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Abstract 

W e  propose instruction code compression as a very e cient 
method f o r  reducing power on a n  embedded system. fl u r  ap- 
proach i s  the first one t o  measure and optimize the power 
consumption of a complete SOC (System-On-a-Chip) com- 
prising a CPU, anstruction cache, data cache, main  memory ,  
data buses and address bus through code compression. W e  
co'mpare the pre-cache architecture (decompressor between 
main  memory  and cache) to  a novel post-cache architecture 
(decompressor between cache and CPU). Our  simulations 
and synthesis results show that our methodology results in 
large energy savings between 22% and 82% compared to  the 
same system without code compression. Furthermore, we 
demonstrate that power savings come with reduced chip area 
and the same or even improved performance. 

1 Introduction 

The advent of new VLSI technologies as well as the advent 
of state-of-the-art design techniques like core-based SOC 
(System-on-a-Chip) design methodologies has made multi- 
million gate chips a reality. SOCs are especially important 
to low power applications like PDAs (personal digital assis- 
tants), cellular phones, digital cameras. Since the amount 
of available energ is fixed, it has to be budgeted wisely by 
the devices in or&r to prolong battery life. From a system 
designer's point of view ener y/power reduction is a major 
design goal. According to t i e  various facets of problems 
related to high energy and power consumptions, designers 
have come up with diverse approaches at  all levels of ab- 
straction starting from the physical level up to the system 
level. Experience shows that a hi h level method may have 
a larger impact since the degree oBfieedom is still very high. 
However, a major drawback in system-level optimization is 
the complexity of the design space as a result of the vast 
amount of possible parameters. In order to conduct effi- 
cient system-level optimizations, powerful design space ex- 
ploration is required. 

This paper describes our approach for system-level power 
optimization, namely code compression. We show that code 
compression does not only reduce main memory size require- 
ments, but can also reduce reduce significantly the power 
consumption of a complete system comprising a CPU, in- 
struction cache, data cache, main memory, data buses and 
address bus. We will show that we save power and also re- 
duce the overall chip area while maintaining or even improv- 
ing performance. Previous work in code compression, which 
has not simulated performance in such detail, has assumed 
that code compression incurred a performance penalty. In 
addition, code compression is a powerful technique for system- 
level power optimization that can be used in conjunction 
with other techniques. 

Our paper is structured as follows: the next Section 2 
gives an overview of related work in both system level low 
power desi n and code compression. Code compression ba- 
sics as we8 as our approach that is adapted to low power 
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con:sumption are described in Section 3. In the same sec- 
tion, we also present the design flow for the implementation 
and simulation of the decompression engine. In Section 4 
we discuss two alternative system architectures inte rating 
our methodology into a system with the purpose to f n d  the 
most energy/power efficient one. After that, Section 5 de- 
scribes the extensive set of ex eriments we conducted on di- 
verse real-world applications i k e  a whole MPEGII encoder. 
Finally, Section 6 gives a conclusion. 

2 Related Work 

Mo:jt of the previous work on code com ression has focused 
on memory optimization. Wolfe and ehanin [3 were the 

used to encode cache blocks. A similar technique which uses 
more sophisticated Huffman tables has been developed by 
IBA4 [I]. Other techniques use a table to index sequences of 
frequently appearing instructions using a hardware decom- 
pression module [4], or decompress completely in software 
[7]. Although our techniques are very effective For memor 
size reduction, the focus of this paper is to explore the e l  
fect code compression has on the ower consumption of the 
whole system. Yoshida et al. [27 proposed a logarithmic- 
based compression scheme which can result in power reduc- 
tion as well. A recent approach [SI investigated the impact 
of code compression on the power consumption of a sub- 
sysl,em, namely the main memory and the buses between 
main memory and decompression unit and between decom- 
pression unit and CPU. However the impact of code com- 
pression on other system parts like caches and CPU is not 
investigated. 

