
C O D A S Y L D a t a - B a s e M a n a g e m e n t Sys tems

ROBERT W. TAYLOR

IBM Research Laboratory, San Jose, California 9519S
ond

RANDALL L. FRANK

Computer Science Department, University of Utah, Salt Lake City, Utah 8~I12

This paper presents in tutorial fashion the concepts, notation, aud data-base
languages that were defined by the CODASYL Data Description Language and
Programming Language Committees. Data structure diagram notation is ex-
plained, and sample data-base definition is developed along with several sample
programs. " Advanced features of the languages are discussed, together with
examples of their use. An extensive bibliography is included.

Keywords and Phrases: data base, data-b~e management, data-base definition, data
description language, data independence, data structure diagram, data model,
DBTG Report, data-base machines, information structure design

CR Categories: 3.51, 4.33, 4.34

NTRODUCTION

The data base management system (DBMS)
specifications, as published in the 1971
Report of the CODASYL Data Base Task
Group (DBTG) [S1], are a landmark in the
development of data base technology. These
specifications have been the subject of much
debate, both pro and con, and have served
as the basis for several commercially avail-
able systems, as Fry and Sibley noted in
their paper in this issue of COMPUTING
SURVErS, page 7. Future national and
international standards will certainly be
influenced by this report.

This article presents in tutorial fashion
the concepts, notation, and data-base lan-
guages that are defined by the "DBTG
Report." We choose the term DBTG to
describe these concepts, even though since
1971 the role of the original Task Group
has been assumed by the CODASYL Data
Description Language Committee and the

Data Base Language Task Group of the
CODASYL Programming Language Com-
mittee. In fact, this article uses the syntax
of the more recent reports [$2, $3, $4].
However, because the fundamental system
architecture remains essentially the same
as that specified in the 1971 Report, we
still use the abbreviation DBTG; though
not strictly accurate, "DBTG" does reflect
popular usage.

This article explains the specifications; it

will not attempt to debate the merits and/or

demerits of the specific approaches taken to

implement them or of the features of the

different approaches. :Such debates have

taken place and they will continue to be

held. Michaels, Mittman and Carlson sur-

vey in their paper [see page 125] many of the

points that have been debated. It should

be remembered, however, that the initial

role of the DBTG was to recommend

language and system specification8 for data-

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted, provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.

68 • R. W. Taylor and R. L. Frank

CONTENTS

INTRODUCTION
1. DESIGN OF A DATA BASE

Coueepts of Information Structure Dceign
Concepts of Data Structure Dealgn
Data Structure Diagrams

Hierarchies (l-to-n relationships)
Many-to-Many Relationships
Complex Relationehips Udn£ Data Structure Diagrams

Presidential Data Ba~e
2. SAMPLE DATA-BASE APPLICATION

Presidential Data Bage in the DDL
Sub-schema of the Presidential Data Bane
Sample Retrieval Program
Sample Update Program
Traversing an m : n Relation in the ConoL DML
Other ConoL DML Faeilitiec

3. ADVANCED FEATURES
Data-Baee Procedures
Areas
Location Mode
Search Keya
Set Selection
Currency Indieatore

4. IMPLEMENTATIONS OF THE DBTG SPECIFICA-
TIONS

GUIDE TO F U R T H E R READING
REFERENCES
ACKNOWLEDGMENTS

base processing in the COBOL programming
!,anguage. Data-base applications written
In a host programming language are often
associated with both large data bases which
contain 108 characters or more and a well
known set of applications or transactions,
perhaps run hundreds of times a day,
triggered from individual terminals. Such
extensive processing must be efficient, and
the designers of the DBTG system took
care that its applications could be tuned to
ensure efficiency. Although the DBTG
recognized the importance of supporting
other language interfaces for a data base,
especially "self-contained" languages for
unanticipated queries, it did not directly
address the problem of other interfaces.

This paper presents concepts and language
statements that are characteristic of DBTG-
like systems. Where possible, we point out
ho w a particular feature or option might
be used.

I. DESIGN OF A DATA BASE

Two of the most difficult areas of data-base
management are the design of an informa-
tion structure and the reduction of that
structure to a data structure which is
compatible with and managed by the
DBMS. This section deals with both of
these topics, though emphasis is placed on
the data structure design decisions which
must be made. Later on, we introduce and
provide examples of data structure diagrams,
a notation that is widely used to deal with
data and information.

Concepts of Information Structure Design

Data-base management systems are tools
to be applied by the users of these systems
to build an accurate and useful model of
their organization and its information
needs. To accomplish this, the information
structure must accurately define and char-
acterize the items of data and the relations
among them that are of interest to the users.
This is no small task, for it demands a
knowledge of the organization and the
distribution of information among its
various parts.

There is currently very little theory
which can guide a designer in the construc-
tion of this model, though there are several
guidelines that can be formalized [M9].
We present here a more intuitive formula-
tion.

A data-base designer first has the problem
of identifying all the relevant entities (per-
son, place, thing or event) that are of in-
terest to his organization. For each entity,
the relevant attributes must be identified.
This is not an easy task in practice. Dif-
ferent users may call the same entity or
attribute by different names or have dif-
fering views of it. Some users may call
different attributes by the same name. I t
seems that resolution of such problems is
primarily a human activity, though some

Computing Surveys, Voi. 8, No. 1, Mareh 1976

CODASYL Data.Base Management SyStem

automated help is available in the record-
keeping phase through the use of data
dictionary software to catalog various
characteristics of the attributes--name,
length, type, who generates it, who uses it,
etc. Once the relevant attributes are identi-
fied, the data-base administrator has the
problem of grouping attributes together
into proper entities. Some possible guide-
lines for doing this are:

1) Determine those attributes (or con-
catenations of attributes), occurrences
of which identify the entities being
modeled. Call these attributes identi-
tiers or candidate keys. For example, if
students are the entity being modeled
and each student has a unique student
number as well as a social security
number, then both student number
and social security number are identi-
fiers. Group together all identifiers
for a particular entity.

2) Determine those other attributes of
an entity that describe it, and there
will be only one value of this attribute
for a given entity, but the attribute is
not part of an identifier. Consider
grouping these nonidentifier attributes
with the identifier or identifiers of the
entity. For example, if students have
a name and are admitted from a given
high school, the items name and high
school would be grouped with the
student number and social security
number.

3) If, for an identifier, there may be
several values of an attribute, con-
sider whether this "repeating item"
may be better modeled as part of a
separate entity. For example, if a
student is enrolled in several courses,
consider whether courses are not
themselves separate entities worthy
of being modeled. If they are, then
see guideline 4 below. If not (for
example, if educational degrees are
considered to describe a student but
are not entities in themselves), then
either allocate a separate attribhte
for each of the finite number of repe-
titions (degree 1, degree 2, etc.), or
associate a dependent, repeating
structure with the entity.

• 6 9

4) If a o n e - t o - n ~ n y association exists
between separate entities (for ex-
ample, if there are student entities
and dormitory entities, and many
students reside at a dormitory but a
given s t uden t does not reside at
more than one dormitory), then
place the identifier of the "one" with
the "many" entity. In our example,
we would place ithe dormitory identi-
fier with the student entity. If there
is a many-to-many association (for
example, if a student is enrolled in
many courses and a course has many
students enrolled), then consider
creating a new entity which describes
this association. This entity will
contain the pair ,of identifiers (namely,
the student identifier and course
identifier) along with any attributes
that depend on both identifiers, for
example, the grade received by the
student in the course.

The three examples of one-to-one, one-to-
many, and many-to-many associations do
not exhaust all possibilities: a person has
exactly two natural parents (a one-to-two
association); Abrial [MI] has discussed such
c a s e s .

At the end of the information design
process, the designer should have a full
specification of those, entities that are of
interest, their necessary attributes, and the
names of the entities and attributes; those
attributes that are entity identifiers; and
those attributes that ideqtify other en-
tities. Data structure design can then
commence.

Concepts of Data Structure Design

Ideally, an information structure can be
handled, as designed, by the DBMS. (Later
we give examples of situations for which
this is not the case). But there is still much
to be done to complet e the design. One task
is to inform the system of the information
structure. This is generally achieved by
stating the design i n n formal computer
language (the data description language).
The data-base definition or schema, 1 written

The word schema is used because the definition
is a "schematic" diagram of the data base.

70 • R. W. Taylor and R. L. Frank

in the data description language, is nor-
mally compiled into internal tables of the
DBMS. Before this is possible, however,
other design decisions must be made. In-
formation structure design deals with en-
tities and attributes. In contrast, data-base
management systems manage records which
are organized as indexed sequential files,
hashed or direct access files, inversions,
ring structures, or other structures [G1].
Thus it is necessary to reduce the entity
and attribute level of data-base design to
the world of computers, e.g., to choose
among storage allocation strategies; to
equate entities with records, perhaps repre-
senting associations with pointer structures;
to decide whether some attributes should be
indexed; and to choose between one-way
and two-way lists. A DBMS offers a variety
of options during the data definition stage,
and the data-base administrator must
choose a reasonable (if not optimal) alterna-
tive. Further, if any validity, integrity, or
privacy constraints are to be enforced, these
must also be stated.

In later sections we detail some of the
options for the design of data structures
(and the accompanying data description
language) as specified in the CODASYL
Data Description Language Journal of De-
velopment [$2]. However, we must make the
following point. Different DBMSs offer
different options for the design of data struc-
tures. Usually options that require more
human decisions offer increased control and
thus the opportunity to tailor data structures
to improve overall operation. On the other
hand, some s]stems require less of the user,
for example, those systems that make data
structure choices "automatically" (that is,
according to the algorithms that are in
operation). These systems are generally
"easier to use," but often operate ineffi-
ciently in cases when the structure chosen
"automatically" is suboptimal.

The associations that the DBMS can make
among records may not be sufficient to
represent the associations at the informa-
tion structure level. For example, the in-
formation structure may demand a many-
to-many association between entities, while
the system offers only hierarchical associ-
ations. In such cases, the data-base admin-

istrator may either have to adapt the in-
formation structure model so that it can be
accommodated by the system, or find a
way to simulate (by using a special pro-
eedure library) the capabilities not directly
available in the DBMS.

Clearly, data structure design is a de-
tailed, highly technical process which re-
quires the expertise of a professional. During
the design process, there is an immediate
need for a notation that can be used to
detail entities and their associations. One
of the notations most widely used to model
entities and their associations (and the one
on which the DBTG system is based) is the
data structure diagram.

Data Structure Diagrams

The data structure diagram was introduced
by Bachman [N1]. This graphic notation
uses two fundamental components--a rec-
tangle and an arrow. A rectangle enclosing
a name denotes an entity or record type
that is dealt with in the data base. Thus:

President

indicates that there are occurrences of the
record type named PRESIDENT. Each
record type is composed of data items; but
the particular item names are suppressed
in this description, though they are defined
in the full data-base description.

I t is important to distinguish between a
record type and an occurrence of a record
of that type. For example, WASHINGTON
and JEFFERSON denote two record oc-
currences within the record type PRESI-
DENT. We use the term record to denote a
record occurrence and we use the term
record type explicitly.

The second component in a data structure
diagram is a directed arrow connecting
two record types. The record type located
at the tail of the arrow is called the
owner-record type, and the record type
located at the head is called the member-
record type. This arrow directed from
owner to member is called a set type and
it is named. For example,

Computing Surveyl, Vol. 8. No. 1, March 1978

CODASYL Data-Base Manaoerae~ ~y~em • 71

~Native.Sons
I President [

declares that a set type named NATIVE-
SONS exists between the STATE (owner)
and PRESIDENT (member) record types.
The declaration that a set type exists speci-
fies that there are associations between
records of heterogeneous types in the data
base. This allows the designer to interrelate
diverse record types and thus to model asso-
ciations between diverse entities in the real
world.

I t is also possible to have more than one
member-record type in a set-type declara-
tion. However, for simplicity of explana-
tion, we do not treat that case in detail.

Just as the distinction was drawn be-
tween a record type and a record (oc-
currence), so a distinction is made between
a set type and a set occurrence. The exist-
ence of a set type is declared by naming it,
stating its owner-record type (exactly one)
and its member-record type or types. A set
occurrence is one occurrence of the owner-
record type together with zero or more
occurrences of each member-record type.
Thus there is an occurrence of a set type
whenever there is an occurrence of its
owner-record type. A set occurrence is an
association of one owner record with n (> 0)
member records. I t is this 1-to-n associating
mechanism that is the basic building block
for relating diverse records.

In every set occurrence, the following
associations exist among the tenants (i.e.,
owner or member records) of that set oc-
currence:

• Given an owner record, it is possible to
process the associated member records
of that set occurrence.

• Given a member record, it is possible to
process the associated owner record of
that set occurrence.

• Given a member record, it is possible
to process other member records in the
same set occurrence.

Any implementation that satisfies these
three rules is a valid implementation of the

concept of a se t type . B a c h m a n [A l l has
surveyed a number of: possible implementa-
tion strategies.

Another rule of set occurrence is easily
seen by examining the following example.
Two occurrences of the NATIVE-SONS set
type are shown in Figure 1, where each
circle denotes a se t occurrence. The owner
record is denoted by its STATE-NAME
item. Member records are denoted by their
PRESIDENT-NAME item. In each set
occurrence, there is one STATE record and
the related PRESIDENT records. Since
there are no Presidents who were born in
Maine, the Maine set occurrence involves
only the owner record (recall that there is
a set occurrence whenever there is an owner-
record occurrence). A se t occurrence with
no member-record occurrences is called an
"empty set."

The reader should realize that sets, as
the term is used here) bear very little re-
lationship to the sets used in mathematics.
For example, the empty set just defined
has an element! To avoid possible confu-
sion, some authors have preferred to call
these structures "da ta structure sets" [D1]
or "owner-coupled sets" [D2].

There is one other rule of se t occurrence:

a given member record may be associated
with only one set occurrence of a given type.
A member record cannot sisaultaneously
belong to two owner records for the s a m e

set type. In terms of the circle diagrams of
Figure 1, any overlap among two circles
of the same type is illegal; it would be il-
legal to make EISENHOWER a native
son of both KANSAS and NEBRASKA
(see Figure 2). We give other consequences
of this rule later, but we emphasize that
this rule is fundamental to the understand-
ing of sets. Because of this rule, it is possible

FIGURE 1. NATIVE-SONS set occurreDees.

Computing Su~ysj Voi. 8. No. 1, March 1970

72 • R. W. Taylor and R. L. Frank

FIGURE 2. Illegal set occurrences.

to regard a set type as a function with a
domain which is the occurrences of the
member-record type or types and with a
range which is the occurrences of the owner-
record type.

We now present some examples of data
Structure diagrams. Set occurrences are
denoted here in terms of one possible im-
plementation-ring structures. However,
it is important to understand that a set
declaration does not imply a method of
implementation. Any implementation that
supports the rules just discussed is possible.

Hierarchies (1-to-n Relationships)

A hierarchy is a common data structure.
In this structure, one record owns 0 to n
occurrences of another record type; each of
those occurrences in turn owns 0 to n oc-
currences of a third record type, etc.: no
record owns any record that owns it, either
directly or indirectly. For example, STATE-
PRESIDENT-ADMINISTRATION, as
shown in Figure 3, is a hierarchy. A possible
occurrence of this hierarchy is shown in
Figure 4.

In the ring structure shown in Figure 4,
there is an access path directed from the
owner record to its "first" member record,
and from the first member record to the
"next" member record. Each member
record, except the last, has a "next" mem-
ber record, and each member record, except
the first, has a "prior" member record ac-
cessed by traversing the ring. In addition,
there is an access path directed from each
member record back to the "owner" record.
(Note, however, that a traversal to the
"next" member record from the last mem-
ber record or to the "prior" member record
from the "first" member record yields a
diagnostic.) We have now satisfied all the
requirements which were stated.

~Native-Sons

J President [

F Administrations-Headed

J Administration J

FIGURE 3. Da ta s t ructure diagram of hierarchy.

1 .o,000.u,o**0

It Native-Sons
JD Administrations-Headed

FIGURE 4. Occurrence of a hierarchy.

