Stellingen behorende bij het proefschrift
‘Code Generation for Transport Triggered Architectures’

Jan Hoogerbrugge
5 februari 1996

. Wie een aanzienlijke hoeveelheid (instructie level) parallellisme wil ex-

ploiteren, zal inefficiént hardware gebruik moeten accepteren.

. Wie denkt dat TTA's en superpipelining een ideale combinatie zijn heeft

nooit grondig over compilatie voor TTA’s nagedacht. Diep ge-pipeline-
de TTA’s zijn alleen verstandig voor applicaties met weinig control flow
veranderingen of een zeer reguliere control flow.

. Dat ‘compile time” met gratis en ‘run time’ met kostbaar wordt geasso-

cieerd is een veel voorkomend misverstand.

. Eén van de grootste taboes onder programmeurs is het gebruik van

goto’s.

. Het is in het algemeen gemakkelijker om een traag correct programma

te versnellen (d.m.v. profiling) dan om een snel incorrect programma te
corrigeren (d.m.v. debugging).

. Een overheid / operating system dient zich te beperken tot die zaken

waarvoor zij noodzakelijk is. De overige taken dienen te worden overge-
laten aan het particuliere bedrijfsleven / user programs.

. Computing power laat zich beter delen (time sharing) dan optellen (pa-

rallel processing). Liever één 250 SPECint machine dan tien 30 SPECint
machines.

. Bescheidenheid en het publiceren van wetenschappelijk onderzoek gaan

moeilijk samen.

. Daar het algemeen bekend is dat wetenschappers nu eenmaal weinig

management, marketing en commerciele inzichten hebben, probeert
menig wetenschapper zijn/haar wetenschappelijke kwaliteiten aan te to-
nen door een onderneming op te richten en deze in no-time failliet te
laten gaan.

10.

11.

12.

13.

14.

15.

16.

Het huidige verkeers/mileubeleid komt overeen met het instellen van
een belasting op liftgebruik en het subsidieren van traplopen in een
gebouw van 20 verdiepingen. De mensen die werken/wonen op de
laagste verdieping hebben een meevaller, echter de meerderheid heeft
nauwelijks een keuze en wordt onterecht op kosten gejaagd.

Het veelvuldig publiceren van dezelfde resultaten van eigen onderzoek
kan gezien worden als een bijzondere vorm van plagiaat.

Wie de arbeidsproductiviteit van zijn/haar organisatie wil verlagen,
moet zijn/haar medewerkers Internet faciliteiten aanbieden.

Behalve een vooruitziende blik vergt het ook vaak moed om de put te
dempen voordat het kalf verdronken is. Voorbeeld: de onbetaalbaar
wordende sociale zekerheid.

We zullen er mee moeten leren leven dat complexe software nooit vrij
van fouten zal zijn. Naast het spreekwoord ‘een vergissing is menselijk’
wordt het tijd voor het spreekwoord “een bug is computerlijk’.

Het voordeel van recursie is het ontbreken van loop overhead. Met soort-
gelijke redeneringen wordt veel wetenschappelijk onderzoek gemo-
tiveerd.

Twee van de grootste problemen uit de informatica zijn: (1) comput-
ers zijn te traag en (2) computers zijn moeilijk te programmeren. Paral-
lelle computers geprogrammeerd d.m.v. programmeertalen met expli-
ciet parallellisme trachten het eerste probleem op te lossen, maar ver-
groten het tweede probleem vaak aanzienlijk.

?’)zﬂo 240) 2713

Code Generation
for
Transport Triggered Architectures

Code Generation
for
Transport Triggered Architectures

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus Prof.ir. K.E. Wakker,
in het openbaar te verdedigen ten overstaan van een commissie,
door het College van Dekanen aangewezen,
op maandag 5 februari 1996 te 16.00 uur
door

Jan HOOGERBRUGGE

informatica ingenieur
geboren te Capelle aan de IJssel

Dit proefschrift is goedgekeurd door de promotor:
prof.dr.ir. AJ. van de Goor

Toegevoegd promotor:
dr. H. Corporaal

De leden van de promotiecommissie zijn:

Rector Magnificus Technische Universiteit Delft
prof.drir. A.J. van de Goor Technische Universiteit Delft

dr. H. Corporaal Technische Universiteit Delft
dr.ir. H.E. Bal Vrije Universiteit Amsterdam
prof.dr.ir. J. van Katwijk Technische Universiteit Delft
prof.dr.ir. M.]. Plasmeijer Katholieke Universiteit Nijmegen
prof.dr.ir. FL]. Sips Universiteit van Amsterdam
prof.dr. H.A.G. Wijshof Rijks Universiteit Leiden

Cover design by Jan Hoogerbrugge and Roger van der Laan

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG
Hoogerbrugge, Jan

Code Generation for Transport Triggered Architectures /
Jan Hoogerbrugge. — [S.. : sn.]. - 1IL

Thesis Technische Universiteit Delft. — With ref. — With
summary in Dutch

ISBN 90-9009002-9

Subject headings: code generation / computer architecture

Copyright © 1996 Jan Hoogerbrugge

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, me-
chanical, photocopying, recording, or otherwise, without permission of the au-

thor.

This dissertation is dedicated to
the loving memory of my father
Marinus Hoogerbrugge

Contents

Acknowledgements 7 v
1 Introduction 1
1.1 Application SpecificProcessors 2

1.2 Transport Triggered Architectures 4

13 Motivation L oo o 5

14 Contributions 6

1.5 ThesisOVEIVIEW . . v v v v v i e e e e e e e e et e e e e 7

2 Transport Triggered Architectures 9
2.1 Instruction Level Parallel Processors 10
2.1.1 Superpipelining and Multiple Instruction Issue 10

2.1.2 Static and Dynamic Scheduling 13

213 Superscalarsvs. VLIWs 15

214 AvailableILP 18

2.2 StaticILPExploitationueunenn... 19
2.2.1 Scheduling Constraints 19

222 SchedulingScopes 23

2.3 Transport Triggered Architectures 25
231 ThePrinciple 25

232 AnExample, 28

233 Immediates 30

234 ControlFlow 30

2.3.5 Conditional Execution 31

2.3.6 The InterconnectionNetwork 32

237 FunctionalUnits 34

24 Advantages and Disadvantages of TTAS 37
24.1 Implementation Advantages 37

2.4.2 Compiler Optimizations« . ..o ouu ... 38

243 Disadvantages 41

3 Basic Block Scheduling 43

3.1 OverviewoftheCompiler 43
311 TheFront-End................. 4
312 TheBack-End 46

3.1.3 Reading the Sequential Program and the Machine De-
scriptionFile 46
3.1.4 Transforming Irreducible CFGs into Reducible CEGs . . 47
3.15 ControlFlow Analysis 47
3.1.6 Function Inlining and Loop Unrolling 47
317 DataFlowAnalysis. 50
3.1.8 Memory Reference Disambiguation 51
3.19 RegisterAllocation 54
3.2 TheBasicBlockScheduler 57
3.21 ListSchedulingforOTAs 58
3.2.2 ListSchedulingforTTAs. 60
323 ResourceAssignment 61
324 SchedulinganOperation 63
3.2.5 TTA Specific Optimizations 66
4 Extended Basic Block Scheduling 69
41 SchedulingScopes, 69
4.2 Inter BasicBlockCodeMotion. 72
43 RegionSchedulingforOTAs. 75
43.1 ImportingOperations 75
4.3.2 The Operation Selection Heuristic 78
43.3 Importing a CompareOperation 79
434 ImportingaJumpOperation 79
44 TTASpecificIssues 80
45 Discussion i e 83
5 Software Pipelining 87
51 ModuloScheduling 88
5.1.1 Cyclic Data Dependency Graphs 89
5.1.2 Modulo Scheduling Constraints 90
513 ModuloScheduling 90
5.2 PreprocessingLoops 94
521 If-conversion0viuii.... 94
522 Promotion 99
523 DelayLines 100
524 Software Pipelining WhileLoops 102
53 TTASpecificlssues 103
6 Architecture and Compiler Evaluation 107
61 Methodology 107

6.2 Experiments 110

ii

6.2.1
6.2.2
6.2.3
624
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.2.11
6.2.12
6.2.13
6.2.14

Speedup
SchedulingScope o Lo L
Scheduling Freedom
TTA Specific Optimizations
Register File Port Requirements
Partitioned Register Files
Multi-Way Branching and Guarding
Functional Unit Pipelining
Memory Reference Disambiguation
Multicasts
Partial Connectivity
BypassConflicts
Register Allocation
Conclusions

7 Design Space Exploration
71 TheDesignProcessccouuii...

7.1.1
7.1.2

Resource Optimization.
Connectivity Optimization

72 CaseStudy: AnASPforMCCD

721
722
7.2.3
724
725

Special Functional Units
Resource Optimization.
Connectivity Optimization
Miscellania
Limitations

73 RelatedWork

8 Conclusions
81 Summary.t e e
8.2 Current Status of the Compiler
83 Perspective. e
84 FutureWork

Bibliography

A Partial Loop Unrolling
A.l MotivatingExample
A2 TheAlgorithm
A3 Bvaluation

Samenvatting

Curriculum Vitae

iii

165

179
179
180
182

183

185

Acknowledgements

First of all I wish to thank prof. Ad van de Goor and Henk Corporaal for their
guidance during the four years in which I performed the research described in
this dissertation. I appreciate the freedom they gave me to do the research I am
interested in.

Furthermore, I would like to thank my fellow AIOs and ex-AIOs within the
MOVE project Robert Portier, Andy Verberne, Johan Janssen, Roger Jansen,
Jeroen Hordijk, Paul van der Arend, Paul Stravers, and Reinoud Lamberts.
Roommates Wilco van Hoogstraeten and Wiebe Cnossen for all the fun we had
during our work. Prof. Stamatis Vassiliadis for his rich experience and view
on computer architecture. Jaap Hoekstra for explaining me everything about
department politics. System administrator Jean-Paul van der Jagt and his suc-
cessor Tobias Nijweide for providing an excellent working computer environ-
ment. Students Theo Baan, Erwin Abrahamse, and Bas van Houte for their
contributions to my research. Rogier Wolff for providing the MCCD applica-
tion that I used in chapter 7.

Finally, I would like to thank my friends and family for supporting me and let-
ting me think about other things than code generation for transport triggered
architectures.

Jan Hoogerbrugge Rotterdam, February 1996

Introduction

This dissertation describes the results of research performed within the MOVE
Project at Delft University of Technology. The MOVE Project aims at design-
ing application specific processors (ASPs) based on a new novel computer archi-
tecture paradigm called transport triggered architectures (TTAs). ASPs are pro-
cessors designed especially for one particular application in order to improve
their cost/performance. They are often embedded in all kinds of electronic sys-
tems. To reduce design costs, an ASP is usually designed according to a tem-
plate architecture. Such a template should be flexible, scalable, and cost effi-
cient. TTAs fulfill these requirements. TTAs are similar to very long instruction
word (VLIW) processors in that they provide statically scheduled instruction
level parallelism (ILP) in order to improve performance in a scalable and cost
efficient way. The difference is that they are not programmed by instructions
specxfymg multiple operations but by instructions specifying data transports.
This improves flexibility, scalability, and cost efficiency, but also complicates
the already complex compilation process. The main theme of this dissertation
is to demonstrate that efficient compilation for TTAs is very well possible. This
is done by developing a compiler for TTAs.

