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C
linical decision making increasingly benefits from the sup-
plementary data afforded by modern medical imaging tech-
niques, and many non-invasive modalities are now routinely 

incorporated into patient evaluation pathways. Ophthalmology 
and retinal medicine is an exemplar specialty with an exceptionally 
high use of in-office imaging1. Some institutions report a >10-fold 
increase in the annual generation of imaging data over the last 
decade2. The most ubiquitous imaging modalities in ophthalmology 
are fundus photography and optical coherence tomography (OCT). 
First reported in 1886 but now available increasingly in primary care 
and even smartphone-based settings3, fundus photography provides 
a two-dimensional (2D) colour image typically encompassing the 
central retina, major blood vessels and optic nerve. Major appli-
cations of fundus photography include screening for two leading 
causes of global blindness in diabetic eye disease and glaucoma4–7. 
OCT, in contrast, leverages near-infrared light and interferometry 
to depict volumetric (that is, 3D) data of the retina with axial reso-
lutions of less than 10 μm (ref. 8). Many diseases of the retina have 
been redefined by its advent. Indeed, OCT-based parameters (such 
as the thickness of the central retina) are now well-established bio-
markers of disease activity and clinical trial endpoints9–12.

One form of artificial intelligence, deep learning, has demon-
strated compelling results in the imaging classification of numerous 
ophthalmic diseases13–16. Modelled on the concept of biological neu-
ral networks, deep learning employs hidden layers of nodes, whose 
collective interplay can map an output through weights derived by 
a training process from input data17. Convolutional neural networks 
(CNNs) have shown encouraging results across a range of medical 
image classification tasks18. CNNs modelled on fundus photography 
have diagnostic accuracy comparable to that of many international 

screening programmes in diabetic retinopathy (DR)13,14,19. Similarly, 
CNNs in OCT have shown performance comparable to retinal spe-
cialists with decades of experience15,16. However, the development 
of such deep learning-based models demands substantial resources, 
including (1) well-curated and labelled data in a computationally 
tractable form, (2) sufficient computer hardware, often in the form 
of expensive graphics processing units (GPUs) for model develop-
ment, and (3) deep learning expertise20.

With limited resources and concentrated artificial intelligence 
(AI) talent pools, coordinating the aforementioned requirements is 
difficult for clinical research groups, and more so for individual cli-
nicians21. One promising solution to facilitate all mentioned provi-
sions is automated machine learning (AutoML). AutoML describes 
a set of tools and techniques for streamlining model development 
by automating the selection of optimal network architectures, 
pre-processing methods and hyperparameter optimization. As these 
platforms mature, the automation of these processes may diminish 
the necessity for the programming experience required to design 
such models. A number of services offering AutoML additionally 
provide the prerequisite hardware through cloud-based GPUs or 
tensor processing units (TPUs). Some platforms offer a code-free 
deep learning (CFDL) approach, which is even more accessible to a 
clinician or researcher without coding expertise.

Previously, we reported on the feasibility of using Google Cloud 
AutoML Vision to design medical image classifiers across a range 
of modalities including chest X-ray, dermatoscopy, fundus pho-
tography and OCT. However, this exploratory study was limited 
to a single application programming interface, provided by Google 
Inc20. Since that report, the field of AutoML has matured substan-
tially, with several vendors now providing platforms for code-free 
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design of deep learning models. Here, on publicly available datas-
ets of retinal fundus photography and OCT scans, we evaluate the 
diagnostic accuracy and features of six CFDL platforms: Amazon 
Rekognition Custom Labels (Amazon), Apple Create ML (Apple), 
Clarifai Train (Clarifai), Google Cloud AutoML Vision (Google), 
MedicMind Deep Learning Training Platform (MedicMind) and 
Microsoft Azure Custom Vision (Microsoft).

Model and platform evaluation
Deep learning model performance. The mean (s.d.) F1 scores 
representing the harmonic mean of the precision and recall across 
platforms for all model–dataset pairs were as follows: Amazon, 
93.9 (5.4); Apple, 72.0 (13.6); Clarifai, 74.2 (7.1); Google, 92.0 (5.4); 
MedicMind, 90.7 (9.6); Microsoft, 88.6 (5.3) (Fig. 1).

As large datasets could not be processed by the Clarifai and 
MedicMind platforms, missing values prevented an analysis of vari-
ance (ANOVA) analysis of the F1 scores across all platforms and 
datasets. Therefore, we split our analysis into platforms that were 
able and unable to process large datasets.

When comparing platforms able to process large datas-
ets (Amazon, Apple, Google and Microsoft), post hoc two-way 
ANOVA analysis of F1 scores with Bonferroni’s multiple com-
parison correction (Supplementary Table 1) showed a significant 
difference only for Amazon versus Apple, with a mean difference 
(95% CI) of 21.9(1.3, 42.5). Post hoc analysis comparing platforms 
within each dataset (Supplementary Table 2) yielded significant dif-
ferences in F1 scores of models generated on the Kermany dataset 
of Google versus Apple 45.8(4.6, 87.0) and Amazon versus Apple 
47.2(6.0, 88.4). A platform performance comparison on small data-
sets yielded significantly poorer performance for Apple and Clarifai 
platforms.

