
12 1541-1672/10/$26.00 © 2010 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

C O N T E X T - A W A R E M I D D L E W A R E

Code-Centric RFID
System Based on
Software Agent
Intelligence
Min Chen, Seoul National University

Sergio González, University of British Columbia

Qian Zhang, Hong Kong University of Science and Technology

Victor C.M. Leung, University of British Columbia

RFID technology

could play a vital

role in future

smart-environment

applications.

This code-centric

RFID system uses

software-agent-

based intelligence to

achieve faster service

responses.

tracking and tracing, inventory monitoring,
asset management, supply-chain manage-
ment, and e-healthcare.1–3 In a typical system,
which we characterize as an identifi cation-
centric RFID system (IRS), an RFID tag
contains a simple antenna, a transponder,
and a memory chip for saving ID informa-
tion. Irradiating the transponder with elec-
tromagnetic waves enables a special RFID
reader to obtain this information. Once
an object’s ID is verifi ed, this object’s pro-
fi le can be retrieved from a database, and
suitable service codes can be obtained. By
following this centralized approach, the in-
frastructure recognizes the actions that must
be performed with the object.

An IRS generally uses passive informa-
tion about the object, such as identifi ca-
tion and description information stored in

an RFID tag, and chooses courses of action
by relying on a pre-established rule-based
database. However, because this rule-based
database is static, it cannot be updated in a
timely fashion for new object types or en-
vironmental dynamics, thus causing a syn-
chronization problem. Hence, an IRS has
two disadvantages. First, the object’s profi le
database must be set up in advance to allow
for interactions between an RFID tag and a
profi le database. Second, when encounter-
ing a dynamic environment such as an emer-
gency situation in which network access
is diffi cult, the information stored in the
database might be outdated or even un-
reachable, resulting in an operational delay
or service failure.

In this article, we propose a new code-
centric RFID system (CRS) as a solution to

As an important type of wireless technology, RFID electronic identifi -

cation (www.rfi d.org) has increasingly received more attention in re-

cent years. Many industries have used RFID technology to allow quick access

to identifi cation numbers or object codes. Current applications include item

is-25-02-Chen.indd 12 3/30/10 1:44:28 PMAuthorized licensed use limited to: Seoul National University. Downloaded on May 04,2010 at 14:19:19 UTC from IEEE Xplore. Restrictions apply.

MARCH/APRIL 2010 www.computer.org/intelligent 13

such problems. This CRS incorpo-
rates coded information that is dy-
namically stored in the RFID tag,
making it easier for other systems to
perform on-demand actions for dif-
ferent objects in different situations.
To achieve this, we encode, in the
RFID tag, mobile agents specifying
up-to-date service directives that can
be realized by intelligently handling
various network dynamics. Because
of the limited availability of mem-
ory in RFID tags,4 we have designed
a new compact, high-level language
for coding these mobile agents. A cor-
responding middleware layer in the
RFID reader can then interpret this
language. These mobile agent-based
RFID tags enable objects to instruct
the system to intelligently execute ac-
tions when specifi c situations occur.
Experimental results conducted on
two testbeds confi rm that the perfor-
mance of our CRS is superior to that
of an IRS.

The benefi ts of our CRS approach
include the following:

It effectively eliminates the need to •
retrieve associated RFID-code ac-
tion information from a database
and enables more robust systems
for highly dynamic environments.
It can greatly reduce overall system •
response time by retrieving service
information from the tags.
It helps improve the scalability •
of the database, which currently
serves only as a backup subsystem.
It fosters greater resilience because •
the system can remain operational,
even during database or network
failures.

In addition, there is a growing inter-
est in integrating RFID with other tech-
nologies, such as wireless sensor net-
works (WSNs), Internet Protocol (IP)
networks, and cellular networks, to de-
velop scalable systems and applications

that improve people’s everyday lives.
Such integration, coupled with contin-
ual advances in wireless communica-
tions technologies, could revolutionize
a wide range of applications. By storing
mobile codes in RFID tags, our CRS
enables seamless integration with other
systems.