This chapter describes ASPs briefly in section 1.1, and TTAs in section 1.2. Sec-
tion 1.3 gives our motivation for this research, section 1.4 enumerates the major

contributions, and section 1.5 gives an overview of the remaining chapters of
this thesis.

2 CHAPTER 1. INTRODUCTION

1.1 Application Specific Processors

One of the first decisions a designer of a processor based electronic system has
to make is choosing between a standard off-the-shelf processor and an ASP,
specially designed for the application in question. A standard processor is in-
tended for a large class of applications and usually contains hardware that is
not effectively used by the given application; and in addition, it misses hard-
ware that could be very useful. For example, a standard processor might con-
tain an expensive multiplier which is a waste of chip area and power consump-
tion when the application seldom performs multiplications (e.g., less than 0.1%
of all executed operations). As an example of hardware functionality that
might be missing, consider an application that manipulates bit-oriented data.
For such an application instructions such as ‘find first bit set’ and ‘count num-
ber of bits set’ are very welcome since they are easy to implement in hardware
and may result in a significant speedup.

If the decision turns out in favor of an ASP the next question becomes: how
should it be designed and implemented? A full custom design offers optimal
flexibility, performance, chip area, and power consumption at the price of a
long and expensive design process. This is only acceptable for high volume
production. A method to reduce design costs is to build ASPs according to a
template. For example, all ASPs have a four stage pipeline, have 32-bit wide
words, and are big endian. An ASP is designed by instantiating the architec-
tural parameters of the template. Examples of architectural parameters are the
number of general purpose registers, cache sizes, the operation set, the amount
of instruction level parallelism, and operation latencies. By designing ASPs ac-
cording to a template, we reduce design costs by giving up some design free-
dom. This is similar to programming in a high level language instead of in as-
sembly language or designing hardware in a hardware description language
instead of designing at gate or layout level. Obviously, the usefulness of a tem-
plated ASP design system depends largely on the flexibility of the template
and the efficiency of the tools for generating the processor and the code for the
processor.

In our opinion a system for templated ASP design should consist of at least the
following three components: (1) a processor generator, (2) a code generator,
and (3) a design space explorer (see figure 1.1).

The processor generator

The processor generator is responsible for generating VLSI layout for the ASP
according to the architectural parameter set. There are several ways to do this.
One can use a silicon compiler that generates a layout based on a parameter-
ized processor description. The parameters of the processor description are di-
rectly related to the architectural parameters. Another method is to use param-

1.1. APPLICATION SPECIFIC PROCESSORS 3

Design space explorer

Feedback Architectural parameters Feedback

AN

Code generator Processor generator

HLL code Ob]ect code VLSI library Chip layout

Figure 1.1: The three components of a templated ASP design system

eterized cell generators that generate processor components such as functional
units and register files based on the architectural parameter values. After that,
the generated cells are placed and routing is performed to connect them.

The code generator

The code generator is responsible for compiling the application written in
a high level language into object code for an ASP as described by the ar-
chitectural parameter set. The back-end of the compiler should be highly
parametrized and configurable in order to be able to generate code for all ASPs
that can be described by the template and the architectural parameter set.

The design space explorer

The design space explorer is responsible for finding the right architectural pa-
rameter set values for a given application. Each set of parameter values corre-
sponds to a particular ASP. The quality of an ASP depends on its implemen-
tation costs, its performance for the given application, and design constraints.
The design constraints may specify minimum performance (e.g., minimal 10k
samples per second), maximum costs (e.g., maximal 80mm? chip area), and
which cost/performance trade-offs can be made (e.g., 20% more costs should
give at least 10% more performance).

It should be clear that it is impossible to calculate, or accurately predict, perfor-
mance and costs of an ASP as function of the architectural parameters for re-
alistic applications. Therefore the design space explorer invokes the processor
generator to generate an ASP for the given architectural parameters and it in-
vokes the code generator to compile the application for an ASP with the given
architectural parameters. The processor and code generator report statistics of
their produced results to the explorer. With this information the explorer tries

4 CHAPTER 1. INTRODUCTION

INTFU | |[MEMFU | | LOGFU SHFFU | | MUL FU DIV FU RF

(add, sub) (1d, st (and, or, xor) (shl, shr} (mul) (div, mod) (10,.., ¥31)

Figure 1.2: General structure of a TTA

to find a better set of architectural parameters. This is repeated until a set of
architectural parameters is found that seems to be the best for the given appli-
cation and design constraints.

1.2 Transport Triggered Architectures

Like a traditional operation triggered architecture (OTA), a TTA is a collection of
functional units (FUs) and register files (RFs) connected to each other via a set
of transport buses. The difference between OTAs and TTAs is that

OTAs are programmed by instructions containing operations that trig-
ger operations on FUs explicitly, and trigger data transports between FUs
and RFs implicitly (as side-effect),

while

TTAs are programmed by instructions containing data transports that
trigger data transports between FUs and RFs explicitly, and trigger oper-
ations on FUs implicitly (as side-effect).

Figure 1.2 shows the general structure of a TTA consisting of six FUs, one RF
and an interconnection network consisting of five move buses. This TTA is ca-
pable of performing five data transports, or moves, between FUs and RFs per
cycle. It is programmed by instructions containing five move slots each contain-
ing one move that controls one move bus. The gray lines in figure 1.2 illustrate
the operation of a TTA during a particular cycle; data is moved from the RF
to the integer FU (INT), from the integer FU to the memory FU (MEM), from
the logic FU (LOG) to the shift FU (SHF) and the RF, and from the multiply FU
(MUL) to the divide FU (DIV).

Although programming data transports may seem clumsy at first sight, it
presents new averiues for compiler optimizations that reduce the number of
moves and RF accesses and therefore the required number of move buses and

1.3. MOTIVATION 5

RF ports. Bypassing, commonly used in pipelined processors to reduce the la-
tency between flow dependent operations, results in many useless data trans-
ports and RF accesses in OTAs. A compiler for TTAs is able to suppress these
useless transports and RF accesses. Since the freed move buses and RF ports
can be used for other operations, the required number of buses and RF ports
for TTAs is lower than the required number for OTAs. This reduces die area
and improves the achievable cycle time.

Compiling for TTAs, especially code scheduling, the main theme of this disser-
tation, is quite different from compiling for OTAs. Scheduling the individual
moves of an operation instead of a single operation results in scheduling con-
straints not present in OTAs; e.g., the scheduler should take the first-in-first-
out property of FU pipelines into account. Furthermore, the scheduler should
detect when bypassing is required and when write backs can be suppressed.
A challenging aspect of scheduling for TTAs is scheduling for irregularly, par-
tially connected interconnection networks. The scheduler is responsible for
routing the data over the available paths through the interconnection network
and making maximal use of the available bandwidth.

1.3 Motivation

The main emphasis of this thesis is on researching compilation techniques for
TTAs and design exploration of ASPs. The following motivates this research.

Motivation for studying compilation techniques for TTAs

Instruction level parallelism, in the form of multiple instruction issue and/or
superpipelining, is one of the major techniques to improve processor perfor-
mance. Both multiple instruction issue and superpipelining increase the re-
quired transport resources, consisting of buses and RF ports, between the FUs
and RFs. This increases die area and may affect the cycle time. By program-
ming data transports instead of operations we have more control over the
transport resources which improves their efficiency and lowers their require-
ments.

Programming processors at the register transfer level instead of at the opera-
tion level has a significant impact on the complexity of the compiler and it is
not obvious that a compiler can handle this complexity. In many ways TTAs
have a lot in common with horizontal microcode system such as the FPS-164
[190]. The main reason that these systems became extinct is that they were con-
sidered too hard to program efficiently [74, 103]. Therefore, the success of TTAs
will largely be dependent on how well a compiler is able to deal with the extra
complexity of programming data transports instead of operations. This moti-
vates research of compilation techniques for TTAs.

6 ' CHAPTER 1. INTRODUCTION

Motivation for studying design space exploration of ASPs

The motivation for ASPs is obvious: most processors are not used as central
processors for personal computers, workstations, supercomputers, or main-
frames, but are embedded in all kinds of electronic equipment such as printers,
digital television sets, video games, cars, and industrial process controllers.
These processors have in common that they execute a single application. A
better cost/performance is possible if such a processor is specially designed
for its application, i.e., an application specific processor.

Designing ASPs based on a template makes it possible to reduce design costs
and time of ASPs significantly which is a must for low-volume production and
a short time-to-market. The design problem is reduced to the problem of find-
ing the right architectural parameter values for a given application, i.e., explor-
ing the design space. Manual design space exploration becomes infeasible for
a realistic template with a large number of architectural parameters. It is te-
dious, error prone, and time consuming work and it is likely that some inter-
esting areas of the design space are not considered. This motivates research of
automatic design space exploration.

1.4 Contributions

The major contributions of this dissertation are: (1) the development of a pro-
totype compiler for TTAs, (2) the evaluation of TTAs, and (3) the development
of a design space exploration method. These contributions are detailed below.

Development of a compiler for TTAs (chapters 3-5, [57,106,108,109])

Prior to this research, two prototype basic blocks schedulers for TTAs have
been developed which were very restricted in their performance and flexibil-
ity, e.g., they required full connectivity between FUs and RFs [60, 195]. At that
time there was only a vague understanding of the problems that arise when
the scheduling scope of a scheduler for TTAs would be enlarged to multiple
basic blocks (extended basic block scheduling) or loops (software pipelining)
and of the problems that arise with compilation for realistic TTAs (e.g., par-
tial connectivity, limited number of RF ports). The proposed solutions to these
problems were even more vague.

This research gave us a much better understanding about the problems and
solutions for compilation for TTAs. This has been achieved by develop-
ing and implementing a highly parametrized and configurable prototype
C/C++/Fortran compiler for TTAs. This compiler is based on the GNU com-
piler and is extended with advanced techniques such as extended basic block
instruction scheduling, software pipelining, memory reference disambigua-
tion, global register allocation, loop unrolling, function inlining, an annotation

1.5. THESIS OVERVIEW 7

system, and a number of TTA specific optimizations.

Most of the used scheduling techniques are derived from existing state-of-the-
art techniques and are adapted for TTAs. Most adaptations are far from trivial;
TTAs have other resource constraints than OTAs and present unique optimiza-
- tion opportunities.