Evaluation by platform and modality. OCT. Microsoft does not 
provide image-level results in the graphical user interface (GUI), 
so we were unable to calculate the specificity, negative predictive  
value (NPV) and accuracy of this platform, and those metrics 
were reported as not aplicable (NA). Deep learning models trained 

on the relatively smaller Waterloo OCT dataset exhibited uni-
formly high classification performance (Extended Data Fig. 1) 
with F1;(sensitivity, specificity, positive predictive value (PPV), 
accuracy) as follows: Amazon, 97.8;(97.4, 99.6, 98.2, 99.1); Apple, 
78.8;(78.8, 94.7, 78.8, 91.5); Clarifai, 79.2;(73.0, 96.5, 86.6, 90.9); 
Google, 93.8;(93.8, 98.5, 93.8, 97.5); MedicMind, 97.4;(97.4, 99.3, 
97.4, 98.9); Microsoft, 94.8;(94.8, NA, 94.8, NA) (Fig. 2). The 
MedicMind and Clarifai models were both unable to be trained on 
the much larger Kermany OCT dataset due to GUI crashes dur-
ing training and dataset upload, respectively. This was attempted 
a minimum of two times on each platform. Platforms were made 
aware of this in February 2020 and their response elucidated upload 
limits of 128 and 1,000 images, respectively. Classification mod-
els on platforms that were successfully able to train deep learning 
models demonstrated the following classification performance: 
Amazon, 99.2;(99.3, 99.7, 99.1, 99.6); Apple, 52.0;(51.5, 84.5, 52.6 
76.3); Google, 97.8;(97.8, 99.3, 97.8, 98.9); Microsoft, 91.1;(90.6, 
NA, 91.7, NA).

Fundus photography. Classification models trained for referable 
diabetic retinopathy (RDR) and non-referable diabetic retinopathy 
(NRDR) classification on the relatively smaller fundus photograph 
Messidor dataset demonstrated uniformly moderate performance 
with F1;(sensitivity, specificity, PPV, accuracy) as follows: Amazon, 
88.5;(88.5, 88.5, 88.5, 88.5); Apple, 75.1;(75.1, 75.1, 75.1, 75.1); 
Clarifai, 69.2;(69.2, 69.2, 69.2, 69.2); Google, 84.8;(84.8, 84.8, 
84.8, 84.8); MedicMind, 83.9;(83.9, 83.9%, 83.9, 83.9); Microsoft, 
84.8;(84.8, NA, 84.8, NA). Class-pooled calculation results in iden-
tical values for these metrics, because platform limitation required 
that the binary RDR versus NRDR task was trained as two inde-
pendent classes; thus, a false positive for RDR is also a false nega-
tive for NRDR. The MedicMind and Clarifai models were both 
similarly unable to be trained on the much larger EyePACS fundus 
dataset due to GUI crashes during training and dataset upload, 
respectively. This was attempted a minimum of two times on each  
platform. Classification models on platforms that were successfully  
able to train models demonstrated moderately high classification  
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Fig. 1 | Model F1 scores. a,b, The model F1 scores, grouped by dataset (a) and platform (b).
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performance: Amazon, 90.0;(92.7, 86.7, 87.5, 89.7); Apple, 
82.1;(82.1, 82.1, 82.1, 82.1); Google, 91.6;(91.6, 91.6, 91.6, 91.6); 
Microsoft, 83.7;(83.7, NA, 83.7, NA).

External validation. External validation of the fundus models whose 
platforms supported this feature (Google, MedicMind) was per-
formed with the IDRiD diabetic retinopathy evaluation set22. The 
Google EyePACS, Google Messidor and MedicMind Messidor 
models demonstrated F1;(sensitivity, specificity, PPV, accuracy) of 
85.3%;(90.6%, 64.1%, 80.6%, 80.6%), 81.3%;(98.4%, 28.2%, 69.2%, 
71.8%) and 83.3%;(93.8%, 48.7%, 75.0%, 76.7%), respectively 
(Supplementary Table 3). MedicMind failed to train a model on the 
large Kermany dataset and thus could not be validated externally. 
An OCT dataset for external validation containing image disease 
labels matching the Kermany and Waterloo datasets was not located 
after an extensive literature review utilizing Google Dataset Search. 
To ensure study reproducibility, we intentionally limited our inves-
tigation to using public datasets. As researchers design future mod-
els with these AutoML platforms, proper external validation will be 
necessary for each model before implementation, ensuring ethics 
approvals are obtained for patient-derived validation datasets.

Repeatability. We trained three models of a representative  
dataset (Waterloo OCT) on each platform. The model F1  
(s.d.), range values were Amazon, 97.8 (0.50), 1.00; Apple, 72.0 
(1.26), 2.4; Clarifai, 79.8 (0.90), 1.52; Google, 94.1 (1.35), 2.66; 
MedicMind, 95.9 (2.57), 4.45; Microsoft, 91.6 (4.80), 2.74. The  
standard deviations were relatively small, demonstrating rea-
sonable repeatability, probably due to varying random seeds for  
AutoML training23.

Usability, features and cost. For the application of CFDL to diag-
nostic classification problems, we identified the following as useful 
features: custom test/train splits, batch prediction, cross-validation, 
data augmentation, .csv file upload, saliency maps, threshold adjust-
ment and confusion matrices. These features were variably present 
in the platforms (Table 1).

Select features were found to be especially useful when con-
sidering ease, reproducibility and model explainability. For data 
management, these include the ability to designate test/train splits 
(Amazon, Apple, Google, MedicMind), the ability to perform k-fold 
cross-validation (Microsoft, Clarifai) and the ability to perform data 
augmentation, to assist with generalizability (Apple). The Apple 
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Fig. 2 | Model precision and recall, with plots grouped by dataset. Each point is an individual model’s precision and recall at default threshold, plotted 

against the Google platform precision–recall curves.
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platform also ran locally, which had the simultaneous advantages 
of cloud cost savings and limitations of locally available compute 
power. Researchers also highlighted the efficiency of local data 
manipulation and subsequent upload via .csv files, supported by 
Google and MedicMind, which was singled out as a crucial plat-
form feature.

