
18.1

Code Compression for Low Power Embedded System Design

Haris Lekatsas Jorg Henkel Wayne Wolf
Princeton University NEC USA Princeton University

Abstract

W e propose instruction code compression as a very e cient
method f o r reducing power on a n embedded system. fl u r ap-
proach i s the first one t o measure and optimize the power
consumption of a complete SOC (System-On-a-Chip) com-
prising a CPU, anstruction cache, data cache, main memory ,
data buses and address bus through code compression. W e
co'mpare the pre-cache architecture (decompressor between
main memory and cache) to a novel post-cache architecture
(decompressor between cache and CPU). Our simulations
and synthesis results show that our methodology results in
large energy savings between 22% and 82% compared to the
same system without code compression. Furthermore, we
demonstrate that power savings come with reduced chip area
and the same or even improved performance.

1 Introduction

The advent of new VLSI technologies as well as the advent
of state-of-the-art design techniques like core-based SOC
(System-on-a-Chip) design methodologies has made multi-
million gate chips a reality. SOCs are especially important
to low power applications like PDAs (personal digital assis-
tants), cellular phones, digital cameras. Since the amount
of available energ is fixed, it has to be budgeted wisely by
the devices in or&r to prolong battery life. From a system
designer's point of view ener y/power reduction is a major
design goal. According to t i e various facets of problems
related to high energy and power consumptions, designers
have come up with diverse approaches at all levels of ab-
straction starting from the physical level up to the system
level. Experience shows that a hi h level method may have
a larger impact since the degree oBfieedom is still very high.
However, a major drawback in system-level optimization is
the complexity of the design space as a result of the vast
amount of possible parameters. In order to conduct effi-
cient system-level optimizations, powerful design space ex-
ploration is required.

This paper describes our approach for system-level power
optimization, namely code compression. We show that code
compression does not only reduce main memory size require-
ments, but can also reduce reduce significantly the power
consumption of a complete system comprising a CPU, in-
struction cache, data cache, main memory, data buses and
address bus. We will show that we save power and also re-
duce the overall chip area while maintaining or even improv-
ing performance. Previous work in code compression, which
has not simulated performance in such detail, has assumed
that code compression incurred a performance penalty. In
addition, code compression is a powerful technique for system-
level power optimization that can be used in conjunction
with other techniques.

Our paper is structured as follows: the next Section 2
gives an overview of related work in both system level low
power desi n and code compression. Code compression ba-
sics as we8 as our approach that is adapted to low power
l'ermissioii to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
DAC 2000. Los Angeles, California
@Zoo0 ACM 1-581 13-187-9/00/0006..$5.00

con:sumption are described in Section 3. In the same sec-
tion, we also present the design flow for the implementation
and simulation of the decompression engine. In Section 4
we discuss two alternative system architectures inte rating
our methodology into a system with the purpose to f n d the
most energy/power efficient one. After that, Section 5 de-
scribes the extensive set of ex eriments we conducted on di-
verse real-world applications i k e a whole MPEGII encoder.
Finally, Section 6 gives a conclusion.

2 Related Work

Mo:jt of the previous work on code com ression has focused
on memory optimization. Wolfe and ehanin [3 were the

used to encode cache blocks. A similar technique which uses
more sophisticated Huffman tables has been developed by
IBA4 [I]. Other techniques use a table to index sequences of
frequently appearing instructions using a hardware decom-
pression module [4], or decompress completely in software
[7]. Although our techniques are very effective For memor
size reduction, the focus of this paper is to explore the e l
fect code compression has on the ower consumption of the
whole system. Yoshida et al. [27 proposed a logarithmic-
based compression scheme which can result in power reduc-
tion as well. A recent approach [SI investigated the impact
of code compression on the power consumption of a sub-
sysl,em, namely the main memory and the buses between
main memory and decompression unit and between decom-
pression unit and CPU. However the impact of code com-
pression on other system parts like caches and CPU is not
investigated.