Various approaches have been proposed to reduce ower 
consumption of diverse system parts. Givargis et 1141 
have develoged a set of mathematical formulas for rapidly 
estimating It switching activities on a bus with a given 
size and encodin scheme. Combined with the capacitance 
estimation formujas by Hern et al. [15] they can rapidly es- 
timate and optimize bus power consumption. Another ap- 
proach for bus power optimization has been proposed by 
Fornaciari et,al. [13] who investigate various bus power en- 
coding schemes. At the architectural-level for single system 
coniponents (i.e., not considering any trade-offs between var- 
iou:; system parts), high performance microprocessors have 
been investigated and specific software synthesis a1 orithms 
have been derived to minimize power as shown by%sieh et 
al. '91, for example. Tiwari 101 investi ated the power con- 

architectures and derived specific power optimizing compi- 
lation strategies. Other approaches focus on a whole system 
in order to optimize for low power. System power man- 
agement approaches have been explored by Qiu et al.[ll], 
among others. 

firsl, to propose a scheme where Huffman codes i, ave been 

suniption at  the instruction- I eve1 for diierent CPU and DSP 

3 Code Compression 

This section is organized as follows: we first introduce the 
basics of code com ression and define terms .we will use 
subsequently. We t i e n  proceed to  an outline of our algo- 
rithm, and we explain its advantages over othc, 'r methods. 
We also give implementation details and explain how we 
reduce power consumption. 
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Figure 1: SPARC branch compression 

3.1 Code compression basics 

An important concept in code com ression is random access 
decompression. This means that t i e  decompression should 
be capable of starting at any point in the code or at some 
block boundaries. This contrasts most file compression al- 
gorithms (eg. Gzip) which compress and decompress a file 
serial1 and in its entirety. Subse uently, we will use the 
term hock to refer to the number 01 bytes that constitute a 
decompressible unit. Our algorithm can start decompress- 
ing at any byte boundary that is a block beginning, with- 
out having decompressed any other blocks. Furthermore, to 
make decoding’ easier, we require that compressed blocks 
start at a byte boundary. The random access requirement 
results in another problem. When we jump to a new lo- 
cation in the program, how do we know where it is stored 
without decompressing all the preceding blocks? Wolfe and 
Chanin [3] proposed using a table that maps uncompressed 
block positions (addresses) into compressed block positions. 
The main drawback of this method is that as the block size 
decreases, the overhead of storin the table increases. An- 
other approach is to leave branctes untouched during the 
compression phase and then patch the offsets to point to 
compressed s ace 41 We use a similar approach here, only 
we compress KrancLs as well. 

3.2 Algorithm overview 

Our algorithm is based on some of our previous work, pre- 
sented elsewhere [ 5 .  Here we describe the details of im- 
plementation in or d er to use our technique for minimizing 
power consumption. 
Both compression and decompression use table lookup. The 
compression table is generated by using an arithmetic coder 
61 in con’unction with a Markov model. Arithmetic codin 
has signidcant advantages over the more well-known Huff 
man codin and can perform very well when probabilities 
are highly $ewed. Another advanta e is that there is no loss 
of coding efficiency a t  symbol bounjaries. The table gener- 
ated for encoding is more general than Huffman coding and 
can give better compression. 

3.3 Implementation details 

Our a1 orithm separates instructions into 4 groups for 
the SPAR8 architecture (explanation follows after introduc- 
ing the groups). The decoder has to be able to differentiate 
between these, hence a short code is appended in the begin- 
ning of each compressed instruction. The four instruction 

&roup1 : Instructions with immediates: Code = 
”0” These are the instructions that are not branches, calls 
or sethis and that have an immediate field. To compress 
those we use the method described in the previous section. 
A compressed instruction will always start with a 0, thus 
the decoder will know that it has to use the appropriate de- 
coding table. 
Group2 : Branches: Code = ”11” This roup consists 
of the branches, calls and sethi instructions waich are com- 
pressed as follows: The first two bits are always 11. The 
next bit is used for branch annulling, the ’,a’’ bit shown in 

roups and their codes are: 

‘In the following, we will use the terms ”decompressing” and ”de- 

‘sethi is a sparc instruction that sets the high order bits of a 
coding” interchangeably. 

register. 

benchmark I ti1 I t i2  I G 3  I 0 vera11 CN 
I 0.53 I n.sn I 0.34 I .. . 

