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RFID technology 

could play a vital 

role in future 

smart-environment 

applications. 

This code-centric 

RFID system uses 

software-agent-

based intelligence to 

achieve faster service 

responses.

tracking and tracing, inventory monitoring, 
asset management, supply-chain manage-
ment, and e-healthcare.1–3 In a typical system, 
which we characterize as an identifi cation-
centric RFID system (IRS), an RFID tag 
contains a simple antenna, a transponder, 
and a memory chip for saving ID informa-
tion. Irradiating the transponder with elec-
tromagnetic waves enables a special RFID 
reader to obtain this information. Once 
an object’s ID is verifi ed, this object’s pro-
fi le can be retrieved from a database, and 
suitable service codes can be obtained. By 
following this centralized approach, the in-
frastructure recognizes the actions that must 
be performed with the object.

An IRS generally uses passive informa-
tion about the object, such as identifi ca-
tion and description information stored in 

an RFID tag, and chooses courses of action 
by relying on a pre-established rule-based 
database. However, because this rule-based 
database is static, it cannot be updated in a 
timely fashion for new object types or en-
vironmental dynamics, thus causing a syn-
chronization problem. Hence, an IRS has 
two disadvantages. First, the object’s profi le 
database must be set up in advance to allow 
for interactions between an RFID tag and a 
profi le database. Second, when encounter-
ing a dynamic environment such as an emer-
gency situation in which network access 
is diffi cult, the information stored in the 
database might be outdated or even un-
reachable, resulting in an operational delay 
or service failure.

In this article, we propose a new code-
centric RFID system (CRS) as a solution to 

As an important type of wireless technology, RFID electronic identifi -

cation (www.rfi d.org) has increasingly received more attention in re-

cent years. Many industries have used RFID technology to allow quick access 

to identifi cation numbers or object codes. Current applications include item 
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such problems. This CRS incorpo-
rates coded information that is dy-
namically stored in the RFID tag, 
making it easier for other systems to 
perform on-demand actions for dif-
ferent objects in different situations. 
To achieve this, we encode, in the 
RFID tag, mobile agents specifying 
up-to-date service directives that can 
be realized by intelligently handling 
various network dynamics. Because 
of the limited availability of mem-
ory in RFID tags,4 we have designed 
a new compact, high-level language 
for coding these mobile agents. A cor-
responding middleware layer in the 
RFID reader can then interpret this 
language. These mobile agent-based 
RFID tags enable objects to instruct 
the system to intelligently execute ac-
tions when specifi c situations occur. 
Experimental results conducted on 
two testbeds confi rm that the perfor-
mance of our CRS is superior to that 
of an IRS.

The benefi ts of our CRS approach 
include the following:

It effectively eliminates the need to • 
retrieve associated RFID-code ac-
tion information from a database 
and enables more robust systems 
for highly dynamic environments.
It can greatly reduce overall system • 
response time by retrieving service 
information from the tags.
It helps improve the scalability • 
of the database, which currently 
serves only as a backup subsystem.
It fosters greater resilience because • 
the system can remain operational, 
even during database or network 
failures.

In addition, there is a growing inter-
est in integrating RFID with other tech-
nologies, such as wireless sensor net-
works (WSNs), Internet Protocol (IP) 
networks, and cellular networks, to de-
velop scalable systems and applications 

that improve people’s everyday lives. 
Such integration, coupled with contin-
ual advances in wireless communica-
tions technologies, could revolutionize 
a wide range of applications. By storing 
mobile codes in RFID tags, our CRS 
enables seamless integration with other 
systems.

Identifi cation-Centric 
RFID System
Most IRS applications are designed 
for object tracking, tracing, and lo-
cating (www.autoidlabs.org). An ex-
ample of an industrial application is 
tracing chemical containers stored in 
a warehouse. This could be unsafe 
for humans, owing to the intrinsic 
danger of exposure. Therefore, RFID 
tags can be attached to the chemi-
cal containers, and an RFID reader 
can be put on a shelf to trace them 
remotely.

