base the record types
PRESIDENT, ELECTION, and STATE
are to be members of three singular sets.
The descriptions for these three sets are:

SET NAME IS ALL-PRESIDENTS-83
OWXER IS 8YSTEM
ORDER IS PERMANEXT SORTED BY DEFLNED KEYS
DUTLICATES ARL LAST
MEMBER 18 PRESIDEXNT MANDATORY AUTOMATIC
KEY IS ASCENDING LAST-XAME LN PRES-NAME
SET SELECTIOX IS THRU ALL-PRESIDENTS-S8
OWXER IDENTIFIED BY SYSTEM
SET NAME IS ALL-ELECTIONS-85
OWXER IS SYSTEM
ORDER IS PERMAXENT SORTED BY DEFINED KEYS
DUPLICATES ARE NOT ALLOWED
MEMBER 1S ELECTION MANDATURY AUTOMATIC
KEY IS ASCENDIXG ELECTION-YEAR
SET SELLECTION JS THRU ALL-ELECTIONS-SS
OWXNER IDEXNTIFIED BY SYSTEM
SET NAME 1S ALL-STATES-SS
OWXER IS SYSTEM
ORDER IS PERMANEXNT SORTED BY DEFINED KEYS
DUPLICATES ARE XOT ALLOWED
MEMBER 18 3TATE MANDATORY AUTOMATIC
KEY 15 ASCENDING BTATE-NAME
SLT SELECTIOXN IS THRU ALL-STATES-SS
OWNER LDEXTIFIED BY SYSTEM

Bince all three set descriptions follow the
same format, only the first set is described.
After naming the set type, the OWNER IS

Computing Surveys, Vol. 8, No, 1, March 1976

clause names the owner-record type. In
these three examples, a declaration of
SYSTEM as owner denotes singular sets.
The ORDER IS clauge specifies the order
in which member-record occurréneces may
be presented sequentially to an application
program. Here we specify the order of the
set to be sorted based on keys stated as
part of the deseription of the member record
(the DEFINED KEYS option). The
PERMANENT option (required for sorted
sets) specifies that an application program
may not make (permanent) alterations to
the order of a set. Thus any ordering changes
made by an application program are local
to the execution of that program and do
not permanently affect the data base.

The DUPLICATES clause specifies
whether duplicates are permitted for the
defined keys and, if they are, how they
should be handled. The DUPLICATES
ARE LAST option specifies that when an
attempt is made to store a member record
that has duplicated the keys of another
member-record occurrence, the system
should place the new record occurrence
after all existing record occurrences that
have the same key.

The MEMBER subentry names the
member-record types that make up this set
type. In all of the examples from the Presi-
dential data base, a set type is composed
of an owner-record type and a single mem-
ber-record type, though the specifications
allow for multiple member-record types in a
single set type.

The record type which acts as a member
of the set is named in the MEMBER IS
entry. This is followed by a statement con-
cerning the removal of member-record oc-
currences from set occurrences that is al-
Iowed and a statement speciflying how mem-
ber record occurrences are initially placed
in set occurrences. The MANDATORY
specification indicates that once an oc-
currence of PRESIDENT is placed in
ALL-PRESIDENTS-SS it may not be
removed from the set occurrence without
actually deleting the record occurrence.
The AUTOMATIC specification indicates
that each time a new occurrence of the

CODASYL Data-Base Managmqnt Sysem + 81

PRESIDENT record is stored in the data
base, it is automatically inserted in the
ALL-PRESIDENTS-S8 set. The combined
effect of MANDATORY AUTOMATIC
is that all occurrences of the PRESIDENT
record will be a member of the ALL-PRESI-
DENTS-SS.

The SET SELECTION clause allows the
system to support the AUTOMATIC in-
sertion of member-record occurrences into
the appropriate set occurrences, Since all
sets described have only one occurrence, the
system may (trivially) select the proper set
occurrence. For singular sets, the SET
SELECTION clause is a restatement of
the fact that the set is singular. The other
set descriptions present more complex eases
of set selection.

We now deseribe the ELECTIONS-WON
get:

SET NAME IS ELECTIONS-WON
OWNER IS PRESIDEXRT
ORDER 15 SORTED PERMANEXT BY DEFINED KEYS
DUPLICATES ARE NOT ALLOWED
MEMBER 18 ELECTION MANDATORY AUTOMATIC
KEY 18 ELECTION-YEAR
BET SELECTION 18 THRU ELECTIONS-WON

OWKER IDESTIFIED BY CALC-KEY

This set description basically follows the
same format as do the previous descriptions,
with the exception of the SET SELECTION
clause. Since there now exists an occcurrence
of ELECTIONS-WON corresponding to
each occurrence of PRESIDENT, we need
to tell the system how to relate a new oc-
currence of ELECTION to the ecorrespond-
ing occurrence of PRESIDENT. This arises,
for example, when a new ELECTION
record is stored, since we have declared
{with AUTOMATIC) that each new oc-
currence of ELECTION must be placed in
an oceurrence of the ELECTIONS-WON
set. By stating OWNER IDENTIFIED
BY CALC-EEY, the system is told that the
application program will state the necessary

CALC-KEY of the dm'teupondmg PRESI-
DENT. By referring to the description
for a PRESIDENT record, we note that
the CALC-KEY is LAST-NAME, FIRST-
NAME. Therefore, hefore we attempt to
STORE a new occurrence of ELECTION
in the data base, we must present the system
with values for the winning PRESIDENT
LAST-NAME and FIRST-WAME, Since
there is a one-to-one correspondence he-
tween owbper-record ocourrences and set
oceurrences, to identify a PRESIDENT-
record occurrence uniquely identifies the
corresponding ELECTIONS-WON set oc-
currence and allows ingertion of the oc-
currence of the new ELECTION record
into this set.

As discussed in Section 1, Design of a
Data Base, there is an m:n relationship be-
tween PRESIDENTS and CONGRESSES,
We relate these two records as follows by
use of an intermediate “link record,” which
in this case is CONGRESS-PRES-LINK,
shown in Display 1 below.

The sole purpose for CONGRESS-PRES-
LINK is to act as a link between PRESI-
DENT and CONGRESS, As such, it is not
meaningful to define & 2ort order, and it is
declared IMMATERIAL; the system may
kegp oceurrences in an nnplementor—deﬁned
order.

For both sets, the SET SELECTION is
determined by the CALC-KEY of the re-
spective owner record. For example, when
an application program determines that a
particular PRESIDENT is to be linked to
a particular CONGRESS, the program
must provide a value for the CALC-KEY
of PRESIDENT (LAST-NAME, FIRST-
NAME) and CONGRESS (CONGRESS-
KEY). When the program issues a STORE
operation on CONGRESS-PRES-LINK

Display 1

SET NAME 13 CONGRESS-SERVED
OWNER I3 PRESIDENT
ORDER IS PERMANTENT IMMATERIAL

SET SELECTION I3 THRU PREIDEK T-SERVED
OWNER IDENTIFIED BY L‘AIJG—]{EY

MEMBER 18 CONGRESS-PRES-LINK MAKDATORY AUTOMATIC

SET SELECTION IS THRU CONGRESS-SERVED
OWNELR IDENTIFIED BY CALC-KEY
SET NAME IS PRESIDENT-BERVED
OWXNER I8 CONGRESS
ORDER 18 PERMANEXRT IMMATERIAL

MEMBER IS CONGRESS-I'RES-LINK MAKDATORY AUTOMATIC

Compaiiing Burvers, Yol. 8, No. I, Mawch 1074

32 . R. W. Tayior and R. L. Frank

{CONGRESS-PRES-LINK is an AUTO-
MATIC member of both CONGRESS-
SERVED and PRESIDENT-SERVED),
the record is linked to both sets.

The other =sets relate the records
PRESIDENT, ADMINISTRATION, and
STATE:

SET NAME IS ADMINISTRATIONB-HEADED

OWNER IS PRESIDENT

ORDER IS PERMANENT SORTED BY DEFINED KEYS
DUFPLICATES ARE KOT ALLOWED

MEMDER IS ADMINISTRATION MANDATORY AUTOMATIC
KEY IS ASCENDING ADMIN-KEY
SET SELECTION I8 THRU ADMINISTRATIONS-HEADED

OWNER IDENTIFIED BY CALC-KEY

SET NAME IS ADMITTED-DURING
QWNER IS ADMINISTRATION
ORDER IS8 PERMANENT SORTED BY DEFINED KEYS
DUPLICATES ARE NOT ALLOWED
MEMBER I8 STATE MANDATORY MANUAL
KEY 15 ASCENDING STATE-YEAR-ADMITTED
SET SELECTION FOR ADMITTED-DURING
13 THRU ADMINISTRATIONS-HEADED
OWNER IDENTIFIED BY CALC-KEY
THEN THRU ADMITTED-DURING WHERE
OWNER IDENTIFIED BY ADMIN-KEY

SET NAME I8 NATIVE-S0N

OWNER 13 STATE

ORDER IS PERMANENT SORTED BY DETINED KEY®
DUPLICATES ARE LAST

MEMBER IS5 FPRESIDENT MANDATORY AUTOMATIC
KEY 13 ASCENDING LAST-NAME IN PRES-NAME
SET SELECTION I8 THRU NATIVE-SON

OWNER IDENTIFIED BY CALC-KEY

The format for the sets ADMINISTRA-
TIONS-HEADED and NATIVE-SON
follows that of the previous sets. In both
cases the owners of the respective sets have
CALC-KEYS defined for them, and these
calc-keys are used to determine an oceur-
rence of the respective sets when necessary.

The ADMITTED-DURING set intro-
duces several new concepts. The first of
these is the concept of MANUAL member-
ship. In previous examples all member
records have been declared AUTOMATIC,
meaning that when a new occurrence of the
member record iy stored in the data base, it
i3 to be automatically included in an oc-
currence of the set. There are two important
reasons an AUTOMATIC membership
attribute would be improper here. The first
reason concerns the cyclic structure of the
three sets, as shown by the data structure
diagram of Figure 16.

If each of the records, PRESIDENT,
ADMINISTRATION, STATE, shown in
Figure 16, were defined as automatic mem-
bers of their respective sets, problems would
oceur. Automatic membership implies that

Computing Surveys, Vol. 8, No. 1, March 1076

President Administration

Admin-
istrat.
ions
Headed

Native-Son Admitted-Duting

State

Fraure 16. Part of Presidential data base.

whenever a new record occurrence is stored
in the data base, it will be placed in an oc-
currence of each set in which it is an auto-
matic member. However, there is a one-to-
one correspondence between set occurrences
and owner-record occurrences. In order for
a sot occurrence to exist, there must be an
oceurrence of its owner. In the context of
Figure 16, if all three records are automatic
members of their respective sets, it is im-
possible to store the first record occurrence
of any of the record types (because storing
an automatic member record requires an
owner).

The solution to the dilemma, as required
by the CODASYL specifications, is the
declaration that one of the member records
(in a eyelic structure) is MANUAL. In
this example, we declare STATE to be a
manual member of ADMITTED-DURING.
The implication is that appropriate occur-
rences of STATE must be stored in the
data base first; then store occurrences of
PRESIDENT, and finally occurrences of
ADMINISTRATION. After the record
ocourrences have been stored, the appli-
cation program can traverse the structure
and can manually link together STATE and
ADMINISTRATION record oceurrences.

The second and more fundamental reason
for declaring STATE a manual member
concerns the nature of the data being
stored. The original thirteen states of the
Union existed from the beginning of the
Country, and were not ‘“added” during
any President’s Administration. It would
be improper to require that these States
be placed in any occurrence of ADMITTED-
DURING; hence STATE must be a manual
member of ADMITTED-DURING. In
general, when a member record participates

CODASYL Data-Base Maﬂaympz Sym . B3

conditionally in a set, the MANUAL attri-
bute is used.