Table 1: Compression Results 

figure Fig. 1. The followin four bits are the condition code 
bits (eg. eq, ne, I t ,  gt). 6ext  come 4 bits used to encode 
the number of displacement bits. Four bits allow displace- 
ments up to 16 bits which are adequate for most compressed 
applications. The last bits are the displacement bits which 
can vary from 1 to 16. These displacement bits will point 
to byte-addressable unaligned) memory locations. 

”100” The instructions that have no immediate fields are 
compressed directly into one byte which is an index to a ta- 
ble. This speeds-up decompression, since for these instruc- 
tions one table lookup is only necessary. To differentiate 
from all other cases the code ’ 100” precedes theses indices, 
hence such instructions compress to 11 bits. 
Group4 : Uncompressed instructions (rare): Code 
= ”101” These are instructions that are not branches, and 
have immediate fields, but the algorithm of the previous sec- 
tion cannot compress. These are left intact, hence require 
no decompression, while a 3-bit code, namely ”101” is ap- 
pended to the left to differentiate it from the other 3 cases. 

This classification requires some explanation. Programs 
tend to use a small subset of the instruction set only, say, 
typically less than 50. Due to immediate fields the total 
number of different 32-bit words appearin in programs 1s 
much larger. It is therefore beneficial to ac8 all the different 
instructions with no immediates (group37 into one byte since 
they are few in number, and to encode the rest which are 
harder to compress with a powerful compression a1 orithm. 
It is possible to encode all instructions using our afgorithm 
but we found that building a fast index for group3 instruc- 
tions can significantly s eed up decoding. As for branches, 
they have to be encodecfsepirately and at a latter stage be- 
cause it is impossible to patch offsets on already compressed 
branches. 

The compression algorithm goes through the steps de- 
scribed below: 
Phase 1. Go through the program and get Markov model. 
Ignore branches, and instructions with no immediate fields 
during this phase. 
Phase 2. Compress non-branch instructions with immedi- 
ate fields using table-based arithmetic coding. Keep track 
of branch tar et addresses. At the end of this compression 
phase a decojing table will be built which will be used to 
decompress roup1 instructions. 
Phase 3. zompress branches using compressed addresses 
from phase 2. Unfortunately it is impossible to know be- 
forehand how much the branch will compress, therefore the 
number of displacement bits is conservative (i.e. wasting 
some displacement bits) and is derived from compression 
from ghase 2. Phase 3 will compress even further, since 
branc es now take less space. Re-calculate branch targets. 
Phase 4. Now patch branch offsets to point to compressed 
space. 

Group3 : ”Fast 6 ictionary instructions”: Code = 

3.4 Compression results 

Fig. 1 shows the compression results on diverse appli- 
cations. CR denotes Compression Ratio and G1 denotes 
Group 1 instructions etc. We use compression ratios, de- 
fined as the compressed size over the original instruction 
segment size. Hence, smaller numbers mean better com- 
pression. Note that the overall com ression ratio is not 
the average of the compression ratio o?branches (Group 2), 
instructions with immediate fields (Group l ) ,  and instruc- 
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No Packing With Packing 

Figure 2: Bus compaction approaches 

tions with no immediate fields (Group 3), since these groups 
have different percentages in our applications. In particu- 
lar, we found that around 54% of the instructions belong 
into groupl, 26% into group2, 20% into roup3, and finally 
0.6% in the fourth group. Furthermore, t i e  overall compres- 
sion ratio takes into account the byte alignment of branch 
targets. 