Many-to-Many Relationships

A second common structure relates two
record types which stand in a many-to-
many relationship to each other. Consider,
for example, STUDENT and COURSE
record types. A STUDENT may be taking
many courses and a COURSE may have
many students. To model this, it is not
possible to construct the diagram:

Student Course
= Has-Enrolled =

since a COURSE with more than one
STUDENT would simultaneously be a
member in two set occurrences of EN-
ROLLED-IN, violating the rule of unique
ownership. This is illustrated in Figure 5.
Similarly, when a student takes more than
one course, the HAS-ENROLLED set con-
dition is violated (see Figure 6).

The usual way of representing many-to-
many relationships is to define a third
record type, as shown in Figure 7. This new
record type is used to relate the two other
record types; it contains any information
that pertains specifically to both STUDENT
and COURSE, e.g., GRADE.

Figure 8 shows an occurrence of the many-

Computing Surveys, VoL 8, No, 1, March 1976

CODASYL Data-Base Manaoeme~8tt~:i •
, i ~: "/~

FIGURE 5. Course wi th more t h a n one s tuden t ,
Two occurrences of E N R O L L E D - I N wi th a
shared member.

FIGUR~ 6. S tuden t enrolled in more t h a n one
course. Two occurrences of H A S- E N RO L L E D
wi th a shared member.

to-many relationship structure. I t is pos-
sible to ascertain the classes a given student
is enrolled in by following the ENROLLED-
IN set; whenever a GRADE record is
found, one switches to the HAS-EN-
ROLLED set to find the owner record.
Then one returns to the GRADE record,
switches back to the ENROLLED-IN set,
and continues to the next GRADE record,
if any, etc. The retrieval of enrolled stu-
dents given a class record is similar. When

viewed in this way, it is clear that n-dimen-
sional associations are possible when the
"intersection record" in the array is a
member of n set types. If the set types
are implemented using ring structures, the
structure is like a sparse array; this is an
appropriate structure in many applications.

Another example, used in the presidential
data-base example, is shown in Figure 9.
A President may be associated with many
Congresses and a Congress may serve with
more than one President (as a result of a
death in office, for example). In this case,
a many-to-many relationship exists. Whether
or not the intersection record contains data
meaningful to the user, which is frequently
the case, the introduction of the third
record type is generally a necessity. In
this example, the number and dates of
speeches addressed to a joint session of a
Congress by a President are examples of

73

LI Enrolled.In Has-Enrolled

Grade

FIGURE 7. Represen ta t ion of many- to -many re-
lationships.

possible data items within the CONGRESS-
PRES-LINK record type.

Complex Relationships Using Data Structure
Diagrams

The preceding section presented examples
of cases where a record type was a member
in more than one set type. I t is also possible
for a given record type to be the owner of
more than one set type. Figure 10 illustrates
such a case. As shown in this figure, each
President won a number of Elections and
headed a number of Administrations. By
using data structure diagram notation, a
data-base administrator can define "net-
works," where a record type may serve as
a member in one or more set types and as
owner in one or more other set types.

I t is also possible to represent "recursive"
structures such as the parts explosion or bill
of materials structure by using data struc-
ture diagram notation. In the parts ex-
plosion structure, a part is composed of
other parts, which in turn are composed of
other parts, etc. While data structure dia-
gram notation does /got forbid the same
record type from being both owner and
member in the same set type, this rule has
been adopted by the Data Description
Language Journal of Development [52]. For
example,

is an illegal structure. However, it is still
possible to represent t l ~ stl~cture through a
"relationship record type," as shown in
Figure 11. The ASY record type represents
an assembly of subparts. This structure has
an occurrence diagram as shown in Figure
12 (where horizontal lines are HAS-SUB-
STRUCTURE set occurrences and vertical

c o ~ u t i ~ S~V~S. ~ 8, ~ I, Mmh

74 R. W. Taylor and R. L. Frank

Bob

Carol

Ted

Math
m+
I !
! I
s !
m •

English History
I + ' f
I I I = I
I I n I
A~I I |

I I
I I I I
I I I I
I I I I
B I
, i 13 ' • I
I I I I
I I I I
I I I I

m • I

t l_ ' - =

Enrolled-in v
. , , ~ Has.Enrolled

FIGURE 8. Occurrence of many-to-many relationship.

I President I

Congress-Served L ~ I

F I G U R E 9 .

Congress~
Pres-Link

I I E tonswonlPresientl Congcess
Administrations-

, I Headed

IA ! ' President-Served Election Administration

FXGURB 10. Mult iple set ownership.

Many-to-many association in Presi-
dential data base.

lines are HAS-SUPERSTRUCTURE set
occurrences.)

Note that as a first approximation, we
can consider Figure 11 a special case of the
many-to-many relationship. That is, the
diagram:

has been "merged" because both sides are
of the same record type. By using the array
notation for the occurrence diagram (see
Figure 12), we can accomplish a "parts
explosion traversal" using the "find next,
switch sets, and find the owner in the other
set" traversal. The reader should be able

I Part

Has-Substructure ~ ~ Has-Superstructure

FIGURE 11. Parts explosion structure.

to determine how a "parts implosion" tra-
versal could be accomplished.

Figure 12 does not illustrate one concept:
that there is only one occurrence (not two)
of a part; that is, there is one bike, one
frame, etc. By "folding" the array, we ob-
tain Figure 13, where there is only one
occurrence of each part, with one part
description, quantity on hand, etc., no
matter where the part is used. The structure
can also be regarded as an acyclie directed
graph, as shown in Figure 14, where the

Computing Surveys , Vol. 8, No. 1, March 1970

Bike

Wheel

Frame

Paint

Fenders

Body

Nuts/Bolts

Bike

C O D A S Y L Data-Base M ano4terne~ 8yatsmt
E

Wheel Frame Paint Fenders Body Nuts/Bolts

! ÷ !'1' !4 ' !4 ' ! ! ' t

' ' ' I ; ' ' ' ' A S Y - I ~ A S Y - 2 I I ; I

i i " I I I i i ' ;
- - b . i ; ! ; i :

ASY-,., ' 1 1 I i I " :A~Y" I"J'~1

i I s ; i :
I "~ SY'2" 1 --ASY'2"2 "ASY'2='3 == 1

I li ' ' : i :
I L . J li= ..J i l
I I I
I I

~SY-2.2,1 ,, ASY.2.2,2 .~1
I I

' L J ~ ' , /
I I
I . d

Ill Has-Substructure

Has-Superstructure

FIGURE 12. Occurrence of parts explosion.

7 5

Bike

Wheel

Frame

Fenders

Paint -- -

Body

Nuts/Bolts n ~ - -

I
'AS~(-1 ~ AYS-2

I
I I
I I
I ASY- 1.1

I
I

I

I
I

ASY-3
I

I
I

ASY. 1 . 2 - , ~ -
I

I I I
I I

ASY-2.1-- ASY.2.2--AE~-2.3 I
I I !

I I
I I

ASY-2.2.1 I

I
I
I

I
I
I
I
I
I
I
I
I
I

I

_~sY!zz2 . - - -
I
I
I
I
I
I
I
I
I
I
I

- - . , J

k Has-Substructure m

Has-Superstructure

FIGURE 13. Parts explosion with records merged.

contents of the ASY records are shown as diagram notation. Record types are PRESI-
labels on the edges of the graph. DENT, CONGRESS, ADMINISTRA-

TION, STATE, ELEGTION, AND CON-
President ial Da ta Base GRESS-PRES-LINK. These re~rd types

represent the corresponding entities. In
Figure 15 shows our example, the Prcsi- addition, the following associations are
dential data base, using data structure modeled usingsettypes:

Computi~ ~uurv~y~ ~.o~L 8, No. 1, Mmrch 1976

76 • R. W. Taylor and R. L. Frank

AS~-I

Wheel I

ASY-1.2 ASY]I. 1]

Paint

F z G u ~ 14.

I Bike]

ASI(.2

Frame J I
AS~o2.1 ASY-2.2

Fenders I Body

I ASY-2.2.2
+

P a r t s exp los ion a s a g r a p h .

ASY-2.3

AS '-3

1
Election

4' All- Elections-SS
I

J "System" J
Fi~uR~ 15.

Elections~Won

I "System" I
s AII-President~SS Administrations-Headed

Congress.SerVed ~ / Admitted-During Native-Sons Jl~

Congress-Pres-Link State

4' 4' President-Served AlI-States-SS
I , I

Data structure diagram of Presidential data base.

• Each President is associated with the
Elections he won.

• Each President is associated with his
Administrations in the ADMINISTRA-
TIONS-HEADED set type.

• Each President is associated with a
number of Congresses in a many-to-
many relationship.

• Each State is associated with a number
of Presidents who are its native sons.

¢ Each State (except the original thirteen)
was admitted during an Administration.

Figure 15 also shows three set types
where the owner is "the system." These are
called singular sets and are discussed in
more detail in Section 2, Sample Data-Base
Application. Based on the rules regarding
member-record accessibility, it is sufficient
to note here that the singular set type
implies that there are three access paths

Computing Surveys, VoL 8, No. I, March 1976

CODASYL Data.Base M a ~

(however encoded physically), an access
path that passes through all occurrences
of PRESIDENT (ALL-PRESIDENTS-
SS), an access path that passes through all
occurrences of ELECTION (ALL-ELEC-
TIONS-SS), and an access path that
passes through all STATE records (ALL-
STATES-SS). These singular sets represent
entry points into the data base in the sense
that particular Presidents, Elections, or
States may be located by values of their
constituent items, with no need to have ac-
ceased other records in the data base.

2. SAMPLE DATA-BASE APPLICATION

The DBTG specifications include several
languages which are to be used to describe
and manipulate data. In this section we
present an example of a data base which
uses these languages. The subsection titled
Presidential DataBase in the DDL dis-
cusses the use of the Schema data description
language (DDL) to describe a data struc-
ture. The sub.schema of the Presidential
Data Base subsection presents a Sub-schema
language description of that part of the data
base which is to be processed by an applica-
tion program~ Subsection Sample Retrieval
Program through subsection Traversing an
m:n Relation in the COBOL DML illustrate
the use of the COBOL programming language,
as augmented by the DBTG data manipu-
lation language (DML), to access and up-
date the stored data. Some of the more
complex issues, particularly in the DML,
are not discussed here, though some are
presented in Section 3, Advanced Features.

Presidential Data-Base in the DDL

At the end of the preceding section we in-
troduced the components of the Presi-
dential data base, by using a data structure
diagram. We use this sample data base to
illustrate the concepts presented in the
remainder of this paper.

Here we give a description of the Presi-
dential data base in the Schema DDL. The
syntax is that adopted by the 1973
CODASYL Data Description Language
(DDL) Journal of Development [$2].

• ??

i

A description of a ¢h~ b ~ i n the Schema
DDL consists of four major sections:

• an introductory clause
• one or more AREA clauses
• one or more RECORD clauses
• one or more SET clauses.

The introductory elau,.~ is used to name the
data base and to state certain global se-
curity and integrity constraints.

An area is a logical subdivision of the
data base, which in many imple~ntat ions
corresponds to a file or data set in an operat-
ing system. While we usually think of a
data base as being a single integrated col-
lection of data, it is often desirable to sub-
divide such a data base into multiple logical
subunits, in order to implement special
security and integrity! constraints and to
provide a mechanism to control the per-
formance and cost o f implementation.
Data-base security can be increased by
placing highly sensitive data in logically
separate areas and by placing special con-
trols over those areas.: Of course, physical
separation of the areas may be used to in-
crease security. Data-base integrity can be
improved by placing c~ritical data in areas
that are safe from harm or are often dupli-
cated, while high performance areas may
need to reside on high Ispesd devices. Simi-
larly, costs can be minimized by placing
infrequently used data in areas which reside
on less costly devices. Any logical or physical
reason for splitting the data can utilize the
area concept.

The area description in the Schema DDL
allows the data-base a d m i T , tatar to name
these subdivisions of the data base and to
specify which of the areas contain which
record types. The actual mapping of areas
to one or more physical storage volumes is
under the control of a separate device-
media control language (DMCL), The
need for a DMCL waB!noted but ha~ been
left unspecified by the DBTG and it6 suc-
cessor committees. In !many implementa-
tions of the DBTG specifications, the func-
tions of the DMCL are~ i ~ p o r r a t e d in the
job control or comma~t language of the
operating system. Several advanced fea-
tures of areas are described in detail in Sec-
tion 3, Subsection Areats.

78 • R. W. Taylor and R. L. Frank

For every record type in a data base
there exists a description in the Schema
DDL. A schema record description consists
of information about the record type, such
as its storage and location mechanism, and
information about the area or areas in which
occurrences of the record type may be
placed.

The record description contains a de-
scription of all data items that constitute
the record type. A record occurrence in the
stored data base consists of occurrences of
each data-item type that constitute the
record type. These record occurrences are
the units of data transfer between the
stored data base and an application "pro-
gram. Thus the application programmer
interface uses a "record at a time" logic
(one record occurrence is delivered or stored
for each command) in accessing the data
base.

For each set type in a data base, a sepa-
rate set description is written in the Schema
DDL. Each set description names the set
type, specifies the owner-record type and
member-record type or types, and states
detailed information on how occurrences of
the set are to be ordered and selected.

The introductory section of a schema
description consists of a statement naming
the schema, and certain security and
integrity constraints. For our sample data
base, this introductory section is:

SCHEMA NAME IS PPJ!~IDENTIAL;
PRIVACY LOCK FOR COPY IS 'COPY PASSWORD'

into a Sub-schema (see subsection Sub-
schema of the Presidential Data Base).
DISPLAY similarly controls the printing
of the stored schema. LOCKS controls the
altering of privacy locks in the schema,
which is analogous to controling who may
change the key to the key cabinet.

In the preceding example we specify that
when the Sub-schema processor is requesting
a copy of the schema for use in processing a
sub-schema, it must supply the literal
'COPY PASSWORD' as a privacy key.
Similarly, to modify the schema, a person
must satisfy the privacy constraints im-
posed by the procedure named CHECK-
AUTHORIZATION, (which is written by
the data-base administrator). Such a pro-
cedure is automatically invoked every time
anyone attempts to modify the stored
schema. Such a procedure is termed a
data-base procedure (see Section 3, subsection
Data-Base Procedures).

Following the introductory section, we
can intermix descriptions of the areas,
records, and sets that make up the data base,
subject to the constraint that an area de-
scription must precede the description of all
records that may be placed in that area and
the constraint that all records that make
up a set must be described before the de-
scription of the set using them. For sim-
plicity, we present all area descriptions,

PRIVACY LOCK FOR ALTER IS PROCEDURE CHECK-AUTHORIZATION;

This names the schema (PRESIDEN-
TIAL) and specifies certain privacy criteria
(LOCKS) that must be met when attempt-
ing to access the stored copy of this schema.
In fact, the schema language provides four
types of privacy associated with accessing
the schema: ALTER, COPY, DISPLAY,
and LOCKS. ALTER controls the condi-
tions under which the contents of the stored
schema may be altered. (Note that this is
not the same as altering the data base.
Here we are controling the ability to modify
the schema itself, e.g., to add a new record
type to the data-base description.) COPY
controls who may copy the stored schema

followed by all record descriptions, followed
by all set descriptions.

In our example we restrict attention to a
single area. All record occurrences are in
this single area, which is described as fol-
lows:

AREA NAME IS PRIi~IDENTIAL-AREA;
ON OPEN FOR UPDATE CALL UPDATE-CHECK;

This names the area as PRESIDENTIAL-
AREA and specifies that, if the area is
opened for update, a data-base procedure
(UPDATE-CHECK) will be invoked.

As shown in Figure 15 the Presidential

Computin4t Surveys, VoL 8, No. 1, March 1976

CODASYL Data-Base M a n a y e m e ~ ~

data base consists of six record types: PRES-
IDENT, ADMINISTRATION, STATE,
CONGRESS , CONGRESS-PRES-LINK,
and ELECTION. We illustrate several of
these records in detail and then give a
short description of the remaining records.