For model evaluation, useful features include saliency maps 
(MedicMind) (Fig. 3) and deeper model evaluation via TensorBoard, 
which have value for model explainability24–26. A similarly impor-
tant feature for performance evaluation is threshold adjustment and 
live reclassification (Clarifai, Google). This allowed researchers to 
perform real-time threshold operating point selection, a necessary 
feature for decision curve analysis and real-world model deploy-
ment27,28. Beyond precision (PPV) and recall (sensitivity), confusion 
matrix generation (Apple, Clarifai, Google, MedicMind) is useful to 
generate clinically meaningful specificity and NPV metrics, without 
which it becomes difficult to accurately infer model performance at 
population levels. We contacted platforms that did not report con-
fusion matrices to request the feature.

Although the Apple and MedicMind platforms were free to 
use and the remaining platforms have free tiers, costs may mount 
for those utilizing these systems. Free tiers have cloud training 
hour limits, and models trained from large datasets may quickly 
exceed them. Model training is charged per cloud compute hour 
(Amazon, Google, Microsoft) from US$1 to US$19 or per num-
ber of images (Clarifai). Of the models we developed utilizing paid 
tiers (Microsoft), none exceeded US$100 for training. Platforms 
additionally charge for cloud model deployment and inference. 
Google allows training of an edge model, which is optimized for 
mobile devices and can be downloaded locally, enabling unlimited  
free prediction.

Among the CFDL platforms, GUIs consistently comprised 
three segments: data upload, data visualization and labelling, and 
model evaluation (Supplementary Video). These are split by panes 
or across web pages in their respective user interfaces (Extended  
Data Fig. 2). The three researchers (E.K., D.F., Z.G.) who evalu-
ated the models were sent five-question surveys, which enquired 
about the user interface experience and ease of use of each of the 

Table 1 | Platform features

Amazon Apple Clarifai Google MedicMind Microsoft

Classification (C), 
multilabel classification 
(MC),
object detection (OD), 
segmentation (S)

C, MC, OD C, MC, 
OD

C, MC C, MC, OD C, S C, MC, OD

Csv image label upload N NA N Y Y N

Cloud bucket image 
management

Y NA N Y N N

Support for multiple 
label-sets per image

Y NA N Y N N

Manual train/test split Y Y N Y Y N (k-fold cross-validation)

Designation of 
validation set

N N N Y N N

Designation of training 
hours

N N N Y N Y

Confusion matrix 
generation

N Y Y Y Y N

Live adjustable 
prediction thresholds

N (only during 
deployment)

N Y Y N Y

Ability to download 
model

N NA N Y (Python, TFlite, 
Tensorflow.js, CoreML, 
Coral)

N Y (Python, CoreML, ONNX, 
Vision AI Developer Kit)

Free tier limitations Training: 10 ha

Online Prediction: 4 ha

N Training: 5,000 
operations
10,000 input 
images

Training: 40 node hb

Online prediction:  
40 node hb

Batch prediction: 1 
node h

N Training: 1 hc

5,000 images per project
Online prediction: 10,000 
predictionsc

Batch prediction 
(external validation 
support)

N N N Y Y N

Security, encryption, 
compliance

HIPPA compliant 
(requires business 
associate agreement)
ISO 27001, 27017, 27018
SHA-256 with RSA 
encryption

NA SHA-256 with 
RSA encryption

HIPPA compliant 
(requires business 
associate agreement)
ISO 27001, 27017, 
27018
SHA-256 with RSA 
encryption

256-bit RSA 
encryption

HIPPA compliant (requires 
business associate 
agreement)
ISO 27001, 27017, 27018
SHA-256 with RSA 
encryption

aMonthly for 3 months; bshared budget with training; cmonthly. HIPPA, Health Insurance Portability and Accountability Act; RSA, Rivest–Shamir–Adleman; NA, not applicable as this is not a cloud-based 

platform.
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aforementioned segments, along with overall platform experience 
(Supplementary Table 4). The latter question represents how likely 
they are to use those platforms in the future. In terms of overall expe-
rience, all users selected ‘satisfied’ (or above) with the Amazon and 
Google platforms, and all users of Google selected ‘very satisfied’.

Discussion
We believe that CFDL platforms have the potential to improve access 
to deep learning for both clinicians and biomedical researchers,  
and represent another step towards the democratization and  
industrialization of AI. In this study, we evaluated the diagnostic 
accuracy and user interface (UX) features of six CFDL platforms 
on publicly available medical datasets of multiple modalities. We 
specifically focused our evaluation on both objective and sub-
jective metrics of each platform. To ensure fair comparison, we 
utilized identical test/train data splits across platforms and the 
maximum allowable training hours. Although differing reporting 
metrics among platforms prevented analyses across certain model 
performance metrics, we manually created contingency matrices  
(Table 2) to calculate relevant clinical criteria, including sensitivity 
and specificity.

Our evaluation yielded a split between platforms that were able 
to handle large imaging datasets (n > 35,000) to train deep learn-
ing models (Amazon, Apple, Google and Microsoft) and those that 
could not (Clarifai and MedicMind). Among the former platforms, 
we found high classification performance, with only Apple perform-
ing significantly worse when compared to the highest performing 
Amazon platform. Although this may be a result of computational 
limitations of training a model locally with the Apple platform as 
compared to a scaled cloud approach, the automated nature of these 
platforms makes it difficult to find the definitive reason. When 
comparing on smaller datasets across all six platforms, all platforms 
except Clarifai and Apple similarly demonstrated robust model per-
formance. OCT classification models uniformly performed better 
than fundus photography models, which is probably a result of the 
higher dimensionality of the latter modality in each 2D image—that 

is, there are more variables (colour channels and regions of interest) 
in each colour fundus photograph than in an OCT image.

