
Code Generation for Embedded Processors

Rainer Leupers

University of Dortmund
Dept. of Computer Science 12
44221 Dortmund, Germany

email: leupers@ls12.cs.uni-dortmund.de

Abstract– The increasing use of programmable proces-
sors as IP blocks in embedded system design creates a need
for C/C++ compilers capable of generating efficient machine
code. Many of today’s compilers for embedded processors
suffer from insufficient code quality in terms of code size
and performance. This violates the tight chip area and real-
time constraints often imposed on embedded systems. The
reason is that embedded processors typically show architec-
tural features which are not well handled by classical com-
piler technology. This paper provides a survey of methods
and techniques dedicated to efficient code generation for em-
bedded processors. Emphasis is put on DSP and multime-
dia processors, for which better compiler technology is def-
initely required. In addition, some frontend aspects and re-
cent trends in research and industry are briefly covered. The
goal of these recent efforts in embedded code generation is to
facilitate the step from assembly to high-level language pro-
gramming of embedded systems, so as to provide higher pro-
ductivity, dependability, and portability of embedded soft-
ware.

1 Introduction

Due to the increasing complexity of embedded systems and
availability of deep submicron VLSI technology, there is a
shift towards more abstract system specification and imple-
mentation methods. Today’s VHDL or Verilog based spec-
ification methods are step by step being replaced by C/C++
based languages, which offer both a convenient abstraction
level and high simulation speed. Examples are the SystemC
[1] and SpecC [2] initiatives. In addition, hardware synthe-
sis from C/C++ is becoming common, e.g. in products by
Synopsys (CoCentric) and C Level Design.

C/C++ also offer an ideal interface to software synthesis
for embedded systems. The building blocks of today’s and
future systems are complex intellectual property (IP) com-
ponents, or cores, many of which are programmable proces-
sors. Obviously, this IP based implementation methodology
requires compilers capable of mapping C specifications into
assembly code for embedded processors.

This contribution mainly deals withefficient code gen-
eration for embedded processors. Efficiency of the generated

code is very important for embedded systems, due to lim-
ited system-on-a-chip memory sizes, real-time constraints of
embedded applications, and the need to minimize power con-
sumption of mobile devices. The following processor classes
are common in embedded systems:

Microcontrollers: These are tailored for control-intensive
applications and typically show a CISC architecture.
Microcontrollers allow for a high code density, but com-
putational resources are usually very limited. Examples
are the 8051 and 6502 CPUs.

RISC processors: These show a load-store architecture and
a large file of general-purpose registers. Due to the sim-
plified instruction set, the most effective code optimiza-
tion technique for RISCs is global register allocation
[3]. A well-known example for RISC cores is the ARM
family.

DSP processors: These are tuned for arithmetic intensive
applications and allow for fast execution of DSP rou-
tines such as FIR filters or FFT. This is achieved by ded-
icated hardware support (e.g. multipliers and address
generation units) and DSP-specific data path architec-
tures. DSPs exist in a very large variety of domain-
specific architectures. Major vendors include Texas In-
struments, Motorola, Analog Devices, and NEC.

Multimedia processors: These are a recent mixture of
RISC and DSP processors. They use the VLIW
programming paradigm, i.e., multiple functional units
working in parallel with statically determined sched-
ules. Thus, multimedia processors allow for very high
performance, however at the expense of low code den-
sity and high power consumption. Frequently, there is
support for vectorized (SIMD) instructions (see section
3). Examples are the TI C6x [5] and the Philips Trime-
dia [6] families.

Application-specific processors: ASIPs are a compromise
between off-the-shelf processors and ASICs. They
show application-specific data paths which sometimes
can be customized w.r.t. register file sizes and word



lengths. In this case,retargetable compilers are re-
quired (see section 6). Examples of ASIPs are Tensil-
ica’s Xtensa (RISC based) [7] and the AMS Gepard core
(DSP based) [8].

Note that in practice, these processor classes may over-
lap, e.g., a RISC processor might have DSP extensions, and
microcontrollers might have a general-purpose register file.

