
University of Central Florida University of Central Florida

STARS STARS

UCF Patents Technology Transfer

8-1-1989

Code Converter for Data Compression/ Decompression Code Converter for Data Compression/ Decompression

Amar Mukherjee
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/patents

University of Central Florida Libraries http://library.ucf.edu

This Patent is brought to you for free and open access by the Technology Transfer at STARS. It has been accepted for

inclusion in UCF Patents by an authorized administrator of STARS. For more information, please contact

STARS@ucf.edu.

Recommended Citation Recommended Citation
Mukherjee, Amar, "Code Converter for Data Compression/ Decompression" (1989). UCF Patents. 81.
https://stars.library.ucf.edu/patents/81

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/patents
https://stars.library.ucf.edu/techtransfer
https://stars.library.ucf.edu/patents
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/patents/81?utm_source=stars.library.ucf.edu%2Fpatents%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

United States Patent [19]

Mukherjee

[54] CODE CONVERTER FOR DATA
COMPRESSION/DECOMPRESSION

[75] Inventor: Amar Mukherjee, Maitland, Fla.

[73] Assignee: University of Central Florida,
Orlando, Fla.

[21] Appl. No.: 38,039

[22] Filed: Apr. 13, 1987

[51] Int. Cl.4 .. H03M 7/40
[52] U.S. Cl •.. 341/65; 341/67;

364/514; 382/56
[58] Field of Search 340/347 DD, 146.2;

235/154;360/39,40;341/56,63,67, 88, 59,64,
65; 358/13, 135, 133; 364/514; .382/56

[56] References Cited

U.S. PATENT DOCUMENTS

3,810,154 5/1974 Briant 340/347 DD
3,835,467 9/1974 Woodrum 340/347 DD
3,918,047 11/1975 Denes 340/347 DD
4,115,768 9/1978 Eggenberger 340/347 DD
4,302,775 11/1981 Widergren et al 341/61
4,376,933 3/1983 Saran et al 341/67
4,420,771 12/1983 Pirsch 341/67
4,535,320 8/1985 Weaver 340/347 DD

OTHER PUBLICATIONS

Lea, The Computer Journal, vol. 21, No. 1, 1978, "Text
Compression With Associative Parallel Processor", pp.
45-46.
Hazboun and Bassiouni, Proc. ACM SIGMOD Int.
Conf. on Management of Data, 1982, "A Multi-Group
Technique for Data Compression," pp. 284-292.
Hawthorn, Proc. VLDB, 1982, "Microprocessor As-

[11] Patent Number:

[45] Date of Patent:

4,853,696
Aug. 1, 1989

sisted Tuple Assess Decompression and Assembly for
Statistical Data Base Systems," pp. 223-233.
Welch, Computer, vol. 17, No. 6, 1984, "A Technique
for High-Performance Data Compression", pp. 8-19.
Gonzalez-Smith and Storer, JACM, vol. 32, No. 2,
Apr. 1985, "Parallel Algorithms for Data Compres­
sion", pp. 344-373.
Reghbati, H.K., Computer, Apr. 1981, "An Overview
of Data Compression Techniques", pp. 71-74.
Bassiouni, M. A., IEEE Trans. on Software Engineer­
ing, vol. SE-11, No. 10, Oct. 1985, "Data Compression
in Scientific and Statistical Databases", pp. 1047-1058.
"Digital Techniques-A Step-by-Step Introduction'',
Heathkit/Zenith Educational Systems, Spectrum Book,
Prentice-Hall, 1983, pp. 259-260, 304-306.

Primary Examiner-William M. Shoop, Jr.
Assistant Examiner-Brian K. Young
Attorney, Agent, or Firm-James H. Beusse

[57] ABSTRACT

A code converter has a network of logic circuits con­
nected in reverse binary tree fashion with logic paths
between leaf nodes and a common root node. Charac­
ters are compressed from standard codes to variable­
length Huffman code by pulse applying connections to
the paths from a decoder. An OR-gate is connected to
"l" branches of the network to deliver the output code.
Characters are decompressed from Huffman to stan­
dard codes by connection of the Huffman code to con­
trol the clocked logic circuits to deliver a pulse from the
root node to one of the inputs of an encoder. A feedback
loop connects the root node and the path end nodes to
initiate the next conversion. Alternative embodiments
have decoder staging to minimize delay and parallel
compressed code output.

22 Claims, 6 Drawing Sheets

U.S. Patent Aug.1, 1989 Sheet 1of6 4,853,696

10

32

26

16

18 20

B C

FIG. I

108

('
'

I
I
I I
I

I 1-71
' '

I _J
G E D A

DECODER 72

76

START <1>2 BUFFER 74

FIG. 3

U.S. Patent

52

G

START

Aug. 1, 1989 Sheet 2 of 6

0

46
B C

FIG. 2

3: 7 DECODER
(2 - STAGE Pl PE)

FIG. 6

172

176

~74

4,853,696

54

A

OUTPUT
CODE

26

42

U.S. Patent Aug.1, 1989

~
-l ~ '-175

OUT

SYMBOL REGISTER
176

cpl

IN I IN 2 IN 3

FIG. 7
GHARACTER 3
DATA-IN

<1>1

4>2

Vdd

GND

I

Sheet 3 of 6 4,853,696

------1

82

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

< <t>2

80

I 90~
th --"'!).,_!1,-~­
't'1

I

r90 I

1------11-<~- <I> I
I I

I I L ____ _ _ ____ _J

88

FIG. 4

HG 7
CHIP

1----~0' OUTPUT
CODE

t----~X' FEEDBACK
SIGNAL

170

S 'START I' INITIALIZATION
SIGNAL SIGNAL

FIG. 5

U.S. Patent Aug. 1, 1989

T
I

Q

Vdd

FIG. 9

Vdd

-r- FIG. II
<t> I

(208

-(>o

Sheet 4 of 6 4,853,696

Vdd

FIG.

208

Vdd

U.S. Patent Aug.1, 1989 Sheet 5of6 4,853,696

212

FIG. 13

Vdd

~B
I

~BT
5

GND

FIG. 14

DECODER

SYMBOL

BUFFER i--------tL?
4

FIG. 15

U.S. Patent Aug.1, 1989 Sheet 6of6 4,853,696

r· BUFFER
I

I CODE
'

I
162

' I

A

F
c
D

E
8
G 72'

Vdd FIG. 16

146

142

148 152
code: <l>2

88
1

861

FIG. 17

4,853,696
2 1

CODE CONVERTER FOR DATA
COMPRESSION/DECOMPRESSION

for the multi-group compression method which is de­
signed to reduce the overhead of data transmission in
distributed networks. The proposed hardware is an I/O
board in a host machine, logically based on a finite state

This invention relates to coding/encoding devices in
general, and in particular to code converters useful in
data compression/decompression for conversion be­
tween uniform length binary codes and variable length
binary codes, such as Huffman-type codes.