Our evaluation did not show significant performance differences 
among the leading platforms (Amazon, Google and Microsoft). 
However, these platforms differed significantly in terms of the 
critically important evaluation features available, such as provid-
ing threshold adjustments, precision–recall curves and confusion 
matrices through their respective GUIs. Amazon provided none of 
these, Google provided all of these, and Microsoft provided only 
threshold adjustment. Of these three platforms, only Google has 
batch prediction capability, which enables external validation at 
scale. Furthermore, because our evaluation did not yield significant 
performance differences among the majority of capable platforms, 
subjective feature evaluation becomes increasingly important. For 
the three clinicians who performed both model training and UX 
evaluation, the top preferred platforms were Amazon, Google and 
Microsoft. Although platform cost is in flux as a result of rapid 
iterations, performance per dollar will be another key metric for 
budget-constrained researchers choosing a platform. Furthermore, 
although cloud computing is infinitely more scalable, research-
ers must consider its cost paradigms as compared with tradi-
tional fixed-outlay local resources (it may be simpler to budget for  
the latter).

Comparison to published bespoke algorithms. Using a similar 
development dataset of fundus photographs from the EyePACS 
screening service, Gulshan et al. achieved a better sensitivity of 
90.3% (95% CI, 87.5–92.7%) at a similar specificity of 98.1% (95% 
CI, 97.8–98.5%) as compared with Amazon, Apple and Google 
CFDL modes, although the former study utilized a larger devel-
opment dataset, consisting of 128,175 fundus photographs14. On 
a similar-sized EyePACS dataset development dataset to ours, 
Voets et al. reported a (sensitivity; specificity) of (93.6%; 92.0%) 
at a high-specificity operating point, and (90.6%; 84.7%) at a 
high-sensitivity operating point29. The Google and Amazon CFDL 
EyePACS models both demonstrated higher performance compared 

a

b

c

d

Fig. 3 | MedicMind saliency maps. Input test images (left) and resulting saliency maps (right). a, Fundus photo of proliferative diabetic retinopathy with 

subhyaloid haemorrhage: the saliency map highlights vessels, temporal fibrosis and inferior subhyaloid haemorrhage. b, Fundus photo of macular oedema 

(hard exudates): the saliency map largely highlights hard exudates in the temporal macula. c, OCT of macular hole: the saliency map highlights the central 

macula and retinal hole. d, OCT of central serous retinopathy: the saliency map highlights the central macula and subretinal fluid.
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Table 2 | Deep learning model contingency tables and results per dataset

Waterloo dataset

Amazon TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

AMD versus other 10 0 102 1 100.00 90.91 100.00 99.03

CSR versus others 19 0 93 1 100.00 95.00 100.00 98.94

DR versus others 20 0 92 1 100.00 95.24 100.00 98.92

MH versus others 20 0 93 0 100.00 100.00 100.00 100.00

Normal versus others 41 2 70 0 95.35 100.00 97.22 100.00

Pooled 110 2 450 3 98.21 97.35 99.56 99.34

Apple TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

AMD versus others 6 8 94 5 42.86 54.55 92.16 94.95

CSR versus others 11 5 88 9 68.75 55.00 94.62 90.72

DR versus others 17 6 86 4 73.91 80.95 93.48 95.56

MH versus other 16 2 91 4 88.89 80.00 97.85 95.79

Normal versus others 39 3 69 2 92.86 95.12 95.83 97.18

Pooled 89 24 428 24 78.76 78.76 94.69 94.69

Clarifai TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV(%)

AMD versus others 7 5 80 5 58.33 58.33 94.12 94.12

CSR versus other 13 3 73 8 81.25 61.90 96.05 90.12

DR versus others 13 0 76 8 100.00 61.90 100.00 90.48

MH versus others 12 0 77 8 100.00 60.00 100.00 90.59

Normal versus others 39 5 51 2 88.64 95.12 91.07 96.23

Pooled 84 13 357 31 86.60 73.04 96.49 92.01

Google TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV(%)

AMD versus others 10 3 99 1 76.92 90.91 97.06 99.00

CSR versus others 16 2 91 4 88.89 80.00 97.85 95.79

DR versus others 20 0 92 1 100.00 95.24 100.00 98.92

MH versus others 19 0 93 1 100.00 95.00 100.00 98.94

Normal versus others 41 2 70 0 95.35 100.00 97.22 100.00

Pooled 106 7 445 7 93.81 93.81 98.45 98.45

MedicMind TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

AMD versus other 9 0 102 2 100.00 81.82 100.00 98.08

CSR versus others 19 1 92 1 95.00 95.00 98.92 98.92

DR versus others 21 0 92 0 100.00 100.00 100.00 100.00

MH versus others 20 0 93 0 100.00 100.00 100.00 100.00

Normal versus others 41 2 70 0 95.35 100.00 97.22 100.00

Pooled 110 3 449 3 97.35 97.35 99.34 99.34

Microsoft TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

Pooled NA NA NA NA 94.8 94.8 NA NA

Kermany dataset

Amazon TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

CNV versus others 250 6 744 0 97.66 100.00 99.20 100.00

DMO versus others 259 0 740 1 100.00 99.62 100.00 99.87

Drusen versus others 245 3 747 5 98.79 98.00 99.60 99.34

Normal versus other 249 0 750 1 100.00 99.60 100.00 99.87

Pooled 1,003 9 2,981 7 99.11 99.31 99.70 99.77

Apple TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

CNV versus others 221 334 416 29 39.82 88.40 55.47 93.48

DMO versus others 68 18 732 182 79.07 27.20 97.60 80.09

Drusen versus others 0 0 750 250 0.00 0.00 100.00 75.00

Continiued

NATURE MACHINE INTELLIGENCE | VOL 3 | APRIL 2021 | 288–298 | www.nature.com/natmachintell 293