The PRESIDENT record may now be
defined as:

RECORD NAME IS PRESIDENT
LOCATION MODE IS CALC

• 79

J

The Schema langtmge!'also provides for the
inclusion of many additional data- i tem
attributes, some of which are discussed in
Section 3, Advanced ::Features. The PIC-
TURE clause describes the number and
type of character positions that make up
the data item. For example, a picture of
A(10) specifies in a w a y similar to COBOL
or PL/ I that the corresponding item is

USING LAST-NAME, FIRST-NAME, DUPLICATES ARE NOT ALLOWED
WITHIN PRESIDENTIAL-AREA

O2 PRES-NAME
03 LAST-NAME PIC"A(10)"
03 FIRST-NA~IE PIC"A(10)"

02 PRES-DATE-OF-BIRTH
03 MONTH-B PIC"A(9)"
03 DAY-B PIC"99"
03 YEAR-B PIC"9999"

02 PRES-tIE1GHT PIC"X(IO)"
02 PRES-PARTY PIC"A(10)"
02 PRF~-COLLEGE P1C"A(10)"
02 PRES-AECESTRY P1C "A(10)"
02 PRES-RELIG1ON PIC "A(10)"
02 PRES-DATE-OF-DEATH

03 MONTH-D PIC"A(9)"
03 DAY-D P1C"99"
03 YEAR-D PIC"9999"

02 PRES-CAUSE-DEATH PIC"X(10)"
02 PRES-FATHER PIC "A(10)"
02 PRES-MOTHER PIC "A(10)"

After naming the record PRESIDENT,
the LOCATION MODE clause specifies
certain information about the way of placing
and retrieving record occurrences. In this
example, CALC is specified. CALC refers
to address calculation or hashing. The clause
specifies that a PRESIDENT record is
positioned according to the values of its
data items LAST-NAME and FIRST-
NAME. Note the addition of the DUPLI-
CATES ARE NOT ALLOWED clause,
which specifies that if an attempt is made to
store a new (but duplicate) occurrence of
the PRESIDENT record the system should
reject the request and notify the application
program of the rejection. Of course, this
means that the data base would not support
two presidents with same first and last
names !

The WITHIN clause specifies in which
area or areas occurrences of the record may
be placed: in our sample data base it is
PRESIDENTIAL-AREA, the only area.

Next, the data items that constitute the
record are specified. The names given for
the items are self-explanatory. Associated
with each data item name is a picture.

made up of 10 alphabetic positions. A pic-
ture code of X spccites an alphanumeric
position, and a picture code of 9 specifies a
numeric position. Data items can be col-
lected into groups, which are collections of
data items and (optiOnally) other groups
that are named. For i example, the group
PRES-NAME consists of the data items
LAST-NAME and F i R S T - N A M E . Such
grouping provides for good documentation,
as well as easing the programming task,
since COBOL provides for primitives for
manipulating groups as well as data items.

The ADMINISTRATION record is de-
fined as follows:
RECORD NAME IS ADMINISTRbTION

LOCATION MODE lS VIA ADMINISTRATIONS-HEADED SET
WITHIN PRESIDENTIAL-AREA
02 ADMIN-KEY PIC"XXX" '
02 ADMIN-INAUGURATION-DATE

03 MONTH PIG "99"
03 DAY PIC"99"
03 YEAR PIC "9999"

This record uses a location mode of VIA,
wMch specifies that the record occurrences
are, where possible, to be located near other
record occurrences in the ADMINISTRA-
TIONS-HEADED set to which it is linked.
Thus all occurrences of She ADMINISTRA-
TION record for a particular administration
would be placed near each other and the
owning PRESIDENT record. The VIA
specification advises the DBMS of the
desirability of clustering record occurrences
on secondary storage. Of course, this is
only a request to attempt to cluster the
records; the system will follow an imple-
menter-defined algorithm. The performance
of this algorithm will depend, in part, on
storage allocations made by the data-base
administrator. .~

The remaining record d e s ~ t i o n s are
presented without further discussion; they

Computi~ 8m'v~s, Vol. $, No. 1, Mlueh 1~6

80 • R. W. Taylor and R. L. Frank

follow the same format as do the previous
two.
RECORD NAME IS STATE

LOCATION MODE IS CALC
USING STATE-NAME DUPLICATES ARE NOT ALLOWED

WITHIN PRESIDENTIAL-AREA
02 STATE-NAME PIC "X(10)"
02 STATE-YEAR-ADMITTED PIC "9999"
02 STATE-CAPITAL P1C"X(10)"

RECORD NAME IS ELECTION
LOCATION MODE IS VIA ALL-ELECTIONS--SS
WITHIN PRESIDENTIAL-AREA
02 ELECTION-YEAR PIC "9999"
02 ELECTION-WON-ELECTORAL-VOTES PIC"999"

RECORD NAME IS CONG1RI~$S
LOCATION MODE IS CALC

USING CONGRESS-KEY DUPLICATES ARE NOT ALLOWED
WITHIN PRESIDENTIAL-AREA
02 CONGRESS-KEY P I C " X X X X "
02 CONGRI~S-NUM-PARTY--SENATE PIC"999"
02 CONGRESS-NUM-PARTY-HOUSE PIC "999"

RECORD NAME IS CONGRESS-PRES-LINK
LOCATION MODE IS VIA CCONGRI~-SERVED SET
WITmN PRESIDENTIAL-AREA

When the record types that make up the
data base have been described, the process
of ~lating record types through sets can
begin. The simpl~st type of set description,
termed a s/ngu/ar set, is one where the
owner of the set is implicitly the "sys~m."
Because such a set has a unique owner,
there can be only one occurrence of the set
(thus the term singular). One way to use
the singular set is to collect all records of a
particular type for sequential access. In
the Presidential data base the record types
PRESIDENT, ELECTION, and STATE
are to be members of three singular sets.
The descriptions for these three sets are:

SET NAME IS ALL-PRESIDENTS-SS
OWNER IS SYSTEM
OI{DER IS PERMANENT SORTED BY DEFINED KEYS

DL'PLICATES ARE LAST
MEMBER IS PRESIDENT MANDATORY AUTOMATIC

KEY IS ASCENDING LAST-NAME IN PRES-NAME
SET SELECTION IS THRU ALL-PRESIDENTS-SS

OWNER IDENTIFIED BY SYSTEM

SET NAME IS ALL-ELECTIONS-SS
OWNER IS SYSTEM
ORDER IS PERMANENT SORTED BY DEFINED KEYS

DUPL1CATI'~ ARE NOT ALLOWED
.MEMBEI¢ IS ELECTION MANDATORY AUTOMATIC

KEY 1S ASCENDING ELECTION-YEAR
SET SELECTION IS THRU ALL-ELECTIONS-SS

OWNER IDENTIFIED BY SYSTEM

SET NAME 1S ALL-STATES--SS
OWNER IS SYSTEM
ORDER 1S PERMANENT SORTED BY DEFINED KEYS

DUPLICATFES ARE NOT ALLOWED
MEMBER IS STATE MANDATORY AUTOMATIC

KEY IS ASCENDING STATE-NAME
SET SELECTION IS THRU ALL-STATES-SS

OWNER IDENTIFIED BY SYSTEM

Since all three set descriptions follow the
same format, only the ~ s t set is described.
After naming the set type, the OWNER IS

clause names the owner-record type. In
these three examples, a declaration of
SYSTEM as owner denotes singular sets.
The ORDER IS clause specifies the order
in which member-record occurrences may
be presented sequentially to an application
program. Here we specify the order of the
set to be sorted based on keys stated as
part of the description of the member record
(the D E F I N E D KEYS option). The
P E R M A N E N T option (required for sorted
sets) specifies that an application program
may not make (permanent) alterations to
the order of a set. Thus any ordering changes
made by an application program are local
to the execution of that program and do
not permanently affect the data base.

The DUPLICATES clause specifies
whether duplicates are permitted for the
defined keys and, if they are, how they
should be handled. The DUPLICATES
ARE LAST option specifies that when an
attempt is made to store a member record
that has duplicated the keys of another
member-record occurrence, the system
should place the new record occurrence
after all existing record occurrences that
have the same key.

The M E M B E R subentry names the
member-record types that make up this set
type. In all of the examples from the Presi-
dential data base, a set type is composed
of an owner-record type and a single mem-
ber-record type, though the specifications
allow for multiple member-record types in a

single set type.
The record type which acts as a member

of the set is named in the M E M B E R IS
entry. This is followed by a statement con-
cerning the removal of member-record oc-
currences from set occurrences that is al-
lowed and a statement specifying how mem-
ber record occurrences are initially placed
in set occurrences. The MANDATORY
specification indicates that once an oc-
currence of PRESIDENT is placed in
ALL-PRESIDENTS-SS it may not be
removed from the set occurrence without
actually deleting the record occurrence.
The AUTOMATIC specification indicates
that each time a new occurrence of the

C o m p u t i n g Surveys , Voi. 8, No. 1, March 1976

CODASYL Data-Ba~e M a ~ I f : ~ e m
i

PRESIDENT record is stored in the data
base, it is automatically inserted in the
ALL-PRESIDENTS-SS set. The combined
effect of MANDATORY AUTOMATIC
is that all occurrences of the PRESIDENT
record will be a member of the ALL-PRESI-
DENTS-SS.

The SET SELECTION clause allows the
system to support the AUTOMATIC in-
sertion of member-record occurrences into
the appropriate set occurrences. Since all
sets described have only one occurrence, the
system may (trivially) select the proper set
occurrence. For singular sets, the SET
SELECTION clause is a restatement of
the fact that the set is singular. The other
set descriptions present more complex cases
of set selection.

We now describe the ELECTIONS-WON
set:

SET NAME IS ELECTIONS-WON
OWNER IS PRESIDENT
ORDER IS SORTED PERMANENT BY DEFINED KEYS

DUPLICATES ARE NOT ALLOWED
~IEMBER IS ELECTION MANDATORY AUTOMATIC

KEY IS ELECTION-YEAR
SET SELECTION IS THRU ELECTIONS-WON

OWNER IDENTIFIED BY CALC-KEY

This set description basically follows the
same format as do the previous descriptions,
with the exception of the SET SELECTION
clause. Since there now exists an occurrence
of ELECTIONS-WON corresponding to
each occurrence of PRESIDENT, we need
to tell the system how to relate a new oc-
currence of ELECTION to the correspond-
ing occurrence of PRESIDENT. This arises,
for example, when a new ELECTION
record is stored, since we have declared
(with AUTOMATIC) that each new oc-
currence of ELECTION must be placed in
an occurrence of the ELECTIONS-WON
set. By stating OWNER IDENTIFIED
BY CALC-KEY, the system is told that the
application program will state the necessary

• 81

CALC-KEY of the eon~mmding PRESI-
DENT. By referring to the description
for a PRESIDENT record, we note that
the CALC-KEY is LAST-NAME, FIRST-
NAME. Therefore, before we attempt to
STORE a new occurrence of ELECTION
in the data base, we must present the system
with values for the Winning PRESIDENT
LAST-NAME and FIRST-NAME. Since
there is a one-to-one correspondence be-
tween owner-record occurrences and set
occurrences, to identify a PRESIDENT-
record occurrence uniquely identifies the
corresponding E L E C T I O N S - W O N set oc-
currence and allows insertion of the oc-
currence of the n e w E L E C T I O N record
into this set.

As discussed in Section 1, Design of a
Data Base, there is an m:n relationship be-
tween PRESIDEN'I~! and CONGRESSES.
We relate these two records a6 follows by
use of an intermediat~ "link record," which
in this ease is CONGRESS-PRES-LINK,
shown in Display 1 below.

The sole purpose for CONGRESS-PRES-
LINK is to act as a link between PRESI-

DENT and CONGRESS. As such, it is not
meaningful to define a sort order, and it is

declared IMMATERIAL; the system may
keep occurrences in an implementor-defined
order.

For both sets, the S E T S E L E C T I O N is
determined by the CALC-KEY of the re-
spective owner record. For example, when
an application program determines that a

particular PRESIDENT is to be linked to
a particular CONGRESS, the program
must provide a value for the CALC-KEY
of PRESIDENT (LAST-NAME, FIRST-
NAME) and CONGRESS (CONGRESS-
KEY). When the program issues a STORE
operation on CONGRRSS-PRES-LINK

Display 1

SET NAME IS CONGRESS-SERVED
OWNER IS PRESIDENT
ORDER IS PERMANENT IMMATERIAL
51EMBER IS CONGRFESS-PRES-L1NK MANDATORY AUTOMATIC

SET SELECTION 1S THRU CONGRESS-SERVED
OWNER IDENTIFIED BY CALC-KEY

SET NAME IS PRESIDENT-SERVED
OWNER IS CONGRESS
ORDER IS PER~IANLXT IMMATERIAL
MEMBER IS CONGRESS-PRES-LINK MANDATORY AUTOMATIC

SET SELECTION IS THRU FItESIDENT-SERVED
OWNER IDENTIFIED BY CAI~.,-KEY

Computins ~ Yd. 8, ~ I,] ~eh 1~'8

i

82 • R. W. Taylor and R. L. Frank

(CONGRESS-PRES-LINK is an AUTO- I
MATIC member of both CONGRESS- J President

SERVED and PRESIDENT-SERVED),
the record is linked to both sets.

1 The other sets relate the records Native-Son
PRESIDENT, ADMINISTRATION, and
STATE:

SET NAME IS ADMINISTRATIONS-HEADED
OWNER IS PRESIDENT
ORDER IS PERMANENT SORTED BY DEFINED KEYS

DUPLICATES ARE NOT ALLOWED
MEMBER IS ADMINISTRATION MANDATORY AUTOMATIC

KEY IS ASCENDING ADM1N-KEY
SET SELECTION IS THRU ADMINISTRATIONS-HEADED

OWNER IDENTIFIED BY CALC-KEY

SET NAME IS ADMiTTED-DURING
OWNER IS ADMINISTRATION
ORDER IS PERMANENT SORTED BY DEFINED KEYS

DUPLICATES ARE NOT ALLOWED
MEMBER IS STATE MANDATORY MANUAL

KEY IS ASCENDING STATE-YEAR-ADMITTED
SET SELECTION FOR ADMITTED-DURING

IS THRU ADMINISTRATIONS-HEADED
OWNER IDENTIFIED BY CALC-KEY

THEN THRU ADMITTED-DURING WHERE
OWNER IDENTIFIED BY ADMIN-REY

SET NAME IS NATIVE-SON
OWNER IS STATE
ORDER IS PERMANENT SORTED BY DEFINED KEYS

DUPLICATES ARE LAST
MEMBER 1S PRI~SIDENT MANDATORY AUTOMATIC

KEY 1S ASCENDING LAST-NAME IN PRES-NAME
SET SELECTION IS THRU NATIVE-SON

OWNER IDENTIFIED BY CALC-KEY

The format for the sets ADMINISTPUt-
TIONS-HEADED and NATIVE-SON
follows that of the previous sets. In both
cases the owners of the respective sets have
CALC-KEYS defined for them, and these
calc-keys are used to determine an occur-
rence of the respective sets when necessary.

The ADMITTED-DURING set intro-
duces several new concepts. The first of
these is the concept of MANUAL member-
ship. In previous examples all member
records have been declared AUTOMATIC,
meaning that when a new occurrence of the
member record is storm in the data base, it
is to be automatically included in an oc-
currence of the set. There are two important
reasons an AUTOMATIC membership
attribute would be improper here. The first
reason concerns the cyclic structure of the
three sets, as shown by the data structure
diagram of Figure 16.

If each of the records, PRESIDENT,
ADMINISTRATION, STATE, shown in
Figure 16, were defined as automatic mem-
bers of their respective sets, problems would
occur. Automatic membership implies that

mm- Administration

ions i~ Headed
Admitted-During

State

FIGURE 16. Part of Presidential data base.

whenever a new record occurrence is stored
in the data base, it will be placed in an oc-
currence of each set in which it is an auto-
matic member. However, there is a one-to-
one correspondence between set occurrences
and owner-record occurrences. In order for
a set occurrence to exist, there must be an
occurrence of its owner. In the context of
Figure 16, if all three records are automatic
members of their respective sets, it is im-
possible to store the first record occurrence
of any of the record types (because storing
an automatic member record requires an
owner).

The solution to the dilemma, as required
by the CODASYL specifications, is the
declaration that one of the member records
(in a cyclic structure) is MANUAL. In
this example, we declare STATE to be a
manual member of ADMITTED-DURING.
The implication is that appropriate occur-
rences of STATE must be stored in the
data base first; then store occurrences of
PRESIDENT, and finally occurrences of
ADMINISTRATION. After the record
occurrences have been stored, the appli-
cation program can traverse the structure
and can manually link together STATE and
ADMINISTRATION record occurrences.