5 machine. It comprises a decode machine (input register,
control logic, first-in-first-out (FIFO) character queue,
address register and microcode memory), an encode
machine (primary and alternative send registers, a
FIFO character queue, transmit control logic, look-

BACKGROUND OF THE INVENTION
10 ahead logic and three flag bits) and an encode/decode

memory. The heart of the finite state machine is the
single instruction processor whose task is to climb
through a logic tree of binary decisions. The microcode
memory holds the necessary jump addresses, with one

Many recent advances have been made in data stor­
age and communications media. However, the explo­
sive proliferation of information and the continuous
growth of data applications are outgrowing technologi­
cal advances in storage devices and communication
tools. Data compression offers an attractive approach to
alleviate many of the problems associated with data
proliferation. Among its many benefits are reduction in
data storage requirements, reduction in the cost of com- 20
munication within distributed networks, reduction in
the cost of backup and recovery in computer systems,
increased security and efficient search operations on
compressed index structure pf files. In recent years, the
demand for data compression and the need to develop 25
faster and more efficient compression methods has in­
creased considerably due to the increased usage of data
compression with scientific and statistical databases,
document delivery systems and communications net-

15 or two jump addresses being selected based on the cur­
rent data bit being received.

works. 30
Virtually all data compression techniques to date

have been software implementations which do not meet
the projected speed and performance requirements of
future systems. Generally applicable hardware for use
in compressing data from uniform length binary codes 35
to variable length binary codes such as Huffman codes,
are not available. Such equipment could, however, be
used to good advantage throughout the design of an
operating system, a file subsystem or a data base man-
agement system. 40

Proposals for hardware assistance for data compres­
sion have been few and of only limited application.

A third proposal, given in Hawthorn, "Microproces-
sor Assisted Tuple Access Decompression and Assem­
bly for Statistical Data Base Systems," Proc. VLDB,
1982, pp. 223-233, uses a microprocessor assisted sys­
tem (MAS) to offioad the process of data compression
and attribute partitioning from the front-end machine
running a statistical data base management system. The
general purpose microprocessors are organized in a two
level hierarchy. At the top level, there is a single (root)
microprocessor which is connected to both the front-
end machine and to the leaf microprocessors (at the
second level of the hierarchy). Each disk in the system
is connected to a leaf microprocessor. Hawthorn esti­
mated that at least 1300 instructions would be executed
by a microprocessor for compression of a 2 Kbyte page.
Thus, at an execution speed of 1 microinstruction per
second, a compression rate of up to 1.57 Mbytes/second
would be attainable.

In Welch, "A Technique for High-Performance Data
Compression," Computer, Vol. 17, No. 6, 1984, pp.
8-19, there is a brief discussion about the Sperry hard­
ware-design of the LZW algorithm. That design uses an
SK RAM as a hash table with a load factor of 0.5. The
speed depends on the hashing system. Welch estimated
that compression speeds of up to half the clock rate
could be possible with a compression ratio of 50% and
short hash lengths.

In Gonzalez-Smith and Storer, "Parallel Algorithms
for Data Compression," JACM, Vol. 32, No. 2, April
1985, pp. 344-373, there is a proposal for the implemen­
tation of compression by textual substitution, using sys­
tolic arrays. Both static and sliding dictionary models
are considered. In the static dictionary case, for exam-

50 ple, the basic element of the systolic structure is a pipe
with three processing components, each pipe corre­
sponding to a string in the dictionary. The overall struc­
ture is in the form of three parallel rows of elements,
with dictionary strings being stored in the middle row.

An early proposal for hardware for compression/­
decompression of text data is described in Lea, "Text
Compression with Associative Parallel Processors," 45
The Computer Journal, Vol. 21, No. l, 1978, pp. 45-46.
That scheme uses a stand-alone device comprising an
associative parallel processor (APP), a character queue
(buffer), access ports and switches. The APP has an
associative memory array, input and output registers
and a microprogram store. The compression method
uses a 200 entry dictionary (i.e. look-up table) stored in
the APP memory as a list of <n-gram, code> pairs for
text compression of frequently occurring letter combi­
nations, e.g. <THE, cl>, <TION, c2>, <AN, c3>.
During compression, characters are loaded into the
character queue and a search is initiated. If an n-gram is
located, the corresponding code is generated as output;
otherwise, a single character from the queue is passed to
output. In either case, the appropriate number of char- 60
acters is loaded into the character queue. The Lea arti­
cle estimates that such a text compression device could
operate at rates up to 0.64 Mbytes/second for compres­
sion and 0.91 Mbytes/second for decompression.

55 No estimate was given for the size of the dictionary that
could be placed on a single chip.

Another proposal, described in Hazboun and Bassi- 65
ouni, "A Multi-group technique for Data Compres­
sion," Proc. ACM SIGMOD Int. Conf. on Manage­
ment of Data, 1982, pp. 284-292, is a primitive design

SUMMARY OF THE INVENTION

The present invention provides code conversion ap­
paratus for converting binary signal representations of
characters from a first coding scheme to a second varia­
ble-length coding scheme, and vice versa. The appara­
tus utilizes a plurality of logic circuit elements or nodes
connected in reverse binary tree-like fashion to form a
plurality of logic paths extending between a common
"root" node and individual "leaf' nodes corresponding
to the separate characters. Means provided for clocking
the logic elements or nodes along the different paths

3
4,853,696

4
results in conversion between one form of coding and
another for the same character.

The code converter of the present invention has the
advantage over the described conventional code con­
version techniques in that it eliminates, or at least signif- 5
icantly reduces, the requirement for storage (code­
decode look-up tables) or microcoding. This results in
faster processing rates independent of the memory or
machine cycle of the backend or the host processor.
The invention enables data compression/decompres- 10
sion in general applications at greatly increased speeds
that far exceed the maximum data flow rate of current
and immediately foreseeable disk technology.

Another advantage of the inventive approach over
the existing approaches is the ease and efficiency with 15
which the developed algorithms can be implemented in
microchip form using LSI or VLSI solid state technol­
ogy.

