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Code design using deterministic annealing 
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Abstract. We address the problem of designing codes for specific applica- 
tions using deterministic annealing. Designing a block code over any finite 
dimensional space may be thought of as forming the corresponding number of 
clusters over the particular dimensional space. We have shown that the total 
distortion incurred in encoding a training set is related to the probability of 
correct reception over a symmetric channel. While conventional deterministic 
annealing make use of the Euclidean squared error distance measure, we have 
developed an algorithm that can be used for clustering with Hamming distance 
as the distance measure, which is required in the error correcting scenario. 
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1. Introduction 

One property of error correcting codes that do not incorporate memory is that it should 
have the region around each of the codewords as large as possible, so that a larger number 
of errors can be corrected. Figure 1 shows a geometrical view of some codewords with the 
corresponding non-overlapping regions, where points denote possible received vectors. At 
the same time we would also like to have the number of codewords in the codebook as 
large as possible, so that more input messages can be encoded using the code. The above 
two requirements are obviously contradictory in nature. The codewords used are vectors 
of a particular dimension over some alphabet q. If there exists a Galois field over q (i.e. if 
q is a prime or a prime power) then efficient families of codes are known which make use 
of polynomial arithmetic, and strict upper bounds to the number of possible codewords 
exist. For q's where we do not have a Galois field we do not know many codes there are 
and the maximum number of codewords that we can have is also unknown. 

A possible method to form error correcting codes over non-prime q's would be to make 
use of some sort of clustering algorithms and pick out the codewords as the cluster centres. 
Efforts to make use of clustering for designing codes can be found in E1 Gammal et al 

(1987). Figure 1 may also he viewed as the outcome of a clustering algorithm, showing 
some clusters, cluster centres, and input data points. In the case of designing a code our 
input data is going to be the set containing all possible q - a r y  n-tuples.  While designing 
codes, our objective would be to form homogeneous clusters of the required size over 
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Figure 1. Geometrical view of a 
code/cluster. 

q - a r y  n-tuples, such that a code with a given rate performs the best (for some channel). 
Clustering algorithms usually minimize the total distortion (average distortion) incurred 
if the representative vectors were used to encode the given data. It will be shown in the 
next section that if the distance measure used is the Hamming distance then the above two 
objectives are equivalent. 

For example, consider the binary [7,4] Hamming code. If we look at it geometrically 
we see that it consists of 16 codewords which may be considered as the representative 
vectors of 16 different clusters. Each cluster consists of eight binary 7-tuples which are 
at a Hamming distance of 0 or 1 from the respective codewords. The clusters are non- 
overlapping and hence any single error can be corrected at the receiver. The distortion 
turns out to be a minimum if we use the Hamming code to encode all possible binary 
7-tuples. If any other 16 vectors are used for this purpose, it would give a higher total 
distortion. Thus a direct relationship exists between minimum distortion clustering and 
code design, and we see that codes may be designed using the same philosophy as used 
for generating clusters from a given set of input data. 

Many of the clustering algorithms use real arithmetic in forming the clusters. If we use 
algorithms which use real arithmetic for code design, then we will have to translate them 
back to the finite alphabet. Generally, for non-binary cases this will not be easy as there 
exists no simple relationship between the distance measure in real arithmetic and that in 
the finite alphabet. So we need some algorithm which can do clustering in a finite alphabet 
with Hamming distance as the distance measure. 

2. Performance analysis of codes designed using clustering 

We show that there exists a direct relationship between the total Hamming distortion 
incurred if the codewords were used for encoding the particular dimensional space to 
which they belong and the probability of error while decoding at the receiver. Transmission 
over a q-ary symmetric channel is assumed. To do so, consider the following example. 
Let co, c l , . - . ,  CN-l be the N codewords in the code and let so, s l , . . - ,  SN-i be the 
corresponding clusters. By clusters about a set of points in a space, we mean the partitioning 
of the space according to the nearest neighbour rule. Now define 

d(si, ci) = Z dH(Xj, Ci) (1) 
xj~si 
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where dH (X j, Ci ) is the Hamming distance between any two vectors xj and ci. The set of 
all possible received vectors consists of all possible q - a r y  n-tuples.  Let 

N - 1  

Dtot : ~ d(si, ci) (2) 
i = 0  

be the total distortion incurred if the set of codewords were used for encoding the space of 
all possible received vectors. Let r be the received vector when ci is transmitted. If r ~ si 
i.e., if r belongs to the cluster around ci, then there is no error, else an error occurs while 
decoding. Now, 