Identifi cation-Centric
RFID System
Most IRS applications are designed
for object tracking, tracing, and lo-
cating (www.autoidlabs.org). An ex-
ample of an industrial application is
tracing chemical containers stored in
a warehouse. This could be unsafe
for humans, owing to the intrinsic
danger of exposure. Therefore, RFID
tags can be attached to the chemi-
cal containers, and an RFID reader
can be put on a shelf to trace them
remotely.

RFID technology is becoming more
widely used in daily life, such as in
supply-chain management, where an
IRS has proven to be an effi cient ap-
proach. As Figure 1 shows, RFID can
reduce information gaps by enabling
real-time supply chain visibility, and
is useful in purchasing, product man-
ufacturing, shipping and receiving,
storing, and selling. The example in
Figure 1 also shows that it’s possible
to track a product’s details throughout
the entire supply chain process. When
a product leaves the manufacturing

plant, an RFID reader obtains infor-
mation, which it forwards to an elec-
tronic product code (EPC) network.
When the product arrives at the dis-
tribution center or retailer, the infor-
mation is stored in the EPC network’s
corresponding database. Eventually,
after the consumer has fi nished using
the product and disposes of it, a data-
base connected to a recycling center
could record this information.

In this application, the main func-
tional components of the IRS are the
following:

Rule database.• This component
maintains a list of IDs and their as-
sociated rules, which the process-
ing module accesses to formulate
corresponding actions.
Processing module.• This module
handles data-processing tasks af-
ter retrieving the incoming object’s
passive information from the rule
database. After obtaining the cor-
responding rules, it checks whether
any necessary condition is satisfi ed
and performs the associated ob-
ject’s actions.
EPC network.• The EPC is a set of
global technical standards aimed
at enabling and sharing automatic
and instant identifi cation of items
throughout the supply chain. A
unique identifi er of a physical object
is stored in an individual RFID
tag. The EPC we referenced in this

Figure 1. Typical example of an identifi cation-centric RFID system (IRS), as used by
an entire supply chain process to help streamline the delivery of products and their
appropriate disposal at a recycling center.

ObjectProduct

Electronic product code (EPC) network

RFID
reader

Recycling
center

RetailerDistribution
center

Manufacturing
plant

is-25-02-Chen.indd 13 3/30/10 1:44:29 PMAuthorized licensed use limited to: Seoul National University. Downloaded on May 04,2010 at 14:19:19 UTC from IEEE Xplore. Restrictions apply.

14 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

C O N T E X T - A W A R E M I D D L E W A R E

study was designed by
the EPC Global Net-
work (www.epcglobalinc.
org/home). The EPC
network has three main
components: the object-
naming service, the
EPC information service,
and the EPC discovery
service.

However, a closer look at the oper-
ation of this IRS reveals some critical
shortcomings. First, the ID embed-
ded in the RFID tag doesn’t directly
convey any information about how
to handle the object bearing this tag
or what service should be applied to
it. Second, any handling information
must be retrieved from a database,
and the data in this database is prone
to becoming outdated if no manual
updates are constantly performed.
Third, scalability is a signifi cant con-
cern, given the growing number of
RFID tags whose associated informa-
tion must be stored in the database.
Fourth, failures in the database or
networking infrastructure could ren-
der the system unusable.

Code-Centric RFID System
In an IRS, the applications mainly
help answer “where” questions—
for example, where are my goods,
or where is the object? Supply chain
management is a typical example of
this, in which the objects of interest
can be conveniently tracked. How-
ever, the current status of the sup-
ply chain process and the service
requirements of users or objects
could change, calling for a smart
environment with the intelligence
to fl exibly manage the quality of
service (QoS). Such an environment
could answer, not only the “where”
questions, but also the “how”
questions—for example, how to pro-
vide a certain service for a customer

at a particular location under some
specifi c conditions.