Various approaches have been proposed to reduce ower
consumption of diverse system parts. Givargis et 1141
have develoged a set of mathematical formulas for rapidly
estimating It switching activities on a bus with a given
size and encodin scheme. Combined with the capacitance
estimation formujas by Hern et al. [15] they can rapidly es-
timate and optimize bus power consumption. Another ap-
proach for bus power optimization has been proposed by
Fornaciari et,al. [13] who investigate various bus power en-
coding schemes. At the architectural-level for single system
coniponents (i.e., not considering any trade-offs between var-
iou:; system parts), high performance microprocessors have
been investigated and specific software synthesis a1 orithms
have been derived to minimize power as shown by%sieh et
al. '91, for example. Tiwari 101 investi ated the power con-

architectures and derived specific power optimizing compi-
lation strategies. Other approaches focus on a whole system
in order to optimize for low power. System power man-
agement approaches have been explored by Qiu et al.[ll],
among others.

firsl, to propose a scheme where Huffman codes i, ave been

suniption at the instruction- I eve1 for diierent CPU and DSP

3 Code Compression

This section is organized as follows: we first introduce the
basics of code com ression and define terms .we will use
subsequently. We t i e n proceed to an outline of our algo-
rithm, and we explain its advantages over othc, 'r methods.
We also give implementation details and explain how we
reduce power consumption.

294

Figure 1: SPARC branch compression

3.1 Code compression basics

An important concept in code com ression is random access
decompression. This means that t i e decompression should
be capable of starting at any point in the code or at some
block boundaries. This contrasts most file compression al-
gorithms (eg. Gzip) which compress and decompress a file
serial1 and in its entirety. Subse uently, we will use the
term hock to refer to the number 01 bytes that constitute a
decompressible unit. Our algorithm can start decompress-
ing at any byte boundary that is a block beginning, with-
out having decompressed any other blocks. Furthermore, to
make decoding’ easier, we require that compressed blocks
start at a byte boundary. The random access requirement
results in another problem. When we jump to a new lo-
cation in the program, how do we know where it is stored
without decompressing all the preceding blocks? Wolfe and
Chanin [3] proposed using a table that maps uncompressed
block positions (addresses) into compressed block positions.
The main drawback of this method is that as the block size
decreases, the overhead of storin the table increases. An-
other approach is to leave branctes untouched during the
compression phase and then patch the offsets to point to
compressed s ace 41 We use a similar approach here, only
we compress KrancLs as well.

3.2 Algorithm overview

Our algorithm is based on some of our previous work, pre-
sented elsewhere [5 . Here we describe the details of im-
plementation in or d er to use our technique for minimizing
power consumption.
Both compression and decompression use table lookup. The
compression table is generated by using an arithmetic coder
61 in con’unction with a Markov model. Arithmetic codin
has signidcant advantages over the more well-known Huff
man codin and can perform very well when probabilities
are highly $ewed. Another advanta e is that there is no loss
of coding efficiency a t symbol bounjaries. The table gener-
ated for encoding is more general than Huffman coding and
can give better compression.

3.3 Implementation details

Our a1 orithm separates instructions into 4 groups for
the SPAR8 architecture (explanation follows after introduc-
ing the groups). The decoder has to be able to differentiate
between these, hence a short code is appended in the begin-
ning of each compressed instruction. The four instruction

&roup1 : Instructions with immediates: Code =
”0” These are the instructions that are not branches, calls
or sethis and that have an immediate field. To compress
those we use the method described in the previous section.
A compressed instruction will always start with a 0, thus
the decoder will know that it has to use the appropriate de-
coding table.
Group2 : Branches: Code = ”11” This roup consists
of the branches, calls and sethi instructions waich are com-
pressed as follows: The first two bits are always 11. The
next bit is used for branch annulling, the ’,a’’ bit shown in

roups and their codes are:

‘In the following, we will use the terms ”decompressing” and ”de-

‘sethi is a sparc instruction that sets the high order bits of a
coding” interchangeably.

register.

benchmark I ti1 I t i2 I G 3 I 0 vera11 CN
I 0.53 I n.sn I 0.34 I .. .

Table 1: Compression Results

figure Fig. 1. The followin four bits are the condition code
bits (eg. eq, ne, I t , gt). 6ext come 4 bits used to encode
the number of displacement bits. Four bits allow displace-
ments up to 16 bits which are adequate for most compressed
applications. The last bits are the displacement bits which
can vary from 1 to 16. These displacement bits will point
to byte-addressable unaligned) memory locations.

