
COMPUTER SYSTEMS LABORATORY

STANFORD UNIVERSITY STANFORD, CA 943053055

Code Generation and
Reorganization in the Presence
of Pipeline Constraints

John Hennessy and Thomas Gross

Technical Report No. 224

November 1981

The MIPS project has been supported by the Defense Advanced Research
Projects Agency under contract # MDA903-79-C-0680. Thomas Gross is
supported by an II3M Graduate Fellowship. L

Code Generation and
Reorganization in the Presence

of Pipeline Constraints

John Hcnncssy and l’homas Gross

I’cchnical Report No. 224

November 1981 .

Cornputcr Systems Laboratory
Dcp:utmcnts of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

Abstract

.Pipeline interlocks arc used in a pipelincd architecture to prevent the execution of a machine instruction
before its operands are available. An alternative to this complex piece of hardware is to rearrange the
instructions at compile-time to avoid pipeline interlocks. This problem, called code reorganization, is studied.
The basic problem of reorganization of machine level instructions at compile-time is shown to bc NP-
complete. A heuristic algorithm is proposed and its properties and effectiveness are explored. The impact of
code reorganization techniques on the rest of a compiler system are discussed.

Key Words and Phrases: Code generation, pipelining, interlocks, instruction reordering, code optimization,
register alhXdiim, microprogramming

A version of this report will appear in the Proc. of the Ninth ACM Conference on Principles of Programming
Languages, 1981

1

1 Int reduction

Recent research in computer architecture centers around two major trends: the development of

architectures that attempt to support high level language systems through more sophisticated instruction sets,
and the design of simpler architectures that arc inherently faster but may rely on more powerful compiler

technology. The latter trend has several properties that make it an attractive host for high level languages and

their compilers and optimizers:

1. Because the instruction set is simpler, individual instructions execute faster. .

2. A compiler is not faced with the task of attempting to utilize a very sophisticated instruction that
dots not quite fit any particular high level construct. Besides slowing down other instructions,
using these instructions is sometimes slower than using a customized seque.ncc of simplier
instructions [12].

3. Although these architectures may require more sophisticated compiler technology, the potential
performance improvements to be obtained from faster machines and better compilers are
substantial.

.‘.

’ Recently, several articles have discussed the relationship between compilers, architectures and performance
[16,5]. The concept of simplified instruction sets and their benefits, both for compilers and hardware

implementations, are presented in [II, 121.

The unique property of some of these experimental architectures is that they will not perform efflcicntly

without more sophisticated software technology. This paper investigates a major problem that arises when
generating code for a pipelined architecture that does not have hardware pipeline interlocks. Without

hardware interlocks, naively generated code sequences will not run correctly. These interlocks must be
provided in software by arranging the instructions and inserting no-ops (when necessary) to prevent

undefined execution sequences. There are currently several architectures that require software imposition of
certain types of interlocks [lo, 61. The absence of interlocks is also very common in micromachine

architectures, and the microprogrammer must often address this problem.

1.1 Background

A pipclined processor is one in which several sequential instructions are in simultaneous execution, usually

in different phases. One component of an instruction may refer to a component that is computed in an earlier
instruction. Because the earlier instruction may still be executing, the value of the component may not bc

available. A hardware mechanism, called a pipeline interlock, prevents the latter instruction from continuing

until the needed value is available.

Figure 1 shows a typical pipeline configuration. This pipe has three stages: psa, psb, psC. Three instructions

2

arc under execution at any time: instruction 1 at psC, instruction 2 at psb, and instruction 3 at ps,. A pipeline

interlock would prevent instruction 2 from executing psb if, during psb, instruction 2 required a value
calculated during psC of instruction 1 (since that value would not be available un’til the end of psC and the two

pipestages (1,~s~) and (2,~s~) are coincident).