In addition, this dissertation reports several (minor) contributions that are use-
ful for code generation for OTAs as well. Examples are delay lines (section
5.2.3) to improve the performance of software pipelining and partial loop un-
rolling (appendix A) to increase parallelism in a code size efficient way.

Evaluation of TTAs (chapter 6, [104,105])

The goal of evaluating TTAs is two-fold. First, we want to quantify the advan-
tages and disadvantages of TTAs, e.g., how many RF ports are required to sus-
tain a certain number of operations per cycle. The second goal is to evaluate
different hardware design options. For example, in section 6.2.8 we will eval-
uate two different FU pipelining schemes, hybrid pipelining and virtual time
latching pipelining. With the outcome of this experiment we can decide which
pipelining scheme is preferable.

Design space exploration (chapter 7, [107])

Most prior work related to designing ASPs requires manual exploration of
the design space to find proper architectural parameter values for a given ap-
plication and set of design constraints. This becomes unacceptable when the
number of architectural parameters increases, i.e., the dimension of the design
space increases. We have developed and implemented a method for exploring
the design space for a given application. This method speeds up and improves
the quality of the design process.

1.5 Thesis Overview

This thesis is organized as follows. Chapter 2 describes the basics of instruction
level parallelism and introduces TTAs. The next three chapters are devoted
to code generation for TTAs. Chapter 3 starts with basic block scheduling for
TTAs. This is the simplest method to generate instruction level parallel code.
In chapter 4 we go one step further: extended basic block scheduling. An ex-
tended basic block scheduler moves operations across basic block boundaries
in order to find more parallelism. These movements are between basic blocks
of the same loop iteration if they belong to a loop body. This restriction is lifted
in chapter 5. Code motion along the backward edge of a loop means that the
execution of different loop iterations is overlapped. This is known as software

8 CHAPTER 1. INTRODUCTION

pipelining. In chapter 6 we will describe experiments to evaluate various as-
pects of TTAs and code generation for TTAs. Chapter 7 describes the design
space exploration method and a case study to see how the method works out
in practice. Chapter 8 concludes this thesis with a summary and suggestions
for future research.

Transport Triggered
Architectures

The execution time of a program can be expressed as the product of three fac-
tors: (1) the number of instructions required to execute the program, (2) the av-
erage number of cycles per instruction (CPI), and (3) the clock cycle time [103].
The main objectives of the RISC evolution during the Eighties were to reduce
CPI from several cycles to one cycle and to reduce the clock cycle time. This
was achieved by hardwired control, large register files, a single chip proces-
sor, and a uniform, reduced, and streamlined instruction set that is relatively
easy to pipeline.

The challenge of the Nineties is to reduce the CPI from one cycle to a fraction
of a cycle and a further reduction of the cycle time. This is achieved by the ex-
ploitation of instruction level parallelism (ILP) [82,171]. ILP processors are pro-
cessors where multiple instructions are simultaneously in the execute stage of
the instruction pipeline. Section 2.1 describes the two techniques to realize ILP:
superpipelining and multiple instruction issue, and the two ways to control
ILP: dynamically at run-time and statically at compile-time.

One of the major arguments for dynamic ILP exploitation is the binary compat-
ibility between ILP processors with the same instruction set architecture (ISA)
but with different amounts of ILP. Since binary compatibility is not a real is-
sue for ASPs and static ILP exploitation is easier to implement, better scalable,
and more flexible, static ILP exploitation is preferred for ASPs. In section 2.2
we discuss static ILP exploitation which mainly consists of compilation tech-
niques.

Section 2.3 introduces transport triggered architectures (TTAs), a new player in
the arena of computer architecture paradigms. TTAs go one step further than
traditional static controlled ILP architectures in the sense that they do even less
at run-time and more at compile-time. Section 2.3 only discusses the aspects of

10 CHAPTER 2. TRANSPORT TRIGGERED ARCHITECTURES

interest to the compiler. This excludes issues such as exception handling and
instruction pipelining schemes; for these issues the reader is referred to [56, 59].

Section 2.4 describes the advantages and disadvantages of the TTA concept.
The advantages fall into two categories, implementation advantages and new
compiler optimizations.

2.1 Instruction Level Parallel Processors

Parallelism has always been an important topic in computer science and be-
comes more important when hardware becomes denser, cheaper, and easier to
implement and physical problems begin to limit higher clock frequencies. Par-
allelism can be exploited between computations of different levels of granular-
ity. Course grain parallelism refers to parallelism between computations that cor-
respond to complete programs, procedures, loops, or loop iterations. This type
of parallelism is usually exploited on MIMD computers consisting of multiple
interconnected processing nodes working in parallel. ILP is very fine grained
parallelism; parallelism between the instructions executing on a single proces-
sor.

Course grain parallelism and ILP have very different characteristics. Course
grain parallelism is currently only applicable for a small set of applications that
can be parallelized by a compiler or a programmer. However, among these
applications are many interesting scientific applications that contain an enor-
mous amount of parallelism that is relatively easy to exploit on MIMD com-
puters. The amount of ILP that can be exploited is limited (2-8 instructions per
cycle [122,133,198]). However, unlike course grain parallelism, nearly all ap-
plications contain some amount of it and it can be found without the assistance
of a programmer. Course grain parallelism and ILP are not competitors, they
can be applied independently. For example, the Cray T3D [125] and Convex
SPP [38] are MIMD computers build out of ILP processor nodes.

2.1.1 Superpipelining and Multiple Instruction Issue

There are two techniques that can be applied independently to realize ILP: su-
perpipelining and multiple instruction issue [122].

Superpipelining

A classic RISC pipeline contains four stages: instruction fetch, decode, execute,
and write back. As shown in flgure 2.1a, four instructions are executing simul-

taneously and one of them is in the execute stage. The latency of the instruction
pipeline is four cycles and the throughput is one instruction per cycle.

2.1. INSTRUCTION LEVEL PARALLEL PROCESSORS 11

Pipelining

2
4
& (a) Standard RISC (b) Superpipelined
=
=
(c) Multiple instruction issue (d) Multiple instruction issue and superpipelined
Key: IFetch

Figure 2.1: Superpipelining and multiple instruction issue

Throughput can be improved by dividing the instruction pipeline in more than
four stages. This is known as superpipelining. Going from a well balanced (all
pipeline stages have roughly the same delay) n-stage pipeline to a well bal-
anced m-stage pipeline (where m > n) will potentially:

1. Increase the throughput in terms of instructions per second by m/n.

2. Increase the latency in terms of cycles by m/n.

3. Increase the number of instructions simultaneously in the execute stage
(the amount of ILP) by m/n.

4. Increase performance by m/n.

There are, however, factors that cause that the actual performance gain to be
less than m/n:

1. Pipelining overhead, such as setup and hold times and clock skew, will
increase the pipeline latency.

2. A longer instruction pipeline will cause longer operation latencies, and
therefore more interlocks and empty branch delay slots.

3. Superpipelining does not speedup cache and TLB misses (Amdahl’s
law).

12 CHAPTER 2. TRANSPORT TRIGGERED ARCHITECTURES

Figure 2.1b illustrates superpipelining. The throughput is three times higher
than the original pipeline shown in figure 2.1a. At each moment three instruc-
tions are simultaneously in the execute stage.

Superpipelining has been applied in the MIPS R4000 and R4400 [149], and the
DEC A21064 [68] processors. The R4000 and R4400 have an 8 stage pipeline,
the A21064 has a 7 stage pipeline for integer instructions and a 10 stage pipeline
for floating point instructions. All these processors operate at a relative high
clock frequency.

Multiple instruction issue

Multiple instruction issue (MII) is the second technique to realize ILP. MII pro-
cessors increase throughput by issuing (an instruction is issued when it en-
ters the execute stage) multiple instructions per cycle. This requires replica-
tion of functional units (FUs), decoding logic, register file (RF) ports, and trans-
port buses. Figure 2.1c illustrates MII, each cycle up to three instructions are
fetched, decoded, issued, and up to three results are written to the RE The
number of instructions that an MII processor can issue per cycle is called its
issue-rate. An MII processor with issue rate of n has a potential speedup of n
over a single instruction issue (SII) processor. The actual speedup will be less
than n because:

1. The instructions that are simultaneously issued should be independent.
When n independent instructions cannot be “found’, less than n instruc-
tions are issued in that cycle.

2. In practice not all resources are replicated n times. Examples are expen-
sive load-store and floating point FUs. Therefore not all combinations of
n instructions can be issued simultaneously.

3. The extra hardware to control the ILP and the extra connectivity (buses,
bypass circuitry, and RF ports) may have a negative impact on the cycle
time.

4. MII does not speedup cache and TLB misses.

Nearly all recently introduced high-end processors are MII processors. Their
issue rates varies from 2 (e.g., Intel Pentium [11], DEC A21064 [68], and HP
PA-7200 [128)) to 4 (e.g., DEC A21164 [23], IBM PowerPC 620 [139], and HP
PA-8000 [116]) instructions per cycle.

Superpipelining and MII can be applied independently as shown in fig-
ure 2.1d. Nine instructions are simultaneously in the execute stage, which re-
sults in a potential speedup of nine times. Three times resulting from super-
pipelining and another three times from MIL. Jouppi and Wall [122] concluded

2.1. INSTRUCTION LEVEL PARALLEL PROCESSORS 13

[Program counter j r Program counter |
Y
Instruction memory Instruction memory
Y Y
| Instruction window l | Instruction register
Y
I Instruction scheduler I
y | I] Y
FU FU FU FU FU FU FU FU
My My My MWy My My My My
I Register file I r Register file :I
(a) Superscalar (b) VLIW

Figure 2.2: Global organizations of superscalar and VLIW processors

that superpipelining and MII are roughly equivalent; and when there are no
restrictions on the combinations of instructions that can be issued simultane-
ously and MII does not limit the cycle time, MII has an advantage of about 10%
over superpipelining.

2.1.2 Static and Dynamic Scheduling

Instructions that are executed in parallel should be independent and should
not use the same hardware resources simultaneously. The question arises
who is going to control this, the hardware, the compiler, or both? Rau and
Fisher [82,171] classify architectures according to this question into three cate-
gories: sequential architectures, dependence architectures, and independence
architectures.

Sequential architectures

Sequential architectures execute programs that do not contain any explicit infor-
mation regarding ILP. ILP implementations of sequential architectures, called
superscalar processors [120, 175], are therefore responsible for detecting depen-
dences between instructions in the incoming sequential instruction stream and
dispatching every cycle a number of independent instructions to the FUs.

Figure 2.2a shows the global, strongly simplified, organization of a superscalar.
A set of FUs is connected to an RF. Like non-ILP implementations, the FUs and
the RF are usually partitioned into an integer and a floating point part. When

14 CHAPTER 2. TRANSPORT TRIGGERED ARCHITECTURES

we assume a three register operand load-store instruction set, each FU requires
three RF ports. Each FU is characterized by its latency and the operation set it
supports. FUs that support load-store operations will have a connection to the
memory system. '

A hardware instruction scheduler analyzes incoming instructions stored in a
buffer called the instruction window. The scheduler selects a number of instruc-
tions from the instruction window that are ready to be issued and for which
free FUs are available. An instruction is ready for issuing if it does not depen-
dent on an instruction currently being executed or on another instruction in
the instruction window. Branch prediction techniques are used to keep the in-
struction window filled when a control flow instruction is encountered.