”100” The instructions that have no immediate fields are
compressed directly into one byte which is an index to a ta-
ble. This speeds-up decompression, since for these instruc-
tions one table lookup is only necessary. To differentiate
from all other cases the code ’ 100” precedes theses indices,
hence such instructions compress to 11 bits.
Group4 : Uncompressed instructions (rare): Code
= ”101” These are instructions that are not branches, and
have immediate fields, but the algorithm of the previous sec-
tion cannot compress. These are left intact, hence require
no decompression, while a 3-bit code, namely ”101” is ap-
pended to the left to differentiate it from the other 3 cases.

This classification requires some explanation. Programs
tend to use a small subset of the instruction set only, say,
typically less than 50. Due to immediate fields the total
number of different 32-bit words appearin in programs 1s
much larger. It is therefore beneficial to ac8 all the different
instructions with no immediates (group37 into one byte since
they are few in number, and to encode the rest which are
harder to compress with a powerful compression a1 orithm.
It is possible to encode all instructions using our afgorithm
but we found that building a fast index for group3 instruc-
tions can significantly s eed up decoding. As for branches,
they have to be encodecfsepirately and at a latter stage be-
cause it is impossible to patch offsets on already compressed
branches.

The compression algorithm goes through the steps de-
scribed below:
Phase 1. Go through the program and get Markov model.
Ignore branches, and instructions with no immediate fields
during this phase.
Phase 2. Compress non-branch instructions with immedi-
ate fields using table-based arithmetic coding. Keep track
of branch tar et addresses. At the end of this compression
phase a decojing table will be built which will be used to
decompress roup1 instructions.
Phase 3. zompress branches using compressed addresses
from phase 2. Unfortunately it is impossible to know be-
forehand how much the branch will compress, therefore the
number of displacement bits is conservative (i.e. wasting
some displacement bits) and is derived from compression
from ghase 2. Phase 3 will compress even further, since
branc es now take less space. Re-calculate branch targets.
Phase 4. Now patch branch offsets to point to compressed
space.

Group3 : ”Fast 6 ictionary instructions”: Code =

3.4 Compression results

Fig. 1 shows the compression results on diverse appli-
cations. CR denotes Compression Ratio and G1 denotes
Group 1 instructions etc. We use compression ratios, de-
fined as the compressed size over the original instruction
segment size. Hence, smaller numbers mean better com-
pression. Note that the overall com ression ratio is not
the average of the compression ratio o?branches (Group 2),
instructions with immediate fields (Group l) , and instruc-

295

No Packing With Packing

Figure 2: Bus compaction approaches

tions with no immediate fields (Group 3), since these groups
have different percentages in our applications. In particu-
lar, we found that around 54% of the instructions belong
into groupl, 26% into group2, 20% into roup3, and finally
0.6% in the fourth group. Furthermore, t i e overall compres-
sion ratio takes into account the byte alignment of branch
targets.

3.5 Bus compaction

Our goal is to use code com ression for reducing the
power consumption of an embedgd system. The first step
is to reduce bit toggles and to transmit more information
per cycle. We have experimented on how to take advantage
of code compression in two different ways. Since compressed
instructions t pically occu y less than 32 bits, each instruc-
tion fetch wilr have a numter of leftover bits which are un-
used. One possibility is to retransmit the leftover bits, such
that they are the same as the previous transaction. This
minimizes bit toggling, as the number of bits that change
is at most equal to the size of the new compressed instruc-
tion transmitted. Another way is to increase bandwidth by
transmittin code that belongs to the next compressed in-
struction. f ig. 2 illustrates these two approaches. Note that
it is useful to compact more than one instruction in one 32-
bit word only when the next compressed instruction is the
next one also in terms of memory location. Whenever we
have a branch or a call the leftover bits will be useless as
they will not be part of the instruction to be executed.

In terms of power consumption, the first approach re-
duces bit toggling, but the total number of instruction fetches
is the same as in the case where there is no compression. The
second approach does not reduce bit toggling between mem-
ory accesses, however it reduces the total number of memory
accesses (and also reduces the total number of bit toggles),
and thus the total energy consumed. We performed exper-
iments on a variety of programs and found that although
both methods show an improvement over an architecture
with no compression, the second method is alwa s more
effective in reducing ower consumption. In the gllowing
sections we will therekre adopt the second approach.