I11 Psa Psb Ps,

PI PSa PSb PSc

PI Psa Psb Psc

PI Psa Psb Psc

Figure 1: Sample Pipeline

In a pipelined architecture the design of the interlock mechanism is complex and adds significantly to the
hardware overhead of a high-performance processor [9,X]. The presence of interlock checks also imposes an

overhead on all instructions whether or not they arc affected by the interlocks. The elimination of this
hardware will allow a simpler design. If the implementation of a processor on a single VLSI chip is attempted,
simplicity and regularity can be crucial for the success of the project. Also. a simpler design allows for more

regularity and eventually a smaller and faster chip.

Another reason for the interest in such an architecture is the potential speed-up. If the code can be

reordered so that legal instructions arc always being executed, then no time is lost due to the resolution of

interlocks, and the code will run faster than the unordered code would run on a pipclined machine with
interlocks. A penalty is only paid when the code sequences have to be padded with no-ops; even in this case
there may not be a time penalty involved. The elimination of the occurrence of dynamic interlocks will also

speed up conventional pipe!incd architectures.

2 The problem

The problem faced by a code generator for such an architecture is to guarantee the correct execution of the
original program, i.e. to ensure that the input-output function of the program is identical when the program is

exccutcd in a single step fashion and when it is cxecutcd without interlocks by pipclined hardware.

2.1 interlocks

Due to the overlap of the execution of instructions and the pipeline structure, the results of instruction i are

not available until instruction i+ k. An attempt by instruction i-h k’ with k’ C k to rcfcrcnce data written by

instruction i will result in a delay. Interlock hardware will detect this case and block the cxccution of

instruction i+ k’until the data is available. More formally, this is called a deshaliorl-sourceconflict:
4

Definition 1: Let i bc an instruction and ps be a pipestage, then register R is a sourcefield in (i
,ps) if and only if instruction i reads the value of register I(during cycle ps. R is a destination field
in (i ,ps) if R is written during the ps cycle of instruction i.

Definition 2: A destination-source pipeline interlock is a constraint of the form (il ,ps,)...(i, ,ps$.
If a register H is a destination field in (il .psl), then it may not be a source field in any (i’ ,ps)
which is executed after (i, ,psl) and earlier than the pipestage following (i2 ,psJ. A source-
destination pipclinc interlock is the same as a destination-source interlock cxccpt that R is initially
a source and later used as a destination.

Destination-source interlocks arc a natural result of a pipeline structure. Source-destination conflicts result
from the possibility of interrupts or page faults. In Figure 1 the execution of (2,~s~) will normally precede the

execution of (l,pQ. But if there is a page fault when instruction 2 is fetched, instruction I will complete. Then

the page fault will bc handled. In this case, stage (2,~s~) will not be executed before (1,~s~). Therefore, (1,~s~)

should not depend on the results of (2,psJ.
Definition 3: A single instruction interlock is a special case where instruction i2 is the sequential

successor of iI.

Most interlocks result because destinations are usually results that arc computed near the end of a pipeline,

and such results arc often used in the next instruction as a source. For example, consider the pipeline in
Figure 1: assume that sources for alu operands arc fetched from registers during ps, and the results are stored
during psC. Figure 2 shows two statements and the obvious but incorrect code sequence; the value of RJ is not

available when it is used either in the first or second Add instruction. A correct code sequence, assuming

single instruction interlock, is also shown.

Statements I n c o r r e c t Correct

A := B + c Load B, Rl Load B, Rl
Add C, Rl Load C, R2

A : = A + E Add E, Rl Load E, R3
Store Rl, A Add Rl,R2

Add R2, R3
No-Op
Store R3, A

Figure 2: Incorrect and correct code sequences

2.2 Possible solutions

There are two possible approaches to solving the code generation problem in the presence of

noninterlocked hardware. First, the problem can be stated as an extension to the standard dag-based code

generation problem [2]. In this form it is clear that the code generation problem for the dags with interlocks is

at least as hard as the optimal code generation problem for a register-based machine (known to be NP-

complctc), Furthermore, a heuristic code generation algorithm for dags would probably bc extrcmcly

’ 4

complex. Some of these problems can be solved by using a tree representation and ignoring the possibility of

common subexpressions and the existence of multiple trees in a basic block. However, this simplified

approach may result in unacceptable code quality, particularly since machine instructions belonging to more

than one statement can not bc in termixcd to avoid in tcrlocks.