Our CRS meets this criterion.
We call this system code-centric be-
cause the use of mobile-agent code
is the most important feature of our
system design. Introducing coded in-
formation is key to providing fl exible
and intelligent applications. By pro-
viding the fl exibility to answer the
“how” questions, the CRS facilitates
a harmonious fusion of the user’s re-
quirements with the changing envi-
ronment, and illustrates how RFID
technology can improve the effi ciency
of the systems that would rely on it.

Moreover, while objects with the
attached RFID tags move around, the
stream-of-materials fl ow also provides
the carrier with a code-information
fl ow. Embedding service requirements
into an RFID tag at one location can
ensure that the objective is met at an-
other location through code-centric
processing. This is the rationale be-
hind our CRS.

Architecture
Our proposed CRS has two main
parts: the RFID tag and the code-
processing and executing infrastruc-
ture in the corresponding tag reader.
We introduced an extended RFID data
format for the RFID tag (see Figure 2).
In addition to traditional data (identi-
fi cation and description information,
such as the object’s shape, weight,
color, production location, and time),
the RFID tag can store a mobile agent.

In the CRS infrastruc-
ture, the main functional
components include the
passive-information man-
ager, the code-information
manager, the middleware
layer, the environmental-
parameters provider sys-
tem, and the service
response system. The
passive-information man-

ager receives identifi cation and de-
scription data from the RFID tag,
and may further forward this in-
formation to the EPC network to
create a record of it. The mobile-
agent code is forwarded to the code-
information manager, which delivers
the agent to the middleware layer
for interpreting. The environmental-
parameters provider system sends
parameters to the middleware layer
so that it can take appropriate ac-
tions. The middleware layer in turn
sends action commands to the service
response system, which performs
the desired tasks according to the
decisions made for the object, as
Figure 3 shows.

Although all of these modules are
indispensable to the CRS infrastruc-
ture, the middleware layer is the most
important because it is used to inter-
pret the codes that form the mobile
agents. The mobile agents consist
of instructions or programs that the
RFID infrastructure executes. Inputs
to those programs may include iden-
tifi cation or description information,
as well as information provided by
associated subsystems (position, sen-
sory data such as humidity and tem-
perature, and so on). Outputs may
be any actions that the infrastructure
can perform, such as interacting with
a video surveillance system, writing
some particular code in other tags, or
issuing alarm signals. The stored code
information helps the objects react to
the environment more intelligently.

Figure 2. Extended RFID message in the code-centric RFID
system (CRS): (a) original data fi elds used in existing systems,
and (b) extension fi elds as proposed. In addition to traditional
data, RFID tags can store mobile agents, which explicitly indicate
the type of service that the object bearing the tag should receive.

(a)

(b)

RFID type Identification

Code priority Mobile agent

ReservedObject description

is-25-02-Chen.indd 14 3/30/10 1:44:30 PMAuthorized licensed use limited to: Seoul National University. Downloaded on May 04,2010 at 14:19:19 UTC from IEEE Xplore. Restrictions apply.

MARCH/APRIL 2010 www.computer.org/intelligent 15

Mobile-Code-Updating Mode
Providing on-demand QoS necessi-
tates the ability to change or rewrite
mobile code on-demand as well. We
propose three kinds of code-updating
modes: passive, active, and hybrid.

Passive Mode. Generally, RFID tags
can be attached to human or non-
human objects (products, animals,
and so on). Nonhuman objects have
no intelligence to update code by
themselves. Thus, code updating can
be performed only passively by the
infrastructure (for instance, an RFID
reader at some fi xed location). For
example, in an automatic assembly
line, the operations on the product
are performed step by step. If the
current operation associated with
the tag’s code information is com-
plete, a new code is written into
the tag, meaning the object will ac-
cept the corresponding operation in
the next step, and so on. If the tag’s
memory is large enough, all action
codes can be written into it at the be-
ginning of the assembly line. Then,
the code size will continually shrink
as different machine tools progres-
sively complete the corresponding op-
erations on the product. When mul-
tiple assembly lines are employed for
some product, the RFID tag will be
fi lled with a new set of code for per-
forming a new series of operations in
each assembly line. This implies that
the size of an RFID message varies
according to the different stages in-
volved in processing the object.