In preferred embodiments of the invention, described
in greater detail below, the logic circuit nodes are im- 20
plemented using simple logic cells that serve as building
blocks to obtain the desired logic tree circuitry. This
allows communications between cells by means of lo­
calized interconnection wirings, a feature essential for
good VLSI implementation. 25

Code converters are disclosed for both data compres­
sion and decompression. In one aspect of the invention,
a compression module pas input circuitry in the form of
a decoder for delivering a pulse to one of a plurality of
output terminals, each corresponding to a particular 30
character. The terminals are connected to respective
ends of the logic circuit paths and propagation of the
pulse toward the common root node along the corre­
sponding path generates the compressed code for the
character. A serial bit embodiment of compression 35
module produces the code by unique connections of
each path to the input of an OR-gate. A parallel bit
embodiment has equal numbers of logic circuits along
each path and means for simultaneously delivering the
output of each step in the propagation of the pulse 40
through the logic tree and thereafter validating the
output. In another aspect, a decompression module has
the paths of the logic tree connected to the terminals of
an encoder; Means is provided selectively sequentially
clocking the logic circuits along the logic tree paths in 45
accordance with the compressed code representation of
a character, so that a signal pulse starting at the com­
mon root node is caused to propagate through the tree
to energize a unique one of the encoder terminals,
which then produces the equivalent standard decom- 50
pressed code. Feedback connections to the root node
are provided to start a new conversion operation as
soon as an old one is finished.

BRIEF DESCRIPTION OF THE DRAWINGS 55
Embodiments of tlie invention have been chosen for

purposes of illustration and description, and are shown
in the accompanying drawings, wherein:

FIG. 1 is a binary tree representation of an example
alphanumeric character to Huffman code conversion; 60

FIG. 2 is a reverse binary tree representation of the
conversion scheme shown in FIG. 1;

FIG. 3 is a schematic diagram of the code converter
of the present invention in the form of a data compres­
sion circuit to implement the example conversion 65
shown in FIG. 1.

FIG. 4 is a schematic diagram of a logic cell utilizable
in the code converter of FIG. 3;

FIG.Sis a chip terminal diagram of a modified form
of the code converter of FIG. 3;

FIG. 6 is a schematic diagram of the code convert~r
of FIG. S; .

FIGS. 7-14 are schematic diagrams of logic cells
utilizable in the code converter of FIGS. 5 and 6;

FIG. 15 is a parallel output form of the code con­
verter of FIG. 3;

FIG. 16 is a schematic diagram of the code converter
of the present invention in the form of a data decom­
pression circuit to implement the reverse of the charac­
ter to Huffman code conversion of FIG. 1; and

FIG. 17 is a schematic diagram of a logic cell utiliz­
able in the code converter of FIG. 16.

Throughout the drawings, like elements are referred
to by like numerals.

DESCRIPTION OF PREFERRED
EMBODIMENTS

The code converter hardware of the present inven­
tion has general applicability to the conversion of any
uniform length binary code to any nonuniform length
binary code, or even the conversion of any nonuniform
length code to any nonuniform length code. However,
for illustrative purposes and in keeping with a primary
objective of providing useful hardware for data com­
pression/decompression, implementation will be dis­
cussed in terms of an application to conversion of a
standard binary coded decimal (BCD) code to a code of
the type such as described in Huffman, "A Method for
the Construction of Minimum Redundancy Codes,"
Proc. IRE, Vol. 40, 1952, pp. 1098-1101.

Huffman's encoding method takes advantage of the
distributional property that different characters do not
occur with the same frequency. The most frequently
occurring characters can thus be assigned the shortest
codes. All longer codes are such that the shorter codes
do not appear as prefixes thereof.

Consideration is given to the Huffman code appear­
ing in Table 1, below:

Character

A
B
c
D
E
F
G

TABLE 1
Example Huffman-type Code

Probability
of Occurrence

0.1
0.1
0.1
0.3
0.1
0.1
0.2

Code

000
0011
0010
01
101
100
11

It is noted that the most frequently occurring charac­
ters, D and G, have been assigned the two bit codes 01
and 11, respectively. Three and four bit codes have
been assigned to the remaining characters. Neither the
three nor the four bit codes begin with the two bits 01
or 11, assigned to D and G; and none of the four bit
codes begin with the same bits as any of the three bit
codes.

A binary tree representation of the example code
given in Table 1 is shown in FIG. 1. In the binary tree
representation, the code for each character can be
traced by the sequence of O's and l's in a unique path
from the root node of the tree to the leaf node represent­
ing the character. As shown in FIG. 1, the 01 code for
D is seen by tracing a path from the root node 10
through node 12 to node 14, identified as the D leaf

5
4,853,696

6
node. The codes for the characters A, B, C, E, F and G
can be similarly traced along other paths from the root
node 10 to the leaf nodes 16, 18, 20, 22, 24 and 26, re­
spectively, passing through the intermediate nodes 28,
30, 32 and 34. Thus, for example, the code 000 for A is 5
traced from root node 10 through intermediate nodes 12
and 28 to the A node 16. By laying out the binary tree
for the selected coding scheme, such as the Huffman
scheme of Table l, a visual confirmation is given that a
unique path is established for each character code repre- 10
sentation and that shorter codes do not serve as prefixes
for any longer code.

As a next step in developing the hardware implemen­
tation of the selected code conversion scheme, a reverse
binary tree is derived for the established relationship 15

· -between the characters and their respective assigned
~odes. A reverse binary tree is a labeled binary tree
whose leaf nodes and some of the internal nodes repre­
sent the characters and for which the sequences of O's
and l's read along the paths from the nodes representing 20
tlie characters to the common root node of the tree
correspond to the codes of the characters. The reverse
tree corresponding to the binary tree of FIG. 1 and the
coding scheme set forth in Table 1 is shown in FIG. 2.

With reference to FIG. 2, the characteristics of the 25
reverse binary tree configuration are apparent. The
code corresponding to each character, in contrast to the
tree of FIG. 1, is traced in the reverse tree by beginning
at the leaf node labeled by that character and then pro-
ceeding to trace the shortest path to the root node. 30

As shown in FIG. 2, for the example Huffman code
given in FIG. 1, the code for the D character, i.e. 01, is
traced by following the path from the D leaf node 36
through intermediate node 38 to the root node 40. In
similar fashion, the codes of the other characters A, B, 35
C, E, F and G can be traced from their respective leaf
nodes 42, 44, 46, 48, 50 and 52, through the intermediate
nodes 38, 54, 56, 58, 60 and 62 to the root node 40. For
example, the A character code 000 is traced from the A
leaf node 42 through intermediate nodes 54 and 56 to 40

---the root node 40. Development of the reverse binary
tree establishes the basic framework upon which the
hardware implementation of the code converter is built.