An alternative approach is to reorganize the code to meet the interlock requirements in a postpass

following code generation. The most important advantage of this approach is that it can be applied both to

code output from a compiler and to hand-written assembly language code. The absence of hardware

interlocks makes it extraordinarily difficult to generate correct programs in assembly language, and a software

reorganization tool is needed to support sucli programming. The other advantage is the decomposition of the
problem into two simpler problems, although this means that the final result may not be optimal. This is

probably not serious since the goal of optimal code is not obtainable with a practical algorithm independent
of the two-step approach. Very slow near-optimal algorithms may be unsuitable because they must be used

during each compilation, not just optimizing runs.

2.3 Related problems

This problem and our approach are related to some of the work done in microcode optimization [14,4], but

are also significantly different. L,ocal microcode optimization begins with a correct vertical microcode
sequence and improves the code by compacting the vertical microoperations in horizontal microinstructions.

Two operations can be compacted into a single instruction if data dependencies are preserved, and the
operations do not overlap either in resource utilization or encoding space in the microinstruction.

A primary characteristic of the horizontal microcode optimization problem is the assumption that resource

utilization by an operation is for a fixed period independent of the operation’s context. Microcode

optimization also assumes that the order of memory accesses cannot bc altered from the original version of the

microcode.

In contrast, the pipeline reorganization problem concerns interlocks whose effect is a dynamic property.

The context of a particular instruction determines whether or not that instruction is legal in its current

position. Also, reorganization utilizes interchanges of loads and, to a lesser extent, stores, as a primary

optimization technique.

5

3 Problem representation

The problem of code reorganization to meet pipeline constraints requires a reprcscntation of the machine

lcvcl code that is generated without the effects of the interlocks, and a reprcscntation of the machine’s

interlocks. Most pipeline interlocks deal with access to register contents and we will consider only this type of

interlock. Because of aliasing problems, interlocks involving memory are not detectable except dynamically at
runtime. Most architectures maintain strict sequential access to memory (at least for stores) and eliminate the

need for interlocks on memory. We assume that a simple function WiMnterlock, given a set of parameters

describing the two instructions and their separation, will return true if an interlock exists.

3.1 A data structure for machine code

An extended labeled dag [l], called a machine-level dag, is used to represent the machine code emitted by
the compiler. Labels within nodes specify the value that the node has on entry to the basic block, and external
labels specify register destinations (as well as operations). Memory stores are represented as nodes in the dag.

A set of instructions and the resulting dag are shown in Figure 3. The dag data structure is extended to link
the rcfcrences of one register to subsequent modifications. This link represents the ordering that is required to

maintain the semantics of the machine language code ordering. If node n modifies a register, that rcgistcr is
denoted by dest(n). A basic block (in the machine language) is translated into a forest of dags. Unconnected

dags (or subdags) are called parallel.

Machine code

Add #l, Rl, R2
St R2, 4(sp)
Add R3, R2, R2

R2:; R2 + R3

St R2,

2 3

4(v)771
R2:= RI + 1

Figure 3: Part of a dag

Proof: First, WC show that the modified and original reorganization problems are equivalent
which shows that the reorganization problem is NP-hard.

Suppose we had a modified organization problem that WC wished to solve. If the no-op nodes
are removed and the reorganization problem is solved, the solution will also be the solution for Lhe
modified problem.

Similarly, if we had a reorganizations problem to solve, an interlock-free dag could be 1
constructed from the initial input. The solution to the modified problem with the interlock-free
dag is also the solution to the original problem.