The second and more fundamental reason
for declaring STATE a manual member
concerns the nature of the data being
stored. The original thirteen states of the
Union existed from the beginning of the
Country, and were not "added" during
any President's Administration. I t would
be improper to require that these States
be placed in any occurrence of ADMITTED-
DURING; hence STATE must be a manual
member of ADMITTED-DURING. In
general, when a member record participates

Computing Surveys, Vol. 8, No. 1, March 1976

CODASYL Data-Base Managvm¢~2 ~ •

conditionally in a set, the MANUAL attri-
bute is used.

The second major concept introduced by
the ADMITTED-DURING set concerns
its SET SELECTION clause. In all pre-
vious examples, SET SELECTION is
either obvious (for singular sets), or ap-
parent directly through the CALC-key of
the owner record of the set. If we refer to
the description of the ADMINISTRATION
record, we note that the location mode for
the record is VIA the ADMINISTRA-
TIONS-HEADED set. Thus we may not
identify the owner of ADMITTED-
DURING by presenting a CALC-key, since
ADMINISTRATION is not a "calced"
record. In this case we chose an option
which specifies that we first select an occur-
rence of ADMINISTRATIONS-HEADED
by presenting the CALC-key of PRESI-
DENT. The result of this operation is the
determination of a set occurrence of
ADMINISTRATIONS-HEADED. Then,
from among the occurrences of ADMIN-
ISTRATION that participate in the
ADMINISTRATIONS-HEADED just se-
lected, we select an ADMINISTRATION
record by providing its ADMIN-KEY. Once
we have identified an occurrence of AD-
MINISTRATION, we have also identified
an occurrence of ADMITTED-DURING.
I t is important to note that the second phase
of this process, that of selecting an occur-
rence of ADMINISTRATION based on a
value for ADMIN-KEY, is performed only
among those occurrences selected during
the first phase. Thus there is no requirement
that ADMIN-KEY be unique across the
data base, but only that it be unique within
individual occurrences of ADMINISTRA-
TIONS-HEADED.

We have now described the Presidential
data base. The next phase is the declaration
of one or more sub-schemas.

A Sub-schema of the Presidential Data Base

The Schema defines the entire data base
that is stored and available to all users.
But an application program may need to
view only some parts of the data base, as
well as to make some simple changes. The

• 8 3

Sub-schema DDL allows a data-base ad-
ministrator to delimit which portions of a
data base (as declared in the Schema) are
to be made available to the application
program or programs. I t also enables the
data-base administrator to make some
changes in the way that the stored data is
presented to an application program; for
example, the internal representation of a
data item might be changed from binary
in the data base to decimal when passed
to the application program. The particular
sub-schema described here is defined for use
with COBOL. CODASYL intends to de-
velop sub-schema languages for other
programming and self-contained languages.

The application programs discussed later
need only the information in that part of
the data base which is shown in Figure 16.
We therefore define a sub-schema to be
used for that information only. The first
part of the definition gives names and
privacy keys:

SS PRI~-ADMIN-STATE-II~F0 WITHIN
SCHEMA PRESIDENTIAL
PRIVACY KEY IS *COPY PASSWORD'.

This calls the sub-schema PRES-ADMIN-
STATE-INFO, and names the privacy key
which allows the sub'schema processor to
access the stored schema; the schema defini-
tion has a COPY privacy lock.

Next, the necessary areas are defined; we
must select those areas that are required
by the application programs that access
the data base through this sub-schema.
Due to conflicts with Go~oL reserved words,
the term AREA in the Schema DDL is
called a REALM in ~he sub-schema and
COBOL DML. Since there is only one area
in the schema, we specify that it is to be
made available:

REALM DIVISION
RD PRESIDENTIAL-AREA.

Next we define the sets required in this
sub-schema:

SET DIVISION.
SD ALL-PRESIDEI~TS-SS.
SD ALL-STATES--SS.
SD ADMINISTRATIOI'~S--HEADED.
SD ADMITTED-DURING.
SD NATIVE-SON.

Finally we name the records and cor-
responding data items that are part of this

Computinff Suz'v~ve, VoL 8, No. | , March 1976

84 • R. W. Taylor and R. L. Frank

sub-schema:

RECORD DIVISION.
01 PRESIDENT.

O2 PRFES-NAME.
03 LAST-NAME PICA(10).
03 FIRST-NAME PICA(10).

01 ADMINISTRATION.
02 ADMIN-KEY PICXXX.
02 ADMIN-INAUGURATION-DATE.

03 MONTH PIC99.
03 YEAR PIC9999.

01 STATE.
02 STATE-NAME PICX(10).
02 STATE-YEAR-ADMITTED P1C9999

In this record section we not only elimi-
nate unnecessary records from the sub-
schema, but include only those data items
of interest to an application program using
this sub-schema.

Sample Retrieval Program

Once the schema and sub-schema are de-
fined, application programs can be written
to store and access data. The DBTG speci-
fications do not include a special data-base
population function; therefore the first
program written is normally a data-base
load program. We shall, however, assume
that a data base does exist for our examples.

The first program presented here finds
all of the States that have more than one
President as a native son. Then we print
out the name of the State with its number
of Presidents. Queries like this, which in-
volve traversing almost the entire data base
and performing counting are well suited for
DBTG-type systems.

The DML presented in this section is
designed to augment the COBOL program-
ruing language. To save space (and to aid
those who are not COBOL programmers),
the examples use English language de-
scriptions for nondata-base functions such
as input/output and computation. For those
who know the COBOL programming lan-
guage, the corresponding code should be
obvious.

Our COBoL/DML program begins with
the standard COBOL IDENTIFICATION
and ENVIRONMENT DIVISIONS:

IDENTIFICATION DIVISION.
PROGRAM-NAME. SAMPLE-QUERY,
ENVIRONMENT DIVISION.

identification of machine environment and
d~|acafion of non-data-base files
(i.e., atandatd COBOL filos)

The IDENTIFICATION and EN-
VIRONMENT DIVISIONS remain un-
changed from those used by standard
COBOL, Within the ENVIRONJvIENT DI-
VISION, we assign an internal COBOL file
to the actual print file, for output of our
query.

The COBOL DATA DIVISION incorpo-
rates the link to the data base:

DATA DIVISION.
FILE SEC~rIoN.
DB PRES.ADMIN-STATE-INFO WITHIN PRESIDENTIAL.
FD REPORT-FILE.

remainder of data item entries which make
up a standard COBOL file.

WORKING-STORAGE SECTION.
77 PRESIDENT-COUNT USAGE COMPUTATIONAL PIC 999.
77 DONE PIC 9(5) VALUE "04021".
77 NO-MORE-SONS PICA(5).
77 NO-MORE-STATES PICA(5).

The DB entry specifie,~ which sub-schema
and schema this program i s referencing.
While. not required by the specifications,
the effect of such a statement in most im-
plementations is to cause the record de-
scriptions from the sub-schema (augmented
by schema information) to be copied into the
COBOL application program, thus reserving
space within the program for each data-base
record type (and selected items) which this
program may access. The record and data
item names declared in the sub-schema are
therefore referenceable from the COBOL
program. DML verbs cause the DBMS to
transfer data to/from the buffers reserved
by copying the sub-schema record descrip-
tions into the program.

The working storage section remains un-
changed; here we define local variables to
be used in the program. PRESIDENT-
COUNT is used to keep a count of the na-
tive sons of a particular state. DONE is
used as a mnemonic device for the status
condition of a data-base. I t is initialized
to the correct status value. While using a
DBTG-like system, it might be common
practice to define a library of common
status codes and to include them in the
working storage section by using the COBOL
COPY facility. NO-MORE-SONS and NO-
MORE-STATES are status variables used
within the program logic.

The procedures for accessing the data base

Computing Surveys, Vol. 8, No. 1, March 1976

are specified in the COBOL PROCEDURE
DIVISION:

PROCEDURE DIVISION,
DECLARATIVES.
EXPECTED-ERROR SECTION.

USE FOR DATABASE-EXCEPTION ON "04021".
EXPECTED-ERROR-HANDLING.

EXIT,
UNEXPECTED-ERROR SECTION.

USE FOR DATABASE-EXCEPTION ON OTHER.
UNEXPECTED-ERROR-HANDLING.

here we would procc.~s unexpected error
conditions.

END DECLARATIVES,

The first part of the PROCEDURE
DIVISION is the DECLARATIVES sec-
tion. In the DECLARATIVES section we
state that the processing is to take place
when the DBMS determines that an error
has occurred. The DBMS maintains a
status location that can be referenced in
the program by the name DATABASE-
STATUS. DATABASE-STATUS, upon re-
turn from a DML command, will contain a
value of "00000" if the command was suc-
cessfully executed. A nonzero code repre-
sents an error condition, with the value
for the code indicating the nature of the
error.

In the event that an error code results
from a DML operation, control is returned
to that section within the DECLARATIVES
that corresponds to the error code. For
every error status code listed explicitly in a
USE FOR DATABASE-EXCEPTION ON
"error status code", control is passed to the
paragraph that follows the USE statement.
In the preceding example, if a DATABASE-
STATUS of "04021" were returned, the
paragraph labeled EXPECTED-ERROR-
HANDLING would be invoked. Any
DATABASE-STATUS codes that are not
explicitly listed cause a transfer to the para-
graph following the USE FOR DATABASE-
EXCEPTION ON OTHER statement. In
the preceding example, control would be
returned to the paragraph UNEXPECTED-
ERROR-HANDLING after an unlisted
DATABASE-STATUS statement resulted.

As implied by the paragraph and section
names in the preceding example, there is
generally a distinction between error situ-
ations that we expect to happen as part of
our normal processing, and error situations
that are totally unexpected. An example of

• 8 5

an expected error situ~tlon occurs:when we
sequentially traverse :thr~l.Jl a s t oc-
currence and reach the end of the set oc-
currence. Such an error situation usually
means that w e should ~ proceed to another
part of our program to~ continue processing.
An example of an unexpected error condi-
tion is an input/output error (for example,
bad parity detected).

In this example the DATABASE-
STATUS code of "04021" corresponds to
the end-of-set occurrence condition just
mentioned. When suchl an error occurs, the
processing specifies a return to the state-
ment following the D M L command which
caused the error (EXIT). The program
would then examine DATAB/L_SE.STATUS
and, if an end-of-set occurrence condition
had occurred, could b r ~ e h to a ~ t h e r part
of the program.

If any DATABASE.STATIYS code other
than "04021" occurs, control is passed
to UNEXPECTED-ERROR.HANDLING.
Here we would specify the proeea~ing to
take place for these ul~xpege~i error situ-
ations. The code can examine DATABASE-
STATUS as well as other status locations in

an attempt to determine what caused the
error and how the program should attempt
to recover from it.

Following the DECLARATIVES section
are the normal processing procedures:

INITIALIZATION.
READY PRESIDENTIAL.AI~A.
OPEN nen-databaee COBOL fil~.
MOVE "FALSE" TO NO~-31OltE-STATES.
FIND FIRST STATE IN ALL4~TATES.$S.
PERFORM PROCESS-STATE TIIIRU FINISH-STATE

UNTIL NO-MORE.STAT~ - "TRUE".
GO TO FINISH-UP.

PROCFESS~STATE.
MOVE 0 TO PRESIDENT-coUNT.
IF NATIVE-SON IS EMPTY
MOVE "TRUE" TO NO-MORE.SONS,
ELSE MOVE "FALSE ~ TO I~,'O-MORE.SOI~;S.

PERFORM COUNT-NATIVE-SOI~S
UNTIL NO-MORE-SONS - "TRUE".

GO TO FINISH,STA'I~
COUNT-NATIVE-SONS.

FIND NEXT PRESIDEET IN NATIVE-SON.
IF DATABASESTATUS -- DONE

MOVE "TRUE" TO K0-MORE.80!NS
ELSE ADD 1 TO PRI~IDENT-COUR'T.

FINISH.STATE.
IF PRESIDENT-COU~,~T IS GIR.I~ATER THAN 1

FIND STATE CURRFE~'T,
GET STATE,
write out state r i s e sn4 I ~ ~omllt,

FIND NEXT STATE IN AL]~TATES.,~I8
IF DATABASE.STATUS' = DO~E

MOVE "TRUE" TO NO-MORE-STATES.
FINISH-UP.

FINISH PRESIDENTIAL.AREA.
CLOSE non.datalmee COBOL filee.
STOP RUN.

[.

86 • R. W. Taylor and R. L. Frank

The initialization of this program involves
READYing the PRESIDENTIAL-AREA
realm (area in the Schema language), which
makes this realm available to the applica-
tion program. Following this, any standard
COBOL files are opened (for example, the
report file). NO-MORE-STATES is used to
indicate that we have finished processing
all of the states, and is initialized to
"FALSE".

Our algorithm used to solve this query
is to traverse the STATE-record occur-
rences (by sequencing through the singular
set ALL-STATES-SS). As we find each new
STATE record, we check to see whether its
NATIVE-SON set is empty (i.e., whether
there are no native sons of that state), in
which case we move to the next state.
Otherwise, we traverse the occurrence of
NATIVE-SON, counting the PRESIDENT
records that participate in the set occur-
rence. If the count is equal to or greater than
one, we write out the state name and num-
ber of native sons. If not, we continue by
selecting the next STATE record until we
have finished processing all states.

The FIND statement in the COBOL DML
is used to locate a specified record occur-
rence in the data base. I t does not cause the
contents of the found record to be trans-
ferred to the working storage of the pro-
gram. For example, the statement FIND
FIRST STATE IN ALL-STATES-SS causes
the system only to locate the record oc-
currence. The FIND statement changes the
status of several currency indicators so that
they point to the first record occurrence in
ALL-STATES-SS. The member record
which is "first" depends on the member-
record order which was specified in the
Schema description of the set.

By finding an occurrence of a STATE
record, we have identified an occurrence of
the NATIVE-SON record. We now PER-
FORM (execute) the COBOL paragraph la-
beled PROCESS-STATE through FINISH-
STATE until the variable NO-MORE-
STATES is set to the value of "TRUE", at
which point we branch to FINISH-UP.

Within PROCESS-STATE we initialize
PRESIDENT-COUNT to zero. If the
current occurrence of NATIVE-SON
is empty, we set NO-MORE-SONS to
"TRUE"; otherwise, NO-MORE-SONS re-

ceives the value "FALSE". When the set is
not empty, we PERFORM the paragraph
COUNT-NATIVE-SONS until NO-MORE-
SONS is set to "TRUE".

Within COUNT-NATIVE-SONS we
FIND the NEXT occurrence of PRESI-
DENT. NEXT is relative to the current
record occurrence of NATIVE-SON. If the
current record of NATIVE-SON is the
owner record (STATE), "next" is the first
member record. When a PRESIDENT
record is the current record of NATIVE-
SON, then the "next" record is the PRESI-
DENT record which follows (unless the set
is now exhausted).

If the program has traversed through all
occurrences of PRESIDENT within the
current occurrence of NATIVE-SON, the
system sets DATABASE-STATUS to indi-
cate this and passes control to the
DECLARATIVES. Within the DECLARA-
TIVES we have specified that for an end-
of-set condition return is to be passed back
to the statement after the FIND command.
The program then sets NO-MORE-SONS
to "TRUE", which causes the execution of
COUNT-NATIVE-SONS to terminate.

If we have successfully found another
occurrence of PRESIDENT, we increment
PRESIDENT-COUNT and continue an-
other iteration through COUNT-NATIVE-
SONS.

The paragraph FINISH-STATE is en-
tered when we have finished counting all of
the native sons of the current STATE. We
check PRESIDENT-COUNT to see whether
its value is greater than one; if it is, we
re-locate or again find the current STATE re-
cord (FIND STATE CURRENT) and GET
it. The GET command causes the transfer of
the record occurrence from secondary stor-
age/system buffers to the internal work
space of the program. After GETting the
current STATE record, we write out the
state name and the number of native sons.

We then proceed to select the next STATE
record within ALL-STATES-SS. If we have
finished processing all STATE records,
NO-MORE-STATES receives the value
"TRUE", which causes the termination of
PERFORM PROCESS-STATE THRU
FINISH-STATE. Otherwise, we continue
with another iteration beginning at
PROCESS-STATE.