Circuitry for implementing the encoding scheme for
the exemplary Huffman code set forth in Table 1 is 45
shown in FIG. 3. FIG. 3 shows a data compression
module 70 for converting binary data in binary decimal
coding (BCD) format into variable length Huffman
code. Module 70 includes a logic network 71 (indicated
in dot-and-dashed lines) that comprises a plurality of SO
logic circuit elements 36-62, respectively correspond­
ing to the nodes 36-62 and connected in binary tree-like
fashion to form a plurality of logic circuit paths in ac­
cordance with the interconnection of the nodes 36-62
shown in the reverse binary tree of FIG. 2. For clarity 55
of presentation the characters A-G of the starting nodes
and the "O's" and "l's" along the branches ofthe·paths
of the reverse binary tree of FIG. 2, are shown in corre­
sponding locations alongside the circuitry of FIG. 3.
Each logic path extends from one of the starting node 60
elements 42, 44, 46, 48, 50 and 52 to the element 40
which is in the common root node position.

A conventional decoder, such as a BCD decoder 72,
serves to place an electronic signal "pulse" or "token"
at the input to the starting node logic circuit corre- 65
sponding to the leaf or intermediate node representing
the character whose binary representation is to be con­
verted. The logic circuits 36-62 operate in response to

clock pulses so that the pulse or token traverses one step
toward the root node circuit 40 at each clock pulse or
time step, delivering a sequential output of "O" or "l" as
indicated in FIG. 3 at the output of each node circuit at
sequential· steps along the activated path. The logic is
such that when the token reaches the root node circuit
40, the sequential outputs make up the desired Huffman
code for the character at whose node the token was
initially placed by the decoder 72. The decoder 72 can
now place another token at the node corresponding to
the next character to be compressed.

At the front end of the circuitry 70, a buffer 74 is
provided followed by a symbol register 76. The buffer
74 serves to temporarily store a train of data in binary
signal form which is to undergo compression. An OR­
gate 78 provides for transfer between the buffer 74 and
the register 76 of a character or symbol string at the
start of the compression operation and also each time a
token has traversed the node circuit from the decoder
72 to the root node 40. As shown in FIG. 3, the output
ofroot node 40 is connected as one input to the OR-gate
78 and a clock pulse input <(>2 qualified by a "start"
signal is connected as a second input to the OR-gate 78.
The register 76 serves as the input register to the de­
coder 72.

It will be appreciated that the decoder 72 may take
the form of any conventional decoding circuitry which
will take the binary bit representation of a character
deposited in the input register 72 and produce a corre­
sponding signal at one of a plurality of output terminals
which are connected to the corresponding character
encoding path starting nodes. For the compression of
standard binary coded decimal codes to Huffman cod­
ing, as illustrated here, decoder 72 is a conventional
BCD decoder. It should be clear, however, that for the
conversion of other coding schemes a different appro­
priate decoder is substituted for the decoder 72.

The functions at each of the nodes 40-62 can be im­
plemented in accordance with well-known techniques
asing any of numerous digital logic technologies. FIG.
4 shows an nMOS implementation for the two-input
nodes 36, 38, 40, 52, 54 and 56, utilizing standard two­
phase nonoverlapping clocking of phases <(>1 and <f>2.

As shown in FIG. 4, a suitable node unit logic circuit
or cell 80 comprises a NOR-gate 82 connected in series
with an inverter 84. The cell 80 has two inputs 86 and 88
each connected as an input to the NOR-gate 82 by
means of a clocking switch, such as an nMOS field
effect transistor 90, responsive to a timing signal of
phase <f>t· The output of the NOR-gate 82 is connected
to the input of the inverter 84 through a clocking
switch, such as an nMOS field effect transistor 92,
which is responsive to a timing signal of phase <f>2. The
output 94 of the inverter 84 serves as the output of the
node logic circuit unit 80. The circuit unit 80 is con­
nected in the compression module 70 (FIG. 3) as, for
example, for node 36, wherein the input 86 of the unit
circuit 80 is connected to the D character output termi­
nal of the decoder 72, the input 88 is connected to the
output of the node circuit 48 and the output 94 is con­
nected as one of the inputs to the node circuit 38. Other
node circuit elements are similarly connected. It is ob­
served with reference to FIGS. 2 and 3 that the tree
structure shown in FIG. 2 is implemented in one-to-one
correspondence in the node circuit structure 71 of the
module 70.

The node circuits 42, 44, 46, 48, 50, 58, 60 and 62
which have only one input can be implemented by re-

7
4,853,696

8
placing the two-input NOR-gate in the logic cell of sion rates far exceeding the currently achievable encod-
FIG. 4 by an inverter or by using the unit of FIG. 4 with ing rates in software, or the rates that can be obtained
one of the two inputs to the NOR-gate being grounded by previously proposed hardware schemes (about 1 to 2
(set to constant ''O"). million characters/second).

The compressed data output encoded into Huffman 5 It should be noted that the critical delay which deter-
code by the compression module circuit 70 is taken in mines the clock speed is the delay within the decoder
serial form from the node circuit network 71 by means 72. To minimize this delay, the decoder 72 can be bro-
of a plurality of input connections to an OR-gate 96 ken into a pipeline with the number of stages in the pipe
(FIG. 3). The OR-gate 96 has inputs 98, 100, 102, 104 equal to the minimal path depth in the reverse binary
and 106 connected to branches of the tree that corre- 10 tree 71. The decoding of a new symbol can proceed in
spond to l's in the reverse binary tree of FIG. 2. Thus, parallel with the traversal of the token (the result of
for the exemplary Huffman code of Table l, inputs 98, decoding the previous symbol) up the tree 71. If the
100, 102, 104 and 106 to the OR-gate 96 come from token traverses a path whose length is larger that the
outputs of the node circuits 38, 50, 48, 62 and 52, respec- minimal depth in the tree 71, the decoder 72 output can
tively. 15 be stored in latches within the decoder 72 and delivered