The second major concept introduced by
the ADMITTED-DURING set concerns
its SET SELECTION clause. In all pre-
vious examples, SET SELECTION is
either obvious (for singular sets), or ap-
parent directly through the CALC-key of
the owner record of the set. If we refer to
the description of the ADMINISTRATION
record, we note that the location mode for
the record is VIA the ADMINISTRA-
TIONS-HEADED set. Thus we may not
identify the owner of ADMITTED-
DURING by presenting a CALC-key, since
ADMINISTRATION is not a “calced”
record. In this case we chose an option
which specifies that we first select an oceur-
rence of ADMINISTRATIONS-HEADED
by presenting the CALC-key of PRESI-
DENT. The result of this operation is the
determination of a set oceurrence of
ADMINISTRATIONS-HEADED. Then,
from among the occurrences of ADMIN-
ISTRATION that participate in the
ADMINISTRATIONS-HEADED just se-
lected, we select an ADMINISTRATION
record by providing its ADMIN-KEY. Once
we have identified an occurrence of AD-
MINISTRATION, we have also identified
an occurrence of ADMITTED-DURING.
It is important to note that the second phase
of thig process, that of selecting an occur-
rence of ADMINISTRATION hased on a
value for ADMIN-KEY, is performed only
among those occurrences selected during
the first phase. Thus there is no requirement
that ADMIN-KEY be unique across the
data base, but only that it be unique within
individual oceurrences of ADMINISTRA-
TIONS-HEADED.

We have now deseribed the Presidential
data base. The next phage is the declaration
of one of more sub-schemas.

A Sub-schema of the Presidential Data Base

The Schema defines the entire data base
that is stored and available to all users.
But an application program may need to
view only some parts of the data base, as
well as to make some simple changes. The

Sub-schema DDL allows 2 data»ba.se ad-
ministrator to delimit which portions of a
data base (as declared in the Schemia) are
to be made available to the application
program or programs. It also enables the
data-base administrator to make some
changes in the way that the stored data is
presented to an application program; for
example, the internal representation of &
data item might be changed from binary
in the data base to decimal when passed
to the application program. The particular
sub-schema deseribed here is defined for use
with CoporL. CODASYL intends to de-
velop sub-schema languages for other
programming and self-contained languages.

The application programs discussed later
need only the information in that part of
the data base which is shown in Figure 16.
We therefore define & sub-schema to be
used for that information only. The first
part of the definition gives names and
privacy keys:

53 PRES-ADMIN-STATE-INFO WITHIN
SCHEMA FRESIDENTIAL
PRIVACY KEY I3 COPY PASSWORD’. .

This calls the sub-schema PRES-ADMIN-
STATE-INFO, and names the privacy key
which allows the sub-‘schema processor to
access the stored schema; the schema defini-
tion has a COPY privacy lock.

Next, the necessary areas are defined; we
must select those areas that are required
by the application programs that access
the data base through this sub-schema.
Due to conflicts with CopoL reserved words,
the term AREA in the Schema DDL is
called a REALM in the sub-schema and
CopoL. DML. Since tliere is only one ares
in the schema, we specify that it is to be
made available:

REALM D]V]BIéN
RD PRESIDENTIAL-AREA.
Next we define the sets required in this
sub-schema:
SET DIVISION.
8D ALL-PRESIDENTS-88.
SD ALL-STATES-B8.
8D ADMIXISTRATIONS-HEADED.

SD ADMITTED-DURIKG.
§D NATIVE-SON.

Finally we name the records and cor-
responding data items that are part of this

Computing Survieys, Vol. 8§, No. I, March 1976

84 . R. W, Taylor and R. L. Frank
sub-schema:

RECORD DIVISION.

01 PRESIDENT.

02 PRES-NAME.
0§ LAST-KAME PIC A(10).
03 FIRST-NAME PIC A(10).

01 ADMINISTRATION.
02 ADMIN-KEY ¥PIC XXX,
02 ADMIN-INAUGURATION-DATE.
03 MONTH PIC 90
03 YEAR PIC 9999,

0 STATE.
02 STATE-NAME PIC X(10).
02 STATE-YEAR-ADMITTED FPIC 9999

In this record section we not only elimi-
nate unnecessary records from the sub-
schema, but include only those data items
of interest to an application program using
this sub-schema.

Sample Retrieval Program

Once the schema and sub-schema are de-
fined, application programs can be written
to store and access data. The DBTG speci-
fications do not include a special data-base
population function; therefore the first
program written is normally a data-base
load program. We sghall, however, assume
that a data base does exist for our examples.

The first program presented here finds
all of the States that have more than one
President as a native son. Then we print
out the name of the State with its number
of Presidents. Queries like this, which in-
volve traversing almost the entire data base
and performing counting are well suited for
DBTG-type systems. o

The DML presented in this section is
designed to augment the CosoL program-
ming language. To save space (and to aid
those who are not CoBOL programmers),
the examples use English language de-
scriptions for nondata-base functions such
as input/output and computation. For those
who know the Copon programming lan-
guage, the corresponding code should be
obvious.

Our CoBor/DML program begins with
the standard Copor IDENTIFICATION
and ENVIRONMENT DIVISIONS:

IDENTIFICATION DIVISION.
PROGRAM-NAME. SAMPLE-QUERY.
ENVIRONMENT DIVESION.

identification of hi i t and

declaration of non-data-base files
(i.e., standard COBOL files)

Computing Surveys, Vol. 8, No. 1, March 1976

The IDENTIFICATION and EN-
VIRONMENT DIVISIONS remain un-
changed from those used by standard
CopoL. Within the ENVIRONMENT DI-
VISION, we assign an internal Copot file
to the actual print file, for output of our
query.

The Copor DATA DIVISION ineorpo-
rates the link to the data base:

DATA DIVISION.
FILE SBECTION.
DB PRES-ADMINSTATE-INFO WITHIN PRESIDENTIAL.
D REPORT-FILE.
remainder of data item entries which make
up & standard COBOL file.
WORKING-STORAGE SECTION.
77 PRESIDERT-COUNT USAGE COMPUTATIONAL PIC 999.
77 DONE PIC 9(3) YALUE “04021".

77 NO-MOREBONS PIC A(5).
77 NO-MORESTATES PIC A(S).

The DB entry specifies which sub-schema
and schema this program is . referencing.
While: not required by the specifications,
the effect of such a statement in most im-
plementations is to cause the record de-
seriptions from the sub-schema (augmented
by schema information) to be copied into the
CopoL application program, thus reserving
space within the program for each data-base
record type (and selected items) which this
program may access. The record and data
item names declared in the sub-schema are
therefore referenceable from the Coson
program. DML verbs cause the DBMS to
transfer data to/from the buffers reserved
by copying the sub-schema record descrip-
tions into the program.

The working storage section remains un-
changed; here we define local variables to
be used in the program. PRESIDENT-
COUNT is used to keep a count of the na-
tive sons of a particular state. DONE is
used as a mnemonic device for the status
condition of a data-base. It is initialized
to the correct status value. While using a
DBTG-like system, it might be common
practice to define a library of common
status codes and to include them in the
working storage section by using the CopoL
COPY facility. NO-MORE-SONS and NO-
MORE-STATES are status variables used
within the program logic.

The procedures for accessing the data base

CODASYL Date-Base Management Syistem . 85

are speeified in the Conon PROCEDURE
DIVISION:

PROCEDURE DIVISIOX,
DECLARATIVES.
EXPECTED-TRROR SECTION.

USE FOR DATABASE-EXCEPTION ON ‘04021
EXPECTED-ERROR-HANDLING.

EXIT.
UNEXPECTED-ERROR SECTION.

USE FOR DATABASE-EXCEPTION OX OTHER.
UNEXPECTED-ERROR-HANDLING,

here we would process unespected etror

condetions.

EXD DECLARATIVES.

The first part of the PROCEDURE
DIVISION is the DECLARATIVES sec-
tion. In the DECLARATIVES szection we
state that the processing is to take place
when the DBMS determines that an error
has occurred. The DBMS maintains a
statug location that can be referenced in
the program by the name DATABASE-
STATUS. DATABASE-STATUS, upon re-
turn from a DML command, will contain a
value of “00000” if the command was suc-
cessfully executed. A nonzero code repre-
gents an error condition, with the value
for the code indicating the nature of the
error.

In the event that an error code results
from a DML operation, control is returned
to that section within the DECLARATIVES
that corresponds to the error code. For
every error status code listed explicitly in a
USE FOR DATABASE-EXCEPTION ON
‘‘error status code”, control is passed to the
paragraph that follows the USE statement.
In the preceding example, if a DATABASE-
STATUS of “04021” were returned, the
paragraph labeled EXPECTED-ERROR-
HANDLING would be invoked. Any
DATABASE-STATUS codes that are not
explicitly listed cause a transfer to the para-
graph following the USE FOR DATABASE-
EXCEPTION ON OTHER statement. In
the preceding example, control would be
returned to the paragraph UNEXPECTED-
ERROR-HANDLING after an unlisted
DATABASE-STATUS statement resulted.

As implied by the paragraph and section
names in the preceding example, there is
generally a distinction between error situ-
ations that we expect to happen as part of
our normal processing, and error situations
thut are totally unexpected. An example of

an expected error situation occurs when we
sequentially traverse ‘through a set oc-
currence and reach the end of the set oc-
currence. Such an error situation usually
means that we should proceed to another
part of our program to, continue processing.
An example of an unexpected error condi-
tion is an input/output error (for example,

bad parity detected).
In this example the DATABASE-

STATUS code of “04021” corresponds to
the end-of-set occurrence condition just
mentioned. When such an error oceurs, the
processing specifies a return to the state-
ment following the DML command which
caused the error (EXIT). The program
would then examine DATABASE-STATUS
and, if an end-of-set cccurrence eondition
had occurred, could braneh to another part
of the program.

If any DATABASE-BTATUS eode other
than “04021" oceurs, control is passed
t0 UNEXPECTED-EBROR-HANDLING.
Here we would specify the processing to
take place for these unexpected error sifu-
ations. The code can examine DATABASE.-
STATUS as well as other status loeations in
an attempt to determine what caused the
error and how the program should attempt

to recover from it.
Following the DECLARATIVE pection
are the normal processing procedures:

INITIALIZATION.
READY PRESIDEXTIAL-AREA.
OPEN noa-dntabase COBOL files.
MOVE “FALSE” TO KO-MOREETATES.
TIND FIRST STATE IN ALLSTATESSS,
PERFORM PROCESS-STATE THRU l'mlsﬂsm'm
UNTIL KOMORESTATES w “TRUE?
GO TO FINISH-UP.
PROCESS-STATE.
MOVE 0 TU PRESIDENT-OOUKT.
IF NATIVE-SON 18 EMPTY
MOVE “TRUE"” T0 XO-MORESONS,
ELSE MOVE “FALSE* TO KO-MORESONS.
PERFORM COUNT-KATIYESORS
UNTIL XO-MORESONS = “TRUE”.
GO TO FINISH-STATE,
COUNT-NATIVESOKS.
FIND NEXT PRESIDEKT IN KATIVE.SON,
II' DATABASESTATUS = DOKE
MOVE “TRUE" TO KO- MORESOKS
ELSE ADD 1 TO DENT-COUKT.
FINISH-STATE.
IF PRESIDENT-COURT I8 GREATER THAN 1
FIND STATE CURREKT,
GET STATE,
writc oué stato name and president count.
FIND KEXT STATE IN ALLSTATESS%
IT DATABASESTATUS = DOKE
MOVE “TRUL” TO XO-MORE-STATES.
FINISH-UP.
FINISH PRESIDENTIAL-AREA.
CLOSE non-database COBOL files.
STOP RUN,

Gompuﬁuﬁurvgp,ﬂl,ﬂh.l.&mhlm

86 . R. W. Taylor and R. L. Frank

The initialization of this program involves
READYing the PRESIDENTIAL-AREA
realm (area in the Schema language), which
makes this realm available to the applica-
tion program. Following this, any standard
CopoL files are opened (for example, the
report file). NO-MORE-STATES is used to
indicate that we have finished processing
all of the states, and is initialized to
“FALSE”. :

Our algorithm used to solve this query
is to traverse the STATE-record occur-
rences (hy sequencing through the singular
set ALL-STATES-SS). As we find each new
STATE record, we check to see whether its
NATIVE-SON set is empty (i.e., whether
there are no native sons of that state), in
which case we move to the mnext state.
Otherwise, we traverse the occurrence of
NATIVE-SON, counting the PRESIDENT
records that participate in the set occur-
rence. If the count is equal to or greater than
one, we write out the state name and num-
ber of native sons. If not, we continue by
selecting the next STATE record until we
have finished processing all states.