Computing Surveys, VoL 8, No. Io March 1976

CODASYL Data-Base Managlrnum~ ~gystem

When we have finished processing all of
the STATE records, we enter the FINISH-
UP paragraph; when we FINISH (re-
lease) the realm PRESIDENTIAL-AREA,
CLOSE, and non-data-base (CoBoL) files, we
terminate the program.

Sample Update Program

While the Presidential data base is designed
primarily for retrieval, its updating is still
necessary, for example, at election time or
when a new state is admitted to the Union.
We now define a program to admit a new
state. Referring to the discussion of selec-
tion criteria for the ADMITTED-DURING
set, we recall that in order to enter a new
occurrence of STATE in the data base, we
must supply values for both LAST-NAME
and FIRST-NAME in PRESIDENT, and
for ADMIN-KEY in ADMINISTRATION.

In this program the IDENTIFICATION,
ENVIRONMENT, and DATA DIVISIONs
are basically the same as before, and there-
fore we specify only the PROCEDURE
DIVISION:

PROCEDURE DIVISIOi'~.
DECLARATIVES.
UNEXPECTED-ERROR SECTION.

USE FOR D A T A B A S E - E X C E P T i O N .
UNEXPECTED-ERROR-HANDLING.

here we process unexpected error conditions.
END DECLARATIVES.
I NITIALIZATION.

R E A D Y PRESIDENTIAL-AREA,
USAGE-MODE IS U P D A T E .

OPEN COBOL files.
STORE-NEW-STATE.

here we read in from standard COBOL input files
the values for L A S T - N A M E and F I R S T - N A M E in PRESIDENT
ADM1N-KE¥ in ADMIi',~ISTRATION, and values for the new
S T A T E rocord.
FIND ANY PRESIDENT.
FIND ADMINISTRATION IN A D M I N I S T R A T I O N S - H E A D E D

USING ADMIN-KEY.
STORE STATE,
CONNECT STATE TO ADMITTED-DURING.

FINISH-UP.
FINISH PRESIDENTIAL.AREA.
CLOSE COBOL files.
STOP RUN.

Because STATE is a manual member of
ADMITTED-DURING (see subsection
Presidential Data Base in the DDL), we

• 87

must explicitly tell the system which AD-
MINISTRATION record occurrence is to
be the owner of the new STATE (in the
ADMITTED-DURING set). We first lo-
cate the appropriate PRESIDENT. The
FIND ANY PRESIDENT statement speci-
fies that the system is to locate (using
CALC) the occurrence of PRESIDENT
based on its key value (LAST-NAME,
FIRST-NAME). Then, within the occur-
rence of ADMINISTRATIONS-HEADED
owned by the PRESIDENT thus selected,
the system is to search for an occurrence of
ADMINISTRATION with a value for
ADMIN-KEY equal to that supplied to the
program. We have now identified the neces-
sary occurrence of ADMINISTRATION.
When we request that the STATE informa-
tion be STOREd in the data base, we com-
plete the process by CONNECTing the
newly stored State record to the current
occurrence of ADMITTED-DURING. If
the State had been: an AUTOMATIC
member of ADMITTED-DURING, the
sequence of FIND statements would have
been performed by the DBMS.

Traversing an m:n Relation in the COBOL DML

The relationship between CONGRESS and
PRESIDENT is a many-to-many rela-
tionship (Section 1, subsection Many-
to-Many-Relationships) and necessi-
tated the introduction of a link record
(CONGRESS-PRES-LINK). The introduc-
tion of such a link record complicates tra-
versals from an occurrence of PRESIDENT
to his CONGRESSes, and vice-versa. We
present here a program segment designed to
traverse such an m : n relation.

We assume that LAST-NAME and

FIRST-NAME in PRESIDENT have been
set to a desired PRESIDENT in Dislay
2 below:

Display 2
FIND ANY PRESIDENT.

FIND-NEXT-LINK.
FIND NEXT CONGRESS-PRES-LINK IN CONGRF, SS-SERVED
IF DATABASE.STATUS ffi DONE GO TO COMPLETE-RUN.

FIND-CONGRESS.
F I N D PRESIDENT-SERVED OWNER.
here we have located a CCONGRF~S record occurrence over which the P R E S I D E N T

served
GO TO FIND-NEXT-LINK.

COhlPLETE-RUN.
continuation of program

i

88 • R. W. Taylor and R. L. Frank

This program segment is designed to
F IND all CONGRESSes over which a
specified PRESIDENT served. After FIND-
ing the desired PRESIDENT, we traverse
through each of the CONGRESS-PRES-
LINK records owned by this PRESIDENT.
When we reach a DATABASE-STATUS
condition of DONE we have found all
CONGRESSes over which this PRESI-
DENT served.

After locating a CONGRESS-PRES-
LINK, we look for the owner of the record
in the PRESIDENT-SERVED set. The
owner of PRESIDENT-SERVED is the
CONGRESS record. By FINDing each
CONGRESS-PRES-LINK owned by a
particular PRESIDENT within the CON-
GRESS-SERVED set and then by FINDing
the owner of the link in the PRESIDENT-
SERVED set, we can traverse from a
PRESIDENT to all CONGRESSes over
which he served. We can similarly traverse
from a given CONGRESS record to all
PRESIDENTs who served over that
CONGRESS.

Other COBOL DML Facilities

The examples presented here illustrate some
of the more important COBOL DML ad-
ditious to the COBOL programming language.
Primarily because of the static nature of
the Presidential data base, it is difficult to
create meaningful examples to illustrate
several additional COBOL DML facilities.
Several are briefly discussed here.

In addition to storing a new record oc-
currence in the data base, an existing record
occurrence may need to have some of its
values changed. The MODIFY verb is
available for this. This operation (which is
performed by the system) may be very
complex because the effect of a key change
may alter the position of the record or even
affect the sets in which it resides (through
set selection).

A record occurrence which exists in the
data base may be deleted by use of the
ERASE verb; once again, this may be a
very complex operation, because the MAN-
DATORY option may cause multiple de-
letions of many member records.

Finally, the second example showed the

use of CONNECT to place a member
record in a set. By use of the DISCONNECT
verb an optional member record may be
removed from a set occurrence. Note that
DISCONNECT may only be used on op-
tional member records.

3. ADVANCED FEATURES

Section 2, Sample Data-Base Applications
introduced the basic facilities offered by the
DBTG systems. The paper by Sibley and
Fry [see page 7] pointed out, however, that
there is more involved in the design and
maintenance of a data base than the speci-
fication and manipulation of complex, in-
terrelated data-base structures. In par-
ticular, any complete system must provide
facilities that enable a data-base admin-
istration staff to write various utility rou-
tines for loading the data base, to check
its validity, to collect statistics about record
frequencies and clusterings, and to reallo-
cate groups of record occurrences to im-
prove performance. This list is by no means
exhaustive. It should come as no surprise
that the same logical structure can be
realized on a computer in a variety of ways,
each with varying efficiencies in different
situations. Users occasionally need access to
a "low" level of data (one close to bits on
the storage media); there must be such a
system interface.

An additional requirement in any system
designed to serve a wide community of
users concerns tuning and tailoring: means
must be offered to allow various system
services the option of either having their
performance improved for a particular ap-
plication mix, or having their services by-
passed when such usage would lead to un-
acceptable performance. Much has already
been said about data independence; cer-
tainly it is generally a major design goal.
But data independence ultimately involves
some execution time binding of decisions,
and the extra computation involved may be
intolerable. Yet it may still be desirable to
allow certain programmers who knowingly
sacrifice data independence to use the data-
base system. The full recovery services of
the system may be needed; its ability to
manage multiple indexes may be needed; or

Computing SurveyB, Vol. 8, No. 1, March 1976

CODASYL Data-Base Managenumt System

its ability to be used in a "customized"
access method written in a procedure-ori-
ented language may be needed.

The DBTG-like system architecture and
language facilities makes such uses possible.
The proposed facilities can be categorized
in two parts. First, the DDL provides
facilities for a data-base administrator to
control various details of the storage strate-
gies. For example, a user may declare that
the system should create and maintain an
index on specified items within a record
type. The index would speed processing in
appropriate situations. Examples of this
and other DDL declarative facilities are
given later in this section. In addition, the
mechanism known as a data-base procedure
allows the normal system facilities to be
extended. Extremely detailed control can
be attained, if desired, by the data-base
administrator, and hence performance tun-
ing is possible. Second, other facilities
provide a set of data manipulation verbs
(and a few more DDL options) which allow
designated users to access data in a way
that is less data independent. For example,
there are facilities to obtain a data-base key
(a logical "pointer" to a record occurrence)
and subsequently to use this key to FIND
a record. Examples of some uses of such a
facility are included later. It is clear that
use of these facilities should be controlled
carefully, since data independence could
suffer. A preprocessor or extended compiler
could enforce such installation-defined stand-
ards.

The subsections that follow illustrate some
of these advanced features. We augment
the schema developed in Section 2, Sample
Data-Base Application, and provide frag-
ments of programs that use the advanced
versions of various DML verbs.

Data-Base Procedures

The previous structural examples are
largely fixed at the time schema definitions
are made. For example, the record types,
set types, and several of their attributes
(e.g., AUTOMATIC) are all determined
before data-base processing begins. One
reason for this is, of course, that run-time
interpretation generally reduces efficiency;

• 89

hence record formats and accessing strate-
gies are often fixed before processing begins.
However, any flexible system provides a
means whereby some parameters can be
set (or certain extra processing can be
triggered) during execution of a request.
The DBTG system provides for this with
data-base procedures.

A data-base procedure is logically a part
of the data-base definition (the schema).
It is a procedural augmentation of the
(largely) declarative schema. The conditions
under which a data-base procedure is to be
invoked are given in the schema, either ex-
plicitly or implicitly. The procedure often
operates as an ON condition functions in
PL / I and may accomplish some change to
the data-base state or control parameters.
Data-base procedures can also be used to
collect statistics and to enforce privacy by
checking passwords. We use the concept of
data-base procedures in many of the ex-
amples in the remaining subsections.

Data-base procedures are commonly used
to derive data values. Frequently, certain
data items are computable from other items
in the data base. For example, the value of
the total salaries paid to the people in a
department is equal to the sum of the
separate salaries of each of the employees
of the department; or a person's age can
be derived from his birth data and from
today's date. Whenever such a functional
relationship exists, the data-base admin-
istrator can provide a data-base procedure
to compute the result. But two possibilities
still remain. The functional value may be
computed each time the record occurrence
is retrieved by a program (VIRTUAL), or
the functional value may be stored
(ACTUAL) in ' the record occurrence and
updated each time one of the values on
which it depends is changed. Depending
on the situation, performance can vary
widely (e.g., where an ACTUAL result de-
pends on time). The DBTG specifications
provide the data-base administrator with
the facilities for declaring items as either
ACTUAL or VIRTUAL results of other
items in the same record, or functions of
items within selected members of sets
owned by the given record. As an example,
suppose we wished to include, in PRESI-

Compu~og Sutw~y~ Vol. 8, No. 1, March 1976

90 • R. W. Taylor and R. L. Frank

DENT, the maximum number of electoral
votes ever obtained in any election of that
president. This may be accomplished by
including an item in PRESIDENT:

02 MAX-ELECT-VOTI~.S; IS ACTUAL RESULT OF
FIND*MAX-ELECT-VOTES
ON MEMBFE1RS OF ELECTIONS-WON.

where FIND-MAX-ELECT-VOTES is a
data-base procedure name. ACTUAL was
chosen here since updates should be in-
frequent. FIND-MAX-ELECT-VOTES
would be called each time a new ELECTION
record is added to the data base.

I t is also possible to "propagate" items
from an owner to a member record by using
a SOURCE statement. This statement
names the item within the owner-record
type from which the propagated value should
be drawn; once again, the data-base admin-
istrator can either save storage (virtual) or
insure common copies of data values among
the various records in the set (actual). For
example, consider the structure:

I President J
Elections-Won

Election I

where the data-base administrator has de-
cided to include the name of the winning
President as an item in the ELECTION
record (one reason for doing this might be
compatibility with a relational view of
data). One way of implementing is:

RECORD NAME IS ELECTION

02 WINNING-PRESIDENT IS VIRTUAL AND
SOURCE 1S PRES-NASIE
OF OWNER OF ELECTIONS-WON.

where PRES-NAME is a qualified name
of the item that will serve as the SOURCE
item when ELECTION is fetched.

Data-base procedures provide a number
of flexible facilities to control the behavior
of the data base. Additional examples in-
volving data-base procedures are given in
the following subsections.

Areas

The various record occurrences that are
the subject of the STORE command must,
of course, be placed on actual secondary
storage media. Naturally, if a data-base
administrator is to have any influence in
this placement strategy, there must be con-
structs in the DDL that allow this policy
to be stated. Such control over physical
placement seems to be necessary for rea-
sonable performance, as demonstrated in
many environments, including those not
necessarily involving data bases. For ex-
ample, Moler [G2] shows that munerical
analysis programs which took advantage of
the clustering of array values on the same
page had significantly improved performance
in a paged environment; for example, in
FORTRAN implementations with column
major order that scan by columns, not rows,
when possible. The same phenomenon is as
important in a data-base application.

The DBTG system provides basically
two mechanisms for influencing record-
occurrence placement: areas and location
mode (which is treated in subsection Loca-
tion Mode). "An area is a named subdivi-
sion of the data base" [$2, p. 2.23]. As was
previously illustrated, each area is named
in the schema, and there may be one o1' more
areas declared. Many implementors have
found it convenient to associate each area
declared in the schema with a file (a cata-
logable entity) in the associated operating
system. However, this need not be the case;
hence our previous stress that the area is a
logical rather than a physical concept.

Areas give the data-base administrator a
mechanism for clustering or separating
different record occurrences (possi[dy of
diverse types). A given record occurrence
of a given type may reside in only one area,
but other occurrences of the same :record
type may reside in different areas, if desired.
Also, occurrences of different record types
can coexist in the same area. The area
concept allows data-base designers flexi-
bilities such as the following:

• If certain (or all) occurrences of a
record type are known to be archival,
they can reside in an area which is
associated with a less expensive storage

Computing Surveys , Vol. 8, No. 1, March 1979

C O D A S Y L Data-Base M anag~ma~tt By,~t~m

medium. I t may be that this area need
not always be mounted.

• If records of diverse types are often
used together, their occurrences can
be clustered for high performance.

• By designating that all occurrences of
a record type reside in one area, and
by reserving that area for that record
type, the effect of homogeneous files
can be achieved.

• By omitting certain areas from a
subschema, a measure of privacy is
attained.

• Records may be processed consecu-
tively within an area (using the FIND
NEXT IN AREA verb), and process-
ing can proceed at essentially se-
quential speeds, if the implementor
allows areas to be allocated sequen-
tially. This is because each "page"
within an area will usually follow
the previous one in terms of r~siding
on the same cylinder on a disk. Such
performance can be important, es-
pecially in utility and certain bulk
"statistical" application programs in
which record ordering is not important.

• An area may be used as a unit of
recovery. I t is then possible to vary
the checkpoint policy for different
portions of the data base. Some im-
plementations may allow dual copies
of designated areas (maintained by
the system) both to reduce contention
and to serve as added protection
against catastrophe.

Since record occurrences are placed in
areas, there must be a mechanism for
specifying in which area a record occurrence
of a given type must be stored. In Section
2, Sample Data-Base Application, we il-
lustrated the constructs necessary to store
all records in a single area. Since every
record type had a unique area to contain
it, no special action was needed. If, however,
distinct occurrences of the same record type
can potentially be stored in more than one
area, the situation is more complex. For
example, if the data-base administrator de-
clares that STATE records may be stored
in either of two areas by writing

• 91

RECORD STATE i
WITRIN EASTERN-AP~A, WI~TgRN-A~EA

AREA-ID IS STATE-AREA

then the variable STATE-AREA must be
initialized with the proper alphanumeric
area name at time of store by a command
like:

MOVE 'EASTERN-AREA' TO STATE+AREA.
STORE STATE.