In operation, the serial compression module 70 re- to the beginning node of the logic path of tree 71, in
ceives input characters in BCD or other specified bi- coincidence with the emergence of the token from the
nary input form from input buffer 74. The size of buffer root node 40. This will improve the average speed of
74 depends on the encoding scheme to be compressed operation of the decoder 72 since the minimum path
and on the average number of such characters or sym- 20 length corresponds to the most frequently occurring
bols to be received per unit of time. It is suitable for the characters. ·
size of the buffer to equal the maximum length of the A modified implementation of the circuit of FIG. 3 is
path in the binary tree 71. At the start of the compres- shown in FIGS. 5-14 by an example Huffman compres-
sion operation and at the conclusion of the compression sor chip HC7 which has serially delivered output and
of each character, a new character or symbol is latched 25 includes the improved speed decoder staging. The im-
into the symbol register 76 for input to the decoder 72. plementation is in accordance with the Huffman tree of
Decoder 72 decodes the signal received at register 76 FIG. 1 for seven alphanumeric characters. FIG. 5
and sends a signal or token to its appropriate output shows the external functional interface of the chip 170.
terminal A-G, as input to the path of the node logic The chip 170 has three data input lines for designating
network 71 that corresponds to the generation of the 30 the binary input representation of one of the seven char-
Huffman code for that character. The token traverses acters. An output code line 0, a feedback signal line X
up to the root node 40 in response to sequential two- for delivering the signal from the root of the tree, an
phase clocking, generating the compressed Huffman initialization signal line I, a start signal line S, two clock
equivalent output code one bit at a time, as it moves up output signal lines <1>1 and <f>2, and power (Vdd) and
the path. The process is then repeated for the next sym- 35 ground (GND) input lines.
bol. The two major components of the chip 170 are a 3:7

A byte corresponding to the letter D latched at the decoder 172 corresponding to the decoder 72 of FIG. 3,
symbol register 76 will, for example, produce a "l" at and a logic tree 171 corresponding to the logic tree 71 of
the output terminal D of the decoder 72. This will serve FIG. 3. To maximize the clock speed by minimizing the
as an input to the node circuit 36 whose output at the 40 delay in the decoder, the decoder 172 is broken into a
first clock pulse will be "l". The "l" output of the two-stage pipeline, two steps being the minimal path
element 36 will then be set as an input to the node cir- depth in the reverse binary tree 171. The decoder 172
cuit 38, whose first clock pulse output will be "O" and outputs are stored into a string of seven recirculating
whose second clock pulse output will thus be "l". latches 175, only one of which stores a 'l' correspond-
Therefore, the input 98 to the OR-gate 96 will first be a 45 ing to the input symbol at any one time. As the token
"0" and then "1". Because the decoder 72-has-placed a emerges out of the root of the tree 171, it is fed back to
"l" only on the output terminal D (with output termi- transfer the information waiting in the latches 175, to
nals A, B, C, E, F and G being "O") the inputs 100, 102, the starting nodes of the various logic paths of the tree
104 and 106 to the OR-gate 96 will be "0" at both the 171. At the same time, the signal initiates the decoding
first and second clock pulses. The output code gener- 50 of the next symbol taken from input buffer 74 (not in-
ated at the output 108 of the OR-gate 96 (and, thus, the eluded in the chip). The two-stage pipelining scheme
output of module 70) will be a "O" followed by a "l". insures that one code bit will be generated for each
This is the compressed code for the letter D set forth in stage delay of the decoder 172. The decoder 172 output
Table 1. for the next symbol will always be ready in the latches

The third clock pulse will generat~ a "l" at the out- 55 175, when the last bit of the current symbol has been
put of the root node circuit 40 which is connected as an generated. This pipelining scheme will thus double the
input to the OR-gate 78. When this occurs, the next otherwise available maximum clock rate. The same
character will be advanced for decoding. In this way, principle can be easily extended to a much more ex-
variable length output codes can be generated sequen- panded Huffman tree. For example, for a design of the
tially without delay even though the input characters 60 Huffman tree 171 for an input ASCII code, with a mini-
are the same length. Because the logic for a stage of the mum code word depth equal to 4 bits, an 8-bit decoder
tree 71 is simply a shift register stage, the maximum would be substituted for decoder 172 which must be
compression rate will be determined by the speed of designed in four pipelined stages.
propagation of the token up the tree. With current tech- Another important consideration is the initialization
nology, this could be in the range of 20-40 Mhz. Thus, 65 that is required before every phase of encoding. Since
an average length of the code word of 4 bits (compres- the output of the root cell is used as a feedback signal, it
sion ratio of 50%) will yield a compression rate of 5 to must be low whenever a token is not passing through
10 million characters/second. This represents compres- the root. This can be done by initially placing a "O" on

9
4,853,696

10
every path of the tree 171 and also by inserting "O"s at with one bit evecy clock cycle once a compression
the bottom of the tree 171, whenever the feedback sig- phase is started.
nal is low (when the feedback signal is high, the de- The output circuit to produce the code with one bit
coded output from the latches is placed on the first of encoded information every clock cycle, as given in
nodes of the tree). If no initialization is done, the feed- 5 FIG. 14, comprises gates 214 and 216 joined to serially
back signal becomes "undefined" and prevents the plac- connected inverters 218 in shift register configuration.
ing of a new token at the starting nodes or the reading The node circuit connections that correspond to the
of a new character in for decoding. In the implementa- branches of the tree of FIG. 2 that are labeled "l" are
tion of FIGS. 5-14, two external input signals are pro- fed to the input of the output circuitat switch connec-
vided: "I" for initialization purposes and "S" for start- 10 tions Bl-BS. The circuit generates a "O" during each
ing an encoding phase. The start signal is used to re- clock cycle except when a token passes through one of
ceive the first character in the symbol register 176 so those branches in the tree. A precharge circuit is used as
that it can be decoded. shown in FIG. 14, with the output circuit input con-

A suitable design for a basic decoder cell is shown in nected to ground when any of branch lines Bl-BS is
FIG. 7. During the first cf>1 phase the character is loaded 15 energized.
into the symbol register 176, and during the last cf>2 Further improvement in speed is achievable if the bits
phase the decoded output is captured in the recirculat- of the code word are produced in parallel, rather than in
ing latches 17S. The decoding is done between these serial fashion. FIG. lS shows a further modified em-
two phases by NOR-gates 180 and inverters 182 con- bodiment 110 of the compression module 70 of FIG. 3.
nected as shown. 20 The module 110 provides parallel code word generation