Superscalars differ in the complexity of their instruction scheduler. Simple su-
perscalars, such as the DEC A21064, issue instructions in the same order as
they appeared in the instruction steam. Instructions are not issued when a pre-
ceding instruction in the instruction stream cannot be issued even though the
instruction itself can be issued. More advanced superscalars, such as the Pow-
erPC 620, do not have this limitation. However, the more complex instruction
scheduler may limit scalability (issue rate) and cycle time. Furthermore, a com-
plex instruction scheduler requires extra instruction pipeline stages which re-
sults in a larger branch (misprediction) latency.

Dependence architectures

Dependence architectures corresponds to the class of dataflow machines [194].
All (flow) dependence information between instructions is provided by the
programmer/compiler in the program. The hardware s responsible for detect-
ing the ready for issuing instructions and dispatching them to FUs. Tokens are
used to detect when instructions are ready to be issued. Unlike sequential and
independence architectures, dependence architectures have not been used in -
commercial products.

Independence architectures

Independence architectures are programmed by programs that contain in-
formation that specifies sets of independent instructions. The program-
mer/compiler is responsible for detecting dependences. The Horizon [188]
and Tera [12] architectures encode a number n into each instruction that tells
the hardware that the next n instructions are indépendent and can therefore
be issued in parallel provided that sufficient free FUs are available. The hard-
ware is thus still responsible for dispatching the operations to FUs. The orga-
nization of the Horizon is similar to the organization of a superscalar shown
in figure 2.2a. The difference is that the hardware for detecting dependences
between instructions in the instruction scheduler is much simpler.

2.1. INSTRUCTION LEVEL PARALLEL PROCESSORS 15

Sequential Dependence Independence
architectures architectures architectures
Additional information None Specification of Specification of
required in program dependencesbe- independent sets
tween operations of operations
Typical kind of ILP Superscalar ~ Dataflow VLIW
processor
Analysis of dependences Hardware Compiler Compiler
Analysis of independences Hardware Hardware Compiler
Resource allocation Hardware Hardware Compiler
Role of compiler May remedy Replaces some Replaces virtually
‘tunnel view’ hardware all analysis and
(section 2.1.3) scheduling HW

Table 2.1: A comparison of the three types of architectures

VLIW architectures go one step further by shifting the dispatch task to the com-
piler. A VLIW instruction contains a set of operation slots; each slot can hold
one operation and corresponds directly to an FU. The compiler guarantees the
hardware that it can execute the VLIW instructions sequentially and can dis-
patch the operations in the operation slots directly to their corresponding FUs.
This makes dispatching trivial; there is no need for any hardware to find out
whether a free and suitable FU is available for a particular operation. Fig-
ure 2.2b shows the global organization of a VLIW. Unlike superscalars where
an operation is more or less the same as an instruction, in VLIW terminology
an instruction corresponds to a group of operations packed together in one in-
struction.

The processes of packing independent operations into VLIW instructions is
known as (static) instruction scheduling. The compiler has to reorder operations
and pack them in a minimal number of instructions subjected to dependence
and resource constraints.

Table 2.1 and figure 2.3 summaries the differences between the three architec-
ture types.

2.1.3 Superscalars vs. VLIWs

Superscalar and VLIW processors are the two most successful ILP exploitation
methods at the moment. Both methods have their strengths and weaknesses.
We shall use the following issues to compare superscalars and VLIWs.

1. Dynamic vs. static information: Static information (known at compile-
~ time) is in some ways less powerful than dynamic information (known at

16 CHAPTER 2. TRANSPORT TRIGGERED ARCHITECTURES

Frond end and optimizer |
. Sequelzntial
T * (Superscalar) i
|
Determine dependences : Determine dependences
— Dependence
{ * (Dataflow) * {
|
Determine independences : Determine independences
y Independence
(Horizon, Tera) L | I
I
Dispatch operations to FUs : Dispatch operations to FUs
’ Independence
Vi) v vy
|
“ Exectute
Compiler4 i Hardware

Figure 2.3: Dividing the work between the compiler and the hardware

run-time). A static scheduler for VLIWs is often hindered by ambiguous
memory references. A pair of memory references where one of the two
references is a store can only be reordered when the scheduler can guar-
antee that the two references access different memory locations. This is
a problem for a static scheduler when it does not have sufficient infor-
mation about the two references. A superscalar can reorder memory ref-
erences at run-time by comparing their effective addresses!. Hardware
support [48,89] and software techniques [27,112,156] have been devel-
oped to assist a static scheduler in reordering ambiguous memory refer-
ences.

Another example is branch prediction. Dynamic branch prediction [148]
is usually more accurate than branch prediction based on profiling [81,
197] or static branch prediction [21,212].

2. Bird eye vs. tunnel view: The amount of ILP that can be found depends
largely on the number of operations that are considered simultaneously.
For a superscalar this corresponds to the size of the instruction window,
about 4 to 32 instructions (tunnel view). A static scheduler has a much
larger scope, usually several basic blocks containing tens or hundreds of
instructions (bird eye view). Although it is against the pure superscalar
concept, superscalars can benefit by static scheduling for a particular im-
plementation. This is especially true for superscalars with a small in-

! Although it is questionable whether the effective addresses are available in time and whether
it is cost-effective to reorder memory references at run-time.

2.1. INSTRUCTION LEVEL PARALLEL PROCESSORS 17

struction window and an in-order-issue instruction scheduler.

3. Unpredictable external sources: Operations with a variable latency,
such as memory references and I/O operations, are better handled by su-
perscalars than VLIWs. When a VLIW executes an operation that takes
longer than the compiler assumed, the hardware should stall to prevent
incorrect results. Abraham et al. [2] reports that latencies of memory op-
erations can be predicted successfully by profiling them.

4. Hardware vs. compiler complexity: VLIW compilers do much of what
superscalars do in hardware. This is one of the RISC principles: do what
you have to do in hardware and shift the rest to the compiler?.

5. Binary compatibility: For superscalars ILP is an implementation tech-
nique to improve performance and is architecturally invisible. This
guarantees binary compatibility between superscalars with different ILP
characteristics but with the same architecture. Changing ILP characteris-
tics of VLIWs, such as adding an FU, changes the instruction format and
therefore compatibility is lost. Compatibility is a very important issue for
vendors to keep their costumers base. This is the main reason why most
commercial successful ILP processors are superscalars. There are sev-
eral possibilities to create some form of portability between VLIWs with
different ILP characteristics although none of them is completely sat-
isfactory: binary translation [17], dynamically scheduled VLIWs [168],
rescheduling during page faults [53], and an architecture neutral distri-
bution format [161].

6. Code density: When a static scheduler is not able to fill all operation
slots of a VLIW instruction it has to insert no-op operations. This may
lower the code density of VLIWs significantly and therefore result in
more memory usage and instruction cache misses [181]. Existing VLIWs
have tackled this problem by efficient encoding of no-ops in memory and
expanding them during cache misses [51], by different instruction for-
mats [50,170,179], or by decoupling the direct correspondence between
operation slots and FUs [45].

7. Performance scalability: The complexity of the instruction scheduler of
a superscalar is O(n?) where n is the number of instructions in the in-
struction window that are considered for issuing. The quadratic com-
plexity limits the performance scalability of superscalars.

For (semi-)automatically generated ASPs we prefer VLIWs above super-
scalars. The hardware complexity of superscalars makes (semi-)automatic
generation far too difficult. Binary compatibility is not an issue for ASPs. Com-
panies that design ASPs usually also developed or possess the application

2Some people claim that RISC stands for ‘Relegate the Interesting Stuff to the Compiler.”

18 CHAPTER 2. TRANSPORT TRIGGERED ARCHITECTURES

source code and have qualified personnel to recompile the source code when
needed. A low code density of VLIWs could be a serious problem for ASPs.
However, the above mentioned techniques and instruction compression tech-
niques [207] can help to alleviate this problem. Scalability in performance is an
important requirement for ASPs since many interesting ASP applications have
high performance requirements.

2.1.4 Available ILP

A lot of research has been performed to answer the question of how much ILP
is available in applications and how it should be exploited. Most of these stud-
ies simulate the operation of a superscalar processor by scheduling an instruc-
tion trace subjected to certain conditions. The instruction trace is produced by
simulation or execution of an instrumented program on real hardware. The
conditions under which the trace is scheduled include: available resources, in-
struction window size, branch prediction, memory reference disambiguation,
and scheduling barriers. The objective of ILP availability studies is to give up-
per bounds on what can be achieved with ILP and how it depends on hardware
and compiler parameters. The value of these studies is limited because:

1. Most ILP upper bounds are not realistic. Most of the conditions under
which they are obtained are not likely to be realizable in the near future,
e.g., perfect memory reference disambiguation.

2. The studies ignore ILP enhancing techniques already developed or that
may be developed in the future. Examples of existing ILP enhancing
techniques are combining [154], program restructuring [142,205], tree
height reduction [157], and interlock collapsing ALUs [146]. Therefore,
the measured upper bounds do not have to be real upper bounds.

Nevertheless trace analysis is valuable to give an idea of what is achievable by
ILP and under which conditions it can be achieved. The major conclusions that
can be drawn from ILP availability studies are:

1. Jouppi and Wall [122] found that when ILP exploitation is limited to ILP
within basic blocks the obtained speedups will not exceed 2-3 due to the
limited basic block size.

2. Wall [198] found that even under ambitious conditions, such as good
branch prediction, perfect memory reference disambiguation, a large
number of registers, single cycle latency operations, a prefect cache, un-
limited number of FUs, and a large instruction window, the average
speedup will be around 7 and the median around 5.

2.2, STATICILP EXPLOITATION 19

3. Lam and Wilson [133] analyzed the effect of control flow dependences
(dependences between a branch and instructions whose execution de-
pends on the outcome of the branch) and speculative execution (execu-
tion of instructions before branches that they are control dependent upon
are resolved). Control dependence analysis (at compile-time) and spec-
ulative execution result in an average speedup of 13.3. Better speedups
can be obtained by executing multiple flows of control in parallel such
as in MIMD, XIMD [208], multiscalar [84, 178], multithreading [191], and
dataflow machines.

4. Theobald et al. [187] analyzed the effect of memory renaming. They
found that memory renaming can remove a lot of dependences between
memory references and increase ILP significantly. They furthermore in-
troduced the notion of smoothability. Ideally, a maximum speedup of S
relative to a machine with no ILP requires a machine with [.S] ILP. In re-
ality the amount of ILP in an application is not evenly distributed and
cannot be spread out evenly. Theobald defined smoothability as the ra-
tio of the speedup of a machine with [.S] ILP and S. Most application
exhibit a smoothability of more than 75%; this indicates that ILP can be
exploited with reasonable hardware utilization.