In this example, the applications pro-
grammer has control over area placement;
the MOVE (CoBoL) statement is used to
initialize the AREA-ID variable. If the
variable is left "null," then the area place-
ment algorithm is left to the system im-
plementor. Another option is to use a data-
base procedure:

RECORD STATE
WITHIN EASTERN-ARF~A, WESTERN-AREA

AREA-ID IS STATE-AREA
USING PROCEDURE PICK$TATE-AgEA

In this case, the procedure PICK-STATE-
AREA is invoked to load the variable
STATE-AREA, and the programmer need
not know about the multiple areas.

Areas, then, give rather explicit control
over major subdivisions of the data base
and possibly their association with storage
media. If this control is given to the appli-
cations programmer, there will probably be
some loss in data independence. However,
the decision concerning whether areas are
or are not transparent:to an application is
in the hands of the data-base administrator.

Areas play an important role in data
manipulation in the DBTG system. They
are the basic uni t (l ike files) which is
OPENed and CLOSEd. As discussed in
Section 2, Sample Data-Base Applications,
areas are called REALMs in the COBOL
subschema. The operations corresponding to
OPEN and CLOSE are called READY
and FINISH. The verb form

FIND NEXT record-name IN realm-name

provides a means whereby records can be
scanned in ascending "physical" order
within an area. For example, if the trans-
action that retires erdployees moves each
retired employee record to a REALM
called RETIRED-EMPLOYEES, then a
"batch" program to scan sequentially for

Comptiting Sllrv~vs. Vol, ~ No. | . March 1970

92 • R. W. Taylor and R. L. Frank

all the recently retired employees would
be as follows:

READY RETIRED-EMPLOYEF~.
FIND FIRST EMPLOYEE IN RETIRED-EMPLOYEES.

check that aS least one exists, then

PERFOR:SI PROCESS-EMPLOYEFES UNTIL (DATABASE-STATUS =
END-OF-REALM)
STOP RUN,
PROCESS-EMPLOYEES,

Process an Employee record.

FIND NEXT EMPLOYEE IN RETIRED-EMPLOYEES.

Location Mode

As illustrated in Section 2, Sample Data-
Base Application, the DBTG-like systems
allow a data-base administrator to have
considerable control over the storage strate-
gies and interrecord elusterings among
records within a given area. This control is
achieved through proper use of the LOCA-
TION MODE clause, which appears in
the declaration of each record type in the
schema. It should be emphasized that the
LOCATION MODE of a record type
designates the strategy to be used for initial
record placement when a new record oc-
currence is STOREd. Knowledge of how a
record was initially stored can also be used
in subsequently FINDing a record; but as
the examples have shown, there are many
ways of FINDing a record in the DBTG
system. Thus, one should not associate
LOCATION MODE with FINDing, but
rather with "setting in a particular place"
i.e., with the STORE command. As might
be expected, there is a version of the FIND
verb which depends on a knowledge of the
location mode of the record being sought.
Improper use of this form could, of course,
lead to a loss in data independence.

There are four LOCATION MODEs de-
fined. SYSTEM specifies that an imple-
mentor-defined algorithm be used in storing
the record. Any area control specifications
would, of course, be used by this algorithm.

LOCATION MODE VIA set-name
(where the record type is a set type member)

specifies that the system place the new record
occurrence as close as possible to its "ap-
propriate" place in the set occurrence in
which it (potentially) will become a member.
This implies that the system will use the
SET SELECTION clause of the appropriate
set to find the proper owner-record oc-
currence. Having done so, the system will
use the insert properties of the set (first,
last, ordered, etc.) to place the new record.
Using the LOCATION MODE VIA mecha-
nism, it is possible to achieve a record
clustering that is efficient for a "depth-
first" search. For example, consider the
following data structure diagram:

I System I

Counties

i i
Cities

J~ Streets

This diagram defines a hierarchical struc-
ture of a geographical region. By specifying
the following statements in the record
declaration section

RECORD COUNTY
.LOCATION MODE IS SYSTEM
WITHIN GEO-AREA

RECORD CITY
LOCATION MODE IS VIA CITIES SET
WITHIN AREA OF OWNER

RECORD STREET
LOCATION ~AIODE IS VIA STREETS SET
WITHIN AREA OF OWNER

and declaring the sets, it is possible to ef-
fect a storage structure:

i ,dd,esex II Lex,ogtoov l cooco B,, ;

! Cities
Streets

C~mput ing Surveys, Vol: 8, No. 1, March 1976

CODASYL Data-Base Managemecv~ ,gystem
i

Here, we introduce another option of the
WITHIN clause. This option is meaningful
only when the LOCATION MODE of the
record is VIA some set-name. The area

• decision for a given record occurrence fol-
lows the area decision of the associated
owner-record occurrence.

If a data-base administrator wishes more
explicit control over record placement, then
either of the two remaining location modes,
CALC or DIRECT, may be appropriate.
We illustrated, in Section 2, Sample Data-
Base Application, how LOCATION MODE
CALC may be used to place records ac-
cording to an implementor-defined ran-
domizing routine. The data-base admin-
istrator is also free to designate a data-base
procedure that can serve as an algorithm
for developing "addresses," based on the
value of the identifier or identifiers. Whether
such an algorithm attempts to behave
pseudorandomly over the space of possible
identifiers is, of course, determined by the
algorithm developer (the data-base ad-
ministrator). I t is therefore possible to in-
corporate arbitrary record placement algo-
rithms into the system.

It is important to understand the rela-
tionship between the location mode of a
record type and the FIND verb. As il-
lustrated in Section 2, there are many ways
to FIND a record occurrence. These may be
classified into two types. Either one FINDs
a record occurrence based on its participa-
tion in a set (possibly a singular set), or
one FINDs a record occurrence based on
knowledge of how it was initially STOREd.
These two methods provide a number of
potential flexibilities. For example, by mak-
ing every record type a member in a singular
set and by having programmers FIND
record occurrences using the form

F I N D record-name IN singular-set-name U S I N G identifier(s)

it is possible to provide access to all records
by specifying their partial contents. A
programmer need not know the location
mode of a record type in order to use this
verb. In addition, the data-base adminis-
trator can enhance performance in this case
by defining indexes. The details are illus-
trated in subsection Search Keys. On the
other hand, a knowledge of the method used
in storing a record initially can provide ex-

• 9 3

cellent performance when applied again. For
example, a search f o r a record with location
mode VIA should follow the "clustering
hierarchy" used in itslinitial storage. Simi-
larly, knowledge of the identifier or identi-
fiers used by the CALC routine can, in
carefully designed applications, yield per-
formance close to one secondary storage
access per record retrieval [G3]. The form

F I N D record-name I N set-mime U S I N G identifier(s)

can be used in a hierarchical search. This is
illustrated by the example shown in Figure
16 which finds the first MAIN street in a
city in MIDDLESEX county. This ex-
ample differs from previous ones because
there is a "den't care" condition on the
CITY record occurrence.

As illustrated in Section 2, the specifica-
tions allow usage of the form

F I N D ANY record-name

when a location mode of CALC has been
declared for the sought record type. By
properly initializing the identifier or identi-
fiers which were used in initially storing the
record, that record will be found. This
procedure requires, of course, that pro-
grammers know which record types in the
data base have location mode CALC and
what item or items constitute their re-
spective CALC-KEYS. I t may therefore be
difficult to change location modes (or the
declaration of items forming the key) with-
out affecting some program and hence
introducing a lack of data independence.
There have been suggestions [E4] for avoid-
ing this potential problem by using a pre-
compiler or data-base procedures.

The fourth location mode for a record

MOVE '~IIDDLFESEX' TO COUNTY-NA~IE.
MOVE 'MAIN' TO STREET-NAhIE.
MOVE 'FALSE' TO SUCCF~S.

F IN D COUNTY IN COUNTIES USING COUNTY-NAME.
IF DATABASE-STATUS = lqOT-FOUND

Process for county not fouml

F I N D FIRST CITY IN CITIES.
PERFORM SEARCH-FOR-STREET UNTIL

(SUCCESS = 'TRUE') OR (DATARA.~E-STATUS ~ DONE)
IF SUCCESS = 'TRUE'

Process for city found
ELSE Process for city not found.

SEARCH-FOR-STREET.

F IN D STREET IN CURRENT OF STREETS U~LNG STREET-NAME,
IF DATABASE-STATUS m F O U N ~

MOVE 'TRUE' TO SUCCF~S
ELSE

F I N D N E X T CITY IN CITIES. '

FIOURE 17. Hierarchical search.

94 • R. W. Taylor and R. L. Frank

type is DIRECT. In order to present this
mode properly, we must introduce the
notion of a data-base key. A data-base key
is a unique identifier which is associated
with every record occurrence in the data
base. This data-base key is associated with
the record occurrence when it is initially
stored, and remains the unique identifier
of the record occurrence throughout its
lifetime in the data base. Although the
specifications leave the detailed structure of
a data-base key to be decided by the im-
plementor, it is common for a data-base
key to have some physical implications;
data-base keys are often used in the im-
plementation strategies of a given set.
For set traversal to be efficient, the mecha-
nism used must have some physical impli-
cations. For example, in many implementa-
tions, a data-base key will designate the
area, the page within the area, and the
record number within the page of the record
occurrence. Areas (subdivisions of the data
base) are often composed of fixed length
pages, and it is easy to note the similarity
to a segment/page addressing scheme in a
virtual memory environment. However, in
contrast with most virtual memory schemes,
the actual placement of records within a
page is often governed by a local "on-page"
index, which maps the record number
portion of the data-base key to a displace-
ment within the page. In this way, space
within a page can be garbage collected, and
records, whose size can in general vary
with time, can be moved within the page,
all without disturbing pointers pointing at
the object being moved. Of course, if a
record grows to the extent that it must be
moved to an overflow page, then a small
"overflow pointer" must remain on the
original page. As long as the number of
records on overflow pages is not a great
fraction of the total records, this scheme
can behave almost like direct address
pointers while still allowing record move-
ment. If too many records are moved to
overflow pages, then the corresponding
area can be expanded, and either the page
size or the number of pages can be increased.

We now return to the discussion of LO-
CATION MODE DIRECT. In the DI-
RECT mode, the program which STOREs

occurrences of the given record type may
specify the data-base key which the system
will try to use. This is in contrast to other
location modes where the data-base system
determines the data-base key based on
calculation keys or the proximity to a
logical insertion point in a set. Assuming
the data-base key is not already used, the
system will use the program-designated key.
If that data-base key is already used, the
system chooses the next (higher) unused
data-base key. With care, the program may
have a great deal of control over record
placement.

Clearly, DIRECT location mode may be
much closer to the physical levels of data.
If a high level of data independence is a
goal, then the usage of this location mode
must be carefully controled. However, such
a facility can be quite useful, especially
when writing data-base maintenance pro-
cedures. As an illustration, consider the
method of loading the data base. One popu-
lar technique is to let the system, during
loading, operate under a schema that is
different from the run-schema. In this load-
schema, the location mode of the records
is DIRECT. If the run-schema specifies a
location mode of CALC, the load program
can then use the following algorithm:

1) For each record to be loaded, invoke
a local copy of the CALC subroutine
to compute a data-base key using
the designated CALC-key items
within the record.

2) Sort all records by ascending com-
puted data-base key.

3) Use the load-schema (which has lo-
cation mode DIRECT) to store the
records in one sequential pass over
the area.

So-called batch-random operation [G4] in a
data-base load program has been found to
improve performance by as much as four
times. Location mode DIRECT has al-
lowed such a program to be written in a
high-level language.

Location mode DIRECT may also be
used when direct accessing of records is
desired or when building specialized access
methods on top of the basic system facil-
ities.

Computing Surveys, Vol. 8, No. 1, March 1976

, System

All- Elections-SS l

CODASYL Data-Base Managem~2~S~y~,~

Search Keys

Consider the data structure diagram

Elections-Won] T Native.Sons

Let us suppose that the data-base admin-
istrator has determined that the dominant
usage of this portion of the data base is to
answer the question: Print the elections
won by President X. In this case, it would
be appropriate to give ELECTION records
a LOCATION MODE VIA ELECTIONS-
WON set in order to cluster them close to
the related President. On the other hand,
if we consider the question: Find the state
whose native son was the winner of the
election of date X, it is clear that the speed
of response depends primarily on how fast
the election record of a given date can be
found (after that, the answer involves two
FIND OWNER statements). The question
may then be posed:

• 9 5

operation does not depend on the con-
tinued existence of the index; indexes c a n

be added or deleted aslappropriate.
In general, use of the SEARCH KEY

clause implies that the DBMS will build an
index on the member records (of a given
type) within a set occurrence. Its use im-
plies the existence of many indexes, one
for each set occurrence. The use in a singular
set is a special case.

Introduction of the SEARCH KEY
clause allows simulation of the traditional
indexed sequential file. By declaring:

SET NAME IS ALL-STATES

OWNER IS SYSTEM
ORDER IS PERMANENT I ~ E R T I O N IS

SORTED BY DEFINED KEYS

MEMBER IS STATE
MANDATORY AUTOMATIC

KEY IS ASCENDING STATE-NAME
DUPLICATES A R E N O T ALLOWED
NULL IS NOT ALLOWED

SEARCH KEY IS STATE-NAME USING INDEX
DUPLICATF,~ ARE N O T A L L O W E D

the data-base administrator can: 1) specify
an ability to scan sequentially through all
record occurrences of a given type; plus 2)
provide a direct path: (through an index)
to a particular occurrence, given a value

F I N D ELECTION VIA ALL-ELECTION-SS USING ELECTION-YEAR.

Since an exhaustive search of all ELEC-
TION record occurrences very likely would
be slow, it may be appropriate, if query
volume is sufficient, to define an index on
occurrences of the ELECTION record type.
Indexes in the DBTG-like systems are
specified by using the SEARCH-KEY
clause. By declaring:

SET NAME IS ALL-ELECTIONS-SS

OWNER IS SYSTEM. . .
MEMBER IS ELECTION

MANDATORY AUTOMATIC. . .
SEARCH KEY IS ELECTION-YEAR USING INDEX

DUPLICATES ARE NOT ALLOWED

the system builds and maintains an index
on the ELECTION-YEAR item. When the
FIND statement is issued, the system uses
this index to speed the search; it uses the
ELECTION-YEAR item provided by the
program to search the index to find the first
(and in this case only) record having the
given year. This ELECTION record is
then accessed. The success of the FIND

of its primary key. To obtain a performance
similar to the traditional indexed sequential
file, the data-base administrator would
have only one record type in the associated
area. Thus logically adjacent records would
tend to be physically adjacent, as in an
indexed sequential file.

SEARCH KEYs can also be used to
support an arbitrary number of inversions
(secondary indexes) over the members of
a set occurrence. The data-base admin-
istrator has the option of allowing or dis-
allowing duplicates for items or concatena-
tions of items among members of the set
occurrence. Thus, in a Singular set, there is
a mechanism for guaranteeing unique
values across all occurrences of a given
record type.

Set Selection

As explained in Section 2, Sample Data-
Base Application, each declared set in the

• : ~ , . ~ , ~ : ~ . ~ , . ~ • : : ~ : . ~ L ~ ̧ ~ -

96 • R. W. Taylor and R. L. Frank

schema has an associated set (occurrence)
selection clause. The basic purpose of this
clause is to inform the system how to select a
particular set occurrence of the particular
set type. This is necessary, for example,
when a record type is an AUTOMATIC
member in a set type. As previously il-
lustrated, when a new record of this type
is stored, the system must automatically
include it in a set occurrence; the set selec-
tion clause tells which is the appropriate
one.

The other major use of set selection is in
the F IND verb:

FIND record-name IN set-name USING id-1, id-2 , . . .

When this version of the FIND verb is
executed, the set selection clause of the
named set is invoked to find the set occur-
rence. Searching fol a record of the desig-
nated type within the set occurrence then
proceeds. If the optional USING clause is
omitted, the first such record is selected.
Otherwise, the system selects the first
member of the set where all identifiers (in
the record) are equal to the initialized
identifiers. If no such record exists, the
search fails and control is returned to the
DECLARATIVES section of the program.

The set selection clause, while defined in
the schema, may be changed or augmented
in the subschema. That is, the particular
set occurrence selection can vary from one
subschema to the next, under control of the
data-base administrator. The set selection
clause in the schema is a default, which will
be used unless overridden by the sub-
schema.

