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Abstract

Code summarization (CS) and code generation (CG) are two crucial tasks in the
field of automatic software development. Various neural network-based approaches
are proposed to solve these two tasks separately. However, there exists a specific
intuitive correlation between CS and CG, which has not been exploited in previous
work. In this paper, we apply the relations between two tasks to improve the
performance of both tasks. In other words, exploiting the duality between the two
tasks, we propose a dual training framework to train the two tasks simultaneously.
In this framework, we consider the dualities on probability and attention weights,
and design corresponding regularization terms to constrain the duality. We evaluate
our approach on two datasets collected from GitHub, and experimental results
show that our dual framework can improve the performance of CS and CG tasks
over baselines.

1 Introduction

Code summarization (CS) is a task that generates comment for a piece of the source code, whereas
code generation (CG) aims to generate code based on natural language intent, e.g., description of
requirements. Code comments, a form of natural language description, provide a clear understanding
for users, and are very useful for software maintenance [de Souza et al., 2005]. On the other
hand, CG is an indispensable process in which programmers write code to implement specific
intents [Balzer, 1985]. Proper comments and correct code can massively improve programmers’
productivity and enhance software quality. However, generating the correct code or comments is
costly, time-consuming, and error-prone. Therefore, carrying out CS and CG automatically becomes
greatly important for software development.

Recently, many researchers, inspired by an encoder-decoder framework [Cho et al., 2014], applied
neural networks to solve these two tasks independently. For CS, the encoder uses a neural network to
represent source code as a real-valued vector, and the decoder uses another neural network to generate
comments word by word. The main difference among previous studies is the way to encode source
code. Specifically, Iyer et al. [2016] and Hu et al. [2018a,b] modeled source code as a sequence of
tokens, composed by original code tokens or abstract syntax tree (AST) nodes obtained by traversing
ASTs in a certain order. On the other hand, Wan et al. [2018] treated a code snippet as an AST. It is
worth noting that these previous models have both introduced the attention mechanism [Bahdanau
et al., 2015] to learn the alignment between the code and the comment.
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For CG with a general-purpose programming language, the encoder-decoder framework was first
applied by Ling et al. [2016], where the encoder took a natural language description as input, and
the decoder generated the source code. In addition, some researchers used auxiliary information to
improve the performance of their models, such as grammar rules [Yin and Neubig, 2017, Rabinovich
et al., 2017, Sun et al., 2018] and structural descriptions [Ling et al., 2016]. These methods all applied
the attention mechanism as in CS task. Overall, previous studies on CS and CG were independent of
each other. None of the previous studies before have considered the relations between the two tasks
or exploited the relations to improve each other.

Intuitively, CS and CG are related to each other, i.e., the input of CS is the output of CG, and vice
versa. We refer to this relation as duality, which provides some utilizable constraints to train the
two tasks. Specifically, from the perspective of probability, given a piece of source code and a
corresponding comment, there exists a pair of inverse conditional probabilities between them, bound
by their common joint probability. From the perspective of the model structure, both tasks take the
encoder-decoder framework, with source code and comment as both input and output. We conjecture
that the attention weights from the two models should be as similar as possible because they both
reflect the similarity between the token at one end and the token at the other end. Besides, the CS
and the CG model require similar abilities in understanding natural language and source code. Thus,
we argue that the joint training of the two models can improve the performance of both models,
especially when we add some constraints to this duality.

In this paper, we design a dual learning framework to train a CS and a CG model simultaneously to
exploit the duality of them. Besides applying a probabilistic correlation as a regularization term [Xia
et al., 2017] in the loss function, we design a novel constraint about attention mechanism to strengthen
the duality. We conduct our experiments on Java and Python projects collected from GitHub used by
previous work [Hu et al., 2018a,b, Wan et al., 2018]. Experimental results show that jointly training
two models can help the CS model and CG model outperform the state-of-the-art models.

The contributions of our work are shown as follows:

• To our best knowledge, it is the first time we propose a joint model for automated CS and CG.
We unprecedentedly attempt to treat CS and CG as dual tasks and apply a dual framework
to boost each other.