The reorganization problem is in NP. An algorithm for the problem is to nondeterministically
evaluate all possible orderings of the dag. There are only a finite number of orderings, since
WillInterlock is false for every pair of instructions and some amount of instruction separation. The
evaluation of each ordering (i.e. whether it is legal and how many no-ops it has) can be done in
polynomial time. The legality checks are similar to those needed to check for correct code
generation from a dag, and the interlock checks are trivial. The algorithm then selects the ordering
that is shortest legal ordering. P

4 A heuristic solution

As this reorganization process will be part of each compilation and as generating optimal code is very

expensive, we will concentrate on “good” solutions rather than on optimal *ones. The basic strategy is as

follows:

1. Read in a basic block and create a machine-level dag. .

2. At any point determine sets of instructions that can be generated.

3. Eliminate any sets that cannot bc started immediately.

4. Choose among the sets left.

The same register can be used in different parallel dags in a basic block (or in parallel subdags within a

single dag). Because of this it is possible to emit code for the nodes in a dag such that two parallel parts of one

or more dags will block each other.
Definition 10: Two machine instructions conjlicf if each has a destination that is a source for the

other instruction.

Definition 11: A code reorganizer is blocked if it reaches a point where the only remaining
choices of instructions conflict.

Because of the potential for blocking, when selecting the next instruction it is not sufhcient for the reorganizer

to look only at the instructions which are ready to be scheduled. Instead, the reorganizer must look ahead to

dcterminc that the nodes being sclcctcd will not lead to a deadlock situation. In Figure 4 the transformation

6

3.2 The complexity of reorganization

Using the machine level dag representation, we can state the reorganization problem more formally.

Definition 4: Given a machine level dag, D, with a valid register assignment, and a function
WiZZlnfcrZock, tlx reorganizaliou problem is to gencrat: a sequence of instructions using a minimal
number of no-ops such that:

l the instruction sequence is a legal evaluation of the dag, and

l for all instructions i,, i, in the sequence: WillInterlock (i&n), where n is the instruction
separation between i, and i,, is false.

We will show that the reorganization problem is NP-hard by showing that a modified version of the problem

contains the register assignment feasibility problem.
Definition 5: Let D be a machine-level dag with a valid register assignment. An inrerlock-free

dag, I>‘, is constructed from D by inserting m no-op nodes between every pair of connected nodes
in D. The value IZZ is one greater than the maximum value for which WillInterlock can be trite.

Definition 6: The modified reorganizalion problem is: given an interlock-free dag containing no-
ops, generate code from that dag using as few of the no-ops as possible. Note that the original
register assignment must be kept intact.

Later we will show that the original and modified reorganization problems are equivalent. First, we show
that the register assignment feasibility problem can be imbeddcd in the modified reorganization problem.

Definition 7: The register assigtunenl fcasibili~y problem [13] is: given a dag and a register
assignment for the nodes of the da,,0 is there an evaluation order of the dag for which the register
assignment is valid (i.e. the instruction sequence does not store into a register before all uses of the
value in that register have been employed)?

Lemma 8: The modified reorganization problem is NP-hard.
Proof: By reduction of the register assignment feasibility problem which is NP-complete.

Let D be a dag whose register assignment we wish to test, construct D’ by inserting a no-op
between every pair of connected nodes in D. Since the no-op nodes arc not labelled with a register
name, D’ obviously has a legal evaluation using the register assignment supplied by D.

Claim: The initial assignment of D is feasible iff the solution to the modified reorganization
problem, using D’ and WillInterlock = false for all inputs, is a code sequence with no no-ops.

If case: When the solution to the modified reorganization problem with WillInterlock= false
contains no no-ops, the resulting instruction sequcncc shows a legal evaluation order for the dag
with the initial register assignment.

#lrly if case: If the initial assignment is valid and WillInterlock = false, then the no-ops are
needed only to prevent overlapping uses of a register. Thus, the no-ops are needed only if the
initial assignment is not feasible. I

Tllcorcnl9: The reorganization problem is NP-complete.

8

1 Ld A, Rl
2 Add #l, Rl, R4
3 Ld B, R4
4 Sub #l, R4, Rl

R4:=Rl+l Rl:= R4 - 1

LdB,R4

Figure 4: Dag with potential deadlock

will end in a deadlock if the schedule starts with instruction 1 followed by instruction 3. To capture this
problem, we introduce the notion of a safe set of nodes in a dag.