2.2 Static ILP Exploitation

In the previous section we motivated our choice for VLIWSs instead of super-
scalars. The challenging aspect of VLIWs is scheduling, i.e., reordering opera-
tions and packing them into instructions at compile-time.

2.2.1 Scheduling Constraints

Scheduling is subject to constraints that ensure correct semantics and correct
hardware usage. Dependences between operations indicate a partial order in
which the operations should be executed. Violating this order may change the
semantics of the program. Resource constraints describe how operations can
be packed into instructions.

Data dependences

Data dependences, or precedence constraints, are ordering constraints due to the
usage of registers and memory locations. There are three types [127]:

1. There is a flow dependence from operation a to b if a defines a register or
memory location that may be used by b.

20 CHAPTER 2. TRANSPORT TRIGGERED ARCHITECTURES

2. There is an anti dependence from operation a to b if a uses a register or
memory location that may be redefined by b.

3. There is an output dependence from operation a to b if a defines a register
or memory location that may be redefined by .

Flow dependences are also known as true dependences and anti and output de-
pendences as false dependences because the latter can be eliminated by renam-
ing. Figure 2.4b shows a data dependence graph (DDG) corresponding to the
code fragment in figure 2.4a. In a DDG nodes corresponds to operations and
edges to dependences between operations. Some anti and output dependences
are not shown in figure 2.4b because they are covered by others. Figure 2.4b
shows an anti dependence between operation d and e. This is due to the reuse
of register r3 in operation e. The anti dependence can be eliminated by us-
ing another register for r3 in operation e. The resulting DDG is shown in fig-
ure 2.4c. In general, fewer dependences means more ILP and better perfor-
mance.

Data dependences are usually associated with a delay that indicates the min-
imum number of cycles between the dependent operations to guarantee cor-
rect semantics and to prevent interlocks at run-time®. For flow dependences
the delay is equal to the latency of the operation that produced the value that
is used by the other. For anti and output dependences the delays are usually
zero and one cycle, respectively. This assumes that when a register is read and
written in the same cycle the previous value is read. Furthermore, it assumes
that multiple writes to a register in the same cycle are undefined.

The length of a path in a DDG is defined as the sum of the delays of its edges.
The longest path in a DDG, called the critical path, gives a lower bound on the
required number of cycles needed to execute the code corresponding to the
DDG. For the DDGs shown in figures 2.4b and 2.4c the lengths of their criti-
cal paths are 4 and 2, respectively, when we assume single cycle latency oper-
ations.

Data dependences due to memory usage are much harder to detect than de-
pendences due to register usage. Unlike registers, memory is usually accessed
by addresses not known at compile-time. A data dependence due to memory
usage is present between two memory references if the two references may
access the same memory location, i.e., the effective address of the two refer-
ences might be the same at run-time. Determination of whether two references
may access the same memory location is known as memory reference disambigua-
tion or alias analysis. Memory reference disambiguation is one of the hardest
problems for a scheduler. It has been solved reasonably well for numeric code
where arrays are accessed regularly [91, 147, 166], but for pointer oriented non-
numeric code it remains a hard problem [67,101,115]. When a memory refer-

3Interlocks will still occur when operations take more cycles than the scheduler expected.

2.2, STATICILP EXPLOITATION 21

@ ®

Legend:
— Flow dep., delay =1
—/-> Anti dep., delay =0

(a) 1d r2, 4(rl)
(b) 1@ r3, 8(rl)
(¢) add 3, r2, r3
(d) st r3, 12(rl)

e & ®
(e) 1d 3, 16(rl) () (¢
(f) sub r3, r2, r3
(g) st r3, 20(rl) © @ @

(a) Sequential source code (b) DDG (c) DDG without false dependences

©p10, 010

Figure 2.4: Data dependence graphs

ence disambiguator cannot determine independence it has to assume depen-
dence.

The code in figure 2.4a does not contain data dependences due to memory us-
age. All memory addresses are the sum of the value of r1 and a different con-
stant. A relatively simple memory reference disambiguator can determine that
all references access a different memory location (assuming that the references
access four bytes and the memory is byte addressable).

Control dependences

A conditional branch may determine whether other operations are executed or
not. This makes these operations control dependent on the branch. Figure 2.5
shows an example control flow graph (CFG) to illustrate control dependence.
Nodes of the CFG represent basic blocks and edges correspond to possible di-
rect transitions between basic blocks. In figure 2.5 the branch in basic block A
controls the execution of all operations of basic blocks B, E, and F. All these
operations are therefore control dependent on the branch of basic block A. Sim-
ilarly, the operations of basic blocks C' and D, depend on the branch of basic
block B.

Control dependences are less stringent than data dependences; they can some-
times be violated without changing the semantics of the program. For exam-
ple, figure 2.6 shows how a copy operation can be moved above a conditional
branch on which it is control dependent. This is known as speculative execution.
The scheduler speculates on the outcome of the conditional branch. It should
be clear that speculation is allowed when it does not change the semantics of
the program. This means that the speculated operation should not cause an ex-

22 CHAPTER 2. TRANSPORT TRIGGERED ARCHITECTURES

Fork point

C
E F
\# Join point
G

'

Figure 2.5: A control flow graph

mov rl,xr2

beq ... beqg ...
mov rl,r2 mov rl,r3 mov rl,xr3
(a) Before speculation (b) After speculation

Figure 2.6: Speculative execution

ception (e.g., due to a divide by zero) or change the program state (overwrite
live registers or memory locations) in case of misspeculation. The speculation
in figure 2.6 is valid; a copy operation between registers cannot cause an ex-
ception and the register that it defines (r1) is not live below the branch.

As discussed in section 2.1.4, speculative execution is an important technique
to improve ILP.

Resource constraints

Resource constraints express the resource limitations of the target machine.
Resources of interest for the scheduler include: FUs, buses, RF ports, and op-
eration slots. General purpose registers are usually not managed by the sched-
uler.

2.2. STATIC ILP EXPLOITATION 23

The common way to deal with resource constraints is the usage of a resource
vector and reservation tables. The resource vector describes how many in-
stances of each resource are available. For example:

(4 112 21)

indicates the availability of four instances of resource type 1, one instance of
resource type 2, and so on. Reservation tables tables describe the resource re-
quirements of an operation. For example:

0

0

1)

(

indicates that the operation needs one resource of type 1 and one of type 3 in
its first cycle of execution and one resource of type 6 in its third cycle. The
scheduler checks resource constraints by combining the reservation tables of
the scheduled operations and comparing the result with the resource vector of
the target machine.

1
0
0

OO =
SO O
(== ew R]
(== e R e

In chapter 3 we shall see that resource vectors and reservation tables are not
sufficient to describe all resources of TTAs.

2.2.2 Scheduling Scopes

Compiler optimizations can be performed with different scopes. For example,
register allocation can be performed for expressions, basic blocks (local register
allocation), procedures (global register allocation), or collections of procedures
(interprocedural register allocation). In general, a larger scope means more op-
timization opportunities and therefore potentially better results. In case of reg-
ister allocation, a larger scope will contain more live ranges that can be allo-
cated to registers and therefore more registers can be used. This implies that
a large scope is required in order to use a large number of registers effectively.
The same holds for scheduling; a small scheduling scope is sufficient for pro-
cessors with a small amount of ILP, a larger scope is required for efficient usage
of processors with more ILP.

Schedulers can be classified according to their scheduling scope into three cat-
egories:

1. Basic block scheduling: The scheduling scope consists of a single basic
block. Each basic block is scheduled independently of the others. Since
the size of abasicblock is typically not more than 4 or 5 operations, which
tend to be dependent on each other, the amount of ILP that can be ex-
ploited by basic block scheduling is very limited. Basic block scheduling
is also known as local scheduling.

24

CHAPTER 2. TRANSPORT TRIGGERED ARCHITECTURES

(a) Extended basic block scheduling (b) Software pipelining

Figure 2.7: Scheduling scopes

2. Extended basic block scheduling: The scheduling scope consists of an

acyclic CFG. Figure 2.7a shows how an extended basic block scheduler
might partition a CFG, corresponding to an if-then-else construct within
a loop, into two scheduling scopes. The scheduler exploits inter basic
block parallelism by moving operations between basic blocks belonging
to the same scheduling scope. Examples of possible code motions are: A
toE,FtoA,Gto E, BtoC,and F to C. Inter basic block code motions
may require speculative execution, code duplication, or both. For exam-
ple, moving an operation from C to B requires speculation, and moving
an operation from F' to C requires code duplication (a copy of the oper-
ation needs to be placed in D as well). Extended basic block scheduling
is also known as global scheduling.

. Software pipelining: The scheduling scope consists of a cyclic CFG cor-

responding to aloop. By including backward edges (e.g., the control flow
edge from F to B in figure 2.7b) and performing code motions over the
backward edges, operations from different loop iterations are executed
in parallel. The remaining acyclic parts of the CFG, such as the outer
scheduling scope in figure 2.7b, are handled by an extended basic block
scheduler. Exploitation of inter iteration ILP is very profitable for nu-
meric code and other loop oriented code such as signal processing ap-
plications, since these applications spend a lot of their execution time in

2.3. TRANSPORT TRIGGERED ARCHITECTURES 25

loops of independent iterations. Software pipelining is also known as
cyclic scheduling.

2.3 Transport Triggered Architectures

This section introduces TTAs starting with the principle of TTAs: program-
ming data transports instead of operations. Subsection 2.3.2 gives an exam-
ple of TTA programming. The next three subsections describe how immedi-
ate operands, control flow, and conditional execution can be implemented in
TTAs. The last two subsections describe the interconnection network and func-
tional units in more detail.

2.3.1 The Principle

One of the major problems of VLIWs, which is also a problem for other ILP pro-
cessors, is the central RF and the required connectivity between the RF and the
FUs. N FUs require 3N ports on the RF, 2N read ports and N write ports, and a
bypass network between the FUs consisting of O(N) buses and 2N multiplex-
ors with O(IV) inputs. Both the RF and the bypass network have an O(N?) area
complexity [56]. Furthermore, a large number of RF ports and a large bypass
network are likely to limit the cycle time.

This problem is slightly alleviated by replacing the central RF by one RF for in-
teger and one RF for floating point numbers. However, for VLIWs with a large
number of FUs, also called wide VLIWS, the data path has tobe partitioned into
a number of clusters each containing one RF and a few FUs [51,80] as shown
in figure 2.8. The clusters are connected by buses to transfer data between the
clusters.

Clustering has several serious problems:

1. Inter cluster communication takes time and resources (buses, RF ports,
and operation slots).

2. It is highly questionable whether typical code is well clusterable. With
clusterable we mean that the application code can be partitioned in rel-
atively independent partitions that can be executed in lock step on the
clusters without a lot of inter cluster communication.