• We adopt a probabilistic correlation between CS and CG as a regularization term in loss
function and design a novel constraint to guarantee the similarity of attention weights from
two models in the training process.

2 Related Work

Code summarization (CS), as an essential part of the software development cycle, has attracted a lot
of recent attention. With the development of deep learning, neural networks are applied in this task
successfully. Besides Allamanis et al. [2016] using a CNN to generate short and name-like summaries,
most of the related work followed the encoder-decoder framework. Iyer et al. [2016] used an RNN
with attention mechanism as a decoder. Hu et al. [2018a] introduced a machine translation model to
generate summaries for Java methods given the serialized AST. Then they adopted a transfer learning
method to utilize API information to generate code summarization [Hu et al., 2018b]. Wan et al.
[2018] designed a tree RNN, which leverages code structure information, and applied a reinforcement
learning framework to build the model. Note that since the tree-based module must take a tree (e.g.,
AST) as input and different training samples have different tree structures, it is hard to carry out batch
processing in the implementation.

As a fundamental part of software development, code generation (CG) is a popular topic among the
field of software engineering as well. Recently, more and more researchers apply neural networks
for general-purpose CG. Ling et al. [2016] introduced a sequence-to-sequence model to generate
code from natural language and structured specifications. Yin and Neubig [2017] and Rabinovich
et al. [2017] both combined the grammar rules with the decoder and improved code generation
performance. Sun et al. [2018] argued that traditional RNN might not handle the long dependency
problem, and they proposed a grammar-based structural CNN. Different from the aforementioned
methods, we argue that a simple CG model could boost the CS model in our dual framework, and the
CG model can also benefit from the dual training process.
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Figure 1: The overall dual training framework. A CS model and a CG model are trained jointly in the
framework.

Dual learning, proposed by He et al. [2016], is a reinforcement training process that jointly trains
a primal task and its dual task. Xia et al. [2017] considered it as a way of supervised learning
and designed a probabilistic regularization term to constrain the duality, which has been applied
successfully in machine translation, sentiment classification, and image recognition. Tang et al.
[2017] treated question answering and question generation as a dual task and proved the effectiveness
of dual supervised learning. Li et al. [2018] applied a dual framework to improve the performance of
visual question answering with the help of visual question generation. Xiao et al. [2018] introduced
a dual framework to jointly train a question answering model and a question generation model in
machine reading comprehension. To the best of our knowledge, we are the first to propose a dual
learning framework in CS and CG, and leverage the duality between them. Furthermore, we design a
new dual constraint about attention weights to strengthen the correlation between the two tasks.

3 Proposed Approach

Our training framework, illustrated in Figure 1, consists of three parts: a CS model, a CG model,
and dual constraints. The CS model aims to translate the source code to a comment, while the CG
model maps natural language description to a source code snippet. Dual constraints are used by
adding regularization terms in the loss function to constrain the duality between two models. We first
formulate the tasks of CS and CG and then describe the details of our framework.

We denote a set of source code snippets as X = {x(i)} where x(i) = {x
(i)
1 , ..., x

(i)
n } denotes the

token sequence of a code snippet. Each code snippet x(i) has a corresponding natural language

comment as y(i) where y(i) = {y
(i)
1 , ..., y

(i)
m } ∈ Y . Thus, the CS model learns a mapping fxy from

X to Y and the CG model learns a reverse mapping fyx from Y to X . Different from previous work,
we regard the two tasks as a dual learning problem and train them jointly.

3.1 Code Summarization Model

The CS model takes a code snippet x(i) as input to generate a comment. Considering the efficiency,
we choose the sequence-to-sequence (Seq2Seq) neural network with an attention mechanism as our
model. The model contains two parts: an encoder and a decoder.

The encoder first maps the token of a source code snippet into a word embedding. Words which do
not appear in the vocabulary are defined as unknown. Then to leverage the contextual information, we
use a bidirectional LSTM to process the sequence of the word embeddings. We concatenate hidden
states of the time step i from two directions as the representation of the i-th token hi in source code.