In this paper, we primarily deal with code genera-
tion for the latter three processor classes, since these are
the most challenging ones from a C compiler design view-
point. In fact, current compilers for many standard DSPs
and multimedia processors have been empirically shown to
produce significantly less efficient code (as much as 1000
% overhead) in terms of performance and code size, as
compared to hand-optimized reference code [9, 10, 11, 12].
The reason is that their special instruction set architectures
are not well exploited by conventional compiler technology.
Therefore, a large part of the software for such processors
still has to be developed in assembly language. This im-
plies time-consuming programming, extensive debugging,
and low code portability. The requirements of short time-to-
market and dependable code are obviously much better met
by using C/C++ instead of assembly.

The need for more efficient compilers for embedded
processors has been recognized about a decade ago. The pur-
pose of this contribution is to provide a survey of important
techniques that have been developed for embedded code op-
timization, while also highlighting their key methodologies
which reach beyond the scope of classical compiler technol-
ogy for general-purpose systems.

In the following three sections, we give examples for
code optimization techniques at different levels in the com-
pilation flow, reaching from source level (section 2) to as-
sembly level techniques (section 4). In section 5, we briefly
discuss compiler frontend related issues, while sections 6 and
7 provide an overview of recent compiler trends in academia
and industry. Finally, conclusions are given.

2 Source level optimization

The compilation process, i.e., the mapping of a given C pro-
gram to a behaviorally equivalent assembly program, starts
with source code analysis and source level optimization. Op-
timizing already at the C level is attractive, because the result
is still machine-independent in the sense that it can be com-
piled to different target processors. In addition, also C based
hardware synthesis can benefit from source level optimiza-
tion. Several examples are given in the following.

Standard optimizations All reasonable compilers per-
form machine-independent standard optimizations, such as
constant folding, common subexpression elimination, or
jump optimization [13, 14, 15]. These techniques need only a
minimum of machine-specific information and are beneficial
for most programs. Frequently, such standard optimizations

are also performed at theintermediate representation (IR)
level, where complex source code constructs have already
been split into a simple form, such as three-address code.

Address code transformation The high-level address
code transformation techniques described in [16] can be re-
garded as an extension of the above standard optimizations,
targeted towards memory-intensive applications. Here the
goal is the simplification of array index expressions beyond
the classical induction variable elimination technique (see
e.g. [13]). At the expense of larger code size, this leads to
a reduction of up to 50 % in instruction cycles for array-
intensive nested loops.

Loop transformations In case of multimedia applications
mapped to VLIW processors, loop transformations are a very
effective means of code optimization. A simple example is
loop unrolling, where loop iterations are duplicated, result-
ing in larger basic blocks and thereby in a higher potential for
parallelization of instructions during scheduling. Its counter-
part is loop folding or software pipelining [18, 19], where
loop iterations are restructured in such a way, that the critical
path length within the loop body is reduced. Again, these
loop optimizations come at the price of an increased code
size. Further loop restructuring techniques are described in
[20].

Function inlining Function inlining is a well-known tech-
nique, in which function calls are replaced by copies of
function bodies, so as to reduce the calling overhead. Usu-
ally, compilers use local heuristics in order to identify suit-
able candidate functions for inlining, while mostly neglect-
ing code size constraints. In contrast, the inlining technique
described in [17] aims at a maximum program speedup for a
given global code size constraint, and thus better meets the
demands of embedded processors. It is based on profiling in-
formation, code growth estimation, and a branch-and-bound
optimization procedure. This technique also exemplifies a
common concept in code generation for embedded proces-
sors: By the use of time-intensive optimization techniques,
a larger search space can be explored, which in turn leads to
better code than in traditional compilers. This approach is
valid, since for embedded systems high code quality is much
more important than high compilation speed.

3 Optimized instruction set mapping

After source level or IR level optimization, the machine-
independent IR statements are mapped to assembly instruc-
tions. At this point all machine-specific features, such as
special-purpose registers, complex instruction patterns, and
inter-instruction constraints need to be taken into account.
This is what makes efficient code generation for embedded
processors generally difficult.