3.5 Bus compaction 

Our goal is to use code com ression for reducing the 
power consumption of an embedgd system. The first step 
is to reduce bit toggles and to transmit more information 
per cycle. We have experimented on how to take advantage 
of code compression in two different ways. Since compressed 
instructions t pically occu y less than 32 bits, each instruc- 
tion fetch wilr have a numter of leftover bits which are un- 
used. One possibility is to retransmit the leftover bits, such 
that they are the same as the previous transaction. This 
minimizes bit toggling, as the number of bits that change 
is at most equal to the size of the new compressed instruc- 
tion transmitted. Another way is to increase bandwidth by 
transmittin code that belongs to the next compressed in- 
struction. f ig.  2 illustrates these two approaches. Note that 
it is useful to compact more than one instruction in one 32- 
bit word only when the next compressed instruction is the 
next one also in terms of memory location. Whenever we 
have a branch or a call the leftover bits will be useless as 
they will not be part of the instruction to be executed. 

In terms of power consumption, the first approach re- 
duces bit toggling, but the total number of instruction fetches 
is the same as in the case where there is no compression. The 
second approach does not reduce bit toggling between mem- 
ory accesses, however it reduces the total number of memory 
accesses (and also reduces the total number of bit toggles), 
and thus the total energy consumed. We performed exper- 
iments on a variety of programs and found that although 
both methods show an improvement over an architecture 
with no compression, the second method is alwa s more 
effective in reducing ower consumption. In the gllowing 
sections we will therekre adopt the second approach. 

It is important to clarify that depending on when de- 
compression takes place, different approaches are required 
to compact instructions on the bus. If the decompression 
engine resides between the cache and main memory [3], the 
advantages of compression affect only the bus between main 
memory and the cache. The decompression engine can uti- 
lize the bits from the next cache line as long as it is the 
cache line that is requested next. Note that if the cache 
line size is greater than 32 bits then since compaction can 
only take lplace at the end of the compressed cache line, 
i.e. only a ter a number of cycles, compaction will not be 
as effective as in the instruction-by-instruction compression 
case. Since this compressed cache lines are on1 transfered 
on an instruction cache miss, and since they on& affect the 
communication between the main memory and the cache, 
we expect a significantly lower gain in terms of bus utiliza- 
tion and consequently power consumption. The conclusion 
is that bus compaction will work best for small blocks. 

F're-cache Archttechrre 
AddrcrsBw 32 

I I '  1 

Postcache Archttecture 
AddrerrBua 32 

A- I L, --1 

Figure 3: Pre- and post-cache architecture 

4 Architectures using decompression 

We conducted experiments on two different system architec- 
turles that use code compression, what we call a pre-cache 
and a post-cache architecture. In this section we measure 
toggles on the bus as a metric that relates to power con- 
sun1 tion 

$he architectures are shown in Fig. 3. In the pre-cache 
arc.hitecture the decompression engine is located between 
main memory and the instruction cache. In the post-cache 
arc,hitecture the same en ine is now located between the in- 
struction cache (in the foylowing we will use the shorter term 
I-cache instead) and the processor. Obviously, in the archi- 
teciure post-cache both data buses profit (and the cache) 
from the compressed instruction code since the instructions 
are only decompressed before they are fed into the CPU 
whereas in the pre-cache architecture only DataLlus 2 profits 
from the compressed code. In order to discuss various effects 
we conducted many ex eriments on the trick application3. 
We calculated the numger of bit toggles when running the 
application on both target architectures. The number of bit 
toggles are related to the energ consumed by the bus4  The 
results are shown in figure 4 6 r  trick. It consi.sts of three 
partial fi ures. the to one shows the number of bit tog- 
glee for Ja taBus  1. Pgase note that we show on DataBus 
1 o:nly those bit toggles that refer to cache hit:;. Thus we 
can see how the number of hit-related toggles on DataBus 
1 increases as the number of tog les on DataBu:; 2 (misses) 
dec:reases. The toggles on Data& 2 are shown in the mid 
fi ure whereas the charts in the bottom figure show the sum 
oftloth. The parameter on the x-axis of all f i y e s  we have 
used is the cache size (given in bytes). Each o t.hose figures 
comprises three graphs: one shows the case where we have 
no instruction compression at all, one refers to the post-cache 
and the third to the pre-cache architecture. Startin with 
the top figure in Fig. 4, we can observe that the num%er of 
bit toggles increases with increasing cache size. All three 
architectures5 finally arrive at a point of saturation i.e. a 
point where the number of bit toggles does not increase any 
more since the number of cache hits became maximum. The 
two most interesting observations here are: 