Active Mode. If the object is a hu-
man being, he or she might have spe-
cifi c requirements concerning service
types and their quality. Users can up-
date the codes actively by using por-
table RFID readers, in which case
they fi nish the code-updating process
before the objects arrive at the service
provider’s location.

Hybrid Mode. This mode combines
passive and active modes. In addi-
tion to users actively setting codes,
code updating can be passively per-
formed near some stationary RFID
reader (for example, at the entrance
of a store).

Pattern Classifi cation. Table 1 catego-
rizes code-updating patterns by object
type. For nonhuman objects, the goal
is usually to perform some operation
on the object or adjust the surround-
ing environment that best suits that

object’s needs. For human objects, on
the other hand, the goal might be to
provide user-specifi c services.

Middleware Design
for the CRS
The middleware subsystem should
be capable of processing all the code
directives and actions specifi ed by
the corresponding application. In ad-
dition, its programmability should
ensure, to a large extent, that applica-
tions can be enhanced or upgraded by
deploying new codes without having
to constantly alter the middleware.
Furthermore, the code should encap-
sulate all the underlying operations,
at both the network and database lev-
els. This high-level approach lets pro-
grammers focus on the operational
aspects of the application code be-
ing deployed without worrying about
lower-level intricacies. However, all
these features should be enacted by

Figure 3. Functional components of the CRS. The main parts of the system are the
passive-information manager, the code-information manager, the middleware layer,
the environmental-parameters provider system, and the service response system.

EPC network and database Sensor system

Surveillance system

Internet Protocol network

Wireless networking
system

En
vi

ro
nm

en
ta

l-p
ar

am
et

er
s

pr
ov

id
er

 s
ys

te
m

Service response
system

Passive-information
manager

Code-information
manager

Middleware
layer

RFID tag Object

•
•
•

Table 1. Pattern classifi cation of code updating in the CRS.

Code-updating mode Object type Main goals Example application

Passive Product, animal, and other
nonhuman objects

Perform operations on an object
Adjust the surrounding environment

Automatic assembly line

Active Human Provide user-specific services Smart house

Hybrid Human Provide user-specific services
Adjust the surrounding environment

E-healthcare

is-25-02-Chen.indd 15 3/30/10 1:44:30 PMAuthorized licensed use limited to: Seoul National University. Downloaded on May 04,2010 at 14:19:19 UTC from IEEE Xplore. Restrictions apply.

16 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

C O N T E X T - A W A R E M I D D L E W A R E

code that is compact
enough to fi t in memory-
constrained RFID tags.

In an earlier work, we
outlined the most impor-
tant characteristics for
middleware design in
WSNs, which are formed
by devices with severe mem-
ory and data-processing
limitations.5 These same
limitations clearly exist in
our CRS, where an event-
driven scheme prompts the
deployment and execution
of compact mobile codes,
with a suffi cient degree
of fl exibility to support
a variety of applications.
Therefore, we developed
the Wiseman middleware system as a
proof of concept for deploying mobile
codes.6 By introducing minor adjust-
ments, Wiseman can provide a solid
middleware foundation for supporting
our proposed CRS. In its current form,
Wiseman already provides all the
middleware functionalities we deem
essential. Its architecture is based on
processing text-based action scripts,
which can be dynamically modifi ed.

Middleware Architecture
Wiseman contains four main com-
ponents: an incoming-agent queue, a
code parser, a processor block, and an
agent dispatcher. It also includes two
helper components: an engine and a
session warden. Figure 4 shows these
components and their interactions.