The FIND statement in the Copor. DML
is used to loeate a specified record oceur-
rence in the data base. It does not cause the
contents of the found record to be trans-
ferred to the working storage of the pro-
gram. For example, the statement FIND
FIRST STATE IN ALL-STATES-SS causes
the system only to locate the record oc-
currence. The FIND statement changes the
status of several currency éndicators so that
they point to the first record oceurrence in
ALL-STATES-SS. The member record
which iz “first” depends on the member-
record order which was specified in the
Schema deseription of the set.

By finding an occurrence of a STATE
record, we have identified an occurrence of
the NATIVE-SON record. We now PER-
FORM (execute) the CosoL paragraph la-
beled PROCESS-STATE through FINISH-
STATE until the variable NO-MORE-
STATES is set to the value of “TRUE", at
which point we branch to FINISH-UP.

Within PROCESS-STATE we initialize
PRESIDENT-COUNT to zero. If the
eurrent occurrence of NATIVE-SON
is empty, we set NO-MORE-SONS to
“TRUE”; otherwise, NO-MORE-SONS re-

Famrnutine furvave Wal R Nn 1 Mawh 1078

ceives the value “FALSE”. When the set is
not empty, we PERFORM the paragraph
COUNT-NATIVE-SONS untii NO-MORE-
SONS is set to “TRUE".

Within COUNT-NATIVE-SONS we
FIND the NEXT occurrence of PRESI-
DENT. NEXT ig relative to the current
record occurrence of NATIVE-SON. If the
current record of NATIVE-SON is the
owner record (STATE), “next” is the first
member record. When a PRESIDENT
record is the current record of NATIVE-
SON, then the “next’ record is the PRESI-
DENT record which follows (unless the set
is now exhausted).

If the program has traversed through all
occurrences of PRESIDENT within the
current. oceurrence of NATIVE-SON, the
system sets DATABASE-STATUS to indi-
cate this and passes control to the
DECLARATIVES. Within the DECLARA-
TIVES we have specified that for an end-
of-get conditicn return is to be passed back
to the statement after the FIND command.
The program then sets NO-MORE-SONS
to “TRUE"”, which causes the execution of
COUNT-NATIVE-SONS to terminate.

If we have successfully found another
occurrence of PRESIDENT, we increment
PRESIDENT-COUNT and continue an-
other iteration through COUNT-NATIVE-
SONS.

The paragraph FINISH-STATE is en-
tered when we have finished counting all of
the native sons of the current STATE. We
check PRESIDENT-COUNT to see whether
its value is greater than ome; if it is, we
re-locate or again find the current STATE re-
cord (FIND STATE CURRENT) and GET
it. The GET command causes the transfer of
the record occurrence from secondary stor-
age/system buffers to the internal work
space of the program. After GETting the
current STATE record, we write out the
state name and the number of native sons.

We then proceed to select the next STATE
record within ALL-STATES-SS. If we have
finished processing all STATE records,
NO-MORE-STATES receives the wvalue
“TRUE", which causes the termination of
PERFORM PROCESS-STATE THRU
FINISH-STATE. Otherwise, we continge
with another iteration beginning at
PROCERS-STATE.

CODASYL Data-Base Monagement Sustem «

When we have finished processing all of
the STATE records, we enter the FINISH-
UP paragraph; when we FINISH (re-
lease) the realm PRESIDENTIAL-AREA,
CLOBSE, and non-data-base {(Cosor) files, we
terminate the program.

Sample Update Program

While the Presidential data base is designed
primarily for retrieval, its updating is still
necessary, for example, at election time or
when a new state is admitted to the Union.
We now define a program to admit a new
state. Referring to the discussion of selec-
tion criteria for the ADMITTED-DURING
set, we recall that in order to enter a new
occurrence of STATE in the data base, we
must supply values for both LAST-NAME
and FIRST-NAME in PRESIDENT, and
for ADMIN-KEY in ADMINISTRATION.

In this program the IDENTIFICATION,
ENVIRONMENT, and DATA DIVISIONs
are bagically the game as before, and there-
fore we specify only the PROCEDURE
DIVISION:

PROCEDURE DIVISION,
DECLARATIVES.
UNEXPECTED-ERROR SECTION.
USE FOR DATABASE-EXCEPTION.
UNEXPECTED-ERROR-HANDLING.
horc we proeess Wnexpoeted orror conditions.
EXD DECLARATIVES.
INITIALIZATION.
READY PRESIDENTIAL-AREA,
USAGE-MODE IS UPDATE.
OPEN COBOL files.
STORE-NEW-STATE.
here we read in from standard COBOL input files
the values for LAST-NAME and FIRST-NAME in PRESIDENT
ADMIN-NEY in ADMINISTRATION, and values for the now
STATE record,
FIND ANY PRESIDENT,
IIND ADMINISTRATION IN ADMINISTRATIONS HEADED
USING ADMIN-KEY.
STORE STATE.
CONNECT STATE TO ADMITTED-DURING.
FINISH-UP.
VINISH PRESIDENTIAL-AREA.
CLOSE COBOL files.
STOP RUN.

Beeause STATE is a manual member of
ADMITTED-DURING (see subsection
Presidential Data Base in the DDL), we

87

must explicitly tell the system which AD-
MINISTRATION record occurrence is to
be the owner of the new STATE (in the
ADMITTED-DURING set). We' first lo-
cate the appropriate PRESIDENT. The
TFIND ANY PRESIDENT statemeént speci-
fies that the system is to locate (using
CALC) the occurrence of PRESIDENT
based on its key value (LAST-NAME,
FIRST-NAME). Then, within the occur-
rence of ADMINISTRATIONS-HEADED
owned by the PRESIDENT thus selected,
the system is to search for an occurrence of
ADMINISTRATION with a wvalue for
ADMIN-KEY equal to that supplied to the
program. We have now identified the neces-
sary occurrence of ADMINISTRATION.
When we request that the STATE informa-
tion be STOREd in the data base, we com-
plete the process by CONNECTIng the
newly stored State record to the current
occurrence of ADMITTED-DURING. If
the State had been:an AUTOMATIC
member of ADMITTED-DURING, the
sequence of FIND statements would have
been performed by the DEMS.

Traversing an m:n Relation in the COBOL DML

The relationship between CONGRESS and
PRESIDENT iz a many-to-many rela-
tionship (Section 1, subsection Many-
to-Many-Relationships) and mnecessi-
tated the imtroduction of a link record
(CONGRESS-PRES-LINK). The introduc-
tion of such a link record complicates tra-
versals from an occurrence of PRESIDENT
to his CONGRESSes, and vice-versa. We
present here a program segment designed to
traverse such an min relation.

We assume that LAST-NAME and
FIRST-NAME in PRESIDENT have been
set to a desired PRESIDENT in Dislay
2 below: ‘

Digplay 2

FIND ANY PRESIDENT.
FIKD-NEXT-LINK,

FIND NEXT CONGRESS-FRES-LINK IN CONGRESS-SERVED
II" DATABASE-STATUS = DONE GO TO COMPLETE-RUN.

FIND-CONGRESS.
FIND PRESIDENT-SERVED OWKER.

here we have located a CONGRESS record occurrence over which the PRESIDENT

served
GO TO FIND-NEXT-LINK,
COMPLETE RUN.
continuation of program

Computing Surviva Yok Lo, 1, Mared.1876

88 . R. W. Taylor and R. L. Frank

This program segment is designed to
FIND all CONGRESSes over which a
gpecified PRESIDENT served. After FIND-
ing the desired PRESIDENT, we traverse
through each of the CONGRESS-PRES-
LINK records owned by this PRESIDENT.
When we reach 3 DATABASE-STATUS
condition of DONE we have found all
CONGRESSes over which this PRESI-
DENT served.

After locating a CONGRESS-PRES-
LINK, we lock for the owner of the record
in the PRESIDENT-SERVED set. The
owner of PRESIDENT-SERVED is the
CONGRESS record. By FINDing each
CONGRESS-PRES-LINK owned by a
particular PRESIDENT within the CON-
GRESS-SERVED set and then by FINDing
the owner of the link in the PRESIDENT-
SERVED set, we can traverse from a
PRESIDENT to all CONGRESSes over
which he served. We can similarly traverse
from a given CONGRESS record to all
PRESIDENTs who served over that
CONGRESS.

Other Cosot DML Facilities

The examples presented here illustrate some
of the more important Cosor. DML ad-
ditions to the CoBoL programming language.
Primarily because of the static nature of
the Presidential data base, it is difficult to
ereate meaningful examples to illustrate
several additional Cosor DML (acilities.
Several are briefly discussed here.

In addition to storing a new record oc-
currence in the data base, an existing record
occurrence may need to have some of its
values changed. The MODIFY wverb is
available for this. This operation (which is
performed by the system) may be very
complex because the effect of a key change
may alter the position of the record or even
affect the sets in which it resides (through
set selection).

A record occurrence which exists in the
data base may be deleted by use of the
ERASE verb; once again, this may be a
very complex operation, because the MAN-
DATORY option may cause multiple de-
letions of many member records.

Finally, the second example showed the

Computing Surveys, Vol. 8, No. 1, March 1975

use of CONNECT to place a member
record in a set. By use of the DISCONNECT
verb an optional member record may be
removed from a set occurrence. Note that
DISCONNECT may only be used on op-

tional member records.

3. ADVANCED FEATURES

Section 2, Sample Data-Base Applications
introduced the basic facilities offered by the
DBTG systems. The paper by Sibley and
Fry {see page 7] pointed out, however, that
there is more involved in the design and
maintenance of a data base than the speci-
fication and manipulation of complex, in-
terrelated data-base structures. In par-
ticular, any complete system must provide
facilities that enable a data-base admin-
istration staff to write various utility rou-
tines for loading the data base, to check
its validity, to collect statistics about record
frequencies and clusterings, and to reallo-
cate groups of record occurrences to im-
prove performance. This list is by no means
exhaustive. It should come as no surprise
that the same logical structure can be
realized on a computer in a variety of ways,
each with varying efficiencies in dilferent
situations. Users occasionally need access to
a “low” level of data (one clese to bits on
the storage media); there must be such a
system interface.

An additional requirement in any system
designed to serve a wide community of
users concerns tuning and tailoring: means
must be offered to allow various system
services the option of either having their
performance improved for a particular ap-
plication mix, or having their services by-
passed when such usage would lead to un-
acceptable performance. Much has already
been said about data independence; cer-
tainly it is generally & major design goal.
But data independence ultimately involves
some execution time binding of deecisions,
and the extra computation involved may be
intolerable. Yet it may still be desirable to
allow certain programmers who knowingly
sacrifice data independence to use the data-
base system. The full recovery services of
the system may be needed; its ability to
manage multiple indexes may be needed; or

VU LF AN L 4 LA 12USC YV WWTHRETIOES YN0 -

its ability to be used in a ‘“‘customized”
access method written in a procedure-ori-
ented language may be needed.