Tree pattern matching A very important basic technique
for instruction set mapping, orcode selection, is tree pattern
matching [21]. IR statements are represented in the form
of data flow trees (DFTs), where tree nodes correspond to
variables, constants, and operations, while edges denote data
dependencies. Also the machine instructions can be consid-
ered as small tree patterns. Thus, an optimum mapping is
given by a minimum cover of a DFT by cost-attributed in-
struction patterns (fig. 1). A number of tools are available
for automatic generation of tree pattern matchers from in-
struction set grammar specifications. These include IBURG

[22], BEG [23], and OLIVE [21]. The generated matchers
are given as C source code, and they compute optimum tree
covers in linear time by means of dynamic programming.

+

-

+

*

dc

a b

e

+

-

+

*

dc

a b

e

ADD

SUB

MAC

b) c)a)

MAC

SUBADD
+ -

+*

Figure 1: Code selection: a) Data flow tree, b) available
instruction patterns, c) optimal tree cover

Phase-coupled code generation Besides code selection,
the task of machine code generation also comprises regis-
ter allocation and instruction scheduling. Traditionally, these
phases, each of which is an NP-hard optimization problem
in itself, are solved sequentially and heuristically. How-
ever, there is a cyclic dependence, since each of the three
phases may impose possibly unnecessary and obstructive re-
strictions on the remaining ones. Therefore, one key method
in embedded code generation isphase coupling. Early tech-
niques in this area include [24, 25, 26], each of which in-
tegrated two out of three code generation phases. In [27],
the above tree pattern matching technique has been cou-
pled with register allocation and scheduling for a family of
TI DSPs. Later, an additional heuristic for handling (more
general) data flow graphs (DFGs) has been presented [28].
An improved approach, based on simulated annealing, has
been described in [29]. Mutation scheduling [30] is another
approach to complete phase coupling, where also algebraic
transformations are exploited in order to explore alternative
instruction set mappings. In [31, 32], phase-coupled com-
pilers for certain classes of VLIW processors have been de-
scribed. Aconstraint logic programming technique for DSPs
with irregular architectures has been presented in [33]. In
that approach, all binding decisions are delayed until they
are really required, which yields a maximum degree of free-
dom in code generation. For several DSPs the code quality
has been shown to be very close to assembly programs, how-
ever at the expense of high compilation times. Further, more
theoretically-oriented, contributions include [34, 35, 36].

16 bits 16 bits 16 bits 16 bits

16 bits 16 bits

+ +
subregisters

upper
subregisters

lower

full argument
register

full destination
register

Figure 2:SIMD instruction ”ADD2” in the TI C6x processor

Multimedia instruction sets Multimedia processors re-
quire different mapping techniques than DSPs. On one hand,
their architecture is more regular and VLIW/RISC-like, on
the other hand they show special new instruction types. An
example are SIMD (single instruction multiple data) instruc-
tions (fig. 2). These instructions perform multiple identi-
cal operations in parallel, while splitting the data registers
into subregisters, each of which then contains a separate data
item. The power of SIMD instructions lies in faster execu-
tion of algorithms operating on ”short” (16 or 8 bit) values.
However, most current compilers for multimedia processors
can exploit SIMD instructions only by means ofcompiler-
known functions, i.e., C level macros. The reason is that
SIMD instructions do not fit into the usual tree based code
selection approach. This results in non-portable code, and
the responsibility of exploiting the SIMD mode is still with
the human programmer. In order to circumvent this prob-
lem, special language constructs [37] or C++ class libraries
[38] have been proposed. The technique described in [39] is
capable of generating SIMD instructions also from plain C
code, based on an extension of the above tree pattern match-
ing technique towards general graphs.

4 Assembly level optimization

Once assembly code has been generated, a significant opti-
mization potential is still left w.r.t. memory access organi-
zation and instruction scheduling. This concerns the con-
sideration of the concrete memory architecture, as well as
exploitation of address generation hardware and instruction-
level parallelism.