A suitable design for the basic recirculating latch cell by modifying the hardware of FIG. 3 in the following
17S is given in FIG. 8. Seven of these cells are used to respects: first, a set of "dummy" nodes 112, 114, 116,
store the decoder 172, output until the previous token 118, 120, 122 and 124 are added so that the length of
passes through the root and allows the latched data to

25
ea?h ~ath fr~m leaf (output of dec°<l:er 72) to t~e root

be placed on the starting leaf or intermediate nodes. The (circuit 40) is the sa~e. (For ease m companng the
cell 17S comprises gates 184, 186 and inverts 188 con- stru~ture. of FIG. lS with !hat of FIG;,~;, dummy nodes
nected as shown. Once the feedback signal X goes high, are ident1fie~ by the. astensk symbol .) Second, the
it initiates the decoding of the next character and, since output associa~ed with. traversal of an edge due t? a
the decoding process of the example takes two cycles dummy node is recognized to be undefined. Practical
the same feedback signal is delayed by two cycles (delx) 30 implementation o~ ~his means that the output a~ each
and is used to activate the transmission gate that allows level h:i-8 to be spht mto to outputs, 01 and 02, with the
the decoded output to be latched into the string of following meaning:
latches 176. The data is refreshed through recirculation
whenever new data is not being latched in. 35

The circuit diagram for a leaf cell in the modified
structure of FIG. 6 is given in FIG. 9. The input to the
leaf cell comes from the recirculating latches 17S which
is controlled by the feedback signal X. Each leaf cell
consists of two inverters 190, separated by a transmis- 40
sion gate 192 controlled by the phase cf>2 clock signal.
Initiation is achieved through application of an "ibar"
signal (inverse of initiation signal) as indicated. The
modified structure 171 of FIG. 6 has three types of
internal node cells which are referred to as "icells," 45
"tcells" and "hcells." (FIGS. 10-12). The structure of
the icell is given in FIG. 10 and is a shift register stage
made up of inverters 194 and gates 196 and 198 con­
nected as shown, with the "ibar" signal to force the
output of the node to "0" during the initialization. The 50
tcell is given in FIG. 11 and has two inputs applied
through gates 200 that are latched by a NOR-gate 202
during the cf>1 phase. The output of NOR-gate 202 is
passed through transmission gate 204 and inverted by
inverter 206 during the next cf>2 phase, so that the overall 55
function of the cell is the OR-ing of the inputs. The bcell
is given in FIG. 12 and has a non-uniform structure,
with one of the inputs going through only the cf>2 phase
and the other input passing through both the cf>1 and cf>2
phases. The logical function of the bcell circuit is the 60
same as that of the tcell and its structure is similar,
except that one transmission gate 200 is missing and
inverters 208 are added. The function of the root cell,
shown in FIG. 13, is to again OR its two inputs by use
of serially connected NOR-gate 210 and inverter 212. 65
The root cell (FIG. 13) has no clocks since no cycles are
to be inserted in between codes. In other words, it is
desirable to generate the code in a continuous fashion

Output 01

0
1
1
0

Output 02

1
1
0
0

Output

0
1

Undefined
Undefined

Implementation of this scheme is shown schematically
in FIG. lS by junction points which connect the outputs
of all elements (e.g. elements 44, 46, 112, 114, 116, 118
and 120 of the first clock step level) to deliver signals to
output Oi. while only the connecting outputs of the
non-dummy node elements (e.g. elements 44 and 46 at
the first level) to deliver signals to output 02. Appropri­
ate OR-gate, diode or other means (not shown) must, of
course, be provided to isolate the separate paths from
each other in making the output connections.

The output 02 at each level (except the root level) is
connected as an input to toggle a counter associated
with each level. Counter 126 associated with level 1 is
toggled by the output 02 of the first level of node circuit
units, and counters 128, 130 and 132 are toggled by the
outputs of the second, third and fourth levels of node
circuits, respectively. The counters 126-132 are con­
nected in pipelined fashioned such that at each clock
pulse, the count value of the Ith level is shifted to the
counter associated with the (I+ 1)th level. The levels are
numbered upwards from leaves to root; the root having
the maximum level and the leaves having the level I= 1.

The output circuitry of FIG. 3 is also modified in the
module 110 of FIG. lS by replacing the output bus of
FIG. 3 with a "triangle" of delay elements, such as
simple shift register stages 134. The number of shift
registers 134 provided at each level is taken to ensure
that the 01 outputs from each level reach the same

11
4,853,696

12
destination at the same time (i.e. in parallel). Thus, for
the four level node circuit structure of the example
shown in FIG. 15, the first level 01 will pass through
four registers 134, the second level will pass through
three registers 134, the third level will pass through two 5
registers 134 and the fourth level will pass through one
register 134. The counters 126-132 function to identify
the code length. The number of shift registers 134 at the
first level corresponds to the number of counters (i.e.
number of levels), so that the code for each symbol 10
compressed and the length of the code (CL) are ob­
tained in parallel at each clock cycle. The variable
length output code for the input character is obtained
by extracting CL number of bits from a code buffer
register (CBR) 136 which is connected to receive the 15
outputs from the last shift register 134 at each level.·The
extraction process can be performed, for example, by a
conventional memory management unit (MMU) 138
(FIG. 15).

With the parallel processing scheme shown in FIG. 20
15, a code word is generated at every clock pulse (after
some initial delay at startup) and, thus, a new character
received at register 76 is compressed at each clock
pulse. The size of the buffer 74 must accordingly be
expanded to accommodate this increase in traffic. The 25
clock speed will be determined not only by the inherent
delay in each processing node, but also by the overhead
delay in the MMU. The expected speed will still far
exceed the maximum rates at which data can be read
from current or currently contemplated high speed 30
disks and other secondary storage devices.