RFID technology is becoming more 
widely used in daily life, such as in 
supply-chain management, where an 
IRS has proven to be an effi cient ap-
proach. As Figure 1 shows, RFID can 
reduce information gaps by enabling 
real-time supply chain visibility, and 
is useful in purchasing, product man-
ufacturing, shipping and receiving, 
storing, and selling. The example in 
Figure 1 also shows that it’s possible 
to track a product’s details throughout 
the entire supply chain process. When 
a product leaves the manufacturing 

plant, an RFID reader obtains infor-
mation, which it forwards to an elec-
tronic product code (EPC) network. 
When the product arrives at the dis-
tribution center or retailer, the infor-
mation is stored in the EPC network’s 
corresponding database. Eventually, 
after the consumer has fi nished using 
the product and disposes of it, a data-
base connected to a recycling center 
could record this information.

In this application, the main func-
tional components of the IRS are the 
following:

Rule database.•  This component 
maintains a list of IDs and their as-
sociated rules, which the process-
ing module accesses to formulate 
corresponding actions.
Processing module.•  This module 
handles data-processing tasks af-
ter retrieving the incoming object’s 
passive information from the rule 
database. After obtaining the cor-
responding rules, it checks whether 
any necessary condition is satisfi ed 
and performs the associated ob-
ject’s actions.
EPC network.•  The EPC is a set of 
global technical standards aimed 
at enabling and sharing automatic 
and instant identifi cation of items 
throughout the supply chain. A 
unique identifi er of a physical object 
is stored in an individual RFID 
tag. The EPC we referenced in this 

Figure 1. Typical example of an identifi cation-centric RFID system (IRS), as used by 
an entire supply chain process to help streamline the delivery of products and their 
appropriate disposal at a recycling center.
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study was designed by 
the EPC Global Net-
work (www.epcglobalinc.
org/home). The EPC 
network has three main 
components: the object-
naming service, the 
EPC information service, 
and the EPC discovery 
service.

However, a closer look at the oper-
ation of this IRS reveals some critical 
shortcomings. First, the ID embed-
ded in the RFID tag doesn’t directly 
convey any information about how 
to handle the object bearing this tag 
or what service should be applied to 
it. Second, any handling information 
must be retrieved from a database, 
and the data in this database is prone 
to becoming outdated if no manual 
updates are constantly performed. 
Third, scalability is a signifi cant con-
cern, given the growing number of 
RFID tags whose associated informa-
tion must be stored in the database. 
Fourth, failures in the database or 
networking infrastructure could ren-
der the system unusable.

Code-Centric RFID System
In an IRS, the applications mainly 
help answer “where” questions—
for example, where are my goods, 
or where is the object? Supply chain 
management is a typical example of 
this, in which the objects of interest 
can be conveniently tracked. How-
ever, the current status of the sup-
ply chain process and the service 
requirements of users or objects 
could change, calling for a smart 
environment with the intelligence 
to fl exibly manage the quality of 
service (QoS). Such an environment 
could answer, not only the “where” 
questions, but also the “how” 
questions—for example, how to pro-
vide a certain service for a customer 

at a particular location under some 
specifi c conditions.

Our CRS meets this criterion. 
We call this system code-centric be-
cause the use of mobile-agent code 
is the most important feature of our 
system design. Introducing coded in-
formation is key to providing fl exible 
and intelligent applications. By pro-
viding the fl exibility to answer the 
“how” questions, the CRS facilitates 
a harmonious fusion of the user’s re-
quirements with the changing envi-
ronment, and illustrates how RFID 
technology can improve the effi ciency 
of the systems that would rely on it.

Moreover, while objects with the 
attached RFID tags move around, the 
stream-of-materials fl ow also provides 
the carrier with a code-information 
fl ow. Embedding service requirements 
into an RFID tag at one location can 
ensure that the objective is met at an-
other location through code-centric 
processing. This is the rationale be-
hind our CRS.

Architecture
Our proposed CRS has two main 
parts: the RFID tag and the code-
processing and executing infrastruc-
ture in the corresponding tag reader. 
We introduced an extended RFID data 
format for the RFID tag (see Figure 2). 
In addition to traditional data (identi-
fi cation and description information, 
such as the object’s shape, weight, 
color, production location, and time), 
the RFID tag can store a mobile agent.