Memory access optimization Several DSPs, e.g. Mo-
torola 56k, Analog Devices 210x, and AMS Gepard show
two memory banks (usually called X and Y), which are ac-
cessible in parallel. This raises the problem of partitioning
the program variables between X and Y in such a way, that
potential parallelism is maximized. Naive compilers use only
one of the two banks, or leave the partitioning decision to the
programmer by means of C language extensions. More ad-
vanced approaches use a dedicated optimization phase for



effective
address

modify 
register
file

address
register
file

+/-

 d

AR pointer p

AGU

immediate constant c

MR pointer q

Figure 3:Address generation unit (AGU) in DSPs

X/Y partitioning based on pre-scheduled assembly code. An
example is given by [41], where a simulated annealing algo-
rithm has been successfully applied to Motorola DSPs. Fur-
ther approaches are presented in [40, 42].

In [43] detailed knowledge about the memory inter-
face and fast access modes is exploited in combination
with processor pipeline timing information. Due to this
”memory-aware” approach, the scheduling of instructions
can be adapted to the concrete memory module in use. This
generally results in fewer pipeline stalls, and for a TI C6x
processor an average speedup of 24 % as compared to a tra-
ditional approach has been measured.

Address code optimization One area in DSP code opti-
mization that has been thoroughly investigated is the utiliza-
tion of dedicated address generation units (AGUs, fig. 3).
Such AGUs generally contain address register and modify
register files, where address register updates can take place in
three ways: Adding a ”wide” immediate constantc, adding
a ”short” immediate constantd, or adding the contents of a
modify register. The latter two modes should be preferred,
since they translate to efficient parallel auto-increment ad-
dress computations. Exploitation of auto-increment modes
depends on the layout of variables in memory. A relatively
large number of techniques for computing good layouts are
already available, including [44, 45, 46, 47, 48, 49, 50, 51,
52], which differ in the concrete AGU configurations (e.g.,
register file sizes and bound ond) that can be handled, as
well as in the optimization method (e.g., heuristics or genetic
algorithms). The achievements in this area can be considered
satisfactory, and the techniques have already found their way
into commercial compilers.

Instruction scheduling Instruction scheduling assigns
generated machine instructions to control steps, which is
important for VLIW-like multimedia processors as well as
for DSPs with limited instruction-level parallelism. Local
scheduling (or code compaction) algorithms, such as the list

scheduling heuristic, are limited to the scope of a single basic
block [53]. For DSPs also exact local scheduling techniques
have been developed [54, 55]. In contrast, global techniques
operate on an entire function [56, 57]. The latter result in
a more effective scheduling of global critical paths, but fre-
quently at the expense of larger code size. Recent scheduling
techniques [58] aim at an extensive pre-analysis of schedul-
ing constraints, so as to achieve shorter schedules as com-
pared to pure heuristics.

5 Frontend issues

Besides the above code optimization techniques, C/C++
compiler development for embedded processors also requires
frontend software, which performs lexical, syntactical, and
semantical analysis of source programs. A popular com-
mercial product is the EDG frontend [59], which however
is relatively expensive. Research frontends include the Tri-
maran system [60], which applies to a class of VLIW pro-
cessors, and Stanford’s SUIF system [61]. For the latter, also
a backend development system has been announced recently
[62]. Also the GNU C compiler [63] is sometimes used in
the context of embedded processors, event though its limita-
tions make it rather difficult to adapt it to irregular processors
architectures. The LANCE system [64] developed at Dort-
mund serves as a compiler infrastructure both for research
and industrial projects. It comprises an ANSI C frontend,
a library of standard IR optimizations, as well as a backend
interface for data flow tree generation. One key feature is
that new IR optimizations can be quickly added as ”plug-
and-play” components. Anexecutable IR in the form of low-
level C code supports validation of IR transformations and
simultaneously allows for source-level optimizations.

6 New research directions

Most existing code optimization techniques focus on code
size and performance. However, in the context of embedded
systems, additional goals may be relevant. These include low
power for mobile applications and retargetability for support
of architecture exploration.