The DBTG-like system architecture and
language facilities makes such uses possible.
The proposed facilities can be categorized
in two parts. Firgt, the DDL provides
facilities for a data-base administrator to
control various details of the storage strate-
gies. For example, a user may declare that
the system should create and maintain an
index on specified items within a record
type. The index would speed processing in
appropriate situations. Fxamples of this
and other DDL declarative facilities are
given later in this section. In addition, the
mechanism known as a data-base procedure
allows the normal system facilities to be
extended. Extremely detailed control- can
be attained, if desired, by the data-base
administrator, and hence performance tun-
ing is possible. Second, other facilities
provide a set of data manipulation verbs
(and a few more DDI options) which allow
designated users to access data in a way
that iz less data independent. For example,
there are facilities to obtain a data-base key
(a logical “pointer” to a record occurrence)
and subsequently to use this key to FIND
a record. Examples of some uses of such a
facility are included later. It is clear that
use of these facilities should be controlled
carefully, since data independence could
suffer. A preprocessor or cxtended compiler
could enforece such ingtallation-defined stand-
ards.

The subsections that follow illustrate some
of these advanced features. We augment
the schema developed in Section 2, Sample
Data-Base Application, and provide frag-
ments of programs that use the advanced
versions of various DML verbs.

Data-Base Procedures

The previous structural examples are
largely fixed at the time schema definitions
are made. For example, the record types,
set types, and several of their attributes
{e.g., AUTOMATIC) are all determined
before data-base processing begins. One
reason for this is, of course, that run-time
interpretation generally reduces efficiency;

o

hence record formats and aceessing strate-
gies are often fixed befbre processing begins.
However, any flexible system provides a
means whereby some: parameters can be
set (or certain extra processing can be
triggered) during exeention of a request.
The DBTG system provides for this with
data-base procedures.

A data-base procedure is logically a part
of the data-base definition (the schema).
It is a procedural angmentation of the
(largely) declarative schema. The conditions
under which a data-bagse proeedure is to be
invoked are given in the schema, either ex-
plicitly or implicitly. The procedure often
operates as an ON condition functions in
PL/I and may accomplish some change to
the data-base state or control parameters.
Data-base procedures can also he uged to
collect statistics and to enforce privacy by
cheeking passwords. We use the eoncept of
data-base procedures in many of the ex-
amples in the remaining subsections.

Data-base procedureg are commonly used
to derive data values. Frequently, certain
data items are computable from other items
in the data base. For example, the value of
the total salaries paid to the people in a
department is equal to the sum of the
separate salaries of each of the employees
of the department; or a person’s age can
be derived from his birth data and from
today’s date. Whenever such a functional
relationship exists, the data-base admin-
istrator can provide a data-base procedure
to compute the result. But two possibilities
still remain. The funetional value may be
computed each time the record oceurrence
is retrieved by a program (VIRTUAL), or
the functional value may he stored
(ACTUAL) in the record occurrence and
updated each time one of the values on
which it depends is changed. Depending
on the situation, performance can vary
widely (e.g., where an ACTUAL result de-
pends on time). The DBTG specifications
provide the data-base administrator with
the facilities for declaring items as either
ACTUAL or VIRTUAL results of other
items in the same record, or functions of
items within selected members of sets
owned by the given record. As an example,
suppose we wigshed to include, in PRIZSI-

Computing Suevhys, Val, 8 No. 1, March 197

90 . R. W. Taylor and R. L. Frank
DENT, the mazimum number of electoral
votes ever obtained in any election of that
president. This may be accomplished by
including an item in PRESIDENT::

02 MAX-ELECT-VOTES; I3 ACTUAL RESULT GF
FIND-MAX-CLECT-VOTES
ON MEMBERS OF ELECTIONS-WON,

where FIND-MAX-ELLCT-VOTES is a
data-bage procedure name. ACTUAL was
chosen here sinee updates should be in-
frequent. FIND-MAX-ELECT-VOTES
would be called each time a new ELECTION
record is added to the data base.

It is also possible to “propagate’” items
from an owner to a member record by using
a SOURCE statement. This statement
names the item within the owner-record
type from which the propagated value should
be drawn; once again, the data-base admin-
istrator can either save storage (virtual) or
ingure common copies of data values among
the various records in the set (actual). Ifor
example, consider the structure:

President

l Elections-Won

Election

where the data-base administrator has de-
cided to include the name of the winning
President as an item in the ELECTION
record (one reason for doing this might be
compatibility with a relational view of
data). One way of implementing is:

RECORD NAME IS ELECTION

02 WINNIKG-PRESIDENT IS VIRTUAL AND
SOURCE IS PRES-NAME
OF OWKER OF ELECTIONS-WON.

where PRES-NAME is a qualified name
of the itemn that will serve as the SOURCE
item when ELECTION is fetched.

Data-base procedures provide a number
of flexible facilities to control the behavior
of the data base. Additional examples in-
volving data-base procedures are given in
the following subsections.

Computing Surveys, Vol. 8, No. 1, March 1976

Aredas

The various record occurrences that are
the subject of the STORE command must,
of course, be placed on actual secondary
storage media. Naturally, if a data-base
administrator is to have any influence in
this placement strategy, there must be con-
structs in the DDL that allow this policy
to be stated. Such control over physical
placement scems to be necessary for rea-
gonable performance, ag demonstrated in
many environments, including those not
necessarily involving data bases. For ex-
ample, Moler [G2] shows that numerical
analysis programs which took advantage of
the clustering of array values on the same
page had significantly improved performance
in a paged environment; for example, in
ForrraN implementations with column
major order that scan by columns, not rows,
when possible. The same phenomenon is as
important in a data-bage application.

The DBTG system provides basically
two mechanisms for influencing record-
ocourrence placement: areas and location
mode (which is treated in subsection Loca-
tion Mode). “An area is a named subdivi-
sion of the data base” [S2, p. 2.23]. As was
previously illustrated, each area is named
in the schema, and there may be one or more
areas declared. Many implementors have
found it convenient to associate each area
declared in the schema with a file (a cata-
logable entity) in the associated operating
system. However, this need not be the case;
hence our previous stress that the area is a
logical rather than a physical concept.

Areas give the data-base administrator a
mechanism for clustering or separating
different record occurrences (possibly of
diverse types). A given record occurrence
of a given type may reside in only one area,
but other occurrences of the same record
type may reside in different areag, if desired,
Also, occurrences of different record types
can coexist in the same area. The area
concept allows data-base designers flexi-
bilities such as the following:

® If certain (or all) occurrences of a

record type are known to be archival,
they can reside in an area which is
associated with a less expensive storage

CODASYL Dato-Base Mannoement Sustem - 91

medium. It may be that this area need
not always be mounted.
® If records of diverse types are oiten
used together, their occurrences can
be clustered for high performance.

® By designating that all occurrences of
a record type reside in one area, and
by reserving that area for that record
type, the effect of homogenecous files
can be achieved.

¢ By omitting certain areas from a

subschema, a measure of privacy is
attained.
® Records may be processed consecu-
tively within an area (using the FIND
NEXT IN ABREA verb), and process-
ing can proceed at essentially se-
quential speeds, if the mnplementor
allows areas to be sllocated sequen-
tially, This is because each “page”
within an area will usually follow
the previous one in terms of residing
on the same cylinder on a disk. Such
performance can be important, es-
pecially in utility and certain bulk
“statistical”’ application programs in
which record ordering is not important.

® An ares may be used as a unit of
recovery. It is then possible to vary
the checkpoint policy for different
portions of the data base. Some im-
plementations may allow dual copies
of designated areas (maintained by
the system) both to reduce contention
and to serve as added protection
against catastrophe.

Since record occurrences are placed in
areas, there must be a mechanism for
specifying in which area a record occurrence
of 2 given type must be stored. In Section
2, Sample Data-Base Application, we il-
lustrated the constructs necessary to store
all records in a single area. Sineec every
record type had a unique area to contain
it, no special action was needed. If, however,
distinet oceurrences of the same record type
can potentially be stored in more than one
area, the situation is more complex. For
example, if the data-base administrator de-
clares that STATE records may be stored
in either of two areas by writing

RECORD STATE i
WITHIN EASTERN-ARRA, WESTERN. A;%EA
AREAAID IS STATE-AREA
then the variable STATE-AREA must be
initialized with the proper alphanumeric
area name at time of store by a command
like:
MOVE ‘BASTERN-ARTA’ TO STATEAREA.
STORE STATE.

In this example, the applications pro-
grammer has control gver area placement;
the MOVE (CoboL) statement is used to
initialize the AREA-ID variable. If the
variable is left “null,” then the area place-
ment algorithm i3 left to the system im-
plementor. Another option is to use a data-
base procedure:

RECORD STATE
WITHIN EASTERN-AREA, WESTERN-AREA

AREA-ID I3 STATE-AREA
USING PROCEDURE FICK-STATE-AREA

In this case, the procedure PICK-STATE-
AREA is invoked to load the variable
STATE-AREA, and the programmer need
not know about the multiple areas.

Areas, then, give rather explicit control
over major subdivigsions of the data base
and possibly their aszociation with storage
media. If this control is given to the appli-
cations programmer, there will probably be
some loss in data independence. However,
the decision concerning whether areas are
or are not transparent to an application is
in the hands of the data-base administrator.

Areas play an important role in data
manipulation in the DBTG system. They
are the basic unit (like files) which is
OPENed and CLOSEd. As discussed in
Section 2, Sample Data-Base Applications,
areas are called REALMs in the Cosor
subschema. The operations corresponding to
OPEN and CLOSE are called READY
and FINISH. The verb form

FIND NEXT record-name IN realm-nsme

provides 2 means whereby records can be
scanned in ascending “physical” order
within an area. For example, if the trans-
action that retires emiployees moves each
retired employee reeerd to a REALM
called RETIRED-EMPLOYEES, then a
“batch” program to scan sequentially for

Comonting Surveys, Vol, 8, No. 1, March 1976

92 . R. W. Taylor and R. L. Frank
all the recently retired employees would
be as follows:
READY RETIRED-EMPLOYEES.
FIND FIRST EMPLAOYEE IN RETIRED-EMPLOYEES,
cheek that at least one exists, then
PERTFORM PROCESS-EMPLOYEES UNTIL (DATABASE-STATUS =
END-OF-REALM)
STOP RUN,
PROCESS-EMPLOYEES.
Process an Employee record.
FIND NEXT EMPLOYEE IN RETIRED-EMPLOYEES.

Location Mode

As illustrated in Seection 2, Sample Data-
Bage Application, the DBTG-like systems
allow a data-base administrator to have
considerable control over the storage strate-
gies and interrecord clusterings among
records within a given area. This control is
achieved through proper use of the LOCA-
TION MODE clause, which appears in
the declaration of each record type in the
schema. It should be emphasized that the
LOCATION MODE of a record type
degignates the strategy to be used for initial
record placement when a new record oc-
currence is STOREd. Knowledge of how a
record was initially stored can also be used
in subsequently FINDing a record; but as
the examples have shown, there are many
ways of FINDing a record in the DBTG
system. Thus, one should not associate
LOCATION MODE with FINDing, but
rather with “setting in a particular place”
i.e., with the STORE command. As might
be expected, there is a version of the FIND
verb whick depends on a knowledge of the
location mode of the record being sought.
Improper use of this form could, of course,
lead to a loss in data independence.