The incoming-agent queue tem-
porarily stores agents arriving from
the wireless interface for immediate
processing. Wiseman does not sup-
port multithreading capabilities, be-
cause the interpreter is designed for
operation in WSN nodes with strin-
gent hardware limitations. The parser
tokenizes individual instructions for
gradual execution by splitting the

code that forms the programs into
two segments: head and tail. The head
is the code segment that is ready for
immediate processing; the tail com-
prises the rest of the agent’s code that
will be subsequently processed. The
next instruction is obtained by to-
kenizing the fi rst code segment from
the tail if the outcome of the head’s
execution is successful. This process
halts at any time if

the current operation is unsuccessful,•
an explicit agent termination oper-•
ation is indicated, or
an agent hop operation is encountered.•

The fi rst and second cases are self-
explanatory. For the latter case, con-
trol of the execution process is passed
to the dispatcher module, which for-
wards the agent’s tail to another node
(or set of nodes). For our proposed
CRS, the dispatcher forwards the
agent’s tail to a WSN node, as speci-
fi ed by the system’s mobile codes.

Language Constructs
Wiseman’s language includes vari-
ables, rules, operators, and delimiters.

Its text-based lexemes of
reduced size allow agents
to be dynamically modi-
fi ed as needed, make the
codes readable by hu-
mans, and occupy usu-
ally a few hundred bytes
to implement the desired
actions.

Variables. Wiseman im-
plements three kinds of
variables: numeric, char-
acter, and mobile. The
fi rst two are for stor-
ing numeric and single
characters at the local
node; the third is used
by agents to bring values
along as they traverse the

networked system. Typically, mobile
variables are labeled M (M1, M2, and so
on), which is semantically similar to
the way private variables are labeled
in object-oriented programming. In
addition to these user-defi ned vari-
ables, environmental variables pro-
vide information about the current
execution environment. For exam-
ple, the identity variable I stores a
read-only value of the local node’s ID
number, and the predecessor variable
P stores the ID number of the node
from which the agent came. Similarly,
the link variable L stores the label
identifi er of the virtual link that the
agent used for hopping (if it exists).

Operators. Wiseman provides a variety
of both general-purpose and system-
specifi c operators, such as regular
arithmetic operators (+, −, *, /, and =)
and comparison operators (<, <=, ==,
=>, >, and !=). The hop forwards the
agent to another location, as specifi ed
by the value appearing on the right
side of the # character. Alternatively,
an agent can be copied or moved to
one or more locations associated with
a virtual link, as indicated by the

Figure 4. Architecture of the Wiseman system. The incoming
queue, the parser, the processor, and the dispatcher are the
main components of this system, and the engine and the session
warden are helper modules to these main components.

Parser Processor Dispatcher

EngineIncoming
queue

Outgoing
queue

Session
warden

Network layer

Operating system layer

is-25-02-Chen.indd 16 3/30/10 1:44:30 PMAuthorized licensed use limited to: Seoul National University. Downloaded on May 04,2010 at 14:19:19 UTC from IEEE Xplore. Restrictions apply.

MARCH/APRIL 2010 www.computer.org/intelligent 17

value on the left side of
the operator. In the latter
case, the agent is cloned
with as many copies as
the existing destination
nodes associated with the
virtual links. After hop-
ping, the agent’s execu-
tion thread resumes at
the point at which the pro-
cess had been suspended.
(A full description of Wise-
man operators is available
elsewhere.6)

Rules. Wiseman imple-
ments three rules for
manipulating an agent’s
execution fl ow. The repeat
rule R indicates that the
codes delimited by curly
brackets will be cyclically
executed until a certain
condition is found. AND
and OR rules (denoted A
and O) control an agent’s
execution by checking
whether the codes delim-
ited by square brackets
yield a true or false value
for each code segment. Otherwise, the
entire rule itself returns a false value,
which halts the agent’s execution.