The decoder is another LSTM with an attention mechanism between encoder and decoder, which
generates a word yt based on the representation of whole source code snippet and the previous words
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in the comment. This process is formulated as

P (y|x) =

m∏

t=1

P (yt|y<t, x) (1)

The last hidden state from the encoder is used to initialize the hidden state of the decoder which
computes the hidden state as h

′

t = LSTM(y
′

t−1, h
′

t−1), where y
′

t−1 is defined as the concatenation of

the embedding of yt−1 and the attention vector at−1. h
′

t is used to compute the attention weights as

α̃ti = h
′⊤
t Whi (2)

αti =
exp{α̃ti}∑
j exp{α̃tj}

(3)

where W is a group of trainable weights. The attention score αti measures the similarity between
the token of comment yt and the token of code snippet xi. We compute the context vector ct as

ct =
∑

j αtjhj . Then ct and h
′

t are fed into a feed-forward neural network to get the attention vector

at which is fed into a softmax layer to get the prediction of the token yt in the comment. We use
negative log-likelihood as the training objective. The loss function of a training sample is

lxy = −
1

m

m∑

t=1

logP (yt|y<t, x) (4)

3.2 Code Generation Model

Unlike work depending on the grammar rules, our CG model, which can be regarded as the inverse
CS task, predicts the code snippet only based on natural language description. We use the same
structure as the CS model, i.e., a Seq2Seq neural network. The encoder is a bidirectional LSTM,
and the decoder is another LSTM with an attention mechanism. Different from the CS model, the
decoder in the CG model learns a conditional probability as

P (x|y) =
n∏

t=1

P (xt|x<t, y) (5)

And the training objective is formulated as

lyx = −
1

n

n∑

t=1

logP (xt|x<t, y) (6)

Since the source code contains lots of identifiers, the vocabulary size of the source code is usually
much larger than that of comments, which results in more parameters in the output layer of the CG
model than in the output layer of the CS model.

3.3 Dual Training Framework

The dual training framework includes three components: a CS model, a CG model and two dual
regularization terms to constrain the duality of the two models, which are enlightened by the
probabilistic correlation and the symmetry of attention weights between two models.

Given a pair of 〈x, y〉, the CS model and the CG model have probabilistic correlation, because they
are both connected to the joint probability P (x, y) which can be computed in two equivalent ways.

P (x, y) = P (x)P (y|x) = P (y)P (x|y) (7)

Since the CS model, parameterized by θxy, is built to learn the conditional probability P (y|x; θxy),
and the CG model, parameterized by θyx, is built to learn the conditional probability P (x|y; θyx),
we can jointly train these two models by minimizing their loss functions subject to the constraint
of Eqn. 7. We build the constraint of Eqn. 7 to a penalty term by using the method of Lagrange
multipliers, and thus our regularization term is

ldual = [logP̂ (x) + logP (y|x; θxy)− logP̂ (y)− logP (x|y; θyx)]
2 (8)
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Algorithm 1 Algorithm Description

Input: Language models P̂ (x) and P̂ (y) for any x ∈ X and y ∈ Y ; hyper parameters λdual1, λdual2, λatt1

and λatt2; optimizers opt1 and opt2
repeat

Get a minibatch of k pairs 〈(xi, yi)〉
k
i=1;

Calculate the gradients for θxy and θyx.

Gxy = ▽θxy
(1/k)

k∑

i=1

[lxy(fxy(xi; θxy), yi) + λdual1ldual(xi, yi; θxy, θyx) + λatt1latt(xi, yi; θxy, θyx)];

Gyx = ▽θyx
(1/k)

k∑

i=1

[lyx(fyx(yi; θyx), xi) + λdual2ldual(xi, yi; θxy, θyx) + λatt2latt(xi, yi; θxy, θyx)];

Update θxy and θyx
θxy ← opt1(θxy, Gxy), θyx ← opt2(θyx, Gyx)

until models converged

where P̂ (x) and P̂ (y) are marginal distributions, which can be modeled by their language models,
respectively. By minimizing this dual loss function, the probabilistic connection between the two
models could be strengthened, which is helpful to the training process.