There are four LOCATION MODEs de-
fined. SYSTEM specifies that an imple-
mentor-defined algorithm be used in storing
the record. Any area control specifications
would, of course, be used by this algorithm.

LOCATION MODE VIA set-name
(where the record type is a set type member)

specifies that the system place the new record
oceurrence ag close as possible to its “ap-
propriate” place in the set occurrence in
which it (potentially) will become s member.
This implies that the system will use the
SET SELECTION clause of the appropriate
set to find the proper owner-record oc-
currence. Having done so, the system will
use the insert properties of the set (first,
last, ordered, ete.) to place the new record.
Using the LOCATION MODE VIA mecha-
nism, it is possible to achieve a record
clustering that is eflicient for a “depth-
first” search. For example, consider the
following data structure diagram:

System

l Counties

County

l Cities

City

l Streets

Street

This diagram defines a hierarchical struc-
ture of a geographical region. By specifying
the following statements in the record
declaration section

RECORD COUNTY
.LOCATION MODE 18 SYSTEM
WI‘THIN GEQ-AREA

RECORD CITY
LOCATION MODE IS VIA CITIES SET
WlTHlN AREA OF OWNER

RECORD STREET

LOCATION MODE 18 VIA STREETS SET
WITHIN AREA OF OWNER

and declaring the sets, it is possible to ef-
fect a storage structure:

/_—__\
I Middiesex]I Lexington—l Main Licﬁool || Concord JlMain!l Bridge l

——l ilics

——. Streets

Gomputing Surveyes, Vol, &, No. 1, March 1976

CODASYL Data-Base Management System 93

Here, we introduce another option of the
WITHIN clause. This option is meaninglul
only when the LOCATION MODE of the
record is VIA some set-name. The area
" decision for a given record cecurrence fol-
lows the area decision of the associated
owner-record occurrence.

If a data-base administrator wishes more
explicit control over record placement, then
either of the two remaining loeation modes,
CALC or DIRECT, may be appropriate.
We illustrated, in Section 2, Sample Data-
Base Application, how LOCATION MODE
CALC may be used to place records ae-
cording to an implementor-defined ran-
domizing routine, The data-hbase admin-
istrator is also free to designate a data-base
procedure that can serve as an algorithm
for developing ‘“‘addresses,” based on the
value of the identifier or identifiers. Whether
such an algorithm attempts to behave
pseudorandemly over the space of possible
identifiers is, of course, determined by the
alporithm developer (the data-base ad-
ministrator). It is therefore possible to in-
corporate arbitrary record placement algo-
rithms into the system.

It is important to understand the rela-
tionship between the location mode of a
record type and the FIND verb. As il-
lustrated in Section 2, there are many ways
to FIND a record occurrence. These may be
classified into two types. Either one FINDs
a record occurrence based on its participa-
tion in a set (possibly a singular set), or
one FINDs a record occurrence based on
knowledge of how it was initially STOREd.
These two methods provide a number of
potential flexibilities. For example, by mak-
ing every record type a member in a singular
set and by having programmers FIND
record occurrences uging the form

FIND reeord-name IN singular-set-name USING identifier(s}

it is possible to provide access to all records
by specifying their partial contents. A
programmer need not know the location
mode of a record type in order to use this
verb. In addition, the data-base adminis-
trator can enhance performance in this case
by defining indexes. The details are illus-
trated in subsection Search Keys. On the
other hand, a knowledge of the method used
in storing a record initially can provide ex-

cellent performance when applied again. For
example, a search for a record with location
mode VIA should follow the “clustering
hierarchy” used in its initial storage. Simi-
larly, knowledge of the identifier or identi-
fiers used by the CALC routine can, in
carefully designed applications, yield per-
formance close to one secondary storage
access per record retrieval [G3]. The form

FIND rocord-name [N set-hame USING identifier(s)

can be used in a hierarchieal search. This is
illustrated by the example shown in Figure
16 which finds the first MAIN street in a
city in MIDDLESEX - eounty. This ex-
ample differs from previpus ones because
there is a “don’t care’” condition on the
CITY record occurrence,

As illustrated in Section 2, the specifica-
tions allow usage of the form

FIND ANY record-nome

when a location mode of CALC has been
declared for the sought record type. By
properly initializing the identifier or identi-
fiers which were used in initially storing the
record, that record will be found. This
procedure requires, of ecourse, that pro-
grammers know which, record. types in the
data bage have location mode CALC and
what item or items constitute their re-
spective CALC-KEYS. It may therefore be
difficult to change location modes (or the
declaration of items forming the key) with-
out affecting some program and hence
introducing a lack of data independence.
There have been suggestions [E4] for avoid-
ing this potential problem by using a pre-
compiler or data-base procedures.

The fourth loeation mode for a record

MOVE MIDDLESEX' TO COUNTY-NARE.
MOVE “MAIN? TO RTREET-NAME.
MOVE ‘FALSE’ TO SUCGESS,
TIND COUNTY IN COUNTIES USING COUNTY-NAME.
1F DATABASK-STATUS = ROT-FOUND
Process for ecunty nob fousd
FIND FIRST CITY IN CITIES.
PERFORM SEARCH-FOR-STREET UNTIL
(SUCCESS = “TRUE” OR (DATABASEATATUS = DONE)
1’ BUCCESS = ‘TRUE’
Process for city found
ELSE Process for city not found.

SEARCE-FOR-STREET.

FIND STREET IN CURRENT OF STREETS BSING STREET-NAME.
IF DATABASESTATUS = FOUNE¥
MOVE “TRUE’ TO SUCCES3
FEISB

FIND NEXT CITY iN CITIES.

Ficurg 17. Hierarchical search.

Compniiog smfya Vol 8, Ma. £, March- 1676

94 . E. W. Taylor and B. L. Frank
type is DIRECT. In order to present this
mode properly, we must introduce the
notion of a data-base key. A data-base key
is a unique identifier which is associated
with every record oecurrence in the data
base. This data-base key is associated with
the record oceurrence when it is initially
stored, and remains the unique identifier
of the record occurrence throughout its
lifetime in the data base. Although the
specifications leave the detailed strueture of
a data-base key to be decided by the im-
plementor, it is common for a data-base
key to have some physical implications;
data-base keys are often used in the im-
plementation strategies of a given setf.
For set traversal to be efficient, the mecha-
nigm used must have some physical impli-
cations. For example, in many implementa-
tions, a data-base key will designate the
area, the page within the area, and the
record number within the page of the record
oceurrence. Areas (subdivisions of the data
base) are often composed of fixed length
pages, and it is easy to note the similarity
to a segment/page addressing scheme in a
virtual memory environment. However, in
contrast with most virtual memory schemes,
the actual placement of records within a
page is often governed by a local “on-page”
index, which maps the record number
portion of the data-base key to a displace-
ment within the page. In this way, space
within a page can be garbage collected, and
records, whose size can in general vary
with time, can be moved within the page,
all without disturbing pointers pointing at
the object being moved. Of course, if a
record grows to the extent that it must be
moved to an overflow page, then a small
“overflow pointer” must remain on the
original page. As long as the number of
records on overflow pages is not a great
fraction of the total records, this scheme
can behave almost like direct address
pointers while still allowing record move-
ment. If too many records are moved to
overflow pages, then the corresponding
area can be expanded, and either the page
sige or the number of pages can be increased.
We now return to the diseussion of LO-
CATION MODE DIRECT. In the DI-
RECT mode, the program which STOREs

Computing Surveys, Vol. 8, No. 1, March 1976

occurrences of the given record type may
specify the data-base key which the system
will trv to use. This is in contrast to other
location modes where the data-base system
determines the data-base key based on
caleulation keys or the proximity to a
logical insertion point in a set. Assuming
the data-base key is not already used, the
system will use the program-designated key.
If that data-base key is already used, the
system chooses the next (higher) unused
data-base key. With care, the program may
have a great deal of control over record
placement.

Clearly, DIRECT location mode may be
much closer to the physical levels of data.
If a high level of data independence is a
goal, then the usage of this location mode
must be carefully controled. However, such
a facility can be quite useful, especially
when writing data-base maintenance pro-
cedures. As an illustration, consider the
method of loading the data base. One popu-
lar technique is to let the system, during
loading, operate under a schema that is
different from the run-schema. In this load-
schema, the location mode of the records
is DIRECT. If the run-schemsa specifies a
location mode of CALC, the load program
can then use the following algorithm:

1) For each record to be loaded, invoke

a local eopy of the CALC subroutiné
to compute a data-bage key using
the designated CALC-key items
within the record.

2) Sort all records by ascending com-
puted data-base key.

3) Use the load-schema (which has lo-
cation mode DIRECT) to store the
records in one sequential pass over
the area.

So-called batch-random operation [G4] in a
data-base load program has been found to
improve performance by as much as four
times. Location mode DIRECT has al-
lowed such a program to be written in a
high-level language.

Location mode DIRECT may also be
used when direet accessing of records is
desired or when building specialized access
methods on top of the basic system facil-
ities.

All-Elections-5S

CODARSYL Dofa-Base Managemeht Systam. ~ « 95

Seorch Keys
Consider the data structure diagram

System President

Elections-Won [Native-Sons
| Election State

Let us suppose that the data-bagse admin-
igtrator has determined that the deminant
usage of this portion of the data base is to
answer the question: Print the elections
won by President X. In this case, it would
be appropriate to give ELECTION records
3 LOCATION MODE VIA ELECTIONS-
WON set in order to cluster them close to
the related President. On the other hand,
if we consider the question: Find the state
whose native son was the winner of the
election of date X, it is clear that the speed
of response depends primarily on how fast
the dlection record of a given date can be
found (after that, the answer involves two
FIND OWNER statements). The question
may then be posed:

operation does not depend om the con-
tinued existence of the index; indexes can
be added or deleted as appropriate.

In general, use of the SEARCH KEY
clause implies that the DBMS will build an
index on the member records (of a given
type) within a set oceurrence. Its use im-
plies the existence of many indexes, one
for each set oceurrence. The uge in & singular
set is a special case.

Introduction of the SEARCH KEY
clause allows simulation of the traditional
indexed sequential file. By declaring:

SET NAME IS ALL-STATES

OWNKER I3 3YSTEM
ORDER IS PERMANENT INSERTION IS
SORTED BY DEFINED KEYS

MEMBER I3 STATE
MANDATORY AUTOMATIC

KEY I8 ASCENDING STATE-NAME
DUPLLCATES ARE NOT ALLOWED
NULL 18 NOT ALLOWED

SEARCH KEY I8 STATE-NABME USING INDEX
DUPLICATES ARE NOT ALLOWED

the data-base administrator can: 1) specify
an ability to scan sequentially through all
record occurrences of 8 given type; plus 2)
provide a direct path. (through an index)
to a particular occurrence, given a value

FIND ELECTION VIA ALL-ELECTION-S8S USING ELECTION-YEAR.

Since an exhaustive search of all ELEC-
TION record occurrences very likely wounld
be slow, it may be appropriate, if query
volume is sufficient, to define an index on
occurrences of the ELECTION record type.
Indexes in the DBTG-like systems are
specified by wusing the SEARCH-KEY
clause. By declaring:

SET NAME IS ALL-ELECTIONS-SS

OWNER 1S SYSTEM . ..
MEMBER IS ELECTION
MANDATORY AUTOMATIC . ..
SEARCH KEY 15 ELECTION-YEAR USING INDEX
DUPLICATES ARE NOT ALLOWED

the system builds and maintains an index
on the ELECTION-YEAR item. When the
FIND statement is issued, the system uses
this index to speed the search; it uses the
ELECTION-YEAR item provided by the
program to search the index to find the first
{and in this case only) record having the
given year. This ELECTION record is
then accessed. The success of the FIND

of it primary key. To obtain a performance
similar to the traditionsl indexed sequential
file, the data-base administrator would
have only one record type in the associated
area. Thus logically adjacent records would
tend to be physically adjacent, as in an
indexed sequential file.