As an illustration of these concepts, we
search for the first MAIN street in
LEXINGTON in MIDDLESEX county
(see subsection Location Mode). The rele-
vant piece of program code is:

MOVE 'MIDDLESEX' TO COUNTY,
MOVE 'LEXINGTON' TO TOWN.
MOVE 'SIAIN' TO STREET-NAME.
FIND STREET IN STREETS USING STREET-NAME.

This contains considerably less code than
the previous example (though the example
is slightly different). Clearly, the extra
searching is performed by the data-base
system with only one FIND command.
The specifications for doing this are de-

clared in the associated subschema, as:
SD STREETS

SET SELECTION FOR STREET IS
VIA COUNTIES OWNER SYSTEM
VIA CITIES OWNER VALUE OF

COUNTY-NAME IS COUNTY
VIA STREETS OWNER VALUE OF

TOWN-NAME IS TOWN.

In the set selection specification, the system
is instructed to first locate a COUNTY by
going to the singular set COUNTIES and
to search forward until a matching county
name (i.e., MIDDLESEX) is found; then
the system is instructed to descend into
the CITIES set to search for a matching
town; finally the system is instructed to
search for a matching street by the USING
phrase on the FIND verb.

I t should be clear that a set selection
declaration is basically a specification for a
data-base procedure that performs an ef-
fectively hierarchical search in order to
establish a set occurrence. An entry pDint
is established, either through singular sets,
CALC entry points, or currency (see sub-
section Currency Indicators); then, if this
is not the desired set occurrence, a hier-
archical traversal can be carried out starting
at this point until the proper set occurence
is found.

One can also note that the only "match
arguments" currently allowed are item equal-
ities or concatenations of item equalities.
The "don't care" condition and potential
for backtracking, as expressed in subsection
Location Mode, is not possible. This greatly
eases the implementation, as opposed to
making tree traversals against arbitrary
Boolean expressions. To achieve the same
effect produced by the example given in
subsection Location Mode, a data-base
procedure would be written. The system
could then be told to use the procedure
by the statement:

SET SELECTION IS BY P R O C E D U R E FIND-ANY-MAIN-STREET.

Support for the more complex traversals
can be defined by installation using data-
base procedures, though of course there is
only one possible data-base procedure per
set declaration per subschema. If the tra-
versal is more specific to applications or
transactions, it must be specially pro-
grammed.

Computing Surveys , Vol. 8, No. 1, March 1976

CODASYL Data-Base Managemeyt System

Currency Indicators

The notion of a current record was discussed
briefly in Section 2, Sample Data-Base
Applications, but our examples have not
emphasized currency. Normally, the system
behaves in an expected way and the pro-
grammer does not need to take special note
of currency. There are certain complex
traversals, however, where the application
programmer must be aware of the exact
status of the currency indicators. In this
section, we discuss currency and show
when care must be exercised.

There are many currency indicators as-
sociated with a typical program that exe-
cutes with a subschema (this is called a
run-unit):

• one currency indicator designating
the current record referenced by the
run-unit;

• one currency indicator for each record
type, indicating the current record
of that type;

• one currency indicator for each set
type, indicating the current set oc-
currence of that type by "pointing"
at the referenced record occurrence,
which is either the owner or a member
of the given set; and

• one currency indicator for each realm,
indicating the current record refer-
enced in that realm.

Thus in the Presidential data base, if a
program can access the entire data base, the
system would maintain seventeen currency
indicators--six for the six record types,
nine for the nine sets (including each singu-
lar set), one for the single area, and one
for the current record of the run-unit.

The currency indicators always make the
concept of "next" (and prior) well defined,
regardless of how the currency has been
established; for example, next within a
realm means the record in that realm with

• 97
F

the next higher data;base key, and next
within a set means tile next record in the
"forward" direction in that set.

I t is important to understand when
currency indicators change. Currency in-
dicators always change on execution of
some DML verb. Also, the object of certain
actions must be the current record of the
run-unit. The following rules apply:

• Only the current record of the run-
unit may be the subject of the GET,
ERASE, CONNECT, and DISCON-
NECT verbs.

• When a new record of any type is
found or stored (except for special ex-
ceptions discussed later), it becomes
the current record of the run-unit
and realm in which it r~sides; it also
becomes the current record of its
type and of all sets in which it par-
ticipates as either owner or member.
Thus the currency of many sets may
be affected.

Because the currency indicators of sets
can potentially change when a new record
of a given type is found, a programmer
must be careful when doing traversals that
involve "backtracking:" By backtracking,
we mean a situation which (for some reason)
makes it necessary t h a t a previously es-
tablished position be reestablished. I f , in
the meantime, a new record has been stored,
the set currency indicators may have po-
tentially changed, making the reestablish-
ment of position difficult or impossible.
The programmer must anticipate such
changes to the currency indicators and
take steps to avoid such situations. The
following example illustrates that, even
during a pure retrieval, the currency indi-
cators must be handled properly. The ex-
ample has been adapted from Date [G5].

Given the STUDENT/COURSE data
structure diagram below

Students Student- I
Grade ~L Grade

Course System

Cou ses

. . . . : ? . • .

Computing Sur~eyo, V~. 8, No. 1, March 1076-

98 • R. W. Taylor and R. L. Frank

answer the following question: For each
student taking MATH, find all the other
courses being taken by that student and
print the student's name and the names of

the other courses. Note the situation here.
Given that we have found a student who
takes MATH (found by locating the MATH
record and by perforining the "switch and
find owner" traversal as illustrated in Sec-
tion 2), we must reenter the same structure
to find the courses which are not MATH
being taken by that student and print
them. But this retraversal of the STU-
DENT/COURSE structure wil! destroy
the previous currency associated with the
COURSE/GRADES set. When we try to
find another student taking MATH, the
results are potentially unpredictable.

To allow a currency saving facility, two
approaches are provided. One is the AC-
CEPT statement.

(realm-name 1
A C C E P T identifier FROM tact-name ~ C U R R E N C Y

[record-name~

moves the designated currency indicator to
a run-unit variable. Subsequent use of the
FIND verb

F I N D recoxd-name; DATABASE-KEY IS identifier

would restore the relevant currency indi-
cator.

Another method has also been provided.
Both FIND and STORE have an optional
RETAINING CURRENCY clause. By
using this clause, the currency for desig-
nated record types, set types, or realms is
not changed by the execution of the verb;
that is, the normal currency updates, as
explained previously, are not performed
(except for the current record of the run-
unit). As an illustration of this, the pro-
gram shown in Figure 18 answers the
STUDENT/COURSE question already dis-
cussed. We assume course name is (at least
virtually) part of the GRADE record. The
reader will note that a GO TO statement is
used, since it is felt that a simpler program
results.

Two other examples illustrating when
sPecial treatment of currency indicators is
necessary are the parts explosion traversal
(see section 1, Complex Relationships

MOVE 'MATH' TO COURSE-NAME.
FIND COURSE 1N COURSES USING COURSE-NAME.

** We now have the Math record. We a~ume it exists.

FIND FIRST GRADE IN COU1L~E-GRADE.
PERFORM PRINT-STUDENTS-OTHER-COUleES UNTIL

(DATABASE.STATUS - DONE).
STOP RUN.

PRINT-STUDENTS-OTHER-COURSES.
PERFORM FETCH-AND-PRINT-ONE-STUDENT.
PERFORM PRINT-THAT-STUDENTS-COURSES.

** Now check for more students by trying to
** FIND more grades associated with the given course
** (Math in our example).

FIND N E X T GRADE IN COURSE-GRADE.
END-OTHER-COURSES.

FETCH-AND-PRINT-ONE-STUDENT.
FIND STUDENT OWNER.
GET NAME OF STUDENT.
Print it.

END-ONE-STUDENT.
PRINT-THAT-STUDENTS-COURSES.

** Note the u~e of the RETAINING CLAUSE Below

FIND NEXT GRADE IN STUDENT GRADE
RETAINING CURRENCY FOR COURSE-GRADE.

IF DATABASE-STATUS ~ DONE
GET GRADE
IF COU1LSE IN GRADE ~ COURSE-NAME

Print the other course name.
GO TO PRINT-THAT-STUDENTS-COURSES.

END-STUDENTS-COURSES.

FIGURE 18. Illustration of currency retention.

Using Data Structure Diagrams) and the
relatively uncommon question: Find the
employees who earn more than their man-
agers. The reader is encouraged to think
through these two examples with respect to
currency indicators.

4. IMPLEMENTATIONS OF THE DBTG SPECi-

FICATiONS

As mentioned in the Introduction, the
specifications initially published by the
DBTG are under continuing development
and refinement by groups within the
CODASYL organization. I t is difficult to
state whether system " X " does, or does not,
follow the specifications. There are, how-
ever, .a number of commercially available
systems that have used one or more versions
of the specifications as a basis for imple-
mentation. While these system may employ
syntax that is slightly different from our
examples, they follow the same basic data
model. Some of the commercially available
systems which are generally deemed to be
"DBTG type" systems are:

• DBMS/10 (Data Base Management
System/10), marketed by Digital
Equipment Corp. for use on DEC
System 10 computers

• DMS/1100 (Data Management Sys-
tem/1100), marketed by U~IvAc

C o m p u t i n g Surveye~ Vol . 8, N o . 1, M a r c h 1976

CODASYL Data-Base Manaoeme~t Systttm • 90
!

for use on UmvAc Series 1100
computers

• EDMS (Extended Data Management
System), marketed by XEROX
Data Systems for use on XEROX
SIGMA 6, 7 and 9 computers

• IDMS (Integrated Data Management
System), marketed by Cullinane
Corp. for use of IBM System/360
and System/370 computers

• IDS/I I (Integrated Data Store/II),
marketed by HONEYWELL In-
formation Systems for use of the
HONEYWELL 6000 series com-
puters

• PHOLAS, marketed by PHILIPS ELEC-
TROLOGICA.

Though this section is not meant to be de-
tailed, it is worthwhile to consider what
parts of the specifications are successfully
implemented, for such an examination would
indicate which features the implementors
have found easy (or difficult) to implement,
or which features the implementors thought
would be of use to their customers.

As a general rule, the implementors have
allowed full generality to be used in the
data model presented in Section 1, Design
of a Data Base, as well as in most of the
DML functions presented in Section 2,
Sample Data-Base Application, and Sec-
tion 3, Advanced Features. The part of the
data model most frequently omitted is that
of singular sets. The rationale for this
seems to be that singular sets can be very
easily simulated by the user.

While the basic data model is maintained
in all of the systems, various implementors
have left out many of the more sophisticated
features in the Schema DDL. The facility
for privacy locks and keys is most fre-
quently dropped, as are data-base pro-
cedures. In addition, none of the available
systems provide for VIRTUAL items.

In approaches to the sub-schema facility,
systems vary widely. The initial imple-
mentation of some systems did not provide
for a separate sub-schema language (indeed,
in 1969 the DBTG specifications did not
include one); instead, the systems relied on
the COBOL program. Such a facility provides
for inclusion or exclusion of certain schema
record types from the program. Even in

cases where a separateisub-schema language
is provided, many implementors have still
allowed only for the inclusion or exclusion
of entire record types o r set types. In a
minority of the systems the sub-schema is
allowed to select only certain data items
from a record, or to reorder or change the
data-item type.

GUIDE TO FURTHER •READING

The DBTG class of systems will continue
to evolve, as will the state of various im-
plementations. In an: introductory paper
such as this, it is impossible to cover all the
options and characteristics of these DBTG-
like systems. For these two reasons, it is
necessary to read further in the literature
for an in-depth understanding of the total
system architecture, data model concepts,
and data-base design techniques. This sec-
tion presents an annotated guide to DBTG
literature. We concentrate here only on
literature whose principal focus is the DBTG
specifications, or literature which compares,
in-depth, the DBTG approach to some al-
ternative. Discussions of data-base manage-
meat in general, or tutorial treatments, or
references to specific vendor manuals ap-
pear in the general biblio~aphy in the com-
panion paper in this ' issue by Fry and
Sibley.

The most recent developments with
respect to the Schema language appear in
the CODASYL Data Description Language
Journal of Development [$2]. Specifications
for the Data Manipulation Language of
COBOL appear in the CODASYL COBOL
Journal of Development [$3]. These docu-
ments are issued periodically, and announce-
ments of availability appear in various
professional journals. There is also a
CODASYL Committee that is developing
Data Manipulation Language specifications
for FORTRAN [$5, see also $6]. All three
references are primarily language specifi-
cation manuals; as such they are not written
in tutorial fashion, but are intended pri-
marily for implementors and as a final
arbiter regarding details of program/data-
base system semantics. However, [$2] does
contain sections that describe concepts of
the Schema language.

Computi~ krv~y~ VoL 8, No. 1, M~t'0h 1975
i

100 • R. W. Taylor and R. L. Frank

On a more general level, a discussion of
the evolution of "navigational" systems, of
which the DBTG systems are a prime ex-
ample, is given in the ACM Turing Lecture
by Charles W. Bachman IN3]. In [N2],
Bachman describes how data structure
diagram notation can be used to illustrate
the organization of lower levels of data- -
specifically illustrating the access method
and storage medium levels.

A collection of more advanced examples,
based on the 1971 DBTG report has been
published by Frank and Sibley JEll. An-
other example by Sibley, using the 1973
syntax, is available as a National Bureau of
Standards report [E3]. Additional examples
appear in vendor manuals, especially [E2].

There has been a continuing debate con-
cerning the merits and disadvantages of the
DBTG architecture. Aspects of this debate
are covered in the companion paper by
Michaels, Mittman, and Carlson in this
issue. Comparisons of the DBTG proposal
relative to the relational model appear in
many places; one of the most complete
discussions is contained in the proceedings
of a debate [D1, D2] in which C. W. Bach-
man and E. F. Codd are the principals.
There have also been critiques and technical
evaluations of various aspects of DBTG.
One such critique [D5] was presented when
the 1971 report was published. In 1975,
an IFIP Working Conference was devoted
specifically to an in-depth evaluation of
various constructs in the Schema language.
Proceedings of that conference have been
published, and various revisions to the DDL
are proposed [DS, R1-R5]. The volume also
contains articles that illustrate how to use
DBTG systems to support a relational view
and discuss the use of concepts from the
relational model (e.g., normalization) in
the context of DBTG systems. Papers on
the proper design of data bases by using
data structure diagrams and on the proper
use of the Data Manipulation Language
appear in [A1-AT].

There have been discussions of the possi-
bility of designing systems which could
support any data model a user might wish--
whether network, relational, hierarchic, or
other types. Nijssen's article "Data Struc-
turing in the DDL and Relational Data

Model" [C1] outlines the possibility of the
coexistence of data models. The article
"On the Equivalences of Data Based Sys-
tems" by Sibley [C4] also explores this
point.

A SHARE Working Conference held in
Montreal, Canada, contains papers de-
scribing user experiences with various com-
mercially available implementations of the
DBTG systems [U3-U5].

Some aspects of implementation are
discussed in [II-I5].

There have also been a number of papers
dealing with the features required by
data-base management systems. Refer-
ences [M4-M6, MS] are of particular in-
terest.

CLASSIFICATION OF REFERENCES

S Syntax and System Specifications
N Data Structure Diagram Notation, Naviga-

tional Systems
E Example Schemas, Sub-schemas, and Pro-

grams
D Critiques and Debate Position Papers
R Suggested Revisions to the Specifications
C Comparison of the DBTG Model to Other

Data Models
A Designing Data Bases Using DBTG Systems
U User Experience with Commercial Implemen-

tations
I Implementations

M Other Modeling Papers
G Referenced Papers

REFERENCES

This bibliography collects and classifies references
to various articles concerning the DBTG specifi-
cations. I t also includes articles which debate the
merits of various features, articles which discuss
implementational aspects, and articles which
discuss data-base design in the context of a DBTG
system. The following abbreviations are used in
the bibliography.
SIGMOD/SIGFIDET The ACM Special Interest

Group on the Management
of Data (formerly named
the Special Interest Group
on File Description and
Translation) holds an an-
num Conference. The
Proceedings of these con-
ferences are available
from ACM, New York.