In the CRS infrastruc-
ture, the main functional 
components include the 
passive-information man-
ager, the code-information 
manager, the middleware 
layer, the environmental-
parameters provider sys-
tem, and the service 
response system. The 
passive-information man-

ager receives identifi cation and de-
scription data from the RFID tag, 
and may further forward this in-
formation to the EPC network to 
create a record of it. The mobile-
agent code is forwarded to the code-
information manager, which delivers 
the agent to the middleware layer 
for interpreting. The environmental-
parameters provider system sends 
parameters to the middleware layer 
so that it can take appropriate ac-
tions. The middleware layer in turn 
sends action commands to the service 
response system, which performs 
the desired tasks according to the 
decisions made for the object, as 
Figure 3 shows.

Although all of these modules are 
indispensable to the CRS infrastruc-
ture, the middleware layer is the most 
important because it is used to inter-
pret the codes that form the mobile 
agents. The mobile agents consist 
of instructions or programs that the 
RFID infrastructure executes. Inputs 
to those programs may include iden-
tifi cation or description information, 
as well as information provided by 
associated subsystems (position, sen-
sory data such as humidity and tem-
perature, and so on). Outputs may 
be any actions that the infrastructure 
can perform, such as interacting with 
a video surveillance system, writing 
some particular code in other tags, or 
issuing alarm signals. The stored code 
information helps the objects react to 
the environment more intelligently.

Figure 2. Extended RFID message in the code-centric RFID 
system (CRS): (a) original data fi elds used in existing systems, 
and (b) extension fi elds as proposed. In addition to traditional 
data, RFID tags can store mobile agents, which explicitly indicate 
the type of service that the object bearing the tag should receive.

(a)

(b)

RFID type Identification

Code priority Mobile agent

ReservedObject description
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Mobile-Code-Updating Mode
Providing on-demand QoS necessi-
tates the ability to change or rewrite 
mobile code on-demand as well. We 
propose three kinds of code-updating 
modes: passive, active, and hybrid.

Passive Mode. Generally, RFID tags 
can be attached to human or non-
human objects (products, animals, 
and so on). Nonhuman objects have 
no intelligence to update code by 
themselves. Thus, code updating can 
be performed only passively by the 
infrastructure (for instance, an RFID 
reader at some fi xed location). For 
example, in an automatic assembly 
line, the operations on the product 
are performed step by step. If the 
current operation associated with 
the tag’s code information is com-
plete, a new code is written into 
the tag, meaning the object will ac-
cept the corresponding operation in 
the next step, and so on. If the tag’s 
memory is large enough, all action 
codes can be written into it at the be-
ginning of the assembly line. Then, 
the code size will continually shrink 
as different machine tools progres-
sively complete the corresponding op-
erations on the product. When mul-
tiple assembly lines are employed for 
some product, the RFID tag will be 
fi lled with a new set of code for per-
forming a new series of operations in 
each assembly line. This implies that 
the size of an RFID message varies 
according to the different stages in-
volved in processing the object.

Active Mode. If the object is a hu-
man being, he or she might have spe-
cifi c requirements concerning service 
types and their quality. Users can up-
date the codes actively by using por-
table RFID readers, in which case 
they fi nish the code-updating process 
before the objects arrive at the service 
provider’s location.

Hybrid Mode. This mode combines 
passive and active modes. In addi-
tion to users actively setting codes, 
code updating can be passively per-
formed near some stationary RFID 
reader (for example, at the entrance 
of a store).

Pattern Classifi cation. Table 1 catego-
rizes code-updating patterns by object 
type. For nonhuman objects, the goal 
is usually to perform some operation 
on the object or adjust the surround-
ing environment that best suits that 

object’s needs. For human objects, on 
the other hand, the goal might be to 
provide user-specifi c services.

Middleware Design 
for the CRS
The middleware subsystem should 
be capable of processing all the code 
directives and actions specifi ed by 
the corresponding application. In ad-
dition, its programmability should 
ensure, to a large extent, that applica-
tions can be enhanced or upgraded by 
deploying new codes without having 
to constantly alter the middleware. 
Furthermore, the code should encap-
sulate all the underlying operations, 
at both the network and database lev-
els. This high-level approach lets pro-
grammers focus on the operational 
aspects of the application code be-
ing deployed without worrying about 
lower-level intricacies. However, all 
these features should be enacted by 

Figure 3. Functional components of the CRS. The main parts of the system are the 
passive-information manager, the code-information manager, the middleware layer, 
the environmental-parameters provider system, and the service response system.
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Table 1. Pattern classifi cation of code updating in the CRS.