SEARCH KEYs can also be used to
support an arbitrary number of inversions
(secondary indexes) over the members of
a set occurrence. The data-base admin-
istrator has the option of allowing or dis-
allowing duplicates for items or concatena-
tions of items among members of the set
occurrence, Thus, in a singular set, there is
a mechanism for guaranteeing unique
values across all oecurrences of a given
record type.

Set Selection

As explained in Section 2, Sample Data-
Base Application, each declared set in the

Computiag Surviys, Vek. 8; No. 1, Maroh 1879

96 . R. W. Taylor and R. L. Frank
schema has an associated set {occurrence)
selection clause. The basic purpose of this
clauge is to inform the system how to select a
particular set occurrence of the particular
get type. This is necessary, for example,
when a record type is an AUTOMATIC
member in a set type. As previously il-
lustrated, when a new record of this type
is stored, the system must automatically
include it in a set occurrence; the set selec-
tion clause tells which is the appropriate
one.

The other major use of set selection is in
the FIND verb:

FIND record-namc IN set-name USING id-1, id-2, ...

When this version of the FIND verb is
executed, the set selection clause of the
named set i invoked to find the set oceur-
rence. Searching for a record of the desig-
nated type within the set occurrence then
proceeds. If the optional USING clause is
omitted, the first such record is selected.
Otherwise, the system selects the first
member of the set where all identifiers (in
the record) are equal to the initialized
identifiers. If no such record exists, the
search fails and control is returned to the
DECLARATIVES section of the program.

The set selection clause, while defined in
the schema, may be changed or augmented
in the subschema. That is, the particular
set occurrence selection can vary from one
subschema to the next, under control of the
data-base administrator. The set selection
clause in the schema is 2 default, which will
be used unless overridden by the sub-
schema.

Ag an illustration of these concepts, we
search for the first MAIN sireet in
LEXINGTON in MIDDLESEX county
(see subsection Location Mode). The rele-
vant piece of program code is:

MOVE “MIDDLESEY’ TO COUNTY.

MOVE ‘LEXINGTON’ TO TOWN,

MOVE A\MAIN’ TO STREET-NAME.

I'IND STREET IN STREETS USING STREET-NAME.

This contains considerably less code than
the previous example (though the example
is slightly different). Clearly, the extra
searching is performed by the data-base
system with only one FIND command.
The specifieations for doing this are de-

Computing Surveys, Yol. 8, No. 1, March 1976

clared in the associated subschema, as:

8D STREETS
SET SELECTION FOR STREET IS
V14 COUNTIES OWNER SYSTEM
VIa CITIES OWNER VALUE OF
COUNTY. NAME IS COUNTY
VIASTREETS OWNEBR VALUE OF
TOWN-NAME IS TOWN.
In the set selection specification, the system
is instructed to first locate a COUNTY by
going to the singular set COUNTIES and
to search forward until a matching county
name (i.e., MIDDLESEX) is found; then
the system ig instructed to descend into
the CITIES set to search for a matching
town; finally the system is instructed to
search for a matching street by the USING
phrase on the FIND verb.

It should be clear that a set selection
declaration ig basically a specification for a
data-base procedure that performs an ef-
fectively hierarchical search in order to
establish a set occurrence. An entry point
is established, either through singular sets,
CALC entry points, or currency (see sub-
section Currency Indicators); then, if this
is not the desired set occurrence, a hier-
archical traversal can be carried out starting
at this point until the proper set occurence
is found.

One can also note that the only “match
arguments’’ currently allowed are item equal-
ities or concatenations of item equalities.
The “don’t care” condition and potential
for backtracking, as expressed in subsection
Location Mode, is not possible. This greatly
eages the implementation, as opposed to
making tree traversals against arbitrary
Boolean expressions. To achieve the same
effect produced by the example given in
subseetion Location Mode, a data-base
procedure would be written. The system
could then be told to use the procedure
by the statement:

SET SELECTION IS BY PROCEDURE FIND-ANYQIATN-STREET.

Support for the more complex traversals
can be defined by installation using data-
base procedures, though of course there is
only one possible data-base procedure per
set declaration per subschema. If the tra-
versal is more specific to applications or
transactions, it must be specially pro-
grammed.

CODASYL Data-Base Management System + 97

Currency Indicators

The notion of a current record was discussed
briefly in Section 2, Sample Data-Base
Applications, but our examples have not
emphagized currency. Normally, the system
behaves in an expected way and the pro-
grammer does not need to take special note
of currency. There are certain complex
traversals, however, where the application
programmer must be aware of the exact
statug of the currencyv indicators. In this
section, we discuss currency and show
when care must be exercised.

There are many currency indicators as-
sociated with a typieal program that exe-
cutes with a subschema (this is called a
run-unit):

¢ one currency indicator designating
the current record referenced by the
run-unit;

one currency indicator for cach record
type, indicating the current record
of that type;

¢ one currency indicator for each set
type, indicating the current set oc-
currence of that type by “pointing”
at the referenced record occurrence,
which is either the owner or a member
of the given set; and

® one currency indicator for each realm,
indicating the current record refer-
enced in that realm.

Thus in the Presidential data base, if a
program e¢an access the entire data base, the
system would maintain seventeen currency
indicators—six for the six rtecord types,
nine for the nine sets (including each singu-
lar set), one for the single area, and one
for the current record of the run-unit.

The currency indicators always make the
concept of “next’” (and prior) well defined,
regardless of how the currency has been
established; for example, next within a
realm means the record in that realm with

System » Student

i i
the next higher data-base key, and next
within a set means the next resord in the
“forward” direction in that set.

It iz important to understand when
currency indicators change. Currency in-
dicators always change on execution of
some DML verb. Also, the object of certain
actions must be the current record of the
run-unit. The following rules apply:

e Only the ewmrent record of the rum-
unit may be the subject of the GET,
ERASE, CONNECT, and DISCON-
NIECT verbs.

® When a new record of any type is
found or stored (except for special ex-
ceptions diseussed later), it becomes
the current -record of the run-unit
and realm in which it resides; it also
becomes the current record of its
type and of all sets in which it par-
ticipates as either owner or member,
Thus the currency of many sets may
be affected.

Because the currengy indicators of sets
can potentially changé when a new record
of a given type is found, & programmer
must be careful when doing traversals that
involve “backtracking.” By backtracking,
we mean a situation which (for some reason)
makes it necessary that a previously es-
tablished position be ‘reestablished. -If, in
the meantime, a new record has been stored,
the set currency indicators may have po-
tentially changed, making the reestablish-
ment of position difficult or impossible.
The programmer must anticipate such
changes to the curréncy indicators and
take steps to avoid such situations. The
following example illustrates that, even
during a pure retrieval, the ecurreney indi-
cators must be handled properly. The ex-
ample has been adapted from Date [G3].

Given the STUDENT/COURSE data

structure diagram below

Students

Student- | >
Grade

Grade

Course — System
I Courses
Course- .
Grade

Computing Suryeye, Vol. 8, No. 1, March 1976

98 . R.W. Taylor and R. L, Frank
answer the following question: For each
student taking MATH, find all the other
courses being taken by that student and
print the student’s name and the names of
the other courses, Note the situation here,
Given that we have found a student who
takes MATH (found by locating the MATH
record and by performing the “switch and
find owner’ traversal as illustrated in See-
tion 2), we must reenter the same structure
to find the courses which are not MATH
being taken by that student and print
them. But this retraversal of the STU-
DENT/COURSE structure will destroy
the previcus currency associated with the
COURSE/GRADES set. When we try to
find another student taking MATH, the
results are potentially unpredictable.

To allow a currency saving facility, two
approaches are provided. One is the AC-
CEPT statement.

(reaim-name |
ACCEPT ideniifice FROM < scb-name ‘L CURRENCY
| record-name;

moves the designated currency indicator to

a run-unit variable. Subsequent use of the
FIND verb

FIND record-name; DATABASE-KEY IS idontifier

would restore the relevant currency indi-
cator.

Another method has also been provided.
Both FIND and STORE have an optional
RETAINING CURRENCY clause. By
using this clause, the eurrency for desig-
nated record types, set types, or realms is
not changed by the execution of the verb;
that is, the normal currency updates, as
explained previously, are not performed
(except for the current record of the run-
unit). As an illustration of this, the pro-
gram shown in Figure 18 answers the
STUDENT/COURSE question already dis-
cussed. We assume course name is (at least
virtually) part of the GRADE record. The
reader will note that a GO TO statement; is
used, since it is felt that a simpler program
results.

Two other examples illustrating when
special treatment of currency indieators is
necesgary are the parts explosion traversal
(see section 1, Complex Relationships

Computing Surveys, Vol. 8, Ne. 1, March 1976

MOVE ‘MATH’ TO COURSE-NAME.
FIND COURSE IN COURSES URING COURSE-NAME.

** Wa now have the Math record. We assume it exists.

FIND FIRST GRADE IN COURSE-GRADE.
PERFORM FRINT-STUDENTE-OTHER-COURSES UNTIL
(DATABASE-STATUS = DONE).
STOP RUN.
PRINT-STUDENTS-OTHER-COURSES,
PERFORAI FETCH-ARD-PRIKNT-ONESTUDENT.
PERFORM PRINT-THAT-STUDLENTS-COURSES.

“* Now check for more studentis by trying to
** FIND more grades associated with the given course
** {Math in our example).

FIND NEXT GRADE IN COURSE-GRADE.
END-OTHER-COURSES.

FETCH-AND-PRINT-ONE-STUDENT.
FIND STUDENT OWNER.
GET NAME OF STUDENT.
Print it.
END-ONE-STUDENT.
PRINT-THAT-STUDENTS-COURSES,
*% Note the use of the RETAINING CLAUSE Below

FIND NEXT GRADE IN STUDENT GRADE

RETAINING CURRENCY FOR COURSE-GRADE.
IF DATABASESTATUS = DONE

GET GRADE

IF COURSE IN GRADE » COURSE-NAME

Prink the ether course name.
GO TO PRINT-THAT-STUDENTS-COURSES.
END-STUDENTS-COURSES.

Fraugre 18. [Ilustration of currency retention.

Using Data Structure Diagrams) and the
relatively uncommon question: Find the
employees who earn more than their man-
agers. The reader is encouraged to think
through these two examples with respect to
currency indicators.

4, IMPLEMENTATIONS OF THE DBTG SPECI-
FICATIONS

As mentioned in the Introduction, the
specifications initially published by the
DBTG are under continuing development
and refinement by groups within the
CODASYL organization. It is difficult to
state whether system “X" does, or does not,
follow the specifications. There are, how-
ever, 4 number of commercially available
gystems that have uged one or more versions
of the gpecifications as a basis for imple-
mentation. While these system may employ
syntax that is slightly different from our
examples, they follow the same basic data
model. Some of the commercially available
systems which are generally deemed to be
“DBTG type” systems are:
¢ DBME/10 (Data Base Management
System,/10), marketed by Digital
Equipment Corp. for use on DEC
System 10 computers
e DMS/1100 (Data Management Sys-
tem,/1100), marketed by Uwivac

CODASYL Dala-Base Management System + 99

for use on Univac Series 1100
computers
¢ EDMS (Extended Data Management
System), marketed by XErox
Data Systems for use on XERrRoX
Stema 6, 7 and 9 computers

e IDMS (Integrated Data Management
System), marketed by Cullinane
Corp. for use of IBM System/360
and System/370 computers

e IDS/II (Integrated Data Store/II),

marketed by Howerwerrn In-
formation Systems for use of the
HoneywELL 6000 series com-
puters

¢ Proras, marketed by PrivLies ELEC-

TROLOGICA.