http://www.nature.com/natmachintell


ANALYSIS NATURE MACHINE INTELLIGENCE

Kermany dataset

Amazon TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

Normal versus other 226 113 637 24 66.67 90.40 84.93 96.37

Pooled 515 465 2,535 485 52.55 51.50 84.50 83.94

Google TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

CNV versus others 249 21 729 1 92.22 99.60 97.20 99.86

DMO versus others 250 1 749 0 99.60 100.00 99.87 100.00

Drusen versus others 229 0 750 21 100.00 91.60 100.00 97.28

Normal versus other 250 0 750 0 100.00 100.00 100.00 100.00

Pooled 978 22 2,978 22 97.80 97.80 99.27 99.27

Microsoft TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

NA NA NA NA 91.7 90.6 NA NA

EyePACS dataset

Amazon TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

RDR 475 163 2,662 210 74.45 69.34 94.23 92.69

NRDR 2,777 303 382 48 90.16 98.30 55.77 88.84

Pooled 3,252 466 3,044 258 87.47 92.65 86.72 92.19

Apple TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

RDR 138 82 2,743 547 62.73 20.15 97.10 83.37

NRDR 2743 547 138 82 83.37 97.10 20.15 62.73

Pooled 2,881 629 2,881 629 82.08 82.08 82.08 82.08

Google TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

RDR 445 56 2,769 240 88.82 64.96 98.02 92.02

NRDR 2,769 240 445 56 92.02 98.02 64.96 88.82

Pooled 3,214 296 3,214 296 91.57 91.57 91.57 91.57

Microsoft TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

NA NA NA NA 83.7 83.7 NA NA

Messidor dataset

Amazon TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

RDR 60 10 248 30 85.71 66.67 96.12 89.21

NRDR 248 30 60 10 89.21 96.12 66.67 85.71

Pooled 308 40 308 40 88.51 88.51 88.51 88.51

Apple TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

RDR 35 31 227 56 53.03 38.46 87.98 80.21

NRDR 227 56 35 31 80.21 87.98 38.46 53.03

Pooled 262 87 262 87 75.07 75.07 75.07 75.07

Clarifai TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

RDR 65 52 169 52 55.56 55.56 76.47 76.47

NRDR 169 52 65 52 76.47 76.47 55.56 55.56

Pooled 234 104 234 104 69.23 69.23 69.23 69.23

Google TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV 
(%)

RDR 66 2 229 51 97.06 56.41 99.13 81.79

NRDR 229 51 66 2 81.79 99.13 56.41 97.06

Pooled 295 53 295 53 84.77 84.77 84.77 84.77

MedicMind TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV 
(%)

RDR 75 14 217 42 55.56 55.56 76.47 76.47

NRDR 217 42 75 14 76.47 76.47 55.56 55.56

Continued

Table 2 | Deep learning model contingency tables and results per dataset (continued)
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to the bespoke referenced model. Other published examples from 
this dataset predict either individual diabetic retinopathy grades or 
perform binarization of referable versus non-referable in a differ-
ent manner, making direct performance comparison difficult30–33. 
Although the Messidor dataset was used for validation of a number 
of published models, we were unable to locate bespoke models that 
used it for development, preventing direct comparison29,34,35.

Bespoke OCT models developed on the Kermany dataset by the 
original authors demonstrated a (sensitivity; specificity) of (97.8%; 
97.4%)16. Amazon and Google CFDL models demonstrated superior 
performances of (99.3%; 99.7%) and (97.8%; 99.2%), respectively, 
when utilizing this dataset. The Kaggle data science community 
has produced reports of similarly high bespoke model perfor-
mance, although these are not peer-reviewed36. OCT models devel-
oped on the Waterloo dataset by Aggarwal et al. demonstrated a  
(sensitivity; specificity) of (86.0%; 96.5%) which improved to 
(94.0%; 98.5%) with data augmentation37. Amazon, Google, 
MedicMind and Microsoft CFDL platforms were able to produce 
models with comparable or superior results without manual data 
augmentation. Factors that may have led to differing performance 
between CFDL platforms and bespoke published models include 
CFDL’s lack of task-specific image augmentation pre-processing, 
inability to specify task-specific base models for transfer learning 
approaches, and the inherent performance variations resulting from 
bespoke model construction and tuning.

Limitations. Limitations are expected when comparing platforms 
with differing featuresets and reporting metrics. Although we 
attempted to report clinically meaningful metrics by generating 
contingency tables to calculate specificity and NPV, Microsoft did 
not provide a confusion matrix. Thus, our objective comparison 
focused on PPV and sensitivity, and the resulting F1 score, as these 
were the only metrics that could be generated from all platforms. 
Across all platforms, model explainability was deficient. Although 
this is not unique to CFDL, due to its automated nature CFDL has the 
potential to further reduce machine learning explainability. When 
one is not manually setting model parameters, it becomes increas-
ingly difficult to discern which underlying model architectures and 
hyperparameters lead to differing performances. The platforms 
lacked important evaluation features such as image-level results 
for the validation set, which precludes post hoc analyses of addi-
tional image metadata such as source International Classification 
of Diabetic Retinopathy (ICDR) grades. Datasets were limited in 
the patient-level data they contained, so we were unable to ensure 
patient-level splits on all but the Kermany datasets. This leaves the 
potential for data leakage and falsely elevated performance metrics.