Low power Power minimization has been a design goal
in hardware synthesis for several years. However, only re-
cently the impact of compiler techniques on power consump-
tion has been investigated. It is important to note, that power
optimization in compilers may be contrary to the traditional
goals, code size and performance, and therefore requires new
techniques. Existing work, e.g. [65, 66], so far mainly fo-
cused on the impact of instruction selection and scheduling
on power consumption of machine code. However, also more
general approaches, such as alternative instruction and data
encodings and utilization of power-efficient on-chip memo-
ries should be further investigated. A special session at the



program P
source 

compiler for
processor Q

machine code for
executing P on Q

program P
source 

processor Q
model of

retargetable 
compiler

machine code for
executing P on Q

Figure 4:Traditional vs. retargetable compiler

Design Automation Conference 2000 also stressed the im-
portance of low power embedded software.

Retargetability Retargetable compilers can generate code
for different target processors, based on external (e.g. HDL)
machine models (fig. 4). Their application area is twofold:
Retargetable compilers are useful in the context of param-
eterizable ASIPs (see section 1), because a single compiler
is sufficient to explore different configurations of a given
ASIP, thereby making hardware/software trade-offs. A sig-
nificant amount of retargetable compiler technology for em-
bedded processors is already available, including MSSQ [67]
RECORD [68], SPAM [28], CHESS [69], CodeSyn [70], and
AVIV [31]. Currently, retargetable compilers are receiving
renewed interest also due to the need for architecture explo-
ration at the system level: Retargetable compilers, in com-
bination with simulators, can provide an early estimation of
the performance of different target processors for a given ap-
plication. A recent research effort into this direction is the
EXPRESS project at UCI [71, 43].

7 Industrial trends

With the increasing amount of technology available for
embedded code generation, several retargetable optimizing
compilers for embedded processors have become commer-
cially available. These include CoSy (ACE, [72]), CHESS
(Target Compiler Technologies, [73]), and Archelon [74].
However, these tools still have their limitations w.r.t. cer-
tain processor classes, and also the retargeting mechanism
should be further improved, so as to better fit into the system
design flow. Concerning high-performance ”off-the-shelf”
processors, currently a trend towards VLIW machines can
be observed. This trend is mainly enabled by increasing chip
integration scales, which allows for integration of many par-
allel functional units. The VLIW trend is expected to con-
tinue [75], which will also facilitate the construction of more
efficient compilers. However, also new problems are intro-
duced, such as mapping to SIMD or conditional instructions,
or scheduling for clustered VLIW data paths. Simultane-
ously, more and more ASIPs and customizable processors
are in use. A promising new entry in this area is Tensilica’s

Xtensa core [7]. Using a special description language, this
RISC core can be extended by application-specific instruc-
tions, while both the HDL core model and the corresponding
software tools, including a C compiler, are automatically re-
targeted.

8 Conclusions

We have provided a brief survey of methods and techniques
in the area of code generation for embedded processors.
More extensive overviews and literature references can be
found e.g. in [76, 70, 77]. With the growing importance of
compilers for embedded processors, research results are in-
creasingly turned into products. In the future, we expect a
higher importance of VLIW and ASIP processors, where also
non-conventional compiler design goals like low power and
retargetability will be of high interest.

References
[1] G. Arnout: SystemC Standard, Asia South Pacific Design Automation Confer-

ence (ASP-DAC), 2000

[2] D. Gajski, J. Zhu, R. D¨omer, A. Gerstlauer, S. Zhao:SpecC: Specification
Language and Methodology,Kluwer Academic Publishers, 2000

[3] J.L. Hennessy, D.A. Patterson:Computer Architecture – A Quantitative Ap-
proach, Morgan KaufmannPublishers Inc., 1990

[4] ARM home page:www.arm.com, 2000

[5] Texas Instruments:www.ti.com/sc/c6x, 2000

[6] Philips Semiconductors:www.trimedia.philips.com, 2000

[7] Tensilica Inc.:www.tensilica.com, 2000

[8] Austria Mikro Systeme International:
www.amsint.com/databooks/digital/gepard.html, 2000