Dcf’inition 12: In generating code for a dag D, the covered set of nodes is the set of nodes for
which instructions have been generated. A node n is fully covered if n is covered and there are no
references in the uncovered portion of D to the node n.

Defhitiou 13: Given a dag D, a safeposition in D is a set of nodes, S, s.t. nfS iff:

l dest(n) is not a label in any parallel dag D’, or

l if dest(n) is f D’, then n is fully covered.

Our algorithm does not back up; therefore, we have to prevent deadlock situations. A safe position is a set of

nodes, S, in the dag such that: code has been generated for all the nodes in S, and the nodes in S do not affect

the generation of code for the remaining nodes in the dag but not in S.
Definition 14: Given a dag D with a covered subset d and an uncovered starting node i, a safE

path, P, is a set of uncovered nodes in D that are parents of i (or dcsccndants of parents of i). s.t. P
is the minimum set of nodes that need to have code generated for them to make the set d lJ {i} a
safe position.

Safe paths are important because the algorithm we propose will always follow a safe path (or several

noninterfering safe paths) in the process of code generation.

9

4.1 The Reorganization Algorithm

The reorganization algorithm is a constraint algorithm; since it is nonoptimal, some heuristic choices are

incorporated. The general structure of the algorithm is to find the acceptable set of next instructions and then

to heuristically choose from among them.

Assume D,,D,,...,Dn are parallel dags, with covered sets C,,...,C, and fully covered sets F,,...,F,. The steps

of the algorithm are as follows:

1. Compute the set of legal‘next choice nodes: N, s.t.:

a. if i E D.-C., and the set of children of i C C., and Vi’ (WillIntcrlock(i’,i,n)= false), where n
is the n&&r of instructions gencratcd since? was emitted, then put i in N.

b. Starting with i, find the minimum safe path from Cj. Call this Safepath(i,j).

c. If the safe paths of two starting nodes overlap, eliminate one of the nodes generating the safe
paths from N (usually the node with the longer saf path should be eliminated).

d. If kEN is a load or store, check that it does not access a memory location out of order; if it
does, remove k from N.

2. If N is empty, emit a no-op. Otherwise, choose an instruction from N. If in step 1.c a safe path has
been eliminated, the next instruction should bc chosen from the favored safe path.

Lcnuntl 15: If the reorganization algorithm follows safe paths it never blocks.

Proof: By induction on the length of the code sequence emitted so far.

Basis: length = 0. Since no instructions have been emitted yet, there can be no
interdepcndcncics and no instruction choice will block.

Induction step: Assume for length = n. It is sufficient to consider the cast where only two nodes
remain and these nodes block (since otherwise a nonblocking node could be chosen). For two
nodes to block their destinations must be sources for the other node (as in Figure 4). Thus, all we
need demonstrate is that the reorganizer will never reach such a state. This is proved by
contradiction of +,he induction hypothesis.

Assume the reorganizer reached a blocking state for nodes nl and n2 with destinations d, and d,
and children s1 and s2 respectively. (The destinations of sI and s2 arc d, and d, respcctivcly).
Assume that s1 was chosen before node s2, and consider the algorithm at the point s2 is chosen.

To choose s2 over nl, s2 must be the start of a safe path. The only safe position once s1 and s2
are covered is the entire dag. But there is no safe path starting with s2 that covers the entire dag
(since safe paths must involve only parents of s2).

Since the algorithm followed safe paths for the first n nodes, node s2 could not have been
chosen over node nl, and the lemma must hold. I

Thcorcm 16: The reorganization algorithm correctly emits code that avoids blocking and
computes the same function as the original code scqucnce.