3. It complicates code generation significantly [42,74]. The compiler has to
allocate operations and variables to clusters such that the work load is
balanced among the clusters and the inter cluster communication is mini-
mized. This may require duplication of operations and variables in order
to reduce the inter cluster communication overhead {74].

26 CHAPTER 2. TRANSPORT TRIGGERED ARCHITECTURES

N T O TN N S N A

iy thy

r Register file J Register file Register file

v T v N b

Inter cluster communication network

Figure 2.8: A clustered VLIW of three clusters each consisting of three FUs and
one RF

FU FU FU RF RF

fre TTs Py Tes Tles

Interconnection network

Figure 2.9: General structure of a TTA

Due to these problems it is highly desirable to avoid clustering as much as
possible and, when needed, partitioning the FU set into a few large clusters.
This can be achieved by using the transport resources more efficiently. Trans-
port triggered architectures (TTAs) do this by letting the compiler control the data
transports. The idea is that a compiler is better capable to control the transport
resources efficiently. The result is that clustering is not needed anymore or that
the FU set can be partitioned into fewer and larger clusters (e.g., 2 clusters of 6
FUs instead of 4 clusters of 3 FUs).

Figure 2.9 shows the general structure of a TTA. A set of FUs and RFs are con-
nected by an interconnection network. The interconnection network consists
of a number of move buses. Each move bus is directly controlled by a move slot
of the TTA instruction. Figure 2.10 shows the layout of a TTA instruction to-
gether with the instruction layout of a traditional operation triggered architecture
(OTA). Each data transport, or move, is between two internal registers as spec-
ified by the source and destination fields of a move slot. From the compiler
point of view the internal registers are divided into four categories:

1. General purpose registers (GPRs): like GPRs in OTAs, they are used for
fast accessible storage of a small set of variables.

2.3. TRANSPORT TRIGGERED ARCHITECTURES 27

L move slot 1 I move slot 2 r I move slot N J

-

L source | destination

(a) Instruction format of an N move bus TTA VLIW

liperaﬁon slot 1 l operation slot 2 T I operation slot N l

l opcode I sourcel I source2 Idestinationl

(b) Instruction format of an N functional unit OTA VLIW

Figure 2.10: Instruction layouts of OTAs and TTAs

2. Trigger registers: each trigger register belongs to an FU. When a value

is moved to a trigger register an operation is initiated (triggered) and the
value that is used to trigger the operation is used as operand. Usually
FUs can perform more than one operation, e.g., an ALU can perform ad-
ditions, subtractions, logical operations, and shift operations. For this
purpose a trigger register is mapped at multiple register address loca-
tions. The address that is used to access the trigger register indicates the
operation to be initiated, i.e., the operation code is encoded in the ad-
dress.

. Operand registers: these registers are used to provide operands to FUs
that can execute operations that need more operands than the single
operand provided by a trigger move.

. Result registers: results of finished operations are placed in the result
register of the FU that performed the operation. Although the TTA con-
cept allows for FUs with multiple result registers we shall restrict our-
selves to single result register FUs.

With TTAs we have added another layer to the scheme of figure 2.3 as shown
in figure 2.11. The responsibility of controlling the data transports has been

moved from the hardware to the compiler.

28

CHAPTER 2. TRANSPORT TRIGGERED ARCHITECTURES

|
[
|
1

Frond end and optimizer \
y Sequential
‘ * { ‘ (Superécalar) i
|
Determine dependences ! Determine dependences
y Dependence
* } + (Dataflow) Yy
|
Determine independences | Determine independences
- IndepeFdence
1 —‘ (Horizon, Tera) 1 +
|
Dispatch operations to FUs : Dispatch operations to FUs
y Independence
+ (OTA VLIW) y ‘ ‘ +
I
Dispatch transports to buses : Dispatch transpotts to buses
— Independence
e B B B B
|
! Exectute
Compiler : Hardware
i —r

Figure 2.11: Dividing the work between the compiler and the hardware

2.3.2 An Example

To clarify TTA programming, let us consider how to translate the following
code into TTA code and how to schedule it.

add rl, r2, r3 /* rl = xr2 + r3 */
sub r4, r2, ré /* rd = r2 - r6 */
st rd, (rl) /* store r4 at address rl */

First we translate each n-operand m-result operation into n — 1 operand moves,
one trigger move, and m result moves:

r2 -> add_o; r3 -> add_t; add_r -> rl
r2 -> sub_o; r6 -> sub_t; sub_r -> r4
rl -> st_o; r4 -> st_t

The suffixes _o, -t, and _r denote operand, trigger, and result registers respec-
tively. Registers r1-r6 are GPRs. So far, all moves are to be executed sequen-
tially. Scheduling consists of assigning FUs to operations and assigning cycles
and move buses to moves. Figure 2.12 shows the DDG of the example code.
The delay of the dependence between operand and trigger moves of the same
operation is zero, i.e., the trigger move should be scheduled in the same cycle

2.3. TRANSPORT TRIGGERED ARCHITECTURES 29

G @)

rl -> st_o

Figure 2.12: Data dependence graph of TTA code

as the operand move or should be scheduled later. The delay between a trigger
move and a result move is equal to the latency of the FU that will execute the
operation. Scheduling the result move earlier than prescribed by the trigger
result delay will result in incorrect results or an interlock when interlocking is
implemented. The delay of the two flow dependences is zero. This requires
however that the results of the addition and subtraction can be bypassed di-
rectly from the FUs that produced the results to the FU that performs the store
operation.

Let us assume we have two FUs named alul and alu2 for ALU operations,
and one FU named 1su for load-store operations. Furthermore, assume that
the three FUs have a single cycle latency and we have an interconnection net-
work of four move buses with sufficient connectivity. Scheduling the example
code will give the following two instructions:

r2 -> alul.add_o; r3 -> alul.add_t; r2 -> alu2.sub_o; ré6 -> alu2.sub_t
alul.add_r -> lsu.st_o; alu2.sub_r -> lsu.st_t

The prefixes alul, alu2, and 1su indicate the FU on which the operation is
executed?. The operand and trigger moves of the store operation have been by-
passed, their source fields have been changed from a GPR into a result register.
This is required when a move that uses a GPR (the source field of the move is
a GPR) is scheduled in the same cycle as the move that defined the GPR (the
destination field of the move is a GPR). Due to bypassing the result moves of
the addition and subtraction have become useless if we assume that r1 and r4
are not used anymore after the store operation. Therefore the two result moves
can be eliminated.

This simple example shows that due to bypassing the required number of
moves and RF accesses is reduced. This reduces the required number of move

*The notation used has some redundancy. In the actual code the operation code is only specified
with the trigger move.

30 CHAPTER 2. TRANSPORT TRIGGERED ARCHITECTURES

buses and RF ports, i.e., transport triggering reduces the required number of
transport resources.

2.3.3 Immediates

Immediates are usually divided into short and long immediates. Short imme-
diates are provided by TTAs by storing them in the source field of a move slot
and adding an immediate bit to the move slot to indicate whether the source field
contains a register specifier or an immediate. This can be done for all move
slots or a subset. The size of the immediate is equal to the size of the source
specifier; and is therefore usually not more than 8 bits.

There are several ways to provide long immediates:

1. Making the instruction register partly accessible, i.e., part of the instruc-
tion register becomes readable from the interconnection network. This
means that one or more immediate fields are added to the instruction for-
mat.

2. The disadvantage of the first method is the wasted instruction band-
width when a long immediate field is not used. This can be improved
by using multiple instruction formats that differ in number of long im-
mediate fields and move slots. The different instruction formats can be
distinguished by a few bits per instruction that indicate the instruction
format.

3. Special FUs can be used to compose long immediates out of short imme-
diates. This method is similar to the load upper immediate’ instruction
found in many RISC architectures [103].

In this thesis we will restrict ourselves to the first two methods.

2.3.4 Control Flow

Control flow is realized by making the program counter (PC) accessible. Writ-
ing an address to the PC causes a jump to that address. Depending on the in-
struction pipeline, a jump can be delayed by one or more instructions, i.e., one
or more instructions after the instruction containing the jump are executed be-
fore the jump takes place. PC-relative and page-relative jumps canbe provided
by an extra adder and making the lower bits of the PC accessible, respectively.

Reading the PC is useful for obtaining the return address of a procedure call.
Depending on the instruction pipelining scheme the read value may need to
be corrected by adding a small constant to it.

2.3. TRANSPORT TRIGGERED ARCHITECTURES 31

2.3.5 Conditional Execution

Conditional execution is provided by means of guarded or predicated execution.
Each move canbe guarded by a boolean expression, called the guard expression.
The move takes only place when its guard expression evaluates to true. The
guard expression is built out of boolean variables stored in an RF of boolean
registers. The boolean registers are defined by compare operations. For exam-
ple, with guarded execution the following code:

if(r2 > 0 && r3 > 0)
r5 = r4;

can be scheduled as follows:

r2 -> cmp.gt_o; 0 -> cmp.gt_t /* bl = r2 > 0 */
3 -> cmp.gt_o; 0 -> cmp.gt_t; cmp.gt_r -> bl; /* b2 = r3 > 0 */
cmp.gt_r -> b2;

bl.b2: r4 -> r5; /* 1f(r2 > 0 && r3 > 0) rd = r5 */

Transforming multiple basic blocks into a single basic block by means of
guarded execution is known as if-conversion. If-conversion makes basic blocks
larger and transforms control dependences into data dependences [10].

Since all possible guard expressions of n boolean registers requires 2" bits to
encode, the number of boolean registers or the number of possible guard ex-
pressions should be limited. What is preferable depends on how the scheduler
uses guarded execution.

Guarded execution is not unique for TTAs, it has been used for OTAs as well.
Examples are the IBM VLIW [71], Cydrome Cydra 5 [170}, and Philips LIFE [45,
130] VLIWs and sequential architectures that have conditional instructions
such as the Acorn ARM [44], the HP PA-RISC [137], SPARC V9 [204], and the
DEC Alpha [174]. Motivations for guarded execution are:

1. Elimination of jumps: as shown in the example above, jumps around
small basic blocks can be eliminated.

2. Filling jump delay slots: operations from both the taken and the not
taken paths canbe moved into the delay slots of ajump by guarding them
properly [111].

3. Facilitating scheduling: jumps are hard to schedule since they may
change the shape of the CFG, and reordering jumps may lead to a signif-
icant code expansion. If-conversion prior to scheduling removes jumps
and therefore facilitates scheduling [143,202].

4. Reducing branch mispredictions: if-conversion tends to remove jumps
with a high misprediction rate [145,192]. This makes it interesting for
superscalars with a high misprediction penalty.

