
Sadhana, Vol. 21, Part 1, February 1996, pp. 91-99. © Printed in India.

Code design using deterministic annealing

BINOY JOSEPH and ANAMITRA M A K U R

Department of Electrical Communication Engineering, Indian Institute of
Science, Bangalore 560 012, India

Abstract. We address the problem of designing codes for specific applica-
tions using deterministic annealing. Designing a block code over any finite
dimensional space may be thought of as forming the corresponding number of
clusters over the particular dimensional space. We have shown that the total
distortion incurred in encoding a training set is related to the probability of
correct reception over a symmetric channel. While conventional deterministic
annealing make use of the Euclidean squared error distance measure, we have
developed an algorithm that can be used for clustering with Hamming distance
as the distance measure, which is required in the error correcting scenario.

Keywords. Error correcting code; Hamming distance; deterministic anneal-
ing.

1. Introduction

One property of error correcting codes that do not incorporate memory is that it should
have the region around each of the codewords as large as possible, so that a larger number
of errors can be corrected. Figure 1 shows a geometrical view of some codewords with the
corresponding non-overlapping regions, where points denote possible received vectors. At
the same time we would also like to have the number of codewords in the codebook as
large as possible, so that more input messages can be encoded using the code. The above
two requirements are obviously contradictory in nature. The codewords used are vectors
of a particular dimension over some alphabet q. If there exists a Galois field over q (i.e. if
q is a prime or a prime power) then efficient families of codes are known which make use
of polynomial arithmetic, and strict upper bounds to the number of possible codewords
exist. For q's where we do not have a Galois field we do not know many codes there are
and the maximum number of codewords that we can have is also unknown.

A possible method to form error correcting codes over non-prime q's would be to make
use of some sort of clustering algorithms and pick out the codewords as the cluster centres.
Efforts to make use of clustering for designing codes can be found in E1 Gammal et al

(1987). Figure 1 may also he viewed as the outcome of a clustering algorithm, showing
some clusters, cluster centres, and input data points. In the case of designing a code our
input data is going to be the set containing all possible q - a r y n-tuples. While designing
codes, our objective would be to form homogeneous clusters of the required size over

91

92 Binoy Joseph and Anamitra Makur

Figure 1. Geometrical view of a
code/cluster.

q - a r y n-tuples, such that a code with a given rate performs the best (for some channel).
Clustering algorithms usually minimize the total distortion (average distortion) incurred
if the representative vectors were used to encode the given data. It will be shown in the
next section that if the distance measure used is the Hamming distance then the above two
objectives are equivalent.

For example, consider the binary [7,4] Hamming code. If we look at it geometrically
we see that it consists of 16 codewords which may be considered as the representative
vectors of 16 different clusters. Each cluster consists of eight binary 7-tuples which are
at a Hamming distance of 0 or 1 from the respective codewords. The clusters are non-
overlapping and hence any single error can be corrected at the receiver. The distortion
turns out to be a minimum if we use the Hamming code to encode all possible binary
7-tuples. If any other 16 vectors are used for this purpose, it would give a higher total
distortion. Thus a direct relationship exists between minimum distortion clustering and
code design, and we see that codes may be designed using the same philosophy as used
for generating clusters from a given set of input data.

Many of the clustering algorithms use real arithmetic in forming the clusters. If we use
algorithms which use real arithmetic for code design, then we will have to translate them
back to the finite alphabet. Generally, for non-binary cases this will not be easy as there
exists no simple relationship between the distance measure in real arithmetic and that in
the finite alphabet. So we need some algorithm which can do clustering in a finite alphabet
with Hamming distance as the distance measure.

2. Performance analysis of codes designed using clustering

We show that there exists a direct relationship between the total Hamming distortion
incurred if the codewords were used for encoding the particular dimensional space to
which they belong and the probability of error while decoding at the receiver. Transmission
over a q-ary symmetric channel is assumed. To do so, consider the following example.
Let co, c l , . - . , CN-l be the N codewords in the code and let so, s l , . . - , SN-i be the
corresponding clusters. By clusters about a set of points in a space, we mean the partitioning
of the space according to the nearest neighbour rule. Now define

d(si, ci) = Z dH(Xj, Ci) (1)
xj~si

Code design using deterministic annealing 93

where dH (X j, Ci) is the Hamming distance between any two vectors xj and ci. The set of
all possible received vectors consists of all possible q - a r y n-tuples. Let

N - 1

Dtot : ~ d(si, ci) (2)
i = 0

be the total distortion incurred if the set of codewords were used for encoding the space of
all possible received vectors. Let r be the received vector when ci is transmitted. If r ~ si
i.e., if r belongs to the cluster around ci, then there is no error, else an error occurs while
decoding. Now,