Proof: If the initial register allocation is correct, traversing the code in a bottom-up fashion will
always yield a legal computation, provided the reorganizer does not block, the interlocks are
preserved, and aliasing effects arc avoided. Aliasing effects are avoided by checks on loads and
stores (step Id); step la checks for interlocks; blocking can not occur by Lemma 15. The bottom
up traversal is correct, since code is not emitted for a node unless its children are covcrcd.

Since the algorithm cannot block, if WillIntcrlock is false for some amount of instruction
separation, then the algorithm must complete the code sequence. Furthermore, since the code is
correct, we know that a complete and correct code sequence must bc emitted. I

5 Implementation

We have implemented a compiling system and reorganizer for MIPS (Microprocessor without Interlocked

Pipe Stages) [6], an ongoing, experimental VLSI processor project. Currently, compilers for Pascal, Fortran,

and C exist. These compilers generate machine-language level instructions that ignore the possibility of

interlocks. The reorganizer is an implementation of the techniques described above; it also provides several
other functions, such as limited instruction collapsing and instruction assembly. Although the pipeline

interlocks in MIPS are straightforward, they significantly affect code generated from a standard compiler.

.

5.1 MIPS interlocks

MIPS has a six-stage pipeline with three active instructions occupying every other pipestage. For the

purposes of this paper it is sufficient to consider only the destination-source interlocks that occur when
registers arc written and then used as sources on the next instruction. Results from arithmetic operations can

be written in pipestages 3 and 6, and registers can bc loaded from memory during pipestage 5. Registers are
used as sources for address calculations and arithmetic operations during pipestages 3 and 6, and as sources to

;. I stored during pipestage 4. The interlocks that arise from this pipeline structure can be summarized as

follows:

Destination Source
Field Field

(idq (i+1,3)

(L6) (i+1,4)

In Table 1 we show some typical instructions and their use of the pipeline.

11

Instruction

Load lO(R2),Rl

Add R2,Rl

Add R2,Rl

S t o r e R1,20(R2)

Sources

R2 during 3

Rl, R2 during 3

Rl, R2 during 6

Destinations

Rl during 5

Rl during 3

Rl during 6

R2 during 3,
Rl during 4

Table 1: Resource usage of MIPS instructions

5.2 Effectiveness of the reorganization

The reorganizer has given us an opportunity to evaluate the effectiveness of removing pipeline interlocks

by compile-time analysis. In Figure 5 we show a typical sample instruction sequence, ahd the legally padded

sequence generated by added in-ops. Figure6 shows the resulting machine-level dag, and the reorganized
code sequence produced by the reorganizer. The reorganized code has 2 less instructions than the code using

no-ops. Since all MIPS instructions take the same amount of time to execute, and occupy the same amount of
. instruction space, this is a 30% improvement in execution time and instruction space. ’

.‘. .

SamDle i n s t r u c t i o n secjuence

1 L d l(sp), Rl
2 Add #l, Rl
3 S t Rl, l(sp)
4 Ld 2(sp), R2
5 Add Rl, R2, R3
6 St R3, A

Leaal instructions without reorderinq

1 L d l(sp), Rl
2 No-op
3 Add #l, Rl
4 S t Rl, l(sp)
5 Ld 2(sp), R2
6 No-op
7 Add Rl, R2, R3
6 St R3, A

Figure 5: Code sequence and padded code

Table 2 is a table of empirical results for the reorganizer. The test programs consist of

1. Fibbonacci, a recursive implementation of computing a Fibonacci number,

2. Puzzle O-4, four versions of the infamous Puzzle benchmark [3] that recursively solves a cube
pat king problem,

3. Allo, the storage allocator from the Portable C Compiler,

St R3, A .

R3:=R2+Rl

I
01

Ld l(sp), Rl

Reorsanized code

1 Ld l(sp), Rl
2 Ld 2(sp). R2
3 Add #l, Rl
4 S t Rl, l(sp)
5 Add Rl, R2, R3
6 St R3, A

Figure 6: Machine-level dag and reorganized code

4. Reader, a portion of the scanner from the Portable C Compiler.

Part of the function of our reorganizer is to pack together instruction pieces into complete’ instructions; this

tinction is similar to, but simplier than, the packing of vertical microoperations into horizontal micro-
instructions. This instruction packing tends to emphasize the need for reorganization techniques because it

increases the number of no-ops needed in unreorganized code. In the empirical data in Table 2, the effects of

instruction packing are not considered. .