Naturally, structures of the CS model and CG model have symmetries, meaning that the output of
one model is the input of the other model, and vice versa. Thus, we can introduce this property to the
dual training process. In this paper, we focus on the symmetry of attention weights and argue that
the alignment between tokens in the source code snippet and tokens in the comment has symmetry,
which could be measured by attention weights. Specifically, given the comment “find the position of
a character inside a string” and the corresponding source code “string . find ( character )”, no matter
how the generating direction goes, the word “find” in the comment should always be aligned to the
same token “find” in the source code. Hence, we design a regularization term to leverage this duality.

The matrices of attention weights before normalization in the CS and the CG model, easily obtained
by Eqn. 2, are denoted as Axy ∈ R

n×m and Ayx ∈ R
m×n. The element αij in Axy and the element

αji in Ayx both measure the similarity between the i-th token in the source code with the j-th token
in the comment. For the i-th token in the source code, we obtain its attention weights bi, a probability
distribution, from the CS model by bi = softmax(Ai

xy), where Ai
xy is the i-th row vector of Axy.

Then the attention weights from CG model is b
′

i = softmax(Ai
yx), where Ai

yx is the i-th column
vector of Ayx. Finally, we apply the Jensen–Shannon divergence [Fuglede and Topsoe, 2004], a
symmetric measurement of similarity between two probability distributions, to constrain the distance
between these two attention weights. Thus, the penalty term l1 for tokens in the source code is

l1 =
1

2n

n∑

i=1

[DKL(bi‖
bi + b

′

i

2
) +DKL(b

′

i‖
bi + b

′

i

2
)] (9)

where DKL is the Kullback–Leibler divergence, defined as DKL(p‖q) =
∑

x p(x)log
p(x)
q(x) , which

measures how one probability distribution p diverges from the other probability distribution q.
Likewise, we can obtain the penalty term l2 for tokens in comments in the same manner. Consequently,
the final regularization term about attention weights latt is the sum of l1 and l2. Moreover, we consider
that the attention weights from one model could be regarded as the soft label of the other model. The
overall algorithm is described in Algorithm 1, and the complexity of our model is the same as the
Seq2Seq neural network. Our implementation is based on PyTorch.2

4 Experiments

4.1 Datasets

We conduct our CS and CG experiments on two datasets, including a Java dataset [Hu et al., 2018b]
and a Python dataset [Wan et al., 2018]. The statistics of the two datasets are shown in Table 1.

2https://pytorch.org/
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Table 1: Statistics of datasets

Dataset Java Python

Train 69,708 55,538
Validation 8,714 18,505
Test 8,714 18,502

Avg. tokens in comment 17.7 9.49
Avg. tokens in code 98.8 35.6

The Java dataset, containing Java methods extracted from 2015 to 2016 Java projects, is collected
from GitHub3. We process the dataset following Hu et al. [2018b]. The first sentence of Javadoc is
extracted as the natural language description, which describes the functionality of the Java method.
Each data sample is organized as a pair of 〈method, comment〉.

For our language model applied to Java dataset, we can use various large scale monolingual corpus to
pretrain. In this paper, we use the Java projects from 2009 to 2014 on GitHub [Hu et al., 2018a] as
our dataset. We separate the original datasets into a code-only dataset and a comment-only dataset.
The language model of source code takes the Java methods in the code-only dataset as input, whereas
the language model of comment takes the comments in the comment-only dataset as input. Each
dataset is split into training, test and validation sets by 8:1:1.

The original Python dataset is collected by Barone and Sennrich [2017], consisting of about 110K
parallel samples and about 160K code-only samples. The parallel corpus is used to evaluate CS task
and CG task. Since Wan et al. [2018] used the dataset in their experiments, we follow their approach
to process this dataset.

For the language model of source code in Python, we use the code-only samples in the original
dataset to pretrain. We divide the samples into training, test, and validation sets by 8:1:1. However,
for the language model of comments in Python, we are not able to find enough monolingual corpus to
pretrain. Considering the patterns of comments in Python dataset and in Java dataset are very similar,
we use the comment-only corpus from Java dataset as an alternative. Experimental results turn out
that the language model pretrained in this way is beneficial to our dual training.