32 CHAPTER 2. TRANSPORT TRIGGERED ARCHITECTURES

If-conversion should be done with care. Guarded operations/moves that are
fetched from memory require resources but do not contribute to the execution
of the program when their guard expression evaluates to false. Furthermore,
the length of the critical path of the DDG of the basic block resulting from if-
conversion may be determined by dependences along infrequently executed
paths of the if-converted CFG. Therefore, if-conversion has to be controlled by
heuristics that take resource usage, dependence chains, and execution profiles
into account.

2.3.6 The Interconnection Network

The interconnection network consists of a set of move buses. Each move bus
is controlled by a move slot of the TTA instruction. Besides carrying data, the
move buses also carry the register ids of the move slot and control signals for
interlocking, guarding, and exceptions.

FUs and RFs are interfaced to the interconnection network of move buses by
means of sockets. Input sockets transfer data from the move buses to the FU
and RF inputs; and output sockets vise versa. Figure 2.13 shows the organiza-
tion of a socket. A decoder compares the ids on the id buses to check whether
a register accessible through the socket is selected. In case a register is selected
the decoder controls the selector to select the right move bus. Besides control-
ling the selector the decoder is also capable to provide an opcode in case of
accessing a trigger register, or a register index in case of accessing an RE

RFs have usually one input/output socket per write/read port on the RF.
Operand and trigger registers of FUs may share a socket in order to reduce
hardware costs. However, since a socket can be used only once per cycle, only
one of the operand and trigger registers that share a socket can be accessed per
cycle.

The interconnection network may be fully connected, in which case every
socket is connected to all move buses, or partially connected. A fully connected
interconnection network simplifies the code generation task, but may also re-
sult in a high bus load on the move buses which may affect the cycle time.
Therefore, in practice, the interconnection network will be partially connected
and the compiler is responsible to use the available connections as well as pos-
sible.

Full connectivity is not required to be able to perform all possible combinations
of data transports per cycle. It is possible to remove some connections while
still all data transports combinations are possible. Figure 2.14 shows what we
call quasi fully connected. Each move bus has N — 1 different input sockets to
which it is not connected, where NN is the number of move buses. The reduction
compared to fully connected is thus N(N — 1) connections. It is easy to verify
that still all possible data transports are possible. It is also easy to see that re-
moving more than N — 1 connections per bus makes some data transport com-

2.3. TRANSPORT TRIGGERED ARCHITECTURES 33

Select

|
|
t
|
i
!
|
i
I Decode
I
I
i
]
b
|

FU pipeline < i
|
|
;P
I
1
¢ IControl » Control :
! |
]

Move buses: data, identifiers, and control

Figure 2.13: Input and output sockets to interface an FU to the move buses.
Each socket is connected to two of the four move buses.

Output sockets Input sockets

niff
FARAAAAL yrvrrrreey

Figure 2.14: A quasi fully connected interconnection network

N move buses

binations impossible. Although in theory quasi full connectivity should give
the same performance as full connectivity it is not evident that a realistic com-
piler can achieve this.

The interconnection network should be designed based on the communication
requirements between the FUs and RFs. This means that the interconnection
network should provide the connections that are frequently requested by the
compiler. For example, the address of a memory operation is often the result
of an addition. This means that the address inputs of load-store FUs should
be strongly connected to outputs of adders or ALUs. This can be achieved by
dedicated move buses or by connecting them to the interconnection network
such that their sockets have many move buses in common.

Besides one-to-one communication it is also possible to support one-to-many

34 CHAPTER 2. TRANSPORT TRIGGERED ARCHITECTURES

communication or ntulticasts. This is achieved by multicast addresses which
correspond to multiple inputs. Multicasts make it possible to combine mul-
tiple data transports from the same source. For example, the following two
moves:

alu.add_r -> r3; alu.add_r -> lsu.ld_t

can be combined into a single multicast:

alu.add_r -> {r3, lsu.ld_t}

In the remainder of this thesis we will not utilize multicasts, although we will
perform an experiment in chapter 6 that estimates the possible performance
improvement due to multicasts.

2.3.7 Functional Units

A functional unit consists of a pipeline that performs the operations. The first
stage of the pipeline corresponds to the operand and trigger registers, and the
last stage of the pipeline corresponds to the result register; see figure 2.15. Non-
pipelined or sub-pipelined FUs are possible by replacing the pipeline by cir-
cuitry that does not accept one operation per cycle. A non-pipelined or sub-
pipelined FU is usually more cost-effective if the FU is not frequently used and
a fully pipelined FU is expensive, e.g., a divide FU.

Having both opérand and trigger registers at the input and a result register at
the output means that it takes at least two cycles to perform an operation. If an
operation is triggered on an FU with no intermediate pipeline stages in cycle
T, the result is clocked into the result register in cycle T + 1, and the result can
be used in cycle T + 2. The latency of the FU can be reduced by one cycle by
removing the result register. This makes single cycle operations possible. The
consequence is however that the delay of the last pipeline stage is added to the
time required to do a data transport over a move bus.

There are several alternatives for pipelined FUs that differ in scheduling free-
dom, implementation complexity, and exception handling [56]. The two most
useful alternatives are hybrid pipelines and virtual time latching pipelines.

Hybrid pipelines

Operations executed on hybrid pipelined FUs advance from one stage to the next
stage if they do not overwrite results of previous operations. This is accom-
plished by attaching a valid bit to the trigger register, the result register, and
each intermediate pipeline stage. Pipeline stage ¢ of a fully pipelined FU will
accept an operation from pipeline stage i — 1 if: (1) pipeline stage i — 1 contains

2.3. TRANSPORT TRIGGERED ARCHITECTURES ‘ 35

----- LA TR 2

| Stage controller
SC

Result register lg————] SC

|
1
! Operand register Trigger register — |
|
! | f
| | Combinatorial logic
! ;
| Yy
: Intermediate stage g | SC j
|
| [} i
| I
! I
: Y I
' I
' I
i

|

To output socket

Figure 2.15: Organization of a functional unit

an operation (its valid bit is on), and (2) pipeline stage ¢ does not contain an
operation (its valid bit is off) or the operation it contains will be accepted by
pipeline stage ¢ + 1. In other words:

accept; = oldwvalid;—; A (—old_valid; V acceptii1)
newwalid; = accept; V (oldvalid; A —accept;1)

The equations for the first and last pipeline stages are slightly different. Writ-
ing to a trigger register causes its valid bit to be set. Similarly, reading from
a result register causes its valid bit to be cleared, unless the result of another
operation is simultaneously entering the result register.

Writing to a trigger register that cannot accept an operation because it contains
an operation that cannot proceed to the next pipeline stage will cause a pipeline
full exception®. Reading from a result register that does not contain a result of
an operation will cause an interlock® until a result enters the result register. If
the pipeline does not contain an operation, a pipeline empty exception will be
raised.

The definition of accept; causes a ripple from the last pipeline stage to the first
stage. This becomes a problem for deeply pipelined FUs. The other pipeline
type, virtual time latching pipelines, does not have this problem.

5Low cost implementations do not have to support these exceptions.

$Low cost implementations do not have to support interlocking. Without interlocking the read
value will be undefined and therefore the compiler cannot schedule a result move before the result
is available.

36 CHAPTER 2. TRANSPORT TRIGGERED ARCHITECTURES

Virtual time latching pipelines

Virtual time latching pipelines (VTLP) do not have the notion of stages containing
valid operations. Operations continue from one stage to the next stage uncon-
ditionally. This means that when an operation is triggered in cycle 71 on an
N stage FU its result is available in cycle T1 + N. How long this result will be
available depends on how soon after cycle T; the FU is triggered for another
operation. If the next operation executed on the same FU is triggered in cycle
T, (Tz > T3), the result of the operation triggered in cycle T will be available
from cycle Ty + N until T, + N —1. To ensure the availability of the result during
this interval, VTLP FUs are locked during stalls.

A register that needs to be read within a certain time after it has been defined is
known as a hot spot. Hot spots are present in many microcode programmable
machines [134,190] but also in some VLIWs, e.g., the Intel iWarp [50].

The following example illustrates the difference between hybrid pipelined and
VTLP FUs.

. -> fu.add_o; ... -> fu.add_t’ /* trigger of operation 1 */

. => fu.add_o; ... -> fu.add_t /* trigger of operation 2 */

. -> fu.add_o; ... -> fu.add_t /* trigger of operation 3 */
fu.add_r -> ... /* result of operation 1 */
fu.add_r -> ... /* result of operation 2 */
fu.add_r -> ... /* result of operation 3 */

On a 3 cycle latency hybrid pipelined FU this code will give correct results.
After cycle 3 and during cycle 4 the pipeline is full; triggering another oper-
ation would cause a pipeline full exception. Figure 2.16b shows the contents
of the three pipeline stages during the execution of the example code on a hy-
brid pipelined FU.

Executing the example code on a 3 cycle latency VTLP FU would result in in-
correct results. In cycle 4 the result of operation 1 is overwritten by the result
of operation 2, which causes that the result of operation 2 is read by the result
move in cycle 5; see figure 2.16c. This is known as a VTLP collision; the result
of an operation collides with the result of another operation that has not been
read in time.

This example illustrates that operations scheduled on VTLP FUs have less
scheduling freedom than operations scheduled on hybrid pipelined FUs. On
the other hand, VTLP FUs have a scheduling advantage as well: results of op-
erations can be discard without a result move. This is very useful for specula-
tive execution of long latency operations. Operations speculatively executed
on hybrid pipelined FUs may need a so called jurnk move on the mispredicted
path to discard their results. Junk moves are result moves that move the result
of a mispredicted operation to a non-existing address in order to discard it.

7Unrelevant details are replaced by three dots.

2.4. ADVANTAGES AND DISADVANTAGES OF TTAS 37

Stage 1 Stage?2 Stage3 Stage 1 Stage2 Stage 3

01 ... -> fu.aadt | Oly | -LI ,_081___8_'_&_'

02 ... -> fu.add_t | 02 \I\ Ol \ | |_o2 \|‘ Ol \]

03 ... -> fu.addt | O3 r\ 02 l'ﬁn | | 03“‘ 02 \’\ o |
oy oJ o] [Novo]

01 fu.addr -> ... |]\ 03 \F o2 | | | F o3 |

02 fu.addr -> ... | I F o3 | | | l |

| |

o3 fu.add_r -> ... I I I l I I
(a) TTA code (b) Hybrid pipelining (c) VILP pipelining

Figure 2.16: Pipeline contents of hybrid pipelined and VILP FUs

2.4 Advantages and Disadvantages of TTAs

This section gives a qualitative description of the advantages and disadvan-
tages of TTAs for ASPs. Quantitative evaluations of several aspects will be de-
scribed in chapter 6. '

24.1 Implementation Advantages
Regularity

TTAs are built out of a limited number of building blocks: move buses, sock-
ets, RFs, FUs, and an instruction unit containing the PC and the instruction
register. The RFs, FUs, and instruction unit are interfaced to the move buses
by means of sockets. When the socket interface specification has been estab-
lished, all components can be designed and implemented relatively indepen-
dent of each other. This makes it possible to use layout generators and libraries
of pre-designed components.