Important Wiseman
Features for the CRS
Wiseman supports three agent migra-
tion techniques that are particularly
useful in our proposed CRS. The fi rst
is known as explicit path hopping,
which provides the necessary func-
tionality to enable the explicit defi -
nition of the path that an agent will
follow. The second, variable-target
hopping, employs mobile or numeric
variables on the right side of the hop
operator to indicate the agent’s cur-
rent destination target. The third
method, labeled-path hopping, al-
lows the creation of labeled paths for

emulating multicast transmissions
from the local node. The main advan-
tage of this third method is that the
agent’s programmer does not need
to know in advance the identity of
the destination nodes. This can be a
signifi cant advantage when multiple
RFID tags must be read. In addition to
these functionalities, Wiseman allows
a programmable execution fl ow that
is fl exible enough to support events
that might arise in the CRS, such as
simplifi ed if-then-else statements.

Comparison of CRS
and IRS Approaches
To test the effectiveness of our CRS,
we compared it to an IRS by evalu-
ating how long each system took to
complete a set of tasks.

Experimental Setup
We set up two testbeds:
one for the IRS, and one
for the CRS. As Figure 5
shows, the common part
of the two architectures
was the service response
system, which in this ex-
periment was a WSN
based on MICAz Mote
(with 128 Kbytes of in-
struction memory and
4 Kbytes of data mem-
ory), and we employed
TinyOS v1.1 as our wire-
less sensor platform. We
used Wiseman as our
middleware system, as
discussed earlier. (Wise-
man was implemented in
the nesC language in our
previous work.5)

According to the topol-
ogy of the sensor network
shown in Figure 5, we
employed the following
action code: l$n;#1;#3;

#4;#5;#6;#7;#3;#2;

l$n. The numbers ap-
pearing on the right side

of the hop operator # indicate the
identity number of the node to which
the agent is set to migrate next
(for instance, #1 migrates the agent
to node 1). The middle segment of
the action code (#3;#4;#5;#6;#7;#3)
hops through the links while per-
forming some specifi c actions. In ad-
dition, agents toggle on the green
LEDs as a visual aid through the WSN
by means of the l$n operation. In this
operation, the l character signifi es an
LED operation, and the n signifi es that
a local LED is toggled on. There are
two l$n code segments in the action
code, to mark the beginning and end
of the agent’s migration. We record the
action delay between the time when
the fi rst LED is toggled on and the time
when the second LED is toggled on.

Figure 5. Testbed scenario for (a) the IRS and (b) the CRS. Both
architectures include the service response system. The testbed
itself provides a good example of how differently these systems
are realized in an actual setting.

Processing module

Receive object ID

Rule database

Laptop 2

Laptop 1

Service response system

Wireless sensor network

1 4
5

6
7

3

2

RFID tag Object

Laptop 1

Middleware layer

Passive-information
manager

Code-information
manager

Service response system

Mobile agent

Wireless sensor network

1 4
5

6
7

3

2

RFID tag Object

(a)

(b)

is-25-02-Chen.indd 17 3/30/10 1:44:30 PMAuthorized licensed use limited to: Seoul National University. Downloaded on May 04,2010 at 14:19:19 UTC from IEEE Xplore. Restrictions apply.

18 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

C O N T E X T - A W A R E M I D D L E W A R E

The main difference be-
tween the simulated IRS
and CRS is the way the
system processes code in-
formation retrieved from
the tag.

Simulated IRS. A cell
phone sends a message, in-
cluding the object’s ID, to
laptop 1 through the Wi-
Fi access point. The ID in-
formation goes to laptop
2, which serves as the rule
database. The rule data-
base server runs an FTP
and a Web server that are
accessible through a regu-
lar Internet connection.
Hence, the rule database
connects to the processing module
through an FTP connection to up-
date and retrieve the required rules.
The rules are stored in the rule data-
base’s hard drive. If laptop 1 success-
fully accesses the rule database and
obtains the action codes by searching
laptop 2 for rules, it distributes the
codes to the WSN’s gateway (imple-
mented in a MICAz Mote attached
to an MIB510 interface board), as
Figure 5a shows. The gateway then
dispatches a mobile agent to the WSN
to carry out the task.