4.2 Hyperparameters

We set the token embeddings and LSTM states both to 512 dimensions for the CS model and set the
LSTM states to 256 dimensions for the CG model to fit GPU memory. Afterward, to initialize the CS
and the CG model in our dual training framework, we use warm-start CS and CG models, whose
parameters are optimized by Adam [Kingma and Ba, 2015] with the initial learning rate of 0.002.
Warm-starting means that we pretrained CS and CG models separately, then applied dual constraints
to the two models for joint training, which can speed up the convergence process of joint training.
The dropout rates of all models are set to 0.2 and mini-batch sizes of all models to 32. For dual
learning process, we observe that the SGD is appropriate with initial learning rate 0.2. We halve the
learning rate if the performance of the validation set decreases once and freeze the token embeddings
if the performance decreases again. According to the performance of the validation set, the best dual
model is selected after joint training 30 epochs in the experiments. The λdual1 and λdual2 are set to
0.001 and 0.01 respectively, and the λatt1 and λatt2 are set to 0.01 and 0.1. We use beam search in
the inference process, whose size is set to 10. Furthermore, the vocabulary sizes of the code in Java
and Python dataset are set to 30000 and 50000, and maximum lengths of code and comments in Java
are set to 150 and 50 respectively.

Our language models for source code and comments both employ 3 LSTM layers. Token embeddings
and LSTM states are both 300-dimensional. Batch size is set to 40 and dropout rate to 0.3. We apply
gradient clipping to prevent gradients from becoming too large. The vocabulary consists of all words
that have a minimum frequency of 3. Adam is chosen as our optimizer, and the initial learning rate is
set to 0.002. During the dual training process, the parameters of language models are fixed. Language

models are only used to calculate marginal probabilities P̂ (x) and P̂ (y) in Eqn. 8.

3https://github.com/
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Table 2: The overall performance of our CS models compared with baselines

Methods
Java Python

BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

CODE-NN 27.60 12.61 41.10 17.36 9.288 37.81
DeepCom 39.75 23.06 52.67 20.78 9.979 37.35
Tree2Seq 37.88 22.55 51.50 20.07 8.957 35.64
RL+Hybrid2Seq 38.22 22.75 51.91 19.28 9.752 39.34
API+CODE 41.31 23.73 52.25 15.36 8.571 33.65

Basic Model 41.01 23.26 51.64 20.47 10.38 38.77
Dual Model 42.39 25.77 53.61 21.80 11.14 39.45

Table 3: BLEU scores and percentage of valid code (PoV) on CG task

Methods
Java Python

BLEU PoV BLEU PoV

SEQ2TREE 13.80 22.6% 4.472 22.7%
Basic Model 10.86 19.6% 10.43 41.8%
Dual Model 17.17 27.4% 12.09 51.9%

5 Experimental Results

Metrics. We evaluate the performance of CS task based on three metrics, BLEU [Papineni et al.,
2002], METEOR [Banerjee and Lavie, 2005] and ROUGE-L [Lin, 2004]. These metrics all measure
the quality of generated comments and can represent the human’s judgment. BLEU is defined as the
geometric mean of n-gram matching precision scores multiplied by a brevity penalty to prevent very
short generated sentences. We choose sentence level BLEU as our metric as in Hu et al. [2018a,b].
METEOR combines unigram matching precision and recall scores using harmonic mean and employs
synonym matching. ROUGE-L computes the length of longest common subsequence between
generated sentence and reference and focuses on recall scores. For CG task, we choose BLEU as
our performance metric because accuracies on both datasets are too low. Ling et al. [2016], Yin
and Neubig [2017] and Sun et al. [2018] discussed the effectiveness of the BLEU in the CG task.
They treated the BLEU as an appropriate proxy for measuring semantics and left exploring more
sophisticated metrics as future work. Furthermore, to evaluate how much of the generated code is
valid, we calculate the percentage of code that can be parsed into an AST.