Pi (r is decoded correctly) = P (r E si)

= Z P(r[ci)
r ES i

= Z pdelt(ci'r)(1 -- pe)n-dlt(ci'r)
r E$ i

r~Esi(Pe ~dH(ci,r)
= (1 - pe) n . \ 1 - Pe] (3)

where Pe is the probability that a bit would be in error for a binary symmetric channel and
P (rlci) is the conditional probability that r is received given that ci was transmitted. Now
probability of no error is given by

1 N - 1
= ~ Pi (r is decoded correctly) Pcorr -N i=

i = 0 rEsi • 1 - P e]
__ n (p e ~ J

(l ~pe)n Z b J \l_---~e]
j=O

- - (l - -~pe)nB(1 P~epe) (4,

with the assumption that all N codewords are equiprobable, where n is the codelength and

B(p) = bop ° + blp I + . . . + bnp n. (5)

Here

N-I
b j = ~ , Z 1

i = 0 rE$i ,dH(r, ci) = j
--I{r " r E si and dH(r, ci) = J}l (6)

i.e., bj's are the number of received vectors that are at a distance of j from a particular
codeword ci and fall within the cluster si. Hence performance of the code is given exactly
by (8) and assuming that Pe < < 1 it can be approximated as

1 0 1 2
Pcorr ~" ~(bOPe + blPe + b2Pe + " " + bnp n)

1
: ~ B(pe). (7)

94 Binoy Joseph and Anamitra Makur

Now, the total distortion (Otot) incurred if the codewords were to be used for encoding all
possible received vectors is given by

Dtot = 0 b 0 q- lbl + 2b2 + -'" + nbn
d

= --~pB(p)lp=l. (8/

From the above two equations for Otot and ecorr it is clear that there exists a relationship
between the total distortion and the probability of error.

Consider again the example of the binary [7,4] Hamming code. Here we have N = 16,
b0 = 16 (16 vectors have a distance 0 from some codeword), bl = 112 (remaining vectors
have a distance 1 from some codeword) and b2 b7 = 0. Hence from (8) we find
that Dtot = 112. Also ecorr = (1 - pe) 7 + 7(1 - pe)6pe which is the same as the one
that we obtain from (4).

In general the bj's are very difficult to obtain analytically and hence the analysis of
codes designed for specific purposes is not very easy. The maximum value that bj can
have can be calculated as

bjmax = NnCjq j (9)

where N is the number of codewords in the code. If the different bj 's for the code assume
the corresponding maximum value or zero then the performance of the code would be the
optimum. Examples for such codes are Hamming code, Golay code etc., which are perfect
codes.

3. Deterministic annealing for code design

In this paper we use Deterministic Annealing (DA) (Rose et al 1990b), a stochastic relax-
ation clustering algorithm, for code design. Attempts to use other clustering algorithms
may be found in Joseph (1994). Here we make use of an effective cost function that depends
on the control parameter/~. This cost function is then deterministically optimized at each
/~, starting from a low/~ where/~ is increased gradually. The probability that a particular
input vector x belongs to a cluster Cj is calculated by using the following equation.

/ ¢ N - i

P(x E Cj) = e -13Ex(j, / k~= 0 e-/3Ex(k) (10)

where Ex (j) is the cost incurred if vector x is associated with cluster j . The cost function
generally used is the Euclidean squared error distance.

3.1 Annealing schedule

The performance of the deterministic annealing algorithm has been studied to begin with,
in order to gain insight into its working. It is used for obtaining 16 codewords in binary 7
dimensional space with squared error cost function and real arithmetic. While simulating
the algorithm we used different numerical representations of the two binary symbols.
Table 1 gives the results for the various cases. The table shows that as the numeric value
increases the algorithm converges faster. Figure 2 shows the history of a single run of the
deterministic annealing algorithm where we have plotted the number of iterations versus
the 15 value. The graph shows regions of low activity and very high activity in terms of

Code design using deterministic annealing 95

Table 1. Performance of deterministic annealing
with different numeric values for the binary symbols.

Binary symbols /3 value above
represented as which the code Initial/~

is optimum

0, 1 4.510
1, - 1 0.796
2, - 2 0.189
3, - 3 0.0911
4, - 4 0.042

10 -4

number of iterations, which indirectly describes the stage the algorithm passes through. A
large increase in the number of iterations at a particular/3 stage implies that the codewords
are being split. Once this happens it takes some time for them to separate out and hence
increased activity is observed immediately after the codewords split. The algorithm was
terminated once/~ becomes greater than 5.