It is important to clarify that depending on when de-
compression takes place, different approaches are required
to compact instructions on the bus. If the decompression
engine resides between the cache and main memory [3], the
advantages of compression affect only the bus between main
memory and the cache. The decompression engine can uti-
lize the bits from the next cache line as long as it is the
cache line that is requested next. Note that if the cache
line size is greater than 32 bits then since compaction can
only take lplace at the end of the compressed cache line,
i.e. only a ter a number of cycles, compaction will not be
as effective as in the instruction-by-instruction compression
case. Since this compressed cache lines are on1 transfered
on an instruction cache miss, and since they on& affect the
communication between the main memory and the cache,
we expect a significantly lower gain in terms of bus utiliza-
tion and consequently power consumption. The conclusion
is that bus compaction will work best for small blocks.

F're-cache Archttechrre
AddrcrsBw 32

I I ' 1

Postcache Archttecture
AddrerrBua 32

A- I L, --1

Figure 3: Pre- and post-cache architecture

4 Architectures using decompression

We conducted experiments on two different system architec-
turles that use code compression, what we call a pre-cache
and a post-cache architecture. In this section we measure
toggles on the bus as a metric that relates to power con-
sun1 tion

$he architectures are shown in Fig. 3. In the pre-cache
arc.hitecture the decompression engine is located between
main memory and the instruction cache. In the post-cache
arc,hitecture the same en ine is now located between the in-
struction cache (in the foylowing we will use the shorter term
I-cache instead) and the processor. Obviously, in the archi-
teciure post-cache both data buses profit (and the cache)
from the compressed instruction code since the instructions
are only decompressed before they are fed into the CPU
whereas in the pre-cache architecture only DataLlus 2 profits
from the compressed code. In order to discuss various effects
we conducted many ex eriments on the trick application3.
We calculated the numger of bit toggles when running the
application on both target architectures. The number of bit
toggles are related to the energ consumed by the bus4 The
results are shown in figure 4 6 r trick. It consi.sts of three
partial fi ures. the to one shows the number of bit tog-
glee for Ja taBus 1. Pgase note that we show on DataBus
1 o:nly those bit toggles that refer to cache hit:;. Thus we
can see how the number of hit-related toggles on DataBus
1 increases as the number of tog les on DataBu:; 2 (misses)
dec:reases. The toggles on Data& 2 are shown in the mid
fi ure whereas the charts in the bottom figure show the sum
oftloth. The parameter on the x-axis of all f i y e s we have
used is the cache size (given in bytes). Each o t.hose figures
comprises three graphs: one shows the case where we have
no instruction compression at all, one refers to the post-cache
and the third to the pre-cache architecture. Startin with
the top figure in Fig. 4, we can observe that the num%er of
bit toggles increases with increasing cache size. All three
architectures5 finally arrive at a point of saturation i.e. a
point where the number of bit toggles does not increase any
more since the number of cache hits became maximum. The
two most interesting observations here are:

a) The "saturation point" is reached earlier 'in case of
the post-cache architecture (i.e. 512 bytes) as op-
posed to 1024 bytes in case of the pre-cache archi-
tecture and no compression. In other words, we have

4 description of the used applications follows in Section 5.
*'We will provide information on our power/energy estimation

models and parameters in Section 5. Please also note that our fi-
nal results in Section5 are given in energy/power.

5'Please note that the architectures no compression and pre-cache
are rrlmost overlayed and are showing up as only one graph.

296

effective1 a larger cache. That actually means that
we can a8ord to have a cache that is on1 half the size
of the original cache without any loss orperformance
solely through placing the decompression engine in a
post-cache architecture. We can also decide to keep
the same cache size. Then we can gain performance.
If we do not need the increased performance then
we can trade this performance increase against en-
ergylpower by slowing down the clock frequency, for
example.

b) Toggle counts are the smallest for post-cache at a
given I-cache size for reasonable sizes (a ”reason-
able” cache size is one where we have reached what
we called the saturation point above; it provides a
good compromise between cache size and number of
cache misses . Thus, post-cache seems most energy
efficient for b ataBus 1.