a) The "saturation point" is reached earlier 'in case of 
the post-cache architecture (i.e. 512 bytes) as op- 
posed to 1024 bytes in case of the pre-cache archi- 
tecture and no  compression. In other words, we have 

4 description of the used applications follows in Section 5. 
*'We will provide information on our power/energy estimation 

models and parameters in Section 5. Please also note that our fi- 
nal results in Section5 are given in energy/power. 

5'Please note that the architectures no compression and pre-cache 
are rrlmost overlayed and are showing up as only one graph. 
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effective1 a larger cache. That actually means that 
we can a8ord to have a cache that is on1 half the size 
of the original cache without any loss orperformance 
solely through placing the decompression engine in a 
post-cache architecture. We can also decide to keep 
the same cache size. Then we can gain performance. 
If we do not need the increased performance then 
we can trade this performance increase against en- 
ergylpower by slowing down the clock frequency, for 
example. 

b) Toggle counts are the smallest for post-cache at a 
given I-cache size for reasonable sizes (a ”reason- 
able” cache size is one where we have reached what 
we called the saturation point above; it provides a 
good compromise between cache size and number of 
cache misses . Thus, post-cache seems most energy 
efficient for b ataBus 1. 

The mid figure in Fi 4 shows the number of toggles on 
DataBus 2. Via D a t a s u s  2 all instructions are transferred 
that caused a cache miss before. Here we can observe: 

a) The number of tog les is for all I-cache sizes smaller 
in case of post-cacte architecture than in the pre- 
cache architecture and n o  compression architectures. 
This is because of the larger effective cache size (as 
discussed above) that causes less cache misses and 
hence a smaller traffic (this relates to bit toggles) 
through DataBus 2. 

b) Whereas we had no advantage of pre-cache architec- 
ture on DataBus 1 against architecture n o  compres- 
sion on the same data bus, we do have an advantage 
here at  DataBus 2 since compressed instructions are 
transferred here. 

Now, the question is how large the overall number of bit tog- 
les related to instruction code is on buses DataBus 1 and 

S a t a B u s  2. The bottom chart in Fig.4 gives the answer. In 
all reasonable I-cache confi urations, post-cache architecture 
gives the lowest amount of bit tog les while the pre-cache 
architecture is actual1 better or afmost equal to n o  com- 
pression in all cases. Jlease note that 128 bytes I-cache size 
does not represent a ”reasonable” size since it would offer 
very weak performance. We note that some modern proces- 
sors have a built-in L1 cache. However, our decompression 
engine can be placed between an L1 and L2 cache in such 
cases. 

5 Energy and performance results 

Our next set of experiments is more detailed, and focuses on 
power and performance on the post-cache architecture. Our 
ramework consists of analytical energy models for various 

system parts driven by program traces. It also has the pos- 
sibility to optimize the source code for energy consumption. 
In addition, it has heuristics to efficiently search the de- 
sign space (cache size, cache policies, etc.). For more detail, 
please refer to our other work [12]. 

5.1 
Our assumption for the experiments is that we deal with a 
SOC (System-On-a-Chip) i.e. that the CPU, the instruc- 
tion cache (I-cache), the data cache (D-cache), the main 
memory, the decompression engine and, of course, the buses 
reside on a single piece of silicon. Our simulative and an- 
al tical models have been tuned for a 0.8,~ CMOS process. 
TKou h this is certainly not the newest technology, the ob- 
t ainef results hold for other technologies accordingly. Please 
note that the design space for system design is very large. 
We used in all experiments a 32-bit wide address bus and 
32-bit wide data bus. Furthermore, we used cache line sizes 
of 32 bits throughout. Exploring the design space i.e. deter- 
mining the optimum data cache size, cache policies, cache 
associativities etc. has been accomplished by deploying the 
AVALANCHE framework [12]. Therefore, the discussion 
here can purely concentrate on I-cache size as parameter. 