Baselines. We compare our CS model’s performance with the following five baselines.4 It has been
proved that the attention mechanism is very helpful to comment generation [Hu et al., 2018a], so all
baselines introduced this module. CODE-NN [Iyer et al., 2016] uses token embeddings to encode
source code and uses an LSTM to decode. To exploit the structural information, DeepCom [Hu et al.,
2018a] takes a sequence of tokens as input, which is obtained through traversing the AST with a
structure-based traversal method, while Tree2Seq [Eriguchi et al., 2016] directly uses a tree-based
LSTM as an encoder. RL+Hybrid2Seq [Wan et al., 2018] is a model trained with reinforcement
learning, whose encoder is the combination of an LSTM and an AST-based LSTM. We further
compare with API+CODE [Hu et al., 2018b] without transferred API knowledge, which introduces
API information when generating comments. The proportion of source code in Python having no APIs
is about 20%; we set the prediction of test samples having no APIs to null. Except for Tree2Seq and
RL+Hybrid2Seq (They used Word2Vec to pretrain their token embeddings), the token embeddings for
other models are randomly initialized. For DeepCom, we use a bi-LSTM as the encoder to ensure the
number of parameters is comparable to that of our model. For API+CODE, we set the embeddings
and GRU states to 512 dimensions.

For CG model, we compare our dual model with the individually trained basic model, and also
compare to SEQ2TREE [Dong and Lapata, 2016], which modeled the source code as a tree. Since
our CG model only takes natural language description as input, to make a fair comparison, we do not
compare with other models that take grammar rules [Yin and Neubig, 2017, Rabinovich et al., 2017,
Sun et al., 2018] or structured specification [Ling et al., 2016] as additional input.

4For papers that provide the source code, we directly reproduce their methods on two datasets. Otherwise,
we rebuild their models with reference to the papers.
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Table 4: Ablation study of different settings on CS task. Model (M) 1 is the basic model of
independent training.

M
Probabilistic

Duality
Attention
Duality

Java Python
BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

1 - - 41.01 23.26 51.64 20.47 10.38 38.77
2 X - 41.73 25.54 53.60 21.66 10.81 38.83
3 - X 41.96 25.80 53.57 21.57 10.91 39.07
4 X X 42.39 25.77 53.61 21.80 11.14 39.45

Overall Results. The overall performance of the CS model is shown in Table 2. Results show that
our dual model obviously outperforms all the baselines on three metrics at the same time. To test
whether the improvements of our dual model over baselines are statistically significant, we applied the
Wilcoxon Rank Sum test (WRST) [Wilcoxon, 2006], and all the p-values are less than 0.01, indicating
significant increases. We also used Cliff’s Delta [Cliff, 1996] to measure the effect size, and the
values are non-negligible. From results of baseline models, we can see that our independently trained
basic model is simple and effective, yet is still inferior to the dual model, showing the effectiveness of
joint training process. Compared to the sequence-based models, DeepCom and our basic model, the
tree-based models (Tree2Seq and RL+Hybrid2Seq) do not achieve strong improvements of BLEU
and METEOR scores on the two datasets. We suppose the reason for this phenomenon is that after
the source code is converted to AST, the number of nodes becomes very large, resulting in increased
noise. According to statistics, the average token numbers of Java and Python datasets have been
more than doubled after parsing. In this case, due to the method’s handling of the custom identifier
contained in the code, DeepCom has achieved good results. The results of API+CODE indicate that
API knowledge in Java dataset is beneficial to the comment generation. Though we do not focus on
integrating structural information and API knowledge in the current work, we will leverage them in
future studies considering their potential for boosting performance.

Since CS and CG models are trained at the same time and the parameters of the two models are
separate after the joint training, i.e., the two models solve their respective tasks separately after the
joint training, the number of parameters of each dual model is the same as that of the basic model.
The number of parameters for all models on Java CS task is as follows: CODE-NN 34M, DeepCom
53M, Tree2Seq 52M, RL+Hybrid2Seq 80M, API+CODE 80M, Basic model 53M and Dual model
53M. The relationship between the number of all models’ parameters is consistent in Java and Python
experiments on CS task.

The results of CG model are shown in Table 3. Although the BLEU score is very low, dual training
can still improve the performance of individually trained basic model, proving the effectiveness of
dual training. It is observable that SEQ2TREE’s performance is better than our basic model’s on Java
dataset, which demonstrates the ability of SEQ2TREE to leverage code hierarchies. However, its
performance is far worse than our basic model’s on Python dataset. The reason is that SEQ2TREE
builds up tree structure according to brackets contained in the code, while hierarchical levels in
Python code are segmented by line breaks and indents. Besides, dual training can also increase the
percentage of valid code on both Java and Python datasets.