6 Compiler interaction

Clearly this type of architecture and the code reorganization technique affects many parts of a compiler

system including the code generator, the optimizer, and symbolic debuggers.

13

Program Instruction No-ops needed No-ops needed
Name count without with

reorqanization reorqanization

Fibonacci 43 3 3

Puzzle 0 795 134 58

Puzzle 1 15 6

Puzzle 2 815 113 55

Puzzle 3 818 113 55

Al10 1272 193 86

Reader 2744 424 179

Table 2: Empirical data for reorganization

6.1 Code generation and local register allocation

In our reorganization scheme, we assumed the output of the code generators to be fixed. An important
.

* issue is the interdependency of the reorganization phase with preceding phases, i.e. if register allocation were .
done at this level, what could be gained from such a strategy? Different register allocation schemes can clearly

influence the amount of reordering.

Consider the instructions which are generated for the statement: x [i] = k + x [j 1. Our first adoption

of the portable C compiler [S] produced the instruction sequence shown in Figure 7: it reuses registers as early
as possible. Figure 7 also shows the reorganized code that requires three no-ops to prevent destination-source
interlocks; a reorganization is not possible.

Code qenerated
Ld J, RO
Ld X(RO), Rl
Ld K, RO
Add RO, Rl
Ld I, RO
St Rl, X(R0)

Leqal instructions
Ld J, RO
No-Op
Ld X(RO), Rl
Ld K, RO
No-Op
Add RO, Rl
Ld I. RO
No-Op
S t Rl, X(R0)

. .

Figure 7:. Expression Evaluation: Old Rcgistcr Assignment

A different approach is postpone the recycling of the registers and make use of more of the registers. This

can be done by using different register groups (odd/even) or by cycling through the registers which are

available for the evahritiotl of expressions. This second approach has been taken in our adoption of the code

. generator, and the resulting code sequence is shown in Figure 8. Two of the no-ops can be removed by

reordering the code, only one no-op remains. More sophisticated register allocation algdrithms often do not

14

Code aenerated
Ld J, RO
Ld X(RO), Rl
Ld K, R2
Add R2, Rl
Ld I, R3
St Rl, X(R3)

Leqal instructions
Ld 3, RO
Ld K, R2
Ld X(RO), Rl .
Ld I, R3
Add R2, Rl
No-Op
St Rl, X(R3)

Figure 8: Expression Evaluation: New Register Assignment

dedicate registers, but use only the minimum number required for expression evaluation and leave other

registers free for other purposes. Such an allocation scheme requires more careful integration of potential

effects of an allocation scheme on the reorganization process.

The presence of pipeline interlocks, either in hardware of software, may change the accuracy of the usual

metrics employed to choose between two alternative instruction streams. In particular, loads will tend require
longer pipeline delays than instructions whose operands are in registers. For example, ignoring the effect of

pipeline interlocks, loads and register-register operations may not differ in terms of size or execution time.

However, when the interlocks are considered the use of load instructions tends to produce inferior code
quality.

6.2 Global register allocation

Global register allocation also affects the reorganization process. When registers are globally allocated, a

register may be active at the first instruction of a basic block. this occurs when the register is a destination near

the end of a previous basic block. In the general case of long interlock periods, the reorganizer will have to
know or find the predecessor blocks to determine what registers are affected by interlocks at the beginning of

the basic block.

In most practical instances this will not ‘necessary. When a basic block ends in a jump (or other

nonsequential control transfer), the time to process the change of the PC will nearly always exceed the length.
of the longest register interlocks. Thus, the reorganizer will only need to consider interlocks that arise from

sequential control flow into a basic block. These interlocks are easily computed when the previous basic block

is processed.