IFIP TC-2 A Special Working Con-
ference, "An In-Depth
Evaluation of Codasyl
DDL," was held in Bel-
gium in January 1975.
Proceedings of that con-
ference are available in
the book Database De-
scription, B.C.M. Douque

Computing Surveye, Vol. 8, No. 1, March 1976

C O D A S Y L Data-Base Managemen! Syst~ra • 101

i
and G. M. Nijssen, Eds. nology, Nat ional Bureau of Standards,
North-Holland Publ. Co., Washington, D.C.;

TAYLOR, R. W., "Data administration
lands,Amsterdam'1975. The Nether- [E4] and the DBTG ReporL" Proc. of ACM

SIGMOD/SIGFIDET Conf., 1974, ACM,
New York, pp. 431--444.
MANOLA, F. A., Principles of the
CODASYL approach to the description of
dala structures, Report 3068, Naval Re-
search Laboratory, 1975, Washington, D.C.

(S) Syntax and System Specifications

[$1] CODASYL DATA BASE TASK GROUP,
April 1971 report, ACM, New York.

[$2] CODASYL DATA DESCRIPTION LANGUAGE
COMMITTEE, Data Description Language
Journal of Development, Document C13.6/
2:113, U.S. Government Printing Office,
Washington, D.C.

[$3] CODASYL PROGRAMMING LANGUAGE COM-
MITTEE, CODASYL COBOL Journal of
Development, Dept. of Supply and Services,
Government of Canada, Technical Ser-
vices Branch, Ottawa, Ontario, Canada.

[$4] CODASYL DATABASE LANGUAGE TASK
GROUP, CODASYL Cobol database fa-
cility proposal, 1973, Dept. of Supply
and Services, Government of Canada,
Technical Services Branch, Ottawa, Can-
ada. This document proposes revisions to
CODASYL COBOL. The revisions, as ac-
cepted, appear in the latest version of the
CODASYL Cobol Journal of Development,
see [$3].

[$5] CODASYL FORTRAN DML, information
on the activities of this committee ' is
available from Chairman, CODASYL
FORTRAN DML Committee, P.O. Box 124,
928 Garden City Drive, Monroeville, Pa.,
15146.

[$6] STACEY, G. M., "A FORTRAN interface
to the CODASYL Data Base Task Group
specifications," Computer J. 17, 2 (May
1974), 124-129.

(N) Data Structure Diagram Notation, Navi-
gational Systems

[N1] BACHMAN, C. W., "Data structure dia-
grams," Database 1, 2 (Summer 1969).

[N2] BACHMAN, C. W., "The evolution of
storage structures," Comm. ACM 15, 7
(July 1972), 628-634.

[N3] BACHMAN, C. W., "The programmer as
navigator," Comm. ACM 16, 11 (Nov.
1973), 653-658.

(E) Example Schemas, Subschemas, and Pro-
grams

tEll FRANK, R. L.; AND SIBLEY, E. H., The
Data Base Task Group Report: an illustra-
tive example, Doc. No. AD-759-267, U.S.
National Technical Information Service.

[E2] PHILIPS DATA SYSTEMS, An application
example of the CODASYL DBTG Proposal,
Pub. No. 5122-991-24151, Philips-Elec-
trologica, Apeldoorn, The Netherlands,
1973.

[E3] SIBLEY, E. H., The CODASYL database
approach: a Cobol example of design and
use of a personnel file, NBSIR 74-500,
Insti tute of Computer Sciences and Tech-

[E51

(D) Critiques and Debate Position Papers

[D1] BACHMAN, C. W., "The data structure
set model," in Proc. 1975 ACM-SIGMOD
Debate, "Data Models: Data Structure Set
versus Relational," R. Rustin, (Ed.),
ACM, New York, :PPA 1-10.

[D2] CODD, E. F.; AND I)ATE, C. J. "Inter-
active support for non-programmers: the
relational and network approaches," in
Proe. 1975 ACM-~IGMOD Debate, "Data
Models: Data Structure Set versus Rela-
tional," R. Rustin, (Ed.), ACM, New
York, pp. 13--41. ,,

[D3] DATE, C. J.; AND CODe, E. F., The
relational and network approaches: com-
parison of the application programming
interfaces," in Proc. 1975 ACM-SIGMOD
Debate "Data Models: Data Structure Set
versus Relational," R. Rustin (Ed.), ACM,
New York ,pp . 85-113.

[D4] EARNEST, C. P., A comparison of the
network and relational data structure models,
Technical Report Sciences Corp., El
Segundo, California, 1974.

[D5] ENGELS, R.W. , "An analysis of the April
1971 DBTG report," in Proc. 1971 ACM
SIGFIDET Workshop on Data Description,
Access, and Control, ACM, New York,
pp. 69-91.

[D6] METAXmES, A., "Information bearing
and non-information bearing sets ," in
Proc. of IF IP TC-~ ~pecial Working Conf.,
"An In-depth Technical Evaluation of the
CODASYL DDL~ '~ pp. 363-368.

[D7] OLLE, T.W. , "Cut'rent and future trends
in database management systems," in
Proc. I FI P Congress, Information Process-
ing 7~, North-Holland Publ. Co., Amster-
dam, The Netherlands, pp. 998--1006.

[DS] WAGHORN, W. J., "The DDL as an in-
dustry standard?," in Proc. IF IP TC-~
Special Working Conf., "An In-depth
Technical Evaluation of the CODASYL
DDL," pp. 121-167.

(R) Suggested Revisions to the .Specifications

JR1] KAY, M. H., "An assessment of the
CODASYL DDL for use with a relational
sub-schema," in Proc. IF IP TC-~ Special
Working Conf., "An In-depth Technical
Evaluation of CODASYL DDL," pp. 199-
214.

[R2] NIJSSEN, G. M., "Set and CODASYL
set or eoset," in Proc. I F I P TC-~ Special
Working Conf., "An In-depth Technical
Evaluation of CODASYL DDL," pp. 1-71.

[R3] OLLE, T. W., "An analysis of the flaws

ComputiQE Surv~ys, Col. 8, No. 1, March 1976

102 • R . W . Taylor and R . L . Frank

in the Schema DDL and proposed improve-
ments," in Proc. I F I P TC-$ Special Work-
ing Conf., "An In-depth Technical Evalu-
ation of CODASYL DDL," pp. 283-297.

[R4] ROBINSON, K. A., "An analysis of the
uses of the CODASYL set concept," in
Proc. I F I P TC-e Special Working Conf.,
"An In-depth Technical Evaluation of
CODASYL DDL," pp. 169-181.

[R5] TAYLOR, R. W., "Observations on the
attributes of database sets," in Proc.
I F I P TC-£ Special Working Conf.,
"An In-depth Technical Evaluation of
CODASYL DDL," pp. 73-84.

[R6] HAWLEY, D. A.; KNOWLES, J. S.; AND
TOZER, E. E., "Database consistency
and the CODASYL DBTG proposals,"
Computer J . 18, 3 (1975), 206-212.

(C) Comparison of the DBTG Model to Other
Data Models

[C1] NIJSSEN, G. M., "Data structuring in
the DDL and relational model," in Data-
base Management, J. W. Klimbie, and K. L.
Koffeman, (Eds.), North-Holland Publ.
Co., Amsterdam, The Netherlands, 1974,
pp. 363-384.

[C2] McGEE, W. C., "A contribution to ~the
study of data equivalence," in Database
Management, J. W. Klimbie, and K. L.
Koffeman, (Eds.), North-Holland Publ.

• Co., Amsterdam, The Netherlands, 1974,
pp. 123-148.

[C3] SENKO, M. E., "Data description lan-
guage in the context of a multi-level
structured description: DIAM II with
FORAL," in Proc. IF IP TC-~ Special Work-
ing Conf., "An In-depth Technical Evalu-
ation of CODASYL DDL," pp 239-257.

[CA] SIBLEY, E . H . , On the eqmvalences of
databased systems," in Proc. 1975 ACM-
SIGMOD Debate, "Data Models: Data
Structure Set versus Relational," R. Rustin,
(Ed.), ACM, New York, pp. 45-76.

[C5] STONEBRAKER, M.; AND HELD, G. , "Net-
works, hierarchies, and relations in data-
base management systems," in Proc.
ACM Pacific 75 Regional Conf., ACM,
New York, pp. 1-9.

(A) Designing Data Bases Using DBTG Systems

[All BACHMAN, C.W., "Implementation tech-
niques for data structure sets," in Database
Management System~, D. A. Jardine,
(Ed.), North-Holland Publ. Co., Amster-
dam, The Netherlands, 1974, pp. 147-257.

[A2] BAKER, G. J., "The correct use of
CODASYL DBTG sets," Database Journal
6, 2, pp. 19-21. A. P. Publications Ltd.,
London.

[A3] BROWN, A. P .G. , "Modeling a real world
system and designing a schema to repre-
sent i t , " in Proc. IF IP TC-$ Special
Working Conf., "An In-depth Technical
Evaluation of CODASYL DDL," pp. 339-
347.

[A4] BUBENKO, J. A., JR., et al., "From in-
formation structures to DBTG data s t rut-

tures," in Proc. Conf., on Data: Abstrac-
tion, Definition, and Structure, ACM
SIGPLAN/SIGMOD 1976, ACM, New
York, pp. 73-84.

[A5] GERRITSEN, R., "A preliminary system
for the design of DBTG data structures,"
Comm. ACM, 18, 10 (Oct. 1975), 551-557.

[A6] MITOMA, M. F.; AND IRANI, K.B. , "Auto-
matic database schema design and optimi-
zation," in Proe. of the Internatl. Conf.
on Very Large Databases, 1975, ACM,
New York, pp. 286-321.

[AT] TAYLOR, R.W., "When are pointer arrays
better than chains," in Proc. ACM Na-
tional Conf., 1974, ACM, New York, p.
735.

(U) User Experience With Commercial Imple-
mentations

[U1] BANDURSKI, A. E. ; AND JEFFERSON,
D . K . , "Data description for computer-
aided design," in Proc. ACM SIGMOD
Internatl. Conf. on Management of Data,
1975, W. F. King, (Ed.), ACM, New York,
pp. 193-202.

[U2] CANNING, R. G., "What s happening
with'CODASYL-type DBMS," E D P Ana-
lyzer, (Oct. 1974).

[U3] EMERSON, E. J., "DMS 1100 user ex-
perience," in Database Management Sys-
tems, D. A. Jardine, (Ed.), North-Holland
Publ. Co., Amsterdam, The Netherlands,
1974, pp. 35-46.

[U4] LAVALLEE, P. A.; AND OHAYON, S., "DMS
applications and experience," in Database
Management Systems, D. A. Jardine, (Ed.),
North-Holland, Publ. Co., Amsterdam,
The Netherlands, 1974, pp. 47-67. .

~'~ r "lTma.p X e r lence [U5] VON GOHREN, i..~. ~ . , e p ,,
with integrated data store (IDS), in
Database Management Systems, D. A.
Jardine, (Ed.), North-Holland Publ. Co.,
Amsterdam, The Netherlands, 1974, pp.
19-33.

(I) Implementations

[Ill BACHMAN, C. W. , AND WILLIAMS, S. B. ,
"A general purpose programming system
for random access memories," in Proc.
AFIPS 1965 Fall Jr. Computer Conf.,
Vol. 26, Spartan Books, Baltimore, Mary-
land, pp. 411-422.

[I2] CANADAY, R. H., et al., "A back-end
computer for database management,"
Comm. ACM 17, 10 (Oct. 1974), 575-582.

lI3] FOSSUM, B. M., "Database integrity as
provided for by a particular database
management system," in Database Man-
agement, J. W, Klimbie and K. L. Koffe-
man, (Eds.), North-Holland Publ. Co.,
Amsterdam, The Netherlands, 1974, pp.
271-288.

[I4] JOHNSON, H. R., "A schema report
facility for a CODASYL based data defi-
nition language," in Database Description,
B. C. M. Douque and G. M. Nijssen,
(Eds.), North-Holland Publ. Co., Amster-
dam, The Netherlands, 1975, pp. 299-328.

Computing Surveys, Vol. 8, No. 1, March 1976

[ISl

[I6]

C O D A S Y L Data-Base M a n a ~ r n e n t Syaera

SCHENK, H., "Implementational aspects [M8]
of the CODASYL DBTG proposal," in
Database Management, J. W. Klimbie and
K. L. Koffeman (Eds.), North-Holland
Publ. Co., Amsterdam, The Netherlands,
1974, pp. 399-412. [M9]
WARREN, THOMAS, Feature analysis of
CODASYL database management systems,
AD-A014 972/4WC, National Technical [M10]
Information Service, Springfield, Virginia,
1975.

(M) Other Data Modeling Papers

[M1] ABRIAL, !" R., "Data semantics," in
Database Management, J. W. Klimbie and
K. L. Koffeman, (Eds.), North-Holland
Publ. Co., Amsterdam, The Netherlands,
1974, pp. 1--60.

[M2] COLLMEYER, A.J. , "Implications of data
independence on the architecture of data-
base management systems," in Proc.
ACM SIGFIDET Workshop on Data
Description, Access, and Control, 1972,
A. L. Dean, (Ed.), ACM, New York, pp.
307-321.

[M3] EARNEST, C. P., "Selection and higher
level structues in networks," in Database
Description, B. C. M. Douque and G. M.
Nijssen, (Eds.), North-Holland Puhl. Co.,
Amsterdam, The Netherlands, 1975, pp.
215-237.

[M4] EVEREST, G. C.; AND SIBLEY, E. H.,
"Critique of the GUIDE-SHARE DBMS
requirements," in Proc. ACM SIGFIDET
Workshop on Data Description, Access
and Control, 1971, E. F. Codd and A. L.
Dean, (Eds.), ACM, New York, pp. 93-112.

[M5] GUIDE-SHARE DATABASE REQUIREMENTS
GRouP, Database management system re-
quirements, 1970, SHARE, Inc., New York.

[M6] HUITS, M. H. H., "Requirements for
languages in database systems," in Data-
base Description, B. C. M. Douque and
G. M. Nijssen, (Eds.), North-Holland
Publ. Co., Amsterdam, The Netherlands,
1975, pp. 85-109. ,,

[M7] McGEE, W.C., File level operations on
network data structures," in P~oc. ACM
SIGMOD Internatl. Conf. on Management
of Data, 1974, W. F. King, (Ed.), ACM,
New York, pp. 32-47.

• 1 0 3

OLLE, T. W., An asa~sment of how the
CODASYL data base task group proposal
meets the UUIDE-Su4~z requtreraents,
Report 329 Norwegian Computing Center,
1972.
SENKO, M. E., et al., "Data structures
and accessing in database systems."
IBM Systems J. lg, 1, (1973), 30--93. "
STEEL, T. B., Ja., Database standardi-
zation: a status report," in Database
Deseription, B. C. M. Douque and G. M.
Nijssen, (Eds.), North-Holland Publ. Co.,
Amsterdam, The Netherlands, 1975_pp.
183-198. Also in Proc. ACM 8IOMOD
Internatl. Conf. on Management of Data,
1975, W. F. King, (Ed.), ACM, New York,
pp. 149-156.

[Mll] PARSONS, R. G.; DALE, A. G.; xNn YUR-
KANEN, C. V., "Data manipulation lan-
guage requirements for database manage-
ment systems," Computer J . 17, 2 (May
1974), 99-103.

(G) Referenced Papers

[G1] DODD, G. G., "Elements of data man-
agement systems," Computing ~urveys

• 1 , 2 (June 1969), 117-133.
[G2] MOLER, C., "Matrix computations with

FORTRAN and paging, Comm. ACM 1§,
4 (April 1972), 268-270.

[G3] SEVERANCE, D. G.; Arm DVHNE, R. A.,
"A practitioner's guide to addressing al-
gorithms," Comm. ACM, (publication
pending).

[G4] NIJSSEN, G.M., "Efficient batch updating
of a random file," in Proc. ACM
SIGFIDET Workshop on Data Description,
Access, and Control, 1971, E. F. Codd
and A. L. Dean, (Eds.), ACM, New York,
pp. 173-186.

[G5] DATE, C. J., An introduction to database
systems, Addison-Wesley, Reading, Massa-
chusetts, 1975.

ACKNOWLEDGMENTS

The authors are grateful to M. L. O'Connell of the
CODASYL Data Base Language Task Group for
clarifying several points. This research was sup-
ported, in part, by the National Science Founda-
tion under Grants GJ-41829 and GJ-41830.

C o m p o ~ Surv~q~ Voa. 8, No. | , ~ 11176