Though this section is not meant to be de-
tailed, it is worthwhile to consider what
parts of the specifications are successfully
implemented, for such an examination would
indicate which features the implementors
have found easy (or difficult) to implement,
or which features the implementors thought
would be of use to their customers.

As a general rule, the implementors have
allowed full generality to be used in the
data model presented in Section 1, Design
of a Data Base, as well as in most of the
DML f{unctions presented in Section 2,
Sample Data-Base Application, and Sec-
tion 3, Advanced Features. The part of the
data model most frequently omitted is that
of singular sets. The rationale for this
seems to be that singular sets can be very
easily simulated by the user.

While the basic data model is maintained
in all of the systems, various implementors
have left out many of the more sophisticated
features in the Schema DDL. The facility
for privacy locks and keys is most fre-
quently dropped, as are data-base pro-
cedures. In addition, none of the available
systems provide for VIRTUAL items.

In approaches to the sub-schema facility,
gystems vary widely, The initial imple-
mentation of some systems did not provide
for a separate sub-schema language (indeed,
in 1969 the DBTG specifications did not
include one); instead, the systems relied on
the Copot program. Such a facility provides
for inclusion or exclusion of certain schema
record types from the program. Even in

cases where a separate sub-schema language
is provided, many implementors have still
allowed only for the inclusion or exclusion
of entire record types or set types. In a
minority of the systems the sub-schema is
allowed to select only certain data items
from a record, or to reorder or change the
data-item type.

GUIDE TO FURTHER READING

The DBTG class of systems will continue
to evolve, as will the state of various im-
plementations, In an:' introductory paper
such as this, it is impossible to cover all the
options and charaeteristics of these DBTG-
like systems. For these two reasons, it is
necessary to read further in the literature
for ap in-depth understanding of the total
system architecture, data model concepts,
and data-base design techniques. This sec-
tion presents an annotated guide to DBTG
literature. We concentrate here only on
literature whose principal focus is the DBTG
specifieations, or literature which compares,
in-depth, the DBTG approach. to some al-
ternative. Discussions of data-bagse manage-
ment in general, or tutorial treatments, or
references to specific vendor manuals ap-
pear in the general bibliography in the com-
panion paper in this issue by Fry and
Sibley.

The most recent developments with
respect to the Schema language appear in
the CODASYL Data Deseription Language
Journal of Development [S2]. Specifications
for the Data Manipulation Language of
ConoL appear in the CODASYL CopoL
Journal of Development [83). These docu-
ments are issued periodically, and announce-
ments of availability appear in various
professional journals. There is also a
CODASYL Committee that is developing
Data Manipulation Langnage specifications
for ForTrAN [85, see also 86]. All three
references are primarily language specifi-
cation manuals; as such they are not written
in tutorial fashion, but are intended pri-
marily for implementors and as a final
arbiter regarding details of program/data-
base system semantics. However, [S2] does
contain sections that describe concepts of
the Schema language.

Computing Surviys, Vol. 8, No. 1, March 1978

100 . R. W. Taylor and R. L. Frank

On a more general level, a discussion of
the evolution of “navigational” systems, of
which the DBTG systems are a prime ex-
ample, is given in the ACM Turing Lecture
by Charles W. Bachman [N3]. In [N2],
Bachman describes how data structure
diagram notation can be used to illustrate
the organization of lower levels of data—
specifically illustrating the access method
and storage medium levels.

A ecollection of more advanced examples,
based on the 1971 DBTG report has been
published by Frank and Sibley [El]. An-
other example by 8ibley, using the 1973
syntax, is available as a National Bureau of
Standards report [E3]. Additional examples
appear in vendor manuals, especially [E2].

There has been a continuing debate con-
cerning the merits and disadvantages of the
DBTG architecture. Aspects of this debate
are covered in the companion paper by
Michaels, Mittman, and Carlson in this
issue. Comparisons of the DBTG proposal
relative to the relational model appear in

many places; one of the most complete -

discussions is contained in the proceedings
of a debate [D1, D2] in which C. W. Bach-
man and E. F. Codd are the principals.
There have also been eritiques and techniecal
evaluations of various aspects of DBTG.
One such critique [D5] was presented when
the 1971 report was published. In 1975,
an IFIP Working Conference was devoted
specifically to an in-depth evaluation of
various construets in the Schema language.
Proceedings of that conference have been
published, and various revisions to the DDL
are proposed {DS, R1-R5]. The volume also
contains articles that illustrate how to use
DBTG systems to support a relational view
and discuss the use of concepts from the
relational model (e.g., normalization) in
the context of DBTG systems. Papers on
the proper design of data bases by using
data structure diagrams and on the proper
uge of the Data Manipulation Language
appear in [A1-A7].

There have been discussions of the possi-
bility of designing systems which could
support any data model a user might wish—
whether network, relational, hierarchic, or
other types. Nijssen’s article “Data Strue-
turing in the DDL and Relational Data

Computing Surveys, Vol. 8, No. 1, March 1976

Model” [C1] outlines the possibility of the
coexistence of data models. The article
“On the Equivalences of Data Based Sys-
tems” by Sibley [C4] also explores this
point.

A Suare Working Conference held in
Montreal, Canada, contains papers de-
seribing user experiences with various com-
mercially available implementations of the
DBTG systems [U3-U5].

Some aspects of implementation are
discussed in [I1-T5].

There have also been a number of papers
dealing with the features required by
data-base management systems. Refer-
ences [M4-M6, MR] are of particular in-
terest.

CLASSIFICATION OF REFERENCES

Other Modeling Papers
Refereneced Papers

S Syntax and System Specifications

N Dats Structure Diagram Notation, Naviga-
tional Systems

E Example Schemas, Sub-schemas, and Pro-
grams

D Critiques and Debate Position Papers

R Suggested Hevisions to the BSpecifications

C Comparison of the DBTG Model to Other
Data Models

A Designing Data Bases Using DBTG Systems

U TUser Experience with Commercial Tmplemen-
tations

I Implementations

M

G

REFERENCES

This bibliography collects and classifies references
to various articles concerning the DBTG specifi-
eations. It also includes articles which debate the
merits of various features, articles which discuss
implementational aspects, and articles which
discuss data-base design in the context of a DBTG
system. The following abbreviations are used in
the bibliography.

SIGMOD/SIGFIDET The ACM Special Interest
Group on the Management
of Data (formerly named
the Special Interest Group
on File Description and
Translation) holds an an-
nual Conference. The
Proceedings of these con-
ferences are available
from ACM, New York.

A Special Working Con-
ierence, “An In-Depth
Evaluation of Codasyl
DDL,” was held in Bel-
gium in Japuary 1975.
Proceedings of that con-
ference are available in
the book Database De-
scription, B.C.M. Dougque

[FIP TC-2

CODASYL Data-Base M. anagement System - 101

and G. M. Nijssen, Eds.
North-Holland Publ. Co.,
Amsterdam, The Nether-
lands, 1975.

{S}) Syntox ond System Specificotions

[s1]
[s2]

88}

136

CODASYL Darsa Base Task Group,
April 1971 report, ACM, New York.
CODASYL Data DescRripTIoN LANGUAGE
Commirree, Date Description Langucge
Journal of Development Document €13.6/
2:113, U8, Government Printing Office,
Washington, D.C
CODASYL Procramming Lancuace CoMm-
smiTreEe, CODASYL Copor Journal of
Development, Dept. of Supply and Services,
Government of Canada, Technical Ser-
vices Branch, Ottawa, Ontario, Canada.
CODASYL Datasase Lancuage Task
Grour, CODASYL CororL doiabase fa-
ctlity proposal, 1973, Dept. of Supply
and Services, Government of Canada,
Technical Services Branch, Ottawa, Can-
ada. This document proposes revisions to
CODASYL CopoL. The revisions, as ae-
epted, appear in the latest version of the
DASYL Copor Journal of Development,
see [S3].
CODASYL Ferrrav DML, information
on the activitiecs of this committee *is
available from Chairman, CODASYL
Forrran DML Committee, P.O. Box 124,
&1%? Garden City Drive, Monroeville, Pa.,
46.
Stacry, G. M., “A ForTraN interface
to the CODASYL Data Base Task Group
specifications,” Computer J. 17, 2 (May
1974), 124-129.

(N) Data Structure Diagram Noiation, Navi-
gational Systems

IN1]
(N2]

(N3]

Bacaman, C. W., “Data structure dia-
grams,”’ Database'1, 2 (Summer 1969).
BACHMAN C. W., “The evolution of
storage structures," Comm. ACM 16, 7
{July 1972), 628-634.

Bacoman, C. W., “The programmer as
navigator,” Comm. ACM 16, 11 (Nov.
1973), 653-6538.

{E) Exomple Schemas, Subschemas, and Pro-

grams

{E1

2]

{E3]

Frank, R. L.; anp Sisuey, E. H., The
Data Base Task Grou Repart an ilustra-
iive example, Doc. No. AD-759-267, U.S.
National Technical Information Service.
Puiips Dara Systems, An epplication
example of the CODAS Vi DBTG Proposal,
Pub. No. 5122-991-24151, Philips- Elec-
;,rologlca Apeldoorn, The Netherlands,

SieLey, B. H., The CODASYL database
approach a Cosor example of design and
use of a personnel file, NBSIR 74-500,
Institute of Computer Sciences and Tech-

nology, Natlons.! Bureau of Standards,
Washington, D.C:

[E4] Tavior, R. W., “Data administration
and the DBTG Report,” Proz, of ACM
SIGMOD/SIGFIDET Conf 1974, ACM,
New York, pp. 431-444,

[E5] ManoLa, . A., Principles of the
CODASYL approach to the descriplion of
date structures, Report 3068, Naval Re-
search Laboratory, 1975, Washmgton, D.C.

(D) Critiques and Debate Pesifion Papers

(D1l Bacmman, C. W., “The data structure
set model,” in Proc. 1824 ACM-SIGMOD
Debate, “Data Models: Data Structure Set
versus Relational,”” R. Rustin, (Ed.),
ACM, New York, p 1-10.

[D2] CODD E. T.; axp !]))ATE, C. J. “Inter-
active support for non-programmers: the
relational and network approaches,” in
Proc. 1974 ACM-SIGMOD Bebate, “Data
Models: Data Structure Sel versus Rela-
tione!l,” R. Rusiin, (Ed.), ACM, New
York Pp. 1341.

(D3] Date, anp Coop, E. F., “The
relational and network approaches: com-
parison of the application programming
interfaces,”” in Proc, 1974 ACM-SIGMOD
Debate “Data Models: Dota Structure Set
versus Relational,” R. Rustin (Ed.), ACM,
New York, (]})p 25-113

|D4] EamNEST, . A comparison of the
network and relauoml duata structure models
Technical Report Beiences Corp., i
Segundo, California, 1974.

(D3] Encris, R, W., “An analysis of the April

1971 DBTG report,” in Proe. 1971 ACM

SIGFIDET Workshog; on Data Descrzggzon,

Access, and Conirol, ACM, New York,

R/P 69-91.

ETAXIDES, A., “Information bea.rmg
and non-information bearing sets,’” in
Proc. of IFIP TC-2 Bpecial Working Conf.,
“An In-de l?th Techmcal E'valuauon of the
CODASYL DDL,” pp. 36
(D71 Ouis, T. W., “Cutrent and future trends

in database management systems,’’ in

Proc. IFIP Congress, Informalion Process-

+ng 74, North-Holland Publ. Co., Amster-
am, The Netherla,nds P, $08-1006.