Pi (r is decoded correctly) = P (r E si) 

= Z P(r[ci) 
r ES i 

= Z pdelt(ci'r)(1 -- pe)n-dlt(ci'r) 
r E$ i 

r~Esi( Pe ~dH(ci,r) 
= (1 - pe) n . \ 1  - Pe] (3) 

where Pe is the probability that a bit would be in error for a binary symmetric channel and 
P (rlci) is the conditional probability that r is received given that ci was transmitted. Now 
probability of no error is given by 

1 N - 1  
= ~ Pi (r is decoded correctly) Pcorr -N i= 

i = 0 rEsi  • 1 - P e  ] 
__ n ( p e ~  J 

(l ~pe)n Z b J  \l_---~e ] 
j=O 

- - ( l - -~pe)nB(1  P~epe ) (4, 

with the assumption that all N codewords are equiprobable, where n is the codelength and 

B(p) = bop ° + blp I + . . .  + bnp n. (5) 

Here 

N-I 
b j = ~ ,  Z 1 

i = 0 rE$i ,dH(r, ci) = j 
--I{r " r E si and dH(r, ci) = J}l (6) 

i.e., bj's are the number of  received vectors that are at a distance of  j from a particular 
codeword ci and fall within the cluster si. Hence performance of the code is given exactly 
by (8) and assuming that Pe < < 1 it can be approximated as 

1 0 1 2 
Pcorr ~" ~(bOPe + blPe + b2Pe + " "  + bnp n) 

1 
: ~ B(pe). (7) 
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Now, the total distortion (Otot) incurred if the codewords were to be used for encoding all 
possible received vectors is given by 

Dtot = 0 b 0  q- lbl + 2b2 + -'" + nbn 
d 

= --~pB(p)lp=l. (8/ 

From the above two equations for Otot and ecorr it is clear that there exists a relationship 
between the total distortion and the probability of error. 

Consider again the example of the binary [7,4] Hamming code. Here we have N = 16, 
b0 = 16 (16 vectors have a distance 0 from some codeword), bl = 112 (remaining vectors 
have a distance 1 from some codeword) and b2 . . . . .  b7 = 0. Hence from (8) we find 
that Dtot = 112. Also ecorr = ( 1  - pe) 7 + 7(1 - pe)6pe which is the same as the one 
that we obtain from (4). 

In general the bj's are very difficult to obtain analytically and hence the analysis of 
codes designed for specific purposes is not very easy. The maximum value that bj can 
have can be calculated as 

bjmax = NnCjq  j (9) 

where N is the number of codewords in the code. If the different bj 's  for the code assume 
the corresponding maximum value or zero then the performance of the code would be the 
optimum. Examples for such codes are Hamming code, Golay code etc., which are perfect 
codes. 

3. Deterministic annealing for code design 

In this paper we use Deterministic Annealing (DA) (Rose et al 1990b), a stochastic relax- 
ation clustering algorithm, for code design. Attempts to use other clustering algorithms 
may be found in Joseph (1994). Here we make use of an effective cost function that depends 
on the control parameter/~. This cost function is then deterministically optimized at each 
/~, starting from a low/~ where/~ is increased gradually. The probability that a particular 
input vector x belongs to a cluster Cj is calculated by using the following equation. 

/ ¢ N - i  

P(x E Cj) = e -13Ex(j, / k~= 0 e-/3Ex(k) (10) 

where Ex (j) is the cost incurred if vector x is associated with cluster j .  The cost function 
generally used is the Euclidean squared error distance. 

3.1 Annealing schedule 

The performance of the deterministic annealing algorithm has been studied to begin with, 
in order to gain insight into its working. It is used for obtaining 16 codewords in binary 7 
dimensional space with squared error cost function and real arithmetic. While simulating 
the algorithm we used different numerical representations of the two binary symbols. 
Table 1 gives the results for the various cases. The table shows that as the numeric value 
increases the algorithm converges faster. Figure 2 shows the history of  a single run of the 
deterministic annealing algorithm where we have plotted the number of  iterations versus 
the 15 value. The graph shows regions of low activity and very high activity in terms of 
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Table 1. Performance of deterministic annealing 
with different numeric values for the binary symbols. 

Binary symbols /3 value above 
represented as which the code Initial/~ 

is optimum 

0, 1 4.510 
1, - 1  0.796 
2, - 2  0.189 
3, - 3  0.0911 
4, - 4  0.042 

10 -4 

number of iterations, which indirectly describes the stage the algorithm passes through. A 
large increase in the number of iterations at a particular/3 stage implies that the codewords 
are being split. Once this happens it takes some time for them to separate out and hence 
increased activity is observed immediately after the codewords split. The algorithm was 
terminated once/~ becomes greater than 5. 