Code converting hardware for implementing the
code conversion from the Huffman code back to the
BCD or other code is shown in FIG. 16. As shown in
FIG. 16, the interconnection of the node circuit net- 35
work is similarly derived from the reverse binary tree of
FIG. 2, except that inputs to the node circuits 40'
through 62' of the decompression module 140 now
correspond to the outputs of the node circuits 40
through 62 of the compression module 70, and the out- 40
puts of the nodes of module 140 correspond to the in­
puts of the nodes of module 70. The decoder 72 of FIG.
3 is replaced by an encoder 72' of conventional design
to perform the reverse of the function of the decoder 72.
Each node of the node circuit tree is implemented by a 45
logic unit or cell 142, such as shown in FIG. 17. The
input port 94' of unit 142 is connected by means of
switches 144 responsive to clock pulse signals 4>1 as an
input to inverters 146. The output of one inverter 146 is
connected to the input of an inverter 148 by means of a 50
switch 150 which is, responsive to the qualified clock
pulse signals code·lf>2. The output of the other inverter
146 is connected to the input of an inverter 152 by
means of a switch 154 which is responsive to the inverse
of qualified clock pulse signals code·4>2 formed by an 55
inverter 156. The outputs of the inverters 148 and 152
are the outputs 88' and 86' of the logic circuit cell 142.

A code buffer 162 acts as a receiver of the code to be
decompressed (in this example, the Huffman code),
where it is latched fo each decompression cycle and 60
summed one bit at a time in AND-gate 64 with sequen­
tial clock pulse signals 4>2 to control the switches 150
and 154 of the node logic circuit cells 142.

The node circuits 42', 44', 46', 48', 50' and 52' which
correspond to nodes marked by characters in the re- 65
verse binary tree of FIG. 2 are connected to a respec­
tive one of the terminals A through G of the encoder 72'
and also to the gate connection of a switch 158, so that

a "l" delivered at any of those node circuit outputs will
connect the input of an inverter 160 to ground (i.e. low
state "0"). The output of inverter 160 is connected as an
input to OR-gate 78' which will deliver a "1" in re­
sponse to receipt of a "O" at the input of the inverter
160. This will occur at the completion of each decoding
of a Huffman code by the node tree network, and send
a new pulse to the root node 40'. The OR-gate 78' is also
connected to receive a "l" input at the start of the
decompression phase operation.

At the beginning of the decompression operation, a
"start" pulse is applied at the root 40' of the tree. This
pulse traverses down the tree controlled by the sequen­
tially applied bits of the "code" input latched in the
buffer 162. If the code bit is "1 ", the pulse traverses the
node network path portion labeled "1." If the code bit
is "O", it traverses the portion labeled "0." If the pulse
emerges out of a node labeled by a symbol, it initiates
the encoding operation of the encoder 72' of conven­
tional design, such as a ROM look-up table encoder.
The encoder 72' creates the standard decompressed
BCD or other code for subsequent usage elsewhere.
The emergence of a pulse from one of the node circuits
labeled by a character will ground the input to the
inverter 160 to initiate the injection of the next pulse at
the root 40' of the tree. The ROM access time will be
the determining critical delay in the loop and will deter­
mine the speed at which code bits can be pumped into
the device. With 25 nanosecond access time and 4 bits/­
character, the decompression rate will be in the neigh­
borhood of 10 million characters/second.

It is thus seen, with reference to the described em­
bodiments, that the present invention provides a code
converter for use in general data compression and de­
compression operations that offers speeds of data com­
pression and decompression heretofore unachievable.
The apparatus made available by this invention has
wide application, not only throughout the data process­
ing industry, but also in communications, industrial
process control and other industries. In the communica­
tions industry, for instance, a compression module simi- .
lar to module 70 at one end of a communications link
(viz. satellite link) and a decompression module similar
to module 140 at the other end can result in significant
reduction in transmitted time, and thus significant sav­
ings in cost.

It will be appreciated that while the examples above
deal with the conversion between information coded in
uniform length binary-coded decimal (BCD) and vari­
able length Huffman-type coding, the same modules are
useful for conversion of other types of coding, the inter­
face with the former being provided by a decoder 72 or
encoder 72' which can be replaced by other similar
circuitry for other types of codes, such as multi-group
codes, and the latter being determined by the node
circuit network layout which can be restructured in
accordance with other configurations for binary trees of
which those shown in FIGS. 1 and 2 are just examples.
Likewise, it will be appreciated that the logic circuit
units used for the nodes of the node networks in mod­
ules 70, 170, 70' and 140 can be replaced by equivalent
or other logic units according to individual preferences
and availability. Those skilled in the technology to
which the invention relates will realize that various
other substitutions and modifications may be made in
the examples described, without departing from the
spirit and scope of the invention as described in the
following claims.

13
4,853,696

14
I claim: stages, the number of stages being equal to the smallest
1. A code converter for converting binary signal number of logic circuit elements along a path between

representations of characters between representations said other node positions and said root node position,
of said character in a first coding scheme and represen- not including said root node position element; and fur-
tations of said characters in a second variable-length 5 ther comprising means positioned between said decoder
coding scheme, comprising: and said logic network for latching said input means

a logic network comprising a plurality oflogic circuit electrical signals prior to passing the same for process-
elements connected together in reverse binary tree- ing, when previously passed input means electrical sig-
like fashion to form a plurality of logic paths ex- nals have been passed for processing along a logic path
tending between an element in a common root 10 having greater than said smallest number of elements.
node position and elements in other node positions 8. A code converter as in claim 1, for conversion
which corresponds to different ones of said plural- from binary signal representations in said first coding
ity of characters; scheme to binary signal representations in said second

input means for passing electrical signals for process- coding scheme, wherein said input means comprises a
ing by said elements along said logic paths in accor- 15 decoder having an input and a plurality of output termi-
dance with a character signal representation in one nals, with each output terminal connected to a respec-
of the first and second coding means, said input tive one of said plurality of logic paths; wherein said
means comprising a decoder having an input and a network further comprises a plurality of dummy logic
plurality of output terminals, with each output circuit elements connected to said plurality of logic
terminal connected to a respective one of said ele- 20 circuit elements to provide an equal number of logic
ments in said other node positions; steps for each path from said connection to said output

output means for receiving electrical signals from terminal to said element in said common root node
said logic elements along said logic paths in the position; and said output means comprises means for
form of representation of the character in the other simultaneously receiving sequential output signals pro-
of said first and second coding schemes, said output 25 duced by said logic circuit elements and dummy logic
means comprising means for receiving output sig- circuit elements after each logic step in response to
nals from said connections between elements along clocked progression of an electric signal pulse from one
said logic paths that correspond to "l" branches of of said decoder output terminals toward the root node
a reverse binary tree corresponding to said logic position along the corresponding logic path, and means
network; and 30 for distinguishing output signals produced by said

a buffer for storing one of said sequence of character dummy logic circuit elements.
· representations in said first coding scheme prior to 9. A code converter as in claim 8, wherein said means

conversion, and means responsive to completion of for simultaneously receiving sequential output signals
the conversion of another of said sequence of char- comprises a buffer and a plurality of shift registers, said
acter representations for transferring said one of 35 buffer having plurality of bit positions, each connected
said sequence of character representations to said through one or more of said shift registers to receive the
decoder input for conversion. sequential output signal for a different logic step from