External validation is a critical step in the evaluation of AI mod-
els prior to implementation38,39. Varying levels of platform support 
for batch prediction precluded the ability to perform external vali-
dation with all but the Google and MedicMind platforms (Table 1).  
The importance of this capability cannot be understated, and the 
authors are unable to recommend platforms that do not have this 
feature. As of 27 August 2020, Google supports batch prediction  

through a command line interface, limiting its use by those with-
out the relevant expertise. External validation performance dem-
onstrated decreased specificity as compared with the internal 
evaluation datasets, generating increased false-positive RDR clas-
sification. Such models may need site-specific threshold tuning 
to local populations. Although we utilized varying modalities and 
datasets, the ability to generalize to similar datasets for validation 
is limited due to the unique labels and disease grading guidelines of 
each dataset. We were unable to locate a dataset that contained the 
same OCT labels as Kermany and Waterloo, and thus were unable 
to externally validate the respective OCT models. Dataset upload 
speed did not vary widely among platforms and was limited by the 
client internet connection upload speed; however, this was not sys-
tematically or quantitatively evaluated.

Although saliency maps offer some potential to provide clini-
cal interpretability, their utility in this regard has yet to be proven. 
Plausible saliency maps are often provided in the clinical AI litera-
ture, but such maps may be prone to cherry picking. Even in rep-
resentative cases, their interpretation is subjective and they do not 
provide semantic explanations. There is a need for more systematic 
clinical evaluation of these maps before they can be used in direct 
patient care40,41. For example, saliency maps in Fig. 3c,d erroneously 
highlight the B scan slice key as an important area for prediction.

Platform evaluation tasks and surveys were subjective in nature. 
As a result of time constraints, we were limited to three clinicians—
one (Z.G.) a final-year medical student—performing this evaluation 
and survey. Meaningful statistical evaluation was both not possible 
and likely to contain bias influenced by technology brand prefer-
ences. The overall user experience was positive, so platform choice 
will probably be driven by feature availability.

Potential CFDL use cases. We believe our findings demonstrate the 
potential of CFDL for clinicians and researchers across a multitude 
of medical imaging modalities and tasks. Although the representa-
tive datasets in this study were ophthalmic in nature, due to their 
dimensionality, this demonstration of CFDL has the potential to 
scale significantly. OCT is an exemplar of cross-sectional imaging, 
with models discerning features and edges among monochromatic 
pixels—a similar task to X-ray, computed tomography (CT) and 
magnetic resonance imaging (MRI). Fundus photography tasks 
entail en-face hue, luminance and contract pattern detection, often 
discerning subtle pathology at the single-pixel level—a task that is 
comparable to dermatology and pathology image classification.

The use cases for CFDL are broad, and candidate low-risk 
tasks include dataset curation for researchers. Currently, a major 
pain-point in medical image analysis is data collation and cleaning. 
CFDL may prove to be a rapid and reliable method for differentiat-
ing images between left and right, gradable and ungradable, proper 
field of view, and the like, potentially becoming a big time saver 
for researchers. Models may be trained in the standard supervised 
fashion utilizing labelled data (for example, to label eye images as 
gradable or ungradable). This trained model can then be utilized 
as a research tool, deployed on new datasets or on prospectively 

Messidor dataset

Amazon TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

Pooled 292 56 292 56 83.91 83.91 83.91 83.91

Microsoft TP FP TN FN PPV (%) Sensitivity (%) Specificity (%) NPV (%)

NA NA NA NA 84.8 84.8 NA NA

TP, true positive; FP, false positive; TN, true negative; FN, false negative; NRDR, non-referable diabetic retinopathy; RDR, referable diabetic retinopathy; AMD, age-related macular degeneration; CSR, central 

serous retinopathy; MH, macular hole; DR, diabetic retinopathy; CNV, choroidal neovascularization; DMO, diabetic macular oedema.

Table 2 | Deep learning model contingency tables and results per dataset (continued)
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curated data, to collate images that fit a criterion (for example, if 
wanting to curate gradable images)42. Similarly, clinicians may train 
CFDL models representative of subtle phenotypic variations in their 
local populations. Edge models, running locally on a device without 
requiring an internet connection, may be used as screening tools in 
rural and underserved areas after proper validation, and may entail 
simpler information governance structures. Use of CFDL is not lim-
ited to those without coding expertise, as computer engineers may 
rapidly train CFDL models as a baseline against which bespoke deep 
learning models could be iterated and tuned on. These potential use 
cases are not exhaustive, and more will be elucidated as clinicians 
and researchers gain an understanding of ML principles through 
the exploration of CFDL.

AI fundamentals are not taught in medical schools or prereq-
uisite statistics courses, and most clinicians’ understanding of AI 
principles is understandably limited. Although obviating the need 
for coding expertise, CFDL platforms still require proper data 
stewardship, employing careful dataset curation, class balancing, 
representative patient-level splits, external validation and contin-
ued monitoring to detect model deterioration43. As CFDL exposes 
more clinicians and researchers to machine learning, their explora-
tion of the benefits and pitfalls of these techniques will lead to a 
broader understanding of responsible and safe AI. Clinicians and 
researchers should be aware of the falsely increased performance 
that may occur from data leakage of patients from development 
to validation sets. They should ensure that validation set disease 
prevalence approximates that of their real-world use-case popula-
tion. Furthermore, models evaluated and utilized on populations 
with differing demographics, image acquisition techniques and 
artefacts from the distribution of the initial validation dataset may 
demonstrate widely varying real-world performance. CFDL is but 
one of the educational tools for AI available to clinicians, who, in 
their patients’ interest, must evaluate the safety of AI-based medical 
devices coming to market.