The mid figure in Fi 4 shows the number of toggles on
DataBus 2. Via D a t a s u s 2 all instructions are transferred
that caused a cache miss before. Here we can observe:

a) The number of tog les is for all I-cache sizes smaller
in case of post-cacte architecture than in the pre-
cache architecture and n o compression architectures.
This is because of the larger effective cache size (as
discussed above) that causes less cache misses and
hence a smaller traffic (this relates to bit toggles)
through DataBus 2.

b) Whereas we had no advantage of pre-cache architec-
ture on DataBus 1 against architecture n o compres-
sion on the same data bus, we do have an advantage
here at DataBus 2 since compressed instructions are
transferred here.

Now, the question is how large the overall number of bit tog-
les related to instruction code is on buses DataBus 1 and

S a t a B u s 2. The bottom chart in Fig.4 gives the answer. In
all reasonable I-cache confi urations, post-cache architecture
gives the lowest amount of bit tog les while the pre-cache
architecture is actual1 better or afmost equal to n o com-
pression in all cases. Jlease note that 128 bytes I-cache size
does not represent a ”reasonable” size since it would offer
very weak performance. We note that some modern proces-
sors have a built-in L1 cache. However, our decompression
engine can be placed between an L1 and L2 cache in such
cases.

5 Energy and performance results

Our next set of experiments is more detailed, and focuses on
power and performance on the post-cache architecture. Our
ramework consists of analytical energy models for various

system parts driven by program traces. It also has the pos-
sibility to optimize the source code for energy consumption.
In addition, it has heuristics to efficiently search the de-
sign space (cache size, cache policies, etc.). For more detail,
please refer to our other work [12].

5.1
Our assumption for the experiments is that we deal with a
SOC (System-On-a-Chip) i.e. that the CPU, the instruc-
tion cache (I-cache), the data cache (D-cache), the main
memory, the decompression engine and, of course, the buses
reside on a single piece of silicon. Our simulative and an-
al tical models have been tuned for a 0.8,~ CMOS process.
TKou h this is certainly not the newest technology, the ob-
t ainef results hold for other technologies accordingly. Please
note that the design space for system design is very large.
We used in all experiments a 32-bit wide address bus and
32-bit wide data bus. Furthermore, we used cache line sizes
of 32 bits throughout. Exploring the design space i.e. deter-
mining the optimum data cache size, cache policies, cache
associativities etc. has been accomplished by deploying the
AVALANCHE framework [12]. Therefore, the discussion
here can purely concentrate on I-cache size as parameter.

Experimental setup and deployed parameters

trick

128 256 512 1024 2048 4096

lcache sire

e nocanpression

-+-compression, post.
cache arch

&compression, pre-

I trick I
t compression. p t -

cache arch
-+-compression. pre

cache arch

I trick

I lcache dze I
Figure 4: n i c k application. Top: to gles on DataBus 1. Mid:
toggles on DataBus 2. Bottom: sum of toggles

about 200k binary code) and belon to different application
domains. As a result, we will see &at the achieved energy
savings sometimes are mainly obtained via CPU energy sav-
ings, sometimes via bus energy savings, but all of the effects
as a implicit result of code compression, of course.
The applications are: the commonly available compress pro-
gram (’cpr”) from SPEC95, a real-time Diesel engine con-
trol algorithm (”diesel”), an algorithm for computing 3D
vectors for a motion picture (” i3d”) , a real-time HDTV
Chromakey algorithm (”key”), a complete MPEGII encoder

297

('"peg"), a smoothing algorithm for digital images (' " n o ")
and a trick animation algorithm ("trick").

5.2 Energy reduction results

The complete set of experiments is summarized in Table 2.
For each of the applications we have chosen three different
I-cache sizes. This caches sizes are always in the area of
the best compromises between size and performance i.e. a
further increase would not result in any remarkable erfor-
mance increase through less cache misses and a furtfer de-
crease would result in a too large number of cache misses.
Accordin to the discussion in Section 4, the selected caches
sizes areqess or equal to the saturation point: a designer
would most likely use one of these three cache sizes. For
each application we show three configurations (varying I-
cache size). I t is the application that has the absolute low-
est power consumption and two other points in the design
space that are closest to the optimum.6 In other words, we
are applying our code compression methodolo y to an al-
ready optimized design in order to o timize it further.
The column "Cmp" whether we deafwith post-cache archi-
tect.ure ("yes ") or with the architecture that uses no com-
pression at all "no". The next three columns contain energy
number for the CPU "CPU, instruction and data caches
(" I / , caches"), the main memory ("memory") , the DataBus
1 plus DataBus 2 lus AddressBus ("all buses") whereas "to-
tal" summarizes a i these parts. The performance is given in
the number of clock cycles ("EEC Time") it takes to execute
a specific task (compressing a specific number of frames in
terms of the MPEGII encoder, for example). Performance
is important as we have to uarantee that we do not sac-
rifice any performance for aclievin the energy/power sav-
ings compared to the architecture t i a t uses no compression.
The last two columns finally show the energy savings where
("Energy Savings") gives the savings that are achieved in
addition to erformance gains and ("Adj . Energy Savin s")
represents t\e energy savings that have been achieve2 by
trading the additional performance gain against further en-
ergv/power savin s via the well known relationship Pd - f
wit11 Pdyn being &e dynamic power consumption and f be-
ing the clock frequency.