Experimental setup and deployed parameters 

trick 

128 256 512 1024 2048 4096 

lcache sire 

e nocanpression 

-+-compression, post. 
cache arch 

&compression, pre- 

I trick I 
t compression. p t -  

cache arch 
-+-compression. pre 

cache arch 

I trick 

I lcache dze I 
Figure 4: n i c k  application. Top: to gles on DataBus 1. Mid: 
toggles on DataBus 2. Bottom: sum of toggles 

about 200k binary code) and belon to different application 
domains. As a result, we will see &at the achieved energy 
savings sometimes are mainly obtained via CPU energy sav- 
ings, sometimes via bus energy savings, but all of the effects 
as a implicit result of code compression, of course. 
The applications are: the commonly available compress pro- 
gram ( ’cpr”) from SPEC95, a real-time Diesel engine con- 
trol algorithm (”diesel”), an algorithm for computing 3D 
vectors for a motion picture (” i3d”) ,  a real-time HDTV 
Chromakey algorithm (”key”), a complete MPEGII encoder 
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('"peg"), a smoothing algorithm for digital images ( ' " n o " )  
and a trick animation algorithm ("trick"). 

5.2 Energy reduction results 

The complete set of experiments is summarized in Table 2. 
For each of the applications we have chosen three different 
I-cache sizes. This caches sizes are always in the area of 
the best compromises between size and performance i.e. a 
further increase would not result in any remarkable erfor- 
mance increase through less cache misses and a furtfer de- 
crease would result in a too large number of cache misses. 
Accordin to the discussion in Section 4, the selected caches 
sizes areqess or equal to the saturation point: a designer 
would most likely use one of these three cache sizes. For 
each application we show three configurations (varying I- 
cache size). I t  is the application that has the absolute low- 
est power consumption and two other points in the design 
space that are closest to the optimum.6 In other words, we 
are applying our code compression methodolo y to an al- 
ready optimized design in order to o timize it further. 
The column "Cmp" whether we deafwith post-cache archi- 
tect.ure ("yes ") or with the architecture that uses no com- 
pression at  all "no". The next three columns contain energy 
number for the CPU "CPU, instruction and data caches 
( " I / ,  caches"), the main memory ("memory") ,  the DataBus 
1 plus DataBus 2 lus AddressBus ("all buses") whereas "to-  
tal" summarizes a i  these parts. The performance is given in 
the number of clock cycles ( "EEC Time") it takes to execute 
a specific task (compressing a specific number of frames in 
terms of the MPEGII encoder, for example). Performance 
is important as we have to uarantee that we do not sac- 
rifice any performance for aclievin the energy/power sav- 
ings compared to the architecture t i a t  uses no compression. 
The last two columns finally show the energy savings where 
("Energy Savings") gives the savings that are achieved in 
addition to erformance gains and ("Adj .  Energy Savin s") 
represents t\e energy savings that have been achieve2 by 
trading the additional performance gain against further en- 
ergv/power savin s via the well known relationship Pd - f 
wit11 Pdyn being &e dynamic power consumption and f be- 
ing the clock frequency. 

As we can see in the Table 2 we achieve hi h system en- 
ergv savin s in the range between 16% and 5 4 k  without ad- 
justment (?e. with increased performance) and even higher 
savings in the range between 16% and 82% when we trade 
the increased performance to save even more energy/power. 