The fl schedule suggested by Rose et al (1990b) was that of 10% increment between 
successive/~ stages. It turns out that if the algorithm were to converge, then the factor by 
which/3 is increased should decrease with ]3. A linear/~ schedule has this property and it 
was observed that if we use such a schedule then the algorithm converges better. This may 
be intuitively explained as follows. To start with, the code consists of only a single distinct 
code~word. As fl increases this codeword splits into two or more codewords at appropriate 
values of fl and they separate out (Rose et al 1990a). As the annealing schedule used for 
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Figure 2. Number of iterations versus fl for a single run of DA. 
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/3 is increasing in nature, successive splits of the codewords occur at higher and higher fl 
values. Hence if the/3 schedule proposed by Rose and coworkers were followed, then the 
difference between successive fl stages also would be more as fl increases. The philosophy 
behind the deterministic annealing algorithm is to follow the global minimum from one 
/~ stage to the next assuming that the global minimum does not change much from one 
fl stage to the next. If the increase in fl from one stage to the next is considerable, then 
the above assumption may not hold and the algorithm may move away from the global 
optimum. This is the reason for the improved performance of the algorithm with linear 
schedule with small step sizes as the annealing schedule. 

Also we notice from figure 2 that there is a direct relationship between the number 
of iterations at a particular fl stage and the activity of the algorithm at that stage. If the 
codewords are being split then the number of iterations will be correspondingly high. This 
increased number of iterations allows the codewords to separate out once they split. It may 
be noticed that the splitting and separating out of the codewords are dependent on/3. As our 
aim has been to track the global minimum of the objective function, codewords should be 
allowed to separate out immediately after the splitting, i.e., before/3 changes considerably. 
This then intuitively suggests that in the neighbourhood of/~ stages where the codewords 
split, increasing fl by smaller amounts would help the codewords to separate out well. 
Hence, we made the/3 schedule dependent on the number of iterations at a particular 
fl stage, i.e., we reduced the step size in the neighbourhood of fl where the codewords 
start splitting. It was observed that the above strategy improves the convergence of the 
algorithm. 

3.2 Incorporating Hamming distance measure 

We propose below an algorithm that can do clustering with integer arithmetic and Hamming 
distance as the cost function. In the modified algorithm we replace the cluster centre 
criterion for codebook updating by a method based on probability. Here we calculate the 
probability, P (x ~ Ci) that an input vector x belongs to a particular cluster Ci using (2). 

Then with this probability we form an array M~ ), 0 < i < N - 1, 0 < j <_ n - 1, 0 _< 
k _< q - 1, which would then be used for codebook updating. Once we have constructed 

the array M~; ), we update each symbol in the different codewords by symbols having the 
maximum probability. The algorithm is described below. 

1. Set/3 = 0, ~max = 00. 

2. Choose an arbitrary set of initial cluster centres. 

3. InitializeM~ ) = 0 , 0 < i  < N - 1 , 0 < j  < n - l , 0 < k < q - 1  
4. Find the probability P(x ~ Ci) that a training vector x belongs to a particular cluster 

Ci using (2), with Hamming distance as the cost measure. 

5. Update the probability arrays M~; ) corresponding to the different symbols in the 
training vector (as explained below). 

6. Update the codebook with symbols having the highest probability. 

7. If/3 < flmax, perturb the codebook, increase fl, go to step 3. Else stop. 

Consider any particular codeword, say the ith one, in the codebook. We calculate the 
probability that a training vector belongs to the particular cluster using (2) with Hamming 
distance as the cost measure. After calculating the probability, we give a weightage equal to 
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this probability for the q different symbols in the input vector while updating the codebook. 
We keep a probability array M!. k) where k corresponds to one of the q different symbols, 
• . U . . . . .  (k) 
i denotes the codeword index, and j is the codeword dimension index. Hence Mij has 
a size of q x N x n. After calculating the probability that a training vector belongs to 
a particular cluster, we update the probability array as follows. Taking q symbols to be 
0 ,  1 ,  • • •, q - 1, and n components of x to be x0, Xl, • • •, Xn-l, we have 

M~; ) =  Z P(xECi) .  (11) 
x:xj=k 

Once we have gone through the entire input sequence, we update the present codebook 
with symbols with the highest probability in the respective positions, 

n~alxM~; ) 0 < i < N - 1 , 0 < j < n - I .  (12) Yij 

In the case of a tie we resolve it randomly. We have tried different methods while updating 
the probability array. But none of them stood out as a clearcut winner. 