As we can see in the Table 2 we achieve hi h system en-
ergv savin s in the range between 16% and 5 4 k without ad-
justment (?e. with increased performance) and even higher
savings in the range between 16% and 82% when we trade
the increased performance to save even more energy/power.

How are the ener,Fy/.power savings actually achieved ?
In the case of "trick with 512 Byte I-cache, for example,
the main savings are achieved via the CPU where ener y
could reduced from about 51mJ to about 19mJ and via t f e
caches that consume about 3mJ without compression and
about 1.6mJ with compression. The CPU consumes a lot of
energy due to waiting cycles caused by cache misses (though
a waitin cycle costs much less energy than a cycle where
the C P 8 is actually doin some computation, it sums up
due to the large amount of waiting cycles). In case of com-
pression, we actually have a larger effective cache size (see
also discussion in Section 4) thus drastically reducing the
I-cache misses. The large savings of "I/D-caches" come ac-
tually from the I-cache that had to be much less accessed
since due to the high com ression ratio more than one in-
struction can be retrieved gom the cache via one access.
In the application "smo" the bus activities are dominat-
ing the ener y consumption since this a plication is quite
data oriente! since it works on a digitay image which re-
quire many data accesses and thus bus activities. This leads
to energy savin s of around 19% in both cases, the adjusted
and the non-aijusted case. A closer look at some of the
results also unveils the drastic reduction of cache energy
as it is the case in "cpr" for l k I-cache size configuration.
The cache energy could be reduced from about 169mJ (non
compressed) to about lOOmJ (compressed). This represents

above.
'These points have been determined using our framework, see

System Energy Savings

I

z
"rgy samngs

OadJusted energy sinings

Figure 5: System Energy Savings

a cache energy reduction of about 37%. Reflect,ed here is
the Sact we have lesser cache accesses through our instruc-
tion compaction scheme introduced in Section 3.5.
We can summarize that the energy savings come from vari-
ous system parts as a consequence of our code compression
methodology.

The results are summarized in Chart 5 where only one
of the three configuration per applications is shown for the
cases of compressed and non-compressed version. Shown is
the configuration that eventually leads to the 1owe:jt absolute
energy consumption. We can see that we achieve high ener y
savings in the range from about 22% to slightly over 8 2 8

The decompression unit represents an additional hard-
ware part in the system that costs chip area. On the other
side, we save chip area by reducin the demand of code
storage. As an example, the MPE&I encoder had an ini-
tial binary size of 110Kbytes. Through code compression,
the binary could be reduced to 6OKbyte meaning that we
were able to use a 64Kbyte memory instead of 128Kbyte
one. This reduction in main memory size corresponds to
additional area for the decompression engine (ranging from
7,000 to 33,000 gates, depending on the application) leading
to a net reduction of chip area.

The decompression engine saves indirectly (i.e. through
other system resources) energy/power as discus:jed above.
Actually it also consumes energy/power. Our gate-level sim-
ulation of the synthesized engine unveiled a mere 0.85mW
to 1.38mW depending on the application. This is negligible
compared to the whole system power consum tions in the
area of a few hundred m W to a few Watt (&pendin on
system configuration as well as depending on the appfica-
tion). As shown above, the net energy/power savings are
significant.