The fl schedule suggested by Rose et al (1990b) was that of 10% increment between
successive/~ stages. It turns out that if the algorithm were to converge, then the factor by
which/3 is increased should decrease with]3. A linear/~ schedule has this property and it
was observed that if we use such a schedule then the algorithm converges better. This may
be intuitively explained as follows. To start with, the code consists of only a single distinct
code~word. As fl increases this codeword splits into two or more codewords at appropriate
values of fl and they separate out (Rose et al 1990a). As the annealing schedule used for

0

0

Z

45

4oi
35

30

25

20

15

10

5

0;
, /

I
i 5

beta

Figure 2. Number of iterations versus fl for a single run of DA.

96 Binoy Joseph and Anamitra Makur

/3 is increasing in nature, successive splits of the codewords occur at higher and higher fl
values. Hence if the/3 schedule proposed by Rose and coworkers were followed, then the
difference between successive fl stages also would be more as fl increases. The philosophy
behind the deterministic annealing algorithm is to follow the global minimum from one
/~ stage to the next assuming that the global minimum does not change much from one
fl stage to the next. If the increase in fl from one stage to the next is considerable, then
the above assumption may not hold and the algorithm may move away from the global
optimum. This is the reason for the improved performance of the algorithm with linear
schedule with small step sizes as the annealing schedule.

Also we notice from figure 2 that there is a direct relationship between the number
of iterations at a particular fl stage and the activity of the algorithm at that stage. If the
codewords are being split then the number of iterations will be correspondingly high. This
increased number of iterations allows the codewords to separate out once they split. It may
be noticed that the splitting and separating out of the codewords are dependent on/3. As our
aim has been to track the global minimum of the objective function, codewords should be
allowed to separate out immediately after the splitting, i.e., before/3 changes considerably.
This then intuitively suggests that in the neighbourhood of/~ stages where the codewords
split, increasing fl by smaller amounts would help the codewords to separate out well.
Hence, we made the/3 schedule dependent on the number of iterations at a particular
fl stage, i.e., we reduced the step size in the neighbourhood of fl where the codewords
start splitting. It was observed that the above strategy improves the convergence of the
algorithm.

3.2 Incorporating Hamming distance measure

We propose below an algorithm that can do clustering with integer arithmetic and Hamming
distance as the cost function. In the modified algorithm we replace the cluster centre
criterion for codebook updating by a method based on probability. Here we calculate the
probability, P (x ~ Ci) that an input vector x belongs to a particular cluster Ci using (2).

Then with this probability we form an array M~), 0 < i < N - 1, 0 < j <_ n - 1, 0 _<
k _< q - 1, which would then be used for codebook updating. Once we have constructed

the array M~;), we update each symbol in the different codewords by symbols having the
maximum probability. The algorithm is described below.

1. Set/3 = 0, ~max = 00.

2. Choose an arbitrary set of initial cluster centres.

3. InitializeM~) = 0 , 0 < i < N - 1 , 0 < j < n - l , 0 < k < q - 1
4. Find the probability P(x ~ Ci) that a training vector x belongs to a particular cluster

Ci using (2), with Hamming distance as the cost measure.

5. Update the probability arrays M~;) corresponding to the different symbols in the
training vector (as explained below).

6. Update the codebook with symbols having the highest probability.

7. If/3 < flmax, perturb the codebook, increase fl, go to step 3. Else stop.

Consider any particular codeword, say the ith one, in the codebook. We calculate the
probability that a training vector belongs to the particular cluster using (2) with Hamming
distance as the cost measure. After calculating the probability, we give a weightage equal to

Code design using deterministic annealing 97

this probability for the q different symbols in the input vector while updating the codebook.
We keep a probability array M!. k) where k corresponds to one of the q different symbols,
• . U (k)
i denotes the codeword index, and j is the codeword dimension index. Hence Mij has
a size of q x N x n. After calculating the probability that a training vector belongs to
a particular cluster, we update the probability array as follows. Taking q symbols to be
0 , 1 , • • •, q - 1, and n components of x to be x0, Xl, • • •, Xn-l, we have

M~;) = Z P(xECi) . (11)
x:xj=k

Once we have gone through the entire input sequence, we update the present codebook
with symbols with the highest probability in the respective positions,

n~alxM~;) 0 < i < N - 1 , 0 < j < n - I . (12) Yij

In the case of a tie we resolve it randomly. We have tried different methods while updating
the probability array. But none of them stood out as a clearcut winner.