Simulated CRS. A cell phone sends
a message, including the object’s ID
and mobile codes, to laptop 1 through
the Wi-Fi access point. The mobile
code is interpreted directly in the
middleware layer of laptop 1. Then
the code is forwarded to the WSN
gateway, which loads it into a mobile
agent and dispatches the agent to the
sensor network.

Experimental Results
Because the IRS requires search-
ing for rules and accessing the data-
base, failures can occur when the link

between laptop 1 and laptop 2 is bro-
ken or when the rule entry has not
yet been pre-established in the data-
base. Thus, we further divide the
testbed realization of the IRS into
two schemes: rule matched and rule
unmatched. The process fl ows of all
three schemes are as follows.

Rule-Matched IRS. First, the ID is
forwarded to the rule database, which
sends the action code to the process-
ing module. Next, the mobile agent
migrates to the sensor network. Ac-
cording to the action code, the agent
itinerary for visiting WSN nodes is
1-3-4-5-6-7-3-2.

Rule-Unmatched IRS. This process is
the most complicated among the three
schemes. First, the ID is forwarded to
the rule database, but then a message
of “no matching” is returned to the
processing module. So, a message with
updated code information is sent to the
rule database. (This procedure would
incur an operational delay in actual
situations.) Next, the rule database
sends action code to the processing
module, and an agent is dispatched.

CRS. Data processing in
the CRS is the simplest
of all three cases. Once
laptop 1 receives the ID
and code information,
the agent is dispatched
directly to migrate along
the itinerary indicated by
the action code.

Task Duration Compar-
ison. We measured task
duration as our perfor-
mance parameter of in-
terest. This is the time
from when the tag was
forwarded to laptop 1 to
when the actions or op-
erations associated with
the rule were fi nished.

In RFID systems, the time delay for
transmitting a tag’s information to
an RFID reader is a few milliseconds.
Thus, the task duration is mainly re-
lated to the process fl ow’s complexity.
As Figure 6 shows, compared to the
two IRS schemes, the CRS had the
lowest task duration. This is because
the CRS processes the action code lo-
cally without accessing the rule data-
base. Note that the current testbed
does not fully exhibit the advan-
tages of the CRS; in actual situations,
the amount of time a human would
take to process the document would
be greater.

O ur novel CRS makes it possi-
ble for mobile code to handle

context-aware situations. Benefi ts
include improved system scalability
and automated monitoring. In ad-
dition to improving performance
in terms of task duration, the CRS
also provides the fl exibility for us-
ers to change code information on
demand. Hence, this information
remains accurate and up-to-date,

Figure 6. Comparison of task duration for a rule-matched
IRS (IRSrule_matched), a rule-unmatched IRS (IRSrule_unmasked),
and the CRS. Although the rule-matched IRS was more
effi cient than the rule-unmatched IRS, the CRS was clearly
faster than both.

5

4

3

2

1

0

Ta
sk

 d
ur

at
io

n
(s

)

IRSrule-matched IRSrule-unmatched CRS

is-25-02-Chen.indd 18 3/30/10 1:44:31 PMAuthorized licensed use limited to: Seoul National University. Downloaded on May 04,2010 at 14:19:19 UTC from IEEE Xplore. Restrictions apply.

MARCH/APRIL 2010 www.computer.org/intelligent 19

while refl ecting user requirements
and network dynamics. However,
to successfully deploy CRS-based
architectures, several remaining
challenges must be addressed, in-
cluding knowledge representation
and situation-aware code interpreta-
tion. In the future, we plan to enhance
the system capabilities of situation-
aware code delivery, interpreta-
tion, and update to handle heteroge-
neous ubiquitous objects in the real
world.