2. A code converter as in claim 1, wherein said output said decoder output tern)inals to said root node position;
means comprises an OR-gate with its input connected to and said means for distinguishing output signals pro-
receive said "1" branch output signals. 40 duced by said dummy logic circuit elements comprises

3. A code converter as in claim 1, wherein said de- a plurality of serially connected counters for counting
coder acts to place an electronic signal pulse at an input non-dummy logic circuit element output signals and a
to the element in the other node position which corre- memory management unit responsive to the output of
sponds to the character whose binary representation is said counters for disregarding the bit positions in said
to be converted, and wherein said one character trans- 45 buffer that correspond to dummy logic circuit element
ferring means comprises means responsive to arrival of output signals.
said electronic signal pulse at the output of said element 10. A code converter as in claim 1, for conversion
in said common root node position. from binary signal representations in said second coding

4. A code converter as in claim 3, wherein said one scheme to binary signal representations in said first
character transferring means comprises an OR-gate 50 coding scheme, wherein said input means comprises
connected to receive one input from said element in said means for qualifying clocking of said logic circuit ele-
common root node position and another input respon- ments along said plurality of logic paths in accordance
sive to start of the conversion operation, and whose with the second coding scheme representation.
output is connected to control the transfer of said one of 11. A code converter as in claim 10, wherein said
said sequence of characters from said buffer to said 55 input means comprises a buffer into which said code to
decoder input. be converted is received, and AND-gate means for

5. A code converter as in claim 1, wherein said plural- applying the coincidence of sequential bits of said buff-
ity of logic circuit elements comprises a plurality of ered code with a clock pulse for clocking said elements.
logic circuit cells, each including a NAND gate con- 12. A code converter as in claim 10, wherein said
nected in series with an inverter. 60 output means comprises an encoder having a plurality

6. A code converter as in claim 5, wherein an input is of input terminals, each input terminal connected to the
connected to the NAND gate by means of a clocking output of one of said elements in said other node posi-
switch responsive to a timing signal of a first phase, and tions, for producing the first coding scheme representa-
wherein the output of the NAND gate is connected as tion of the character to which said one of said other
an input to the inverter through a clocking switch re- 65 node positions corresponds, upon receipt of a signal at
sponsive to a timing signal of a second phase. the connected input terminal.

7. A code converter as in claim 3, wherein said de- 13. A code converter as in claim 12, wherein said
coder comprises a pipeline decoder having a plurality of encoder comprises a ROM look-up table encoder.

15
4,853,696

16
14. A code converter as in claim 11, for converting a

sequence of character representations in said second
coding scheme to representations in said first coding
scheme, further comprising means, responsive to re­
ceipt of an electrical signal at the output of a logic cir- 5

cuit element in one of said other node positions for
initiating an electrical signal pulse at an input to said
element in said common root node position.

15. A code converter as in claim 11, wherein said 10
plurality of logic circuit elements comprises a plurality
oflogic circuit cells, each including a first pair of invert­
ers connected in series by means of a clocking switch
selectively activated by said code bit-clock pulse coinci­
dence, and a second pair of inverters connected in series 15
by means of a clocking switch selectively activated by
the inverse of said code bit-clock pulse coincidence.

16. Apparatus for providing a binary code according
to a variable-length coding scheme, for each of a plural-
ity of characters, comprising: 20

input circuitry having a plurality of terminals, each
representing a different one of said characters, and
means for selectively energizing one of said termi-
nals; 25

a plurality of logic paths, each comprising a predeter­
mined number of clocked logic circuits and each
connected at one end to a respective one of said
terminals and at the other end to a common node;

means for sequentially clocking said logic circuits; 30
and

means responsive to said sequential clocking, con­
necting each path in a unique way, for producing a
sequence of binary data bits for each of said termi-
nals energized. 35

17. Apparatus as in claim 16, wherein said logic paths
and logic circuits are interconnected in one-to-one cor­
respondence with the interconnections of nodes of a
reverse binary tree representation of the variable-length 40
coding scheme; and said means for producing binary
data bits comprises means for receiving signals from the
interconnections between said logic circuits that corre­
spond to "l" branches of said tree representation.

18. Apparatus as in claim 17, further comprising 45
means, connecting said common node to said input
circuitry, for causing said input circuitry to energize

so

55

60

65

one of said terminals in response to receipt of a signal at
said common node from one of said paths.

19. Apparatus as in claim 16, wherein said input cir­
cuitry comprises a pipeline decoder having a plurality
of stages, the number of stages being equal to the least
number of clocked logic circuits along any one of said
logic paths; and further comprising means positioned
between said terminals and said logic paths for latching
current selective energization of one of said terminals,
when previous selective energization was of a terminal
connected to a path having greater than said least num­
ber of clocked logic circuits.

20. Apparatus as in claim 16, wherein said logic paths
and logic circuits are interconnected in one-to-one cor­
respondence with the interconnections of nodes of a
reverse binary tree representation of the variable-length
coding scheme with additional nodes added at the leaf
ends of said paths of said tree representation so that all
paths have an equal number of nodes; and said means
for producing binary data bits comprises means for
simultaneously receiving signals from the interconnec­
tions between said logic circuits at each node step along
said paths, and means for distinguishing signals received
from said logic circuit interconnections corresponding
to said additional nodes.

21. Apparatus for providing a different output signal
for each of a plurality of binary representations of a
plurality of characters according to a variable-length
coding scheme, comprising:

a plurality of output terminals;
a plurality of logic paths, each comprising a predeter­

mined number of clocked logic circuits and each
connected at one end to a common node and at the
other end to a respective one of said terminal;

means for selectively sequentially clocking said logic
circuits according to a sequence of bits in the bi­
nary code representation of one of the characters,
so that a binary signal coupled to said common
node propagates along said paths to energize a
different one of said output terminals for each of
said binary code representations.

22. Apparatus as in claim 21, further comprising
means, connecting said output terminals to said com­
mon node, for causing a binary signal to be applied to
said common node in response to energization of one of
said output terminals.

• • • • •

	Code Converter for Data Compression/ Decompression
	Recommended Citation

	USA104853696