CFDL is a robust framework, with the potential to democratize 
ML access for clinicians and researchers. The evaluation performed 
herein has the potential for application across a range of medi-
cal image classification tasks. Although some platforms struggle 
with large datasets, and explainability remains an issue, we have  
discovered high image classification performance across most  
platforms. Thus, platform selection will probably be driven by 
select highlighted features for efficient dataset management and 
comprehensive model evaluation. Although use cases are broad, 

the increased exposure to machine learning that CFDL provides to 
those without coding expertise will drive exploration of responsible 
AI practices.

Methods
Datasets and study design. We utilized four open-source de-identi�ed ophthalmic 
imaging datasets to train deep learning models on six AutoML platforms for a 
total of 24 deep learning models. A search was performed for candidate publicly 
available datasets. Datasets were chosen that represented common ophthalmic 
diseases and representative clinical classi�cations. Convenience sampling was used, 
and both prevalence of prior community contributions (Kaggle) and citations were 
considered. Four datasets were selected, including two retinal fundus photograph 
datasets (Messidor-2, n = 1,744; EyePACS, n = 35,108) and two OCT datasets 
(Waterloo, n = 572; Kermany, n = 101,418) representing small and large dataset 
sizes for each respective modality16,44–47. Patient demographics and inclusion 
criteria for each of these datasets are published in accordance with the source 
datasets. Where patient-level statistics are not reported, they were not provided 
with source datasets.

Dataset details. Fundus datasets were re-categorized to the binary labels of RDR 
(comprising DR grades of moderate, severe, proliferative and/or the presence of 
diabetic macular oedema (DMO) and NRDR (the absence of RDR) to represent 
a clinically meaningful task performed in screening programmes and by 
regulatory-approved models13,48–53.

Messidor-2 consists of 1,744 fundus photographs in .png format. DR and DMO 
labels adjudicated by retina specialists were applied from the Kaggle adjudicated 
dataset44,45. Source DR grades were assigned according to the ICDR protocol and 
DMO was defined by hard exudates within one disc diameter of the fovea. Images 
were labelled as NRDR (n = 1,279) and RDR (n = 465). This dataset hereafter 
will be referred to as Messidor. EyePACS comprises 35,108 fundus photographs 
in .jpeg format from the resized EyePACS Kaggle dataset46. Source DR grades 
were assigned according to the ICDR protocol. Images were labelled as NRDR 
(n = 28,240) and RDR (n = 6,868). The Waterloo dataset comprises 572 OCT 
images in .jpeg format47. Source labels include age-related macular degeneration 
(AMD; n = 55), central serous retinopathy (CSR; n = 102), macular hole (MH; 
n = 102), DR (n = 107) and normal (n = 206). The Kermany dataset contains 
101,418 OCT images in .jpeg format from 5,761 patients. Labels include choroidal 
neovascularization (CNV; n = 31,882), DMO (n = 11,165), drusen (n = 8,061) and 
normal (n = 50,310). The datasets are summarized in Table 3.

AutoML platform selection. Thirteen AutoML platforms were located based 
on searches from the Google search engine performed in the period September–
December 2019. Candidate platforms included Amazon, Apple, Clarifai, Google, 
MedicMind, Microsoft, IBM Watson Visual Recognition, Baidu, Platform.ai, 
Datarobot, ProductAI/Malong, DeepCognition and Uber Ludwig. Candidate 
platforms were evaluated for characteristics including the lack of a coding 
requirement, availability of usage within the region (UK), English language and for 
including a free trial period. Reasons for exclusion are detailed in Supplementary 
Table 5. Three researchers (E.K., D.F. and Z.G.) with minimal to no coding 
experience spent a minimum of 4 h exploring each platform. Time was spent 
on user interface exploration, testing and reading documentation for each of 
the platforms. Six platforms (Amazon, Apple, Clarifai, Google, MedicMind and 
Microsoft) were selected for this study. The initial exploration was performed in 
September 2019 with review in August 2020, and does not consider more recent 
updates, which may have altered the features and performance of candidate 
platforms. MedicMind and Apple are free platforms. Where available, we utilized 
the free tiers of paid platforms. Paid tiers were used when free credits expired, and 
if paid tier allowed for longer model training (Microsoft).

Data processing. Training supervised deep learning models entails splitting 
datasets into training, validation and test sets. For the Kermany dataset, in which 
test and train splits were already performed by the source dataset publishers, this 
split was preserved when training the CFDL platforms that allowed manual setting 
of splits (Table 1). This ensured equitable comparison to published bespoke models 
developed from the same dataset20. The smaller Waterloo and Messidor datasets 
were randomly split into training and test (80% and 20%, respectively), while the 
larger EyePACS dataset was randomly split into 90% and 10%, respectively, for 
large dataset split ratios consistent with the Kermany dataset (test n = 1,000). For 
platforms that allowed manual setting of validation sets, we further subsampled 
from the training set by splitting training and validation into 90% and 10%, 
respectively. Equal proportions of diagnostic labels were preserved in each split 
to ensure the smaller datasets were not class imbalanced between splits. No 
patient-level data were provided for the Messidor, EyePACS and Waterloo datasets, 
so we were unable to ensure that patient-level splits were maintained. Duplicate 
images were automatically detected and excluded by the Microsoft and Google 
platforms. All deep learning models were trained for the maximum compute hours 
allowable on each platform. Platform early stopping features were employed, which 
automatically terminated training when no further model improvement was noted.