Code-updating mode Object type Main goals Example application

Passive Product, animal, and other 
nonhuman objects

Perform operations on an object
Adjust the surrounding environment

Automatic assembly line

Active Human Provide user-specific services Smart house

Hybrid Human Provide user-specific services
Adjust the surrounding environment

E-healthcare
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code that is compact 
enough to fi t in memory-
constrained RFID tags.

In an earlier work, we 
outlined the most impor-
tant characteristics for 
middleware design in 
WSNs, which are formed 
by devices with severe mem-
ory and data-processing 
limitations.5 These same 
limitations clearly exist in 
our CRS, where an event-
driven scheme prompts the 
deployment and execution 
of compact mobile codes, 
with a suffi cient degree 
of fl exibility to support 
a variety of applications. 
Therefore, we developed 
the Wiseman middleware system as a 
proof of concept for deploying mobile 
codes.6 By introducing minor adjust-
ments, Wiseman can provide a solid 
middleware foundation for supporting 
our proposed CRS. In its current form, 
Wiseman already provides all the 
middleware functionalities we deem 
essential. Its architecture is based on 
processing text-based action scripts, 
which can be dynamically modifi ed.

Middleware Architecture
Wiseman contains four main com-
ponents: an incoming-agent queue, a 
code parser, a processor block, and an 
agent dispatcher. It also includes two 
helper components: an engine and a 
session warden. Figure 4 shows these 
components and their interactions.

The incoming-agent queue tem-
porarily stores agents arriving from 
the wireless interface for immediate 
processing. Wiseman does not sup-
port multithreading capabilities, be-
cause the interpreter is designed for 
operation in WSN nodes with strin-
gent hardware limitations. The parser 
tokenizes individual instructions for 
gradual execution by splitting the 

code that forms the programs into 
two segments: head and tail. The head 
is the code segment that is ready for 
immediate processing; the tail com-
prises the rest of the agent’s code that 
will be subsequently processed. The 
next instruction is obtained by to-
kenizing the fi rst code segment from 
the tail if the outcome of the head’s 
execution is successful. This process 
halts at any time if

the current operation is unsuccessful,• 
an explicit agent termination oper-• 
ation is indicated, or
an agent hop operation is encountered.• 

The fi rst and second cases are self-
explanatory. For the latter case, con-
trol of the execution process is passed 
to the dispatcher module, which for-
wards the agent’s tail to another node 
(or set of nodes). For our proposed 
CRS, the dispatcher forwards the 
agent’s tail to a WSN node, as speci-
fi ed by the system’s mobile codes.

Language Constructs
Wiseman’s language includes vari-
ables, rules, operators, and delimiters. 

Its text-based lexemes of 
reduced size allow agents 
to be dynamically modi-
fi ed as needed, make the 
codes readable by hu-
mans, and occupy usu-
ally a few hundred bytes 
to implement the desired 
actions.

Variables. Wiseman im-
plements three kinds of 
variables: numeric, char-
acter, and mobile. The 
fi rst two are for stor-
ing numeric and single 
characters at the local 
node; the third is used 
by agents to bring values 
along as they traverse the 

networked system. Typically, mobile 
variables are labeled M (M1, M2, and so 
on), which is semantically similar to 
the way private variables are labeled 
in object-oriented programming. In 
addition to these user-defi ned vari-
ables, environmental variables pro-
vide information about the current 
execution environment. For exam-
ple, the identity variable I stores a 
read-only value of the local node’s ID 
number, and the predecessor variable 
P stores the ID number of the node 
from which the agent came. Similarly, 
the link variable L stores the label 
identifi er of the virtual link that the 
agent used for hopping (if it exists).