Component Analysis. We verified the role of dual regularization terms in joint training on CS task.
The experimental results are shown in Table 4. Model 1 is the basic model of independent training.
We can see that the introduction of CG model to train models jointly and constrain the duality between
the two models can improve the performance of the CS model, indicating the utilizability of the
relation between the two tasks. Specifically, we find that applying a regularization term on attention
is slightly more effective than applying a regularization term on probability to improve model’s
performance. This is because, intuitively, the attention regularization term has a more powerful and
more explicit constraint than the probability regularization term. Naturally, combining the two will
further enhance our CS model’s performance. To test whether the improvements of two constraints
over one constraint on BLEU are significant, we applied the WRST, and all the p-values are less than
0.05, indicating significant increases. Cliff’s Delta values also show non-negligible improvements.

In order to better understand the role of regularization terms, we also conduct experiments on the
Python dataset to observe changes in regularization terms. In particular, after exerting the two
constraints, the value of regularization term on probability is reduced from 129.1 to 125.9, and the
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Source Code: public static void closeQuiet(@Nullable Closeable closeable){
if (closeable != null){

try{ closeable.close();}
catch(IOException ignored){}

}

}
Human-Written: closes resource without reporting any error.

Dual Model: quietly closes given closeable without reporting.

(a) CS task

Comment: prints an integer to standard output and flushes standard output.
Human-Written: public static void print(Object x){out.print(x); out.flush();}

Dual Model: public static void print(int x){out.print(x); out.flush();}

(b) CG task
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(c) Basic model
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(d) Dual model

Figure 2: Qualitative analysis of our dual model. (a) Example of the generated comment given
Java methods. (b) Example of the generated Java methods given natural language description. (c)
Attention weights of basic model on CS task. (d) Attention weights of dual model on CS task.

value of the regularization term on attention is reduced from 10.51 to 4.757, indicating that the
relation between the two models is enhanced after joint training.

Qualitative Analysis and Visualization. Figure 2a and Figure 2b show examples of CS task and
CG task. We can see that the generated code and comment from the dual model have a very high
semantic similarity with human-written. Figure 2c and Figure 2d show attention weights of a sample
in the CS basic model and dual model. We can see that for words in the comment that are not aligned
with the code, such as “a”, the attention weights gained by basic model focus on a few specific words.
On the other hand, the attention weights gained by the dual model are smoother, and therefore, we can
get a better code representation for words that are not aligned. We think it is because the similarities
between these tokens in the comment and the tokens in the code are different between CS and CG
models. Since we add the attention constraint, the attention distributions of two models become close,
making the attention weights of dual model smoother than them of the basic model in CS task.

Discussion on Grammar Constraints. To compare the dual model with the model that takes
grammar rules as input for CG task, we evaluated SNM [Yin and Neubig, 2017] on Python dataset.
SNM explicitly introduces the constraints of grammar rules when generating ASTs. The BLEU score
for SNM is 8.095 and lower than our Basic model, indicating that the CG task on this dataset is
very challenging. In particular, all prediction of SNM is valid, whereas the percentage of valid code
generated by the dual model is low (Table 3). Hence, it is advantageous for the current dual model to
constrain the generated code to satisfy the grammar rules, which will increase the percentage of valid
code. Noting that the dual learning is a paradigm for joint training CS and CG. Integrating grammar
rules into one model does not affect the dual relationship between the two models, and we leave it as
our future work.

6 Conclusion

In this paper, we aim to build a framework which uses the CG as a dual task for the CS. To this end,
we propose a dual learning framework to jointly train CG and CS models. In order to enhance the
relationship between the two tasks in the joint training process, besides applying the constraint on
probability, we creatively propose a constraint that exploits the nature of the attention mechanism.
In order to confirm the effect of our model, we conduct experiments both on Java and on Python
datasets. The experimental results show that after the dual training process, the CS model and the CG
model can surpass the existing state-of-the-art methods on both datasets. In the future, we plan to
consider more information to improve the performance of the joint model further, e.g., we would like
to take the grammar rules as input to improve the performance of CG.
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