[D8] WAGHORN “The DDL as an in-
dustry standard? ¥ in Proe. IFIP TC-g
Special Warkmg Conf., “An In-depth
Technical Evalua!wn of the CODASYL
DDL,” pp. 121-167

(Do)

{R) Suggested Revisions to the Specifications

[R1] XKay, M. H., “An assessment of the
CODASYL DDL for use with a relational
sub-schema,” in Proc. IFIP TC-2 Special
Working Conf., “An In-depth Technical
Lvaluation of (;"ODASYL DDL,” pp. 193-

14

[R2] Nuwossen, G. M., “Set and CODASYL
set or coset » in Proc. IFIP TC-2 Special
Working Conf., “An In-depth Technical
Bealvatton of CODASYL DDL ”* pp. 1-7L.

[R3] Owie, T. W., “An analysis of t.he flaws

Computing Sm'v?ys. Vol. 8, No. 1, March 1876

102

{R4]

[R&]

[Ré]

. R. W. Taylor and R. L. Frank

in the Schema DDL and proposed improve-
ments,” in Proc, IFIP TC-2 Special Work-
tng Conf., “An In-depth Technical Evalu-
atwn of CODASYL DDL,” pp. 283-297.
Rominson, K. A., “An analysis of the
uses of the CODASYL set concept,” in
Proc, IFIP TC-2 Special Warking Conf.,
“dn In-depth Technical Evaluation of
CODASYL DDL,” pp. 169-181.

TavLor, R. W. bservatlons on_the
attributes of database sets,” in Proc,
IFIP TC-2 Special Working Conyf.,
“An In-depth Technical Evaluaiton of
CODASYL DDL,” pp. T3-84,

Hawrer, D. A.; Knowres, J. 8.; AND
Tozer, E. E.| “Database consxstency
and the CODASYL DBTG proposals,”
Compuler 4. 18, 3 (1975), 206-212.

(C) Comparison of the DBTG Model to Other
Data Models

[C1]

(2]

(85]

{C4]

[Cs]

Nussen, G. M., “Data structuring in
the DDL and relational model,” in Daia-
base Management, J. W. Klimbie, and K. L.
Koffeman, (Eds.), North-Holland Publ.
Co., Amsterdam, The Netherlands, 1974,

. 363-384.

cGee, W. C., “A contribution to the
atudy of data equivalence,” in Dalabase
Management, J. W. Klimbie, and K. L.
Koffeman, (Eds.), North-Holland Publ.

. Co., Amsterdam, The Netherlands, 1974,

gp. 123-148.
engo, M. E., “Data description lan-
guage in the context of a multi-level
structured deseription: Diam I with
Forav,” in Proc. IFIP TC-2 Special Work-
ing C’onj “An In-depth Technical Evalu-
ation of CODASYL DDL” pp. 2309-257.
SisLey, E. H,, “On the eqmva]ences of
databased systems in Proe, 187§ ACM-
SIGMOD Debate, “Dala Madels: Dala
Structure Sel versus Relational,”” R. Rustin,
(Ed.), ACM, New York, pp. 15-76
STONEBRAKER M.; AND I'f)ELD G., " “Net-
works, hlerarchms and relntlons in data-
base management systems,”’ in Proc.
ACM Pacific 75 ERegronal C'Onf ACM,
New York, pp. 1-9.

(A} Designing Data Bases Using DBTG Systems

(a1]

(A2]

(A3]

(A4]

Bacaman, C. W., “Implementation tech-
niques for data structure sets,” in Database
Management Systems, . Jardine,
(Fd.), North-Holland Publ. Co., Amster-
dam, "The Netherlands, 1974, pp 147-257.
Baxer, Q. J., “The correct use of
CODASYL DBTG sets,” Database Journal
6, 2, pp. 19-21. A. P. Publications Lid.,

London.

Brown, A. P. G., “Modeling a real world
system ancl desngnmg a schems to repre-
sent it,”’ in Proc. IFIP TC-2 Special
Worlcmg Conf., “An In-depth Technical
Evaluation of CODASYL DDL,” pp. 339~
347.

Bueenko, J. A., JR., et al.,, “From in-
formation structures to DBTG data struc-

Computing Surveys, Vol. 8, No. 1, March 1976

(A5]

[A6]

(A7]

tures,” in Proc. Conf., en Data: Abstrac-
tion, Definition, and Slructure, ACM
SIGPLAN/SIGMOD 1976, ACM, New
York, pp. 73-84.

GERR]TSEN, R., A preliminary sysiem
for the design of DBTG data structures,”
Comm. ACM, 18, 10 (Oct. 1975), 551-557.
Miroma, M. . ; AND Irani, K. B.,, “Auto-
matic database schema design and optimi-
zation,”” in Proc. of the Internail. Conf.
on Very Large Databases, 1975, ACM,
New York, pp. 286-321.

Tarior, R 8v “When are pointer arrays
better than chams " in Proe. ACM Na-
;_zonal Conf., 1974, ACM New York, p.
35

(U) User Experience With Commercial Imple-

mentations
[0U1} Banourskr, A. TE.; AND JEFFERSON,
D. K., “Daia de.scrlptmn for computer.

[U2]

{U3]

(U4]

[U3)

aided desi n,” in Proc. ACM SIGMOD

Internatl, (mf on Management of Daia,

1975 W Zg King, (Ed.}, ACM, New Y@rk
2.

ANN[NG R. G., “What’s happening

with CODASYL- type DBMS,”” ELP Ana-

]gzer Qct. 1974) “DMS 1100 user ex-

MERsoN, E. I,
perience, * in Dalabuse Management Sys-
tems, D. A. Jardine, (Ed.), North-Holland
Publ. Co. Amsterdam The Netherlands,
1974, pp. 35-46.
LAVALLEE P.A. ; AND OHAYON, 8., “DMS
JI'Pp]ws.t.lon&‘. and experience,’’ "in 'Database
anagement Sysiems, D. A. Jardine, (Ed.),
North-Holland, Publ. Co., Amsterdam,
The Netherlands, 1974, pp. 47-67.
Von GOHREN, ., “‘User ex enence
with integrated data store (IDS)
Database Management Syslems, D.
Jardine, (IEd.), North-Holland Publ. Co
ilgm?’s:;,erdam, The Netherlands, 1974, pp.

(i} Implementations

fI1)

2]

{13]

[14]

Bacuman, C. W., anp WiLiiams, S. B,
A geneml purpose prograinming system
or random access memories,” in Proc,
AFIPS 1364 Fail Ji. Compuler Conf.,
Yol. 26, Sparian Bocks, Baltimore, Mary-
land, pp. 411-422.
Canapay, R. H., et al.,, “A back-end
compuber for dababase management,”’
Comm. ACM 17, 10 (Oct. 1974), 575-582.
Fossovm, B. M., ‘“Database integrity as
prov1ded for by a particular datahase
management system,” in Daiabase Man-
agement, J. Wa Klimbie and K, L. Koffe-
man, (fids.), North-Holland Publ. Co.,
Amsl:erdam, "The Netherlands, 1974, pp.
271-288.

Jomnsony, H. R., “A schema report
facility for a CODASYL based data defi-
nition language,’”’ in Database Description,
B. C. M. Douque and G. M. Nijssen,
(Eds.), North-Holland Publ. Co., Amster-
dam, The Netherlands, 1975, pp. 200-328.

[13]

(16]

CODASYL Data-Base M anagemen&System « 103

Scuenk, H., “Implementational aspects
of the CODASYL DBTG proposal,” in
Database Management, J. W. Klimbie and
K. L. Koffeman (Eds.), North-Holland
Publ. Co., Amsterdatn, The Netherlands,
1974, pp. 309-412.

WARREN, THomas, Fealure analysis of
CODASYL dalabase management systems,
AD-A014 972/4AWC, National Technical
{Sggrmation Service, Springfield, Virginia,

(M) Other Dota Modeling Popers

[M1]

[M2]

M3]

(M4]

[M5]

(M6]

(M7]

Asriar, J. R., “Data semantics,” in
Database Management, J. W. Klimbie and
K. L. Koffeman, (Eds.}), North-Holland
Publ. Co., Amsterdam, The Netherlands,
1574, pp. 1-60.
COLLMEYER, A. J., “Implications of data
independence on the architecture of data-
base management systems,” in Proc.
ACM BIGFIDET Workskop on Data
Description, Access, and Conirol, 1972,
A. L. Dean, (Ed), ACM, New York, pp.
307-321.
Eaunest, C. P., “Selection and higher
level structues in networks,” in Database
Descriplion, B. C. M. Dougue and G. M.
Nijssen, (Eds.), North-Holland Publ. Co.,
Amsterdam, The Netherlands, 1975, pp.
215-237.
Everesr, G. C.; anp Smiey, E. H,,
“Critique of the GUIDE-Szare DBMS
requirements,’”’ in Proc, ACM SIGFIDET
Workshop on Dala Descriplion, Access
and Control, 1971, E. F. Codd and A. L.
Dean, (Eds.), ACM, New York, pp. 93-112.
GUIDE-SHARE DaTasase REQUIREMENTS
Grour, Datebase management system re-
wtrements, 1970, Suare, Inc,, New York.
vits, M. H. H., “Requirements for
languages in database systems,” in Dala-
base Description, B. C. M. Douque and
G. M. Nijssen, (Eds.), North-Holland
Publ. Co., Amsterdam, The Netherlands,
1975, pp. 85-109.
McGee, W. C., “File level operations on
network data struetures,” in Proc. ACM
SIGMOD Iniernatl. Conf. on Management
of Data, 19714, W. F. King, (Ed.), ACM,
New York, pp. 32-47.

[M8] Ouwr, T. W., An assessment of how the
CODASYL dala base lask group proposal
meets the QUIDE-SHARE vequiremenis,
fg_aigort 329 Norwegian Computing Center,

1

[M9] Senko, M. E,, et al., “Data structures
and accessing in database systems,”
IBM Systems J. 13, 1 (1973), 30-93.

[M10] Srteew, T. B., Jr., “Database standardi-
zation: a status report,” in Database
Description, B. C. M. Douque and G. M.
Nijssen, (Eds’.lzi]Nnrth-Hollsnd Publ. Co.,
Amsterdam e Netherlands, 1975, pp.
183-198. Also in Proc. ACM SIGMD
Internatl. Conf. on Managemen! of Duta,
1975, W. F. King, {Ed.), ACM, New York,
Bp. 149-156.

M11] Pamsows, R. G.; DaLE, A. G.; anp YUr-
KANEN, C. V., “Data manipulation lan-
guage requirements for database manage-
ment systems,” Computer J. 1T, 2 (Msaey
1974), 99-103,

{G) Referenced Papers

[G1] Doop, G. G., “Elements of data man-
. agement systems,” Compuling Surveys
1, 2 (Fune 1969}, 117-133.
[G2] Mower, C., “Matrix eomputations with
" FortraN and pagixzx%” Comm. ACM 15,
4 (April 1972), 268-270.

[G3] Severance, D. G.; anp Dunng, R. A,
“A practitioner’s guide to addressing al-
gorithms,’”” Comm. ACM, (publication

ending).

[G4] sseN, G, M., “Efficient bateh updatin,
of a random file,” in Proc. AC
SIGFIDET Workshop on Daia Description
Access, and Conlrol, 1971, E. F. Cod
and A. L. Dean, (Eds.), ACM, New York,
pp. 173-186.

[G3] Dats, C. J., An iniroduction lo dalabase
sysiems, dcfisou-Wesley, Reading, Massa-
chusetis, 1975.

ACKNOWLEDGMENTS

The authors are grateful to M. L. (*Connell of the
CODASYL Data Base La%unge Task Group for
clarifying several points. This research was sup-
ported, in part, by the National Science Founda-
tion under Grants GJ-41829 and GJ-41830.

Computing Enrrpsn. Vol. 8, No. 1, March 1976