[9] V. Zivojnovic, J.M. Velarde, C. Schl¨ager,H. Meyr:DSPStone– A DSP-oriented
Benchmarking Methodology, Int. Conf. on Signal Processing Applications and
Technology (ICSPAT), 1994

[10] P. Paulin, M. Cornero, C. Liem, et al.:Trends in Embedded Systems Tech-
nology, in: M.G. Sami, G. De Micheli (eds.):Hardware/Software Codesign,
Kluwer Academic Publishers, 1996

[11] M. Levy: C Compilers for DSPs flex their Muscles, EDN Access, Issue 12,
www.ednmag.com, 1997

[12] M. Coors, O. Wahlen, H. Keding, O. L¨uthje, H. Meyr:TI C62x Performance
Code Optimization, DSP Germany, 2000

[13] A.V. Aho, R. Sethi, J.D. Ullman:Compilers - Principles, Techniques, and
Tools, Addison-Wesley, 1986

[14] S.S. Muchnik:Advanced Compiler Design & Implementation, Morgan Kauf-
mann Publishers, 1997

[15] A.W. Appel: Modern Compiler Implementation in C, Cambridge University
Press, 1998

[16] S. Gupta, R. Gupta, M. Miranda, F. Catthoor:Analysis of High-Level Address
Code Transformations for Programmable Processors, Design Automation &
Test in Europe (DATE), 2000

[17] R. Leupers, P. Marwedel:Function Inlining under Code Size Constraints for
Embedded Processors, Int. Conference on Computer-Aided Design (ICCAD),
1999

[18] M. Lam: Software Pipelining: An Effective Scheduling Technique for VLIW
machines, ACM SIGPLAN Conferenceon ProgrammingLanguageDesign and
Implementation (PLDI), 1988

[19] G. Goossens, J. Vandewalle, H. De Man:Loop Optimization in Register-
Transfer Scheduling for DSP Systems, 26th Design Automation Conference
(DAC), 1989



[20] U. Banerjee:Loop Transformations for Restructuring Compilers – The Foun-
dations, Kluwer Academic Publishers, 1993

[21] A.V. Aho, M. Ganapathi, S.W.K Tjiang:Code Generation Using Tree Match-
ing and Dynamic Programming, ACM Trans. on ProgrammingLanguages and
Systems 11, No. 4, 1989

[22] C.W. Fraser, D.R. Hanson, T.A. Proebsting:Engineering a Simple, Efficient
Code Generator Generator, ACM Letters on ProgrammingLanguagesandSys-
tems, vol. 1, no. 3, 1992

[23] H. Emmelmann, F.W. Schr¨oer, R. Landwehr:BEG – A Generator for Efficient
Backends, ACM SIGPLAN Conferenceon ProgrammingLanguageDesign and
Implementation (PLDI), SIGPLAN Notices 24, no. 7, 1989

[24] K. Rimey, P.N. Hilfinger: Lazy Data Routing and Greedy Scheduling for
Application-Specific Signal Processors, 21st Annual Workshop on Micropro-
gramming and Microarchitecture (MICRO-21), 1988

[25] R. Hartmann: Combined Scheduling and Data Routing for Programmable
ASIC Systems, European Conference on Design Automation (EDAC), 1992

[26] B. Wess:Automatic Code Generation for Integrated Digital Signal Processors,
IEEE Int. Symp. on Circuits and Systems (ISCAS), 1991

[27] G. Araujo, S. Malik:Optimal Code Generation for Embedded Memory Non-
Homogeneous Register Architectures, 8th Int. Symp. on System Synthesis
(ISSS), 1995

[28] G. Araujo,S. Malik, M. Lee:Using Register Transfer Paths in Code Generation
for Heterogeneous Memory-Register Architectures, 33rd Design Automation
Conference (DAC), 1996

[29] R. Leupers: Register Allocation for Common Subexpressions in DSP Data
Paths, Asia South Pacific Design Automation Conference (ASP-DAC), 2000