3.3 Simulation examples 

We used the algorithm for designing codes for some given M over binary 7-tuples and 
ternary 4-tuples. The motivation for designing codes for some given M comes from the 
following. As an example consider the ease whei'e the input set consists of 10 messages 
(i.e., M = 10) and single bit error correction is desirable. One possible method would 
be to use 10 codewords from binary [7,4] Hamming code for this purpose so that at the 
receiver we may correct any single error. Another alternative for this would be to design 
a code consisting of 10 codewords over binary 7-tuples and use it for the purpose. For 
values of M where optimum code does not exist/is not known, designing a code using 
the proposed algorithms might give an improved performance over the second alternative. 
The improved performance is at the cost of extra computation, since there may not be any 
easier way of decoding the code than minimum distance encoding at the receiver• 

Table 2 shows a code C1 consisting of 10 codewords designed using the proposed 
deterministic annealing algorithm for q = 2, n = 7. In table 3 we compare this code and 
the code C' 1 with l0 codewords from binary [7,4] Hamming code. It may be noticed that 

Table 2. Examples of codes de- 
signed for specific applications. 

C l  C2 C3 

1111101 
1010000 1111110 
0110010 1100101 
1011110 0000110 
1100100 0110001 
0011001 0011100 
0101110 1010010 
0000111 1011001 
0100001 1101011 
1001011 

0001 
0212 
1110 
2121 
2200 
1022 
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Table 3. Comparison of codes CI, C'~, C2, C'-,,_ C3 and C'3 designed from corresponding 
Hamming code and using DA. 

bi 

b0 
bL 
b2 
b3 

Tot; tl 
dis'. 

Code with 
10 codewords 

From [7,41 
Hamming 

code 
! 

CI 

10 
70 
40 
8 

Designed 
using 
DA 
C1 

10 
70 
48 
0 

Code with 
8 codewords 

From [7,4] 
Hamming 

code 
c" 

Designed 
using 
DA 
C2 

8 
56 
63 

1 

Code with 
6 codewords 

From 

ternary 
[4,2] code 

I 
C 3 

8 
56 
48 
16 

6 
48 
24 
3 

Designed 
using 
DA 
C3 

6 
48 
27 
0 

174 166 200 185 105 102 

C1 gives less total distortion in terms of Hamming distance, when used for encoding the 
binary 7-dimensional space when compared to C' l . Figure 3 gives the relative performance 
of the two codes in terms of probability of error assuming a binary symmetric channel. 
From the figure it can be seen that Cl performs better than C' t . This implies that we can 
have improved performance if we design application specific codes. 

Also shown in table 2 is a code C2 consisting of 8 codewords designed using the proposed 
deterministic annealing algorithm over binary 7-dimensional space. In table 3 we compare 
this code with a code C~ consisting of 8 codewords from binary [7,41 Hamming code. 
Again, figure 3 compares the relative performance of the two codes in terms of probability 
of error assuming a binary symmetric channel. It can be seen that C2 pertbrms better than 
C~_ in terms of probability of error. 

Also given in table 2 is a code C3 consisting of 6 codewords over ternary 4-dimensional 
space. In table 3 we compare this code with a code C~ consisting of 6 codewords from 
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15 Figure 3. Performance of application 
specific codes designed using DA. 



Code design using deterministic annealing 99 

ternary [4,2] Hamming code. Here also the code obtained from deterministic annealing 
algorithm gives less distortion when used for encoding the ternary 4-dimensional space. 
It implies that the code designed using the proposed algorithm performs better in terms of 
probability of error. 

4. Conclusion 

In this paper we have developed the concept of the relationship between clustering and 
code design. We have also seen the need for an algorithm that can do clustering over finite 
dimensional spaces with Hamming distance as the distance measure. We have chosen 
deterministic annealing, an efficient clustering algorithm with real arithmetic, for code 
design. We have proposed a modification to this algorithm which enables it to do clustering 
using Hamming distance as the distance measure. It was observed that the convergence of 
the algorithm can be improved by using a linear annealing schedule for/3 with decreasing 
step sizes at points where the codewords split. Some examples for codes designed for 
specific applications have also been produced. The performance of the codes with respect 
to probability of error has been compared with codes consisting of the corresponding 
number of codewords from the respective Hamming code. It was observed that the codes 
designed for specific applications, although having equal minimum distance, perform better 
than the corresponding ad-hoc codes obtained from Hamming code. 
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