6.3 Debugging

The code reorganization process is like an optimization in that

are altered. Thus, the same problems that arise when trying to

the in tcrmediate stages

debug optimized code

of the computation

occur, and similar

solutions are appropriate.

. 15

The major affect of code reorganization, on the debugging process, is to move stores with respect to other

stores and computations that may fail (for example, from an overflow). These situations correspond to the

type of reordering that can occur when generating code from a dag. This problem and potential solutions to

the problem are discussed in depth in [7].

7 Conclusion

Modern advances in processor architecture and the constraints of VLSI design are creating new

requirements for compiler and code generation techniques. A unified design approach to computer
architecture allows the compiler designer to significantly influence the architecture and make

hardware/software tradeoffs. The resulting architecture may then require more powerful compilers and

optimizers to perform effectively.

This paper examines the process of code reorganization for a pipelined processor without pipeline
interlocks. We define the problem, and propose a solution based on a postpass reorganization technique. An

optimal solution to the reorganization problem is NP-complete. We give an alternative heuristic algorithm

and some empirical data on its performance. Lastly, we discuss the integration of the postpass reorganizer into

a compiler system.

Acknowledgments

We thank John Gill for generating the C compiler for MIPS. James Celoni, S.J. for insight on the NPlhard
proof. Norman Jouppi, Jud Leonard, and the other members of the MIPS design team have provided useful .

suggestions during the course of this research.

References

1. Aho, A.V. and Ullman J.D.. Principles of Compiler Design. Addison Wesley, Menlo Park, 1977.

2. Aho, A.V. and Johnson, J.C. “Code generation for expressions with common subexpressions.” JACK 24,
1(1977), 146-160.

3. Baskett, F. Puzzle: an informal compute bound benchmark. Widely circulated and run.

4. Davidson, S., Landskov, D., Shrivcr, B.D., and Mallett, P.W. “Some Experiments in Local Microcode
Compaction for Horizontal Machines.” Tranxon Compulers C-30,7 (July 1981), 460 - 477.

5. Denning, P.J. “Computer Architecture: Some Old Ideas that Haven’t Quite Made It Yet.” CACM 24,9
(September 1981), 553-554. ACM President’s Letter.

c 6. Hcnnessy, J.L., Jouppi, N., Baskett, F., and Gill,J. MIPS: A VLSI Processor Architecture. Proc. CMU
Confcrcncc on VLSI Systems and Computations, October, 1981.

16

7. Hennessy, J.L. “Symbolic Debugging of Optimized Code.” ACM Trans. on Programming Languages arrd
Syslems (1982). To appear.

8. Johnson, S.C. A Portable Compiler: Theory and Practice. Proc. 5th POPL Conference, ACM,
January, 1978, pp. 97-104.

9. Lampson, B.W., McDaniel, G.A. and S.M. Omstein. An Instruction Fetch Unit for a High Performance
Personal Computer. Tech. Rept. CSL-81-1, Xerox PARC, Jan, 1981.

10. McLcllan. “IBM, A Radical Departure.” Dalamation 25,ll (October 1979), 53-55.

11. Patterson, D.A. and Sequin C.H. RISC-I: A Reduced Instruction Set VLSI Computer. Proc. of the
Eighth Annual Symposium on Computer Architecture, Minneapolis, Minn., May, 1981.

12. Patterson, D.A. and Ditzel, D.R. “The Case for the Reduced Instruction Set Computer.” Computer
Architecrure News 9,3 (October 1980).

13. Scthi, R. “Complete register allocation problems.” SIAM J. Computing 4,3 (1975), 226-248.

14. Tokoro, M., Tamura, E. and Takizuka, T. “Optimization of Microprograms.” Trans. on Compufers C-30,
7 (July 1981), 491-504.

. . .

15. Widdoes, L.C. The S-l Project: Developing high performance digital computers. Proc. Compcon, IEEE,
San Francisco, Feb, 1980.

16. Wulf, W.A. “Compilers and Computer Architecture.” Compuler 24,7 (July 1981), 41-48.