Operators. Wiseman provides a variety 
of both general-purpose and system-
specifi c operators, such as regular 
arithmetic operators (+, −, *, /, and =) 
and comparison operators (<, <=, ==,  
=>, >, and !=). The hop forwards the 
agent to another location, as specifi ed 
by the value appearing on the right 
side of the # character. Alternatively, 
an agent can be copied or moved to 
one or more locations associated with 
a virtual link, as indicated by the 

Figure 4. Architecture of the Wiseman system. The incoming 
queue, the parser, the processor, and the dispatcher are the 
main components of this system, and the engine and the session 
warden are helper modules to these main components.
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value on the left side of 
the operator. In the latter 
case, the agent is cloned 
with as many copies as 
the existing destination 
nodes associated with the 
virtual links. After hop-
ping, the agent’s execu-
tion thread resumes at 
the point at which the pro-
cess had been suspended. 
(A full description of Wise-
man operators is available 
elsewhere.6)

Rules. Wiseman imple-
ments three rules for 
manipulating an agent’s 
execution fl ow. The repeat 
rule R indicates that the 
codes delimited by curly 
brackets will be cyclically 
executed until a certain 
condition is found. AND 
and OR rules (denoted A 
and O) control an agent’s 
execution by checking 
whether the codes delim-
ited by square brackets 
yield a true or false value 
for each code segment. Otherwise, the 
entire rule itself returns a false value, 
which halts the agent’s execution.

Important Wiseman 
Features for the CRS
Wiseman supports three agent migra-
tion techniques that are particularly 
useful in our proposed CRS. The fi rst 
is known as explicit path hopping, 
which provides the necessary func-
tionality to enable the explicit defi -
nition of the path that an agent will 
follow. The second, variable-target 
hopping, employs mobile or numeric 
variables on the right side of the hop 
operator to indicate the agent’s cur-
rent destination target. The third 
method, labeled-path hopping, al-
lows the creation of labeled paths for 

emulating multicast transmissions 
from the local node. The main advan-
tage of this third method is that the 
agent’s programmer does not need 
to know in advance the identity of 
the destination nodes. This can be a 
signifi cant advantage when multiple 
RFID tags must be read. In addition to 
these functionalities, Wiseman allows 
a programmable execution fl ow that 
is fl exible enough to support events 
that might arise in the CRS, such as 
simplifi ed if-then-else statements.

Comparison of CRS 
and IRS Approaches
To test the effectiveness of our CRS, 
we compared it to an IRS by evalu-
ating how long each system took to 
complete a set of tasks.

Experimental Setup
We set up two testbeds: 
one for the IRS, and one 
for the CRS. As Figure 5 
shows, the common part 
of the two architectures 
was the service response 
system, which in this ex-
periment was a WSN 
based on MICAz Mote 
(with 128 Kbytes of in-
struction memory and 
4 Kbytes of data mem-
ory), and we employed 
TinyOS v1.1 as our wire-
less sensor platform. We 
used Wiseman as our 
middleware system, as 
discussed earlier. (Wise-
man was implemented in 
the nesC language in our 
previous work.5)

According to the topol-
ogy of the sensor network 
shown in Figure 5, we 
employed the following 
action code: l$n;#1;#3;

#4;#5;#6;#7;#3;#2;

l$n. The numbers ap-
pearing on the right side 

of the hop operator # indicate the 
identity number of the node to which 
the agent is set to migrate next 
(for instance, #1 migrates the agent 
to node 1). The middle segment of 
the action code (#3;#4;#5;#6;#7;#3) 
hops through the links while per-
forming some specifi c actions. In ad-
dition, agents toggle on the green 
LEDs as a visual aid through the WSN 
by means of the l$n operation. In this 
operation, the l character signifi es an 
LED operation, and the n signifi es that 
a local LED is toggled on. There are 
two l$n code segments in the action 
code, to mark the beginning and end 
of the agent’s migration. We record the 
action delay between the time when 
the fi rst LED is toggled on and the time 
when the second LED is toggled on.

Figure 5. Testbed scenario for (a) the IRS and (b) the CRS. Both 
architectures include the service response system. The testbed 
itself provides a good example of how differently these systems 
are realized in an actual setting.
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The main difference be-
tween the simulated IRS 
and CRS is the way the 
system processes code in-
formation retrieved from 
the tag.