3.3 Simulation examples

We used the algorithm for designing codes for some given M over binary 7-tuples and
ternary 4-tuples. The motivation for designing codes for some given M comes from the
following. As an example consider the ease whei'e the input set consists of 10 messages
(i.e., M = 10) and single bit error correction is desirable. One possible method would
be to use 10 codewords from binary [7,4] Hamming code for this purpose so that at the
receiver we may correct any single error. Another alternative for this would be to design
a code consisting of 10 codewords over binary 7-tuples and use it for the purpose. For
values of M where optimum code does not exist/is not known, designing a code using
the proposed algorithms might give an improved performance over the second alternative.
The improved performance is at the cost of extra computation, since there may not be any
easier way of decoding the code than minimum distance encoding at the receiver•

Table 2 shows a code C1 consisting of 10 codewords designed using the proposed
deterministic annealing algorithm for q = 2, n = 7. In table 3 we compare this code and
the code C' 1 with l0 codewords from binary [7,4] Hamming code. It may be noticed that

Table 2. Examples of codes de-
signed for specific applications.

C l C2 C3

1111101
1010000 1111110
0110010 1100101
1011110 0000110
1100100 0110001
0011001 0011100
0101110 1010010
0000111 1011001
0100001 1101011
1001011

0001
0212
1110
2121
2200
1022

98 Binoy Joseph and Anamitra Makur

Table 3. Comparison of codes CI, C'~, C2, C'-,,_ C3 and C'3 designed from corresponding
Hamming code and using DA.

bi

b0
bL
b2
b3

Tot; tl
dis'.

Code with
10 codewords

From [7,41
Hamming

code
!

CI

10
70
40
8

Designed
using
DA
C1

10
70
48
0

Code with
8 codewords

From [7,4]
Hamming

code
c"

Designed
using
DA
C2

8
56
63

1

Code with
6 codewords

From

ternary
[4,2] code

I
C 3

8
56
48
16

6
48
24
3

Designed
using
DA
C3

6
48
27
0

174 166 200 185 105 102

C1 gives less total distortion in terms of Hamming distance, when used for encoding the
binary 7-dimensional space when compared to C' l . Figure 3 gives the relative performance
of the two codes in terms of probability of error assuming a binary symmetric channel.
From the figure it can be seen that Cl performs better than C' t . This implies that we can
have improved performance if we design application specific codes.

Also shown in table 2 is a code C2 consisting of 8 codewords designed using the proposed
deterministic annealing algorithm over binary 7-dimensional space. In table 3 we compare
this code with a code C~ consisting of 8 codewords from binary [7,41 Hamming code.
Again, figure 3 compares the relative performance of the two codes in terms of probability
of error assuming a binary symmetric channel. It can be seen that C2 pertbrms better than
C~_ in terms of probability of error.

Also given in table 2 is a code C3 consisting of 6 codewords over ternary 4-dimensional
space. In table 3 we compare this code with a code C~ consisting of 6 codewords from

- I

E

I

r~

10 ,

0.95

0.9

0.85;

Cli

~ ~ C I

\
\

\ \
\ \

10

SNR in dB

C2

15 Figure 3. Performance of application
specific codes designed using DA.

Code design using deterministic annealing 99

ternary [4,2] Hamming code. Here also the code obtained from deterministic annealing
algorithm gives less distortion when used for encoding the ternary 4-dimensional space.
It implies that the code designed using the proposed algorithm performs better in terms of
probability of error.

4. Conclusion

In this paper we have developed the concept of the relationship between clustering and
code design. We have also seen the need for an algorithm that can do clustering over finite
dimensional spaces with Hamming distance as the distance measure. We have chosen
deterministic annealing, an efficient clustering algorithm with real arithmetic, for code
design. We have proposed a modification to this algorithm which enables it to do clustering
using Hamming distance as the distance measure. It was observed that the convergence of
the algorithm can be improved by using a linear annealing schedule for/3 with decreasing
step sizes at points where the codewords split. Some examples for codes designed for
specific applications have also been produced. The performance of the codes with respect
to probability of error has been compared with codes consisting of the corresponding
number of codewords from the respective Hamming code. It was observed that the codes
designed for specific applications, although having equal minimum distance, perform better
than the corresponding ad-hoc codes obtained from Hamming code.

References

El Gammal A A, Hemachandra L A, Shperling I, Wei V K 1987 Using simulated annealing to
designing good codes. IEEE Trans. Inf. Theo~ IT-33:116-123

Joseph B 1994 Clustering for designing error correcting codes. MSc (Eng.) thesis, Dept. of Elec.
Commun. Eng., Indian Institute of Science, Bangalore

Rose K, Gurewitz E, Fox G C 1990a Statistical mechanics and phase transitions in clustering.
Phys. Rev. Lett. 65:945-948

Rose K, Gurewitz E, Fox G C 1990b A deterministic annealing approach to clustering. Pattern
Recog. Lett. 2:589-594