[30] S. Novack, A. Nicolau, N. Dutt:A Unified Code Generation Approach using
Mutation Scheduling, chapter 12 in [76]

[31] S. Hanono, S. Devadas:Instruction Selection, Resource Allocation, and
Scheduling in the AVIV Retargetable Code Generator, 35th Design Automa-
tion Conference (DAC), 1998

[32] B. Rau, V. Kathail, S. Aditya:Machine Description Driven Compilers for EPIC
and VLIW Processors, Design Automation for EmbeddedSystems, Vol. 4, No.
2/3, Kluwer Academic Publishers, 1999

[33] S. Bashford, R. Leupers:Phase-Coupled Mapping of Data Flow Graphs to
Irregular Data Paths, Design Automation for Embedded Systems, Vol. 4, No.
2/3, Kluwer Academic Publishers, 1999

[34] M. Mahmood, F. Mavaddat, M.I. Elmasry:Experiments with an Efficient
Heuristic Algorithm for Local Microcode Generation, Int. Conf. on Computer
Design (ICCD), 1990

[35] M. Langevin, E. Cerny:An Automata-Theoretic Approach to Local Microcode
Generation, European Conference on Design Automation (EDAC), 1993

[36] T. Wilson, G. Grewal, B. Halley, D. Banerji:An Integrated Approach to Re-
targetable Code Generation, 7th Int. Symp. on High-Level Synthesis (HLSS),
1994

[37] R.J. Fisher, H.G. Dietz:Compiling for SIMD Within a Register, 11th Annual
Workshop on Languages and Compilers for Parallel Computing (LCPC98),
1998

[38] Intel: Coding Techniques for the Streaming SIMD Extensions With the Intel
C/C++ Compiler, developer.intel.com/vtune/newsletr/methods.htm, 2000

[39] R. Leupers:Code Selection for Media Processors with SIMD Instructions, De-
sign Automation & Test in Europe (DATE), 2000

[40] D.B. Powell, E.A. Lee, W.C. Newman:Direct Synthesis of Optimized DSP As-
sembly Code from Signal Flow Block Diagrams, Proc. InternationalConference
on Acoustics, Speech, and Signal Processing, 1992

[41] A. Sudarsanam, S. Malik:Memory Bank and Register Allocation in Software
Synthesis for ASIPs, Int. Conf. on Computer-AidedDesign (ICCAD), 1995

[42] M. Saghir, P. Chow, C. Lee:Exploiting Dual Data-Memory Banks in Digital
Signal Processors, 7th International Conference on Architectural Support for
ProgrammingLanguages and Operating Systems, 1996

[43] P. Grun, N. Dutt, A. Nicolau:Memory Aware Compilation through Accurate
Timing Extraction, 37th Design Automation Conference (DAC), 2000

[44] D.H. Bartley:Optimizing Stack Frame Accesses for Processors with Restricted
Addressing Modes, Software – Practice and Experience, vol. 22(2), 1992

[45] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang:Storage Assignment to
Decrease Code Size, ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 1995

[46] R. Leupers, P. Marwedel:Algorithms for Address Assignment in DSP Code
Generation, Int. Conference on Computer-AidedDesign (ICCAD), 1996

[47] A. Sudarsanam, S. Liao, S. Devadas:Analysis and Evaluationof Address Arith-
metic Capabilities in Custom DSP Architectures, Design Automation Confer-
ence (DAC), 1997

[48] B. Wess, M. Gotschlich:Optimal DSP Memory Layout Generation as a
Quadratic Assignment Problem, Int. Symp. on Circuits and Systems (ISCAS),
1997

[49] B. Wess, M. Gotschlich:Constructing Memory Layouts for Address Generation
Units Supporting Offset 2 Access, Proc. ICASSP, 1997

[50] N. Kogure, N. Sugino, A. Nishihara:Memory Address Allocation Method for a
DSP with� 2 Update Operations in Indirect Addressing, EuropeanConference
on Circuit Theory and Design (ECCTD), 1997