Simulated IRS. A cell 
phone sends a message, in-
cluding the object’s ID, to 
laptop 1 through the Wi-
Fi access point. The ID in-
formation goes to laptop 
2, which serves as the rule 
database. The rule data-
base server runs an FTP 
and a Web server that are 
accessible through a regu-
lar Internet connection. 
Hence, the rule database 
connects to the processing module 
through an FTP connection to up-
date and retrieve the required rules. 
The rules are stored in the rule data-
base’s hard drive. If laptop 1 success-
fully accesses the rule database and 
obtains the action codes by searching 
laptop 2 for rules, it distributes the 
codes to the WSN’s gateway (imple-
mented in a MICAz Mote attached 
to an MIB510 interface board), as 
Figure 5a shows. The gateway then 
dispatches a mobile agent to the WSN 
to carry out the task.

Simulated CRS. A cell phone sends 
a message, including the object’s ID 
and mobile codes, to laptop 1 through 
the Wi-Fi access point. The mobile 
code is interpreted directly in the 
middleware layer of laptop 1. Then 
the code is forwarded to the WSN 
gateway, which loads it into a mobile 
agent and dispatches the agent to the 
sensor network.

Experimental Results
Because the IRS requires search-
ing for rules and accessing the data-
base, failures can occur when the link 

between laptop 1 and laptop 2 is bro-
ken or when the rule entry has not 
yet been pre-established in the data-
base. Thus, we further divide the 
testbed realization of the IRS into 
two schemes: rule matched and rule 
unmatched. The process fl ows of all 
three schemes are as follows.

Rule-Matched IRS. First, the ID is 
forwarded to the rule database, which 
sends the action code to the process-
ing module. Next, the mobile agent 
migrates to the sensor network. Ac-
cording to the action code, the agent 
itinerary for visiting WSN nodes is 
1-3-4-5-6-7-3-2.

Rule-Unmatched IRS. This process is 
the most complicated among the three 
schemes. First, the ID is forwarded to 
the rule database, but then a message 
of “no matching” is returned to the 
processing module. So, a message with 
updated code information is sent to the 
rule database. (This procedure would 
incur an operational delay in actual 
situations.) Next, the rule database 
sends action code to the processing 
module, and an agent is dispatched.

CRS. Data processing in 
the CRS is the simplest 
of all three cases. Once 
laptop 1 receives the ID 
and code information, 
the agent is dispatched 
directly to migrate along 
the itinerary indicated by 
the action code.

Task Duration Compar-
ison. We measured task 
duration as our perfor-
mance parameter of in-
terest. This is the time 
from when the tag was 
forwarded to laptop 1 to 
when the actions or op-
erations associated with 
the rule were fi nished. 

In RFID systems, the time delay for 
transmitting a tag’s information to 
an RFID reader is a few milliseconds. 
Thus, the task duration is mainly re-
lated to the process fl ow’s complexity. 
As Figure 6 shows, compared to the 
two IRS schemes, the CRS had the 
lowest task duration. This is because 
the CRS processes the action code lo-
cally without accessing the rule data-
base. Note that the current testbed 
does not fully exhibit the advan-
tages of the CRS; in actual situations, 
the amount of time a human would 
take to process the document would 
be greater.

O ur novel CRS makes it possi-
ble for mobile code to handle 

context-aware situations. Benefi ts 
include improved system scalability 
and automated monitoring. In ad-
dition to improving performance 
in terms of task duration, the CRS 
also provides the fl exibility for us-
ers to change code information on 
demand. Hence, this information 
remains accurate and up-to-date, 

Figure 6. Comparison of task duration for a rule-matched 
IRS (IRSrule_matched), a rule-unmatched IRS (IRSrule_unmasked), 
and the CRS. Although the rule-matched IRS was more 
effi cient than the rule-unmatched IRS, the CRS was clearly 
faster than both.
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while refl ecting user requirements 
and network dynamics. However, 
to successfully deploy CRS-based 
architectures, several remaining 
challenges must be addressed, in-
cluding knowledge representation 
and situation-aware code interpreta-
tion. In the future, we plan to enhance 
the system capabilities of situation-
aware code delivery, interpreta-
tion, and update to handle heteroge-
neous ubiquitous objects in the real 
world.
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