Table 3 | Dataset details

Type Size Classes

Messidor-2 Fundus 1,744 NRDR (n = 1,279)
RDR (n = 465)

EyePACS Fundus 35,108 NRDR (n = 28,240)
RDR (n = 6,868)

Waterloo OCT 572 AMD (n = 55)
CSR (n = 102)
MH (n = 102)
DR (n = 107)
Normal (n = 206)

Kermany OCT 101,418 CNV (n = 31,882)
DMO (n = 11,165)
Drusen (n = 8,061)
Normal (n = 50,310)

IDRiD Fundus (external 
validation)

103 NRDR (n = 39)
RDR (n = 64)

NRDR, non-referable diabetic retinopathy; RDR, referable diabetic retinopathy; AMD, age-related 

macular degeneration; CSR, central serous retinopathy; MH, macular hole; DR, diabetic retinopathy; 

CNV, choroidal neovascularization; DMO, diabetic macular oedema.
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Data upload and labelling. Apple allows local data processing, but the remaining 
platforms required data upload, some allowing multiple methods depending on 
use-case (Table 1). The methods range from direct GUI upload via a cloud bucket 
interface or via shell scripting with prerequisite installation of a cloud software 
developer kit (SDK). All selected platforms offer a GUI-based upload for ease of 
use, and none requires programming skill. A variety of methods were utilized 
based on platform and dataset size.

Labelling was performed via folder upload with folders split by label (Amazon, 
Microsoft, Clarifai, MedicMind), via .csv files containing labels and cloud bucket 
locations (Google) or via local folders split by label (Apple).

Model training. Models were trained on all selected CFDL platforms (Amazon, 
Apple, Clarifai, Google, MedicMind, Microsoft) by clinicians E.K., Z.G. and D.F. 
One model was trained per dataset–platform pair. There were no computer system 
requirements for the usage of cloud-based platforms, as they trained and evaluated 
on cloud-hosted GPUs. The Apple platform is run locally, and requires MacOS 
with the XCode developer program installed. RDR versus NRDR is a binary 
classification, but, except for MedicMind, the evaluated CFDL platforms do not 
support training binary classification algorithms. The RDR versus NRDR task 
in the Messidor and EyePACS datasets was therefore trained as two independent 
classifications, that is, two distinct labels—RDR and NRDR.

Result metrics and statistical analysis. Graphpad Prism version 7 was used 
for statistical analysis. The CFDL platforms provide various model metrics 
including recall (sensitivity), non-weighted average precision (PPV) for given 
model thresholds, along with the area under the precision–recall curve (AUPRC) 
and F1 scores. Confusion matrices are provided by Apple, Clarifai, Google and 
MedicMind. We extracted label data and calculated F1 scores (Extended Data  
Fig. 1). Where possible, contingency tables were manually constructed to calculate 
clinical metrics including specificity (Table 2). Clarifai reports a confusion 
matrix for one fold of its k-fold cross-validation. MedicMind label specificity 
and sensitivity reports did not match the evaluation spreadsheet classifications, 
which were used to derive our evaluation metrics. We surmise that the former 
statistics are performed on the training set and not the test set. In February 2020, 
we made MedicMind aware of the confusion this may cause, and their advice was 
to use the evaluation spreadsheet download function, which we followed. Google 
and Microsoft report AUCPRC, while Clarifai reports AUC under the receiver 
operating characteristic curve (AUROC), making direct comparison of reported 
AUCs not possible. Models that allow threshold selection (Google and Clarifai) 
were evaluated with the default threshold of 0.5. Although points along the 
precision–recall curves may be mapped across a variety of thresholds, variations 
among platform confusion matrices and levels of reporting prevented us from 
directly comparing AUPRCs. The only platform to generate a graphical precision–
recall curve was Google, against which each individual model’s precision and recall 
were plotted (Fig. 2). We adhered to the typical clinical accuracy terminology of 
sensitivity, specificity, PPV, NPV and accuracy. Qualitative platform surveys were 
scored on a five-point scale from 1 (very dissatisfied) to 5 (extremely satisfied) 
(Supplementary Table 4).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
All datasets utilized in this study were downloaded from publicly available sources 
and were not modified. Datasets may be accessed according to the references and 
the following DOIs: Kermany OCT, https://doi.org/10.17632/rscbjbr9sj.3; Waterloo 
OCT, https://doi.org/10.5683/SP2/W43PFI; Messidor 2, https://doi.org/10.1001/
jamaophthalmol.2013.1743. All other data supporting the findings of this study are 
available within the paper and its Supplementary Information files.

Code availability
The code for the six utilized platforms is not made publicly available by the 
respective companies responsible for its development. However, the links to 
platforms evaluated are provided in Supplementary Table 5. Replication of results 
may be attempted on all platforms evaluated, which are explicitly free of charge, 
although updates to the respective backends can occur at any time.
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Extended Data Fig. 1 | F1 Scores of Each Model. Scores are grouped by dataset (columns), and in alphabetical order by platform (rows), best performing 

model from each dataset bolded. 2 way ANOVA analysis demonstrated significant difference between Amazon vs Apple F1 scores, mean difference 

[95% CI]: 21.9[1.3,42.5]. Post-hoc analysis comparing platforms within each dataset showed significant differences between models generated from the 

Kermany dataset by Google vs Apple 45.8[4.6,87.0] and Amazon vs Apple 47.2[6.0,88.4].
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Extended Data Fig. 2 | AutoML Graphical User Interface. Typical AutoML platform user interface components. Each component is represented by a  

figure pane.
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