[51] R. Leupers, F. David:A Uniform Optimization Technique for Offset Assignment
Problems, 11th Int. System Synthesis Symposium (ISSS), 1998

[52] A. Rao, S. Pande:Storage Assignment using Expression Tree Transformations
to Generate Compact and Efficient DSP Code, ACM SIGPLAN Conference on
ProgrammingLanguage Design and Implementation (PLDI), 1999

[53] S. Davidson, D. Landskov, B.D. Shriver, P.W. Mallett:Some Experiments in
Local Microcode Compaction for Horizontal Machines, IEEE Trans. on Com-
puters, Vol. 30, No. 7, 1981

[54] R. Leupers, P. Marwedel:Time-Constrained Code Compaction for DSPs, 8th
Int. System Synthesis Symposium (ISSS), 1995

[55] A. Timmer, M. Strik, J. van Meerbergen, J. Jess:Conflict Modelling and In-
struction Scheduling in Code Generation for In-House DSP Cores, 32nd De-
sign Automation Conference (DAC), 1995

[56] J.A. Fisher:Trace Scheduling: A Technique for Global Microcode Compaction,
IEEE Trans. on Computers, vol. 30, no. 7, 1981

[57] A. Aiken, A. Nicolau:A Development Environment for Horizontal Microcode,
IEEE Trans. on Software Engineering,no. 14, 1988

[58] B. Mesman, C. Alba Pinto, K. van Eijk:Efficient Scheduling of DSP Code on
Processors with Distributed Register Files, 12th Int. Symp. on System Synthe-
sis (ISSS), 1999

[59] Edison Design Group:www.edg.com, 2000

[60] Trimaran – An Infrastructure for Research in Instruction-Level Parallelism,
www.trimaran.org, 2000

[61] The Stanford Compiler Group:suif.stanford.edu, 2000

[62] Machine SUIF: www.eecs.harvard.edu/hube/research/machsuif.html,
2000

[63] Free Software Foundation:www.gnu.org, 1999

[64] LANCE C compiler system: ls12-www.cs.uni-dortmund.de/�leupers,
2000

[65] M. Lee, V. Tiwari, S. Malik, M. Fujita:Power Analysis and Minimization Tech-
niques for Embedded DSP Software, IEEE Trans. on VLSI Systems, Vol. 5, No.
2, 1997

[66] C. Gebotys: Low Energy Memory and Register Allocation Using Network
Flow, 34th Design Automation Conference (DAC), 1997

[67] P. Marwedel:Tree-based Mapping of Algorithms to Predefined Structures, Int.
Conf. on Computer-AidedDesign (ICCAD), 1993

[68] R. Leupers, P. Marwedel:Retargetable Generation of Code Selectors from
HDL Processor Models, EuropeanDesign & Test Conference (ED & TC), 1997

[69] D. Lanneer, J. Van Praet, A. Kifli, K. Schoofs, W. Geurts, F. Thoen, G.
Goossens:CHESS: Retargetable Code Generation for Embedded DSP Pro-
cessors, chapter 5 in [76]

[70] C. Liem: Retargetable Compilers for EmbeddedCore Processors, Kluwer Aca-
demic Publishers, 1997

[71] N. Dutt, P. Grun, A. Halambi:www.cecs.uci.edu/�aces, Center for Embed-
ded Computer Systems, UC Irvine, 2000

[72] ACE Associated Compiler Experts:www.ace.nl, 2000

[73] Target Compiler Technologies:www.retarget.com, 2000

[74] Archelon Inc.:www.archelon.com, 2000

[75] P. Faraboschi, G. Desoli, J.A. Fisher:VLIW Architectures for DSP and Multi-
media Applications – The Latest Word in Digital and Media Processing, IEEE
Signal Processing Magazine, March 1998

[76] P. Marwedel, G. Goossens (eds.):Code Generation for Embedded Processors,
Kluwer Academic Publishers, 1995

[77] R. Leupers: Retargetable Code Generation for Digital Signal Processors,
Kluwer Academic Publishers, 1997