Acknowledgments
This project was supported in part by Re-
search Grants Council (RGC) grants under
contracts 622508 and 623209; National Nat-
ural Science Foundation of China RGC grant
N_HKUST609/07; Innovation and Technol-
ogy Fund project ITP/023/08LP; the Minis-
try of Knowledge Economy (MKE), Korea,
under the Information Technology Research
Center support program supervised by the
National IT Industry Promotion Agency
(N I PA - 2 0 0 9 - C 1 0 9 0 - 0 9 0 2 - 0 0 0 6) ;
the IT R&D program of the MKE
Korea Evaluation Institute of Industrial
Technology (2008-F-034-02); and the Ca-
nadian Natural Sciences and Engineering
Research Council under Strategic Project
grants 365208 and 364962.

References
 B. Nath, F. Reynolds, and R. Want, 1.

“RFID Technology and Applications,”

IEEE Pervasive Computing, vol. 5,

no. 1, 2006, pp. 22–24.

 Q.Z. Sheng, X. Li, and S. Zeadally, 2.

“Enabling Next-Generation RFID

Applications: Solutions and Chal-

lenges,” Computer, vol. 41, no. 9, 2008,

pp. 21–28.

 M. Chen et al., “A 2G-RFID-Based 3.

E-Healthcare System,” IEEE Wireless

Comm. Magazine, vol. 17, no. 1, 2010,

pp. 37–43.

4. Compliant FRAM Embedded High-

Speed RFID LSI FerVID Family:

MB89R118, ASSP ISO/IEC 15693,

Fujitsu Microelectronics, data sheet

DS04-33101-4Ea; http://edevice.

fujitsu.com/fj/DATASHEET/e-ds/

e433101.pdf.

 M. Chen, S. Gonzalez, and V.C.M. 5.

Leung, “Applications and Design Issues

of Mobile Agents in Wireless Sensor

Networks,” IEEE Wireless Comm.

Magazine, vol. 14, no. 6, 2007,

pp. 20–26.

S. Gonzalez, M. Chen and V. Leung, 6.

“Design, Implementation and

Case Study of WISEMAN: Wireless

Sensors Employing Mobile Agents,”

Proc. 2nd Int’l Conf. Mobile

Wireless Middleware, Operating

Systems, and Applications (Mobil-

ware 09), LNICST 7, Springer, 2009,

pp. 366–380.

 T H E A U T H O R S
Min Chen is an assistant professor in the School of Computer Science and Engineering
at Seoul National University. His research interests include multimedia and communica-
tions, wireless sensor networks, ad hoc networks, and wireless body area networks. He
has a PhD in electrical engineering from South China University of Technology. He is a
senior member of IEEE. Contact him at minchen@ieee.org.

Sergio González is a post-doctoral fellow in the Department of Electrical and Computer
Engineering at the University of British Columbia. His research focuses on wireless sen-
sor networks and ad hoc networks. He has a PhD in electrical and computer engineering
from the University of British Columbia. He is a member of IEEE and the IEEE Commu-
nications Society. Contact him at sergiog@ece.ubc.ca.

Qian Zhang is an associate professor in the Department of Computer Science and Engi-
neering at the Hong Kong University of Science and Technology. Her research interests
include multimedia networking, wireless communications and networking, and overlay
networking. She has a PhD in computer science from Wuhan University. She is a senior
member of IEEE. Contact her at qianzh@cse.ust.hk.

Victor C.M. Leung is a professor and the incumbent Telus Mobility Research Chair
in Advanced Telecommunications Engineering in the Department of Electrical and
Computer Engineering at the University of British Columbia. His research focuses on
wireless networks and mobile systems. He has a PhD in electrical engineering from
the University of British Columbia. He is a Fellow of IEEE. Contact him at vleung@ece.
ubc.ca.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

is-25-02-Chen.indd 19 3/30/10 1:44:31 PMAuthorized licensed use limited to: Seoul National University. Downloaded on May 04,2010 at 14:19:19 UTC from IEEE Xplore. Restrictions apply.