How are the ener,Fy/.power savings actually achieved ? 
In the case of "trick with 512 Byte I-cache, for example, 
the main savings are achieved via the CPU where ener y 
could reduced from about 51mJ to about 19mJ and via t f e  
caches that consume about 3mJ without compression and 
about 1.6mJ with compression. The CPU consumes a lot of 
energy due to waiting cycles caused by cache misses (though 
a waitin cycle costs much less energy than a cycle where 
the C P 8  is actually doin some computation, it sums up  
due to the large amount of waiting cycles). In case of com- 
pression, we actually have a larger effective cache size (see 
also discussion in Section 4) thus drastically reducing the 
I-cache misses. The large savings of "I/D-caches" come ac- 
tually from the I-cache that had to be much less accessed 
since due to the high com ression ratio more than one in- 
struction can be retrieved gom the cache via one access. 
In the application "smo" the bus activities are dominat- 
ing the ener y consumption since this a plication is quite 
data oriente! since it works on a digitay image which re- 
quire many data accesses and thus bus activities. This leads 
to energy savin s of around 19% in both cases, the adjusted 
and the non-aijusted case. A closer look at  some of the 
results also unveils the drastic reduction of cache energy 
as it is the case in "cpr" for l k  I-cache size configuration. 
The cache energy could be reduced from about 169mJ (non 
compressed) to  about lOOmJ (compressed). This represents 

above. 
'These points have been determined using our framework, see 

System Energy Savings 

I 

z 
"rgy samngs 

OadJusted energy sinings 

Figure 5: System Energy Savings 

a cache energy reduction of about 37%. Reflect,ed here is 
the Sact we have lesser cache accesses through our instruc- 
tion compaction scheme introduced in Section 3.5. 
We can summarize that the energy savings come from vari- 
ous system parts as a consequence of our code compression 
methodology. 

The results are summarized in Chart 5 where only one 
of the three configuration per applications is shown for the 
cases of compressed and non-compressed version. Shown is 
the configuration that eventually leads to the 1owe:jt absolute 
energy consumption. We can see that we achieve high ener y 
savings in the range from about 22% to slightly over 8 2 8  

The decompression unit represents an additional hard- 
ware part in the system that costs chip area. On the other 
side, we save chip area by reducin the demand of code 
storage. As an example, the MPE&I encoder had an ini- 
tial binary size of 110Kbytes. Through code compression, 
the binary could be reduced to 6OKbyte meaning that we 
were able to use a 64Kbyte memory instead of 128Kbyte 
one. This reduction in main memory size corresponds to 
additional area for the decompression engine (ranging from 
7,000 to 33,000 gates, depending on the application) leading 
to a net reduction of chip area. 

The decompression engine saves indirectly (i.e. through 
other system resources) energy/power as discus:jed above. 
Actually it also consumes energy/power. Our gate-level sim- 
ulation of the synthesized engine unveiled a mere 0.85mW 
to 1.38mW depending on the application. This is negligible 
compared to the whole system power consum tions in the 
area of a few hundred m W  to a few Watt (&pendin on 
system configuration as well as depending on the appfica- 
tion). As shown above, the net energy/power savings are 
significant. 

6 Conclusions 

In this paper we have proposed a code compression method- 
ology adapted for low power embedded system design. As 
opposed to the only other code compression approach focus- 
ing on low power, our approach is aimed at  a complete sys- 
tem comprising a CPU, caches, main memory, data buses 
and an address bus. We have synthesized the decompres- 
sion engine and have run extensive s stem simulations and 
estimations in order to optimize and inally estimate the en- 
ergy,lpower savings. As a result we achieved high system 
energy/power savings between 22% and 82% compared to 
the same system but without code compression. We have 
furthermore shown that the power savings are achieved by 
diverse system parts with contributions depending on var- 
ious system parameters as well as on the characteristics of 
a s ecific application. These results suggest both hi her 
performance and lower power than has been suggestef by 
previious work in code compression that did not perform 
these comprehensive experiments on a complete system. It  
is also important to notice that the energy/power savings 
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Table 2: Results in terms of energy consumption and execution time for both, compressed and uncompressed instruction 
for various instruction cache sizes" 

have been achieved ,at the same performance or even with 
increasing the performance. We were also able to reduce the 
overall chip area of a design deploying our methodology. 
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