6 Conclusions

In this paper we have proposed a code compression method-
ology adapted for low power embedded system design. As
opposed to the only other code compression approach focus-
ing on low power, our approach is aimed at a complete sys-
tem comprising a CPU, caches, main memory, data buses
and an address bus. We have synthesized the decompres-
sion engine and have run extensive s stem simulations and
estimations in order to optimize and inally estimate the en-
ergy,lpower savings. As a result we achieved high system
energy/power savings between 22% and 82% compared to
the same system but without code compression. We have
furthermore shown that the power savings are achieved by
diverse system parts with contributions depending on var-
ious system parameters as well as on the characteristics of
a s ecific application. These results suggest both hi her
performance and lower power than has been suggestef by
previious work in code compression that did not perform
these comprehensive experiments on a complete system. It
is also important to notice that the energy/power savings

298

Table 2: Results in terms of energy consumption and execution time for both, compressed and uncompressed instruction
for various instruction cache sizes"

have been achieved ,at the same performance or even with
increasing the performance. We were also able to reduce the
overall chip area of a design deploying our methodology.

References
[l] T.M.Kemp and R.K.Montoye and J.D.Harper and J.D.Palmer

and D.J.Auerbach A Decompression Core for PowerPC, IBM
Journal of Researdh and Development, vol. 42(6) pp. 807-812,
November 1998.

[2] Y. Yoshida and B.-Y. Song and H. Okuhata and T. Onoye A n
Object Code Compression Approach to Embedded Processors,
Proceedings of the International Symposium on Low Power
Electronics and Design (ISLPED) pp. 265-268, ACM, August,
1997.

[3] A. Wolfe and A. Chanin, Ezecuting Compressed Programs on
an Embedded RISC Architecture, Proc. 25th Ann. Interna-
tional Symposium on Microarchitecture, pp. 81-91, Portland,
OR, December, 1992.

[4] C. Lefurgy and P. Bird and I. Cheng and T. Mudge, Code Den-
sity Using Compression Techniques, Proc. of the 30th Annual
International Symposium on MicroArchitecture, pp. 194-203,
December, 1997.

[5] H. Lekatsas and W. Wolf, Random Access Decompression us-
i n g Binary Arithmetic Coding, Proceedings of the 1999 IEEE
Data Compression Conference, March 1999.

(61 T.C. Bell and J.G. Cleary and I.H. Witten, Text Compression,
Prentice Hall, New Jersey, 1990.

[7] S,Y. Liao and S. Devadas and K. Keutzer, Code Density Op-
trmization for Embedded DSP Processors Using Data Com-
pression Techniques, Proceedings of the 1995 Chapel Hill Con-
ference on Advanced Research in VLSI, pp. 393-399, 1995.

code

[SI L. Benini, A. Macii, E. Macii, M. Poncino, Selective Instruc-
tion Compression for Memory Energy Reduction in Embed-
ded Systems, IEEE/ACM Proc. of International Symposium
on Low Power Electronics and Design (ISLPED'gB), pp. 206-
211, 1999.

[9] Ch.Ta Hsieh, M. Pedram, G. Mehta, F.Rastgar, Profile-Driven
Program Synthesrs for Evaluation of System Power Dissi-
pation IEEE Proc. of 34th. Design Automation Conference
(DACd7), pp.576-581, 1997.

[lo] V. Tiwari, Logic and system design for low power consump-
tion, PhD thesis, Princeton University, Nov. 1996.

[l l] Q. Qiu, Q. Wu, M Pedram Stochastic Modeling of a
Power-Managed System: C o h r u c t i o n and Optimization,
IEEE/ACM Proc. of International Symposium on Low Power
Electronics and Design (ISLPED'SS), pp. 194-199, 1999.

1121 Y.Li, J.Henke1, A Framework for Estimating and Mini-
mizing Energy Dissipation of Embedded H W / S W Systems,
IEEE Proc. of 35th. Design Automation Conference (DACSS),

[13] W.Fornaciari, D.Sciuto, C.Silvano, Power Estimation for
Architectural Explorations of H W/S W Communication on
System-Level Buses, To be published a t HW/SW Codesign
Workshop, Rome, May 1999.

[14] T. Givargis, F. Vahid, Interface Ezploration f o r Reduced
Power i n Core-Based Systems, International Symposium on
System Synthesis, December 1998.

1151 Jue-Hsien Chern et. al., Multilevel Metal Capacitance Models
for C A D Design synthesis Systems, IEEE Electron Device
Letters, vol. 13, no. 1, pp.32-34, January 1992.

pp. 188-193, 1998.

299