Flexibility

FUs can be added easily by ‘plugging’ them into the interconnection network.
Global changes are only needed when there is insufficient addressing space on
move buses to address the added FUs or when more connectivity is required
to use the added FUs effectively.

There are virtually no constraints on the FUs. They can have many inputs and
outputs. The only constraint that has to be obeyed is the socket interface spec-
ification.

38 CHAPTER 2. TRANSPORT TRIGGERED ARCHITECTURES

Processor cycle time

The cycle time of a TTA implementation is lower bounded by the time required
to do a data transport over a move bus which can be very short. This requires
result registers at FU outputs and pipelining of all other processor components
as long as they limit the cycle time.

Hardware utilization and scalability

Programming data transports leads to a better control over the transport re-
sources and therefore a better utilization. A better utilization of the register
ports allows for more FUs per RF. This reduces the need for clustering and if
clustering is still necessary allows for fewer and larger clusters. This simpli-
fies the code generation task and results in lower cycle counts if the application
code is not well clusterable.

Decoupling of RF ports, buses, and FUs

On an OTA, each FU has three dedicated buses and RF ports. These ports can
not be used for other purposes when the FU does not need them all in a cycle;
for example, when the FU is not used or the FU executes a unary operation.
Decoupling of RF ports, buses, and FUs allows for more efficient usage of RF
ports and buses.

24.2 Compiler Optimizations
Bypassing

Bypassing allows two flow dependent moves to be scheduled in the same cy-
cle. For example, if r3 -> X is flow dependent on Y -> r3, they can be sched-
uled in the same cycle provided that the first move is changed into Y -> X, i.e.,
the value of r3 is bypassed.

Bypassing a value saves an RF read access. This, together with the fact that
TTAs allow that freed RF read ports can be used for other purposes, reduces
the RF port requirement of TTAs.

Dead result move elimination

When all moves that use a particular GPR are bypassed, the move that defines
the GPR can be eliminated. These are usually result moves but it is also possi-
ble for copy moves/operations (moves from a GPR to a GPR or moves with an

2.4. ADVANTAGES AND DISADVANTAGES OF TTAS 39

1d rl, (xr2)++; 1d r3, (rd)++
1d rl, (x2)++; 1d r3, (rd4)++; add r5, rl, r3
1d rl, (r2)++; 1d r3, (r4)++; add r5, rl, r3; st r5, (ré)++
add r5, rl, r3; st r5, (r6)++
st r5, (ré6)++

Figure 2.17: A software pipeline that adds two integer vectors. The loop con-
trol code is omitted for simplicity. The steady state of the software
pipeline is shown between horizontal lines. This loop illustrates
how large the difference between actual and worst case RF port
requirement can be.

immediate source to a GPR). Dead result move elimination saves data trans-
ports, RF write accesses, and GPR usages. Again, due to the fact that the freed
move buses and RF ports can be used for other purposes, the move bus and RF
port requirements are reduced.

Due to the greedy nature of most schedulers, usages of a GPR are often sched-
uled as close as possible after the define of the GPR. Furthermore, most com-
puted values are used a few times shortly after they have been defined [85].
Both facts promote bypassing and dead result move elimination.

Bypassing, dead result move elimination, and the fact that many operations
do not need two GPR operands and produce a GPR result are the main rea-
sons that the actual RF port requirement of TTAs is much lower than the three
ports per FU worst case requirement of OTAs. An extreme example is shown
in figure 2.17. During the steady state of the software pipeline shown in this
example, the loop uses 6 GPRs and defines 6 GPRs per cycle. However, all us-
ages are bypassed and all writes to the RF are dead, thus the actual RF port
requirement is zero! This information is known to the compiler. OTAs cannot
make use of this information because there is simply no way to pass it to the
hardware.

Operand sharing

Operand moves can be shared by multiple operations if (1) they have a com-
mon operand whose value is the same for all operations, (2) the operations are
scheduled on the same FU, (3) the common operand is provided to the FU via
the same operand register, and (4) this operand register is not changed by other
intervening operations. The following example illustrates operand sharing.

sp -> alu.add_o; 4 -> alu.add_t

sp -> alu.add_o; 8 -> alu.add_t; alu.add_r -> lsu.ld_t;
alu.add_r -> lsu.ld_t; lsu.ld_r -> alu.sub_o

lsu.ld_r -> alu.sub_t

alu.sub_r -> r4

40 CHAPTER 2. TRANSPORT TRIGGERED ARCHITECTURES

This code computes the difference of two values stored in the current stack
frame (sp is an alias for the GPR containing the stack pointer). The second
move to the operand register of alu can be eliminated because the value of
sp is already present in the operand register of alu.

Most of the shared operand moves have as source small immediates (such as
1,0,-1, 4, etc.) or the stack pointer. In the first case a move bus is saved. In the
second case an RF read access is saved as well.

Socket sharing

An output socket can be shared by multiple moves if they access the same reg-
ister via the socket. For example, if two ALUs are available, the two additions
in the previous example can be performed in parallel and the two stack pointer
accesses can share an RF port, so only one RF read port is required.

sp -> alul.add_o; 4 -> alul.add_t sp -> alu2.add_o; 8 -> alu2.add_t

Socket sharing among mutually exclusive guarded moves® that access differ-
ent registers is possible if the selection logic of the sockets takes guard expres-
sions into account. This is usually not implemented since it increases the delay
before a defined boolean register can be used.

Scheduling freedom

In an operation triggered VLIW all operands of an operation are transported
to an FU in the same cycle and results are transported as soon as they are
available. A scheduler for TTAs has the freedom to schedule operand moves
earlier than their corresponding trigger moves and to leave results longer
in FUs. Scheduling an operand move earlier than its corresponding trigger
move is useful when insufficient resources (e.g, a move bus or RF port) for
the operand move are available in the cycle of the trigger move. The same
holds for scheduling a result later than strictly necessary. Furthermore, the ex-
tra scheduling freedom might increase opportunities for bypassing, dead re-
sult move elimination, operand sharing, and socket sharing.

Operand swapping

The scheduler is free to swap operands of commutative operations when
this leads to better results. Figure 2.18 illustrates this freedom. Unlike non-
commutative dyadic operations, commutative operations do not have a de-
pendence between their operand and trigger moves. If the operand move is

#At most one of the guard expressions will evaluate to true. For example, guard expressions
bl.b2 and !bl are mutual exclusive.

2.4. ADVANTAGES AND DISADVANTAGES OF TTAS 41

(a) DDG of a non—commutatitve operation (b) DDG of a commutatitve operation

Figure 2.18: Operand swapping increases scheduling freedom of commuta-
tive operations

scheduled after the trigger move, the operand move becomes the trigger move
and vice versa.

2.4.3 Disadvantages
Code density

TTA programs are less densely coded than OTA programs. This increases the
code size and the instruction cache miss rate. The MOVE32INT [55,61] and
Phoenix [58] TTA implementations both have 16 bit move slots. When we as-
sume that a typical OTA operation is equivalent to 2.5 TTA moves and an OTA
operation requires 32 bits, TTA programs require roughly 25% more bits to en-
code.

Compiler complexity

Shifting responsibilities from the hardware to software increases the complex-
ity of the compiler. This increases the development time of the compiler and
may therefore increase the time-to-market of a TTA based product. By devel-
oping a prototype compiler we have demonstrated that compiling for TTAs is
feasible.

Static bypassing

The bypass logic of an OTA is not completely predictable at compile-time even
when we assume no disturbances of the control flow due to exceptions. Con-
sider for example the following OTA code:

bl: add rl, r2, r3; !bl: sub rl, r2, r3
st rl, (r4)

42 CHAPTER 2. TRANSPORT TRIGGERED ARCHITECTURES

Operand r1 of the store operation is bypassed from the FU that performed
the addition or from the FU that performed the subtraction depending on the
value of boolean register b1. The only way to bypass r1 is to generate two
operand moves of r1 for the store operation. One guarded with bl and the
other guarded with !b1l.

bl: alul.add_r -> 1lsu.st_o; !bl: alu2.sub_r -> lsu.st_o; ...

Generating this code requires extra resources and complicates the scheduling
process.

Basic Block Scheduling

This chapter and the following two chapters describe the developed compiler
for TTAs. The main difference between a compiler for TTAs and a compiler for
OTAs is the instruction scheduler. Other components such as the scalar opti-
mizer, the register allocator, and the memory reference disambiguator are more
or less the same.

The scheduler has been developed in three stages. We started with a basic
block scheduler which will be described in this chapter. Subsequently, we up-
graded this scheduler to an extended basic block scheduler and a software
pipelining scheduler which will be described in the next two chapters.

This chapter consists of two sections. Section 3.1 gives an overview of the com-
piler and section 3.2 describes the basic block scheduler.

3.1 Overview of the Compiler

The compiler consists of two parts, (1) a front-end that transforms an appli-
cation written in a HLL into sequential TTA code for a generic TTA, and (2)
a back-end that transforms the generic sequential TTA code into parallel TTA
code for a specific TTA. The generic sequential TTA code acts as intermediate
code between the front-end and back-end. Simulators for both the sequential
and the parallel TTA code are provided to verify the compilation process, to
obtain application statistics, and to obtain profiling data for the back-end. Fig-
ure 3.1 shows the front-end, the back-end, the simulators, and the relations be-
tween them.

The back-end does not rewrite the sequential code if it is not possible to map
it directly on the target hardware. This means that the front-end should only

43

44 CHAPTER 3. BASIC BLOCK SCHEDULING

~
[f/C++/Foman application [Architectural parameters]

y

Front-end aEEE——

Y

\
UOTS Simulator -L Sequential TTA code

Y []

[Profiling data Back-end L

y
1/Q, .
< Simulator Q-L Parallel TTA code

Figure 3.1: The code generation trajectory

generate operations that are supported by the target hardware. It also means
that there is a minimum connectivity for the interconnection network. In prac-
tice this means that there should be (1) a path from an integer /FP RF read port
to each integer/FP FU operand or trigger register, and (2) a path from each inte-
ger/FP FU result register to an integer /FP RF write port, where a path consists
of an output socket, a move bus, and an input socket.

3.1.1 The Front-End

We use the GNU compiler (version 2.6.3) [180] of the Free Software Founda-
tion (FSF) as front-end to transform an application coded in ANSI C, C++, or
Fortran 77 into generic sequential TTA code. Our port of the GNU compiler,
called gcc-move, together with other tools from the FSF such as the GNU assem-
bler and linker, and the BSD4.3 libc and libm libraries give a stable production
quality compilation platform which accepts the most popular HLLs.

The output of gcc-move is a binary executable which includes application code
as well as library code in BSD a.out format. The executable is augmented with
annotations for passing information from gec-move to the back-end which is
not directly available in a regular executable. This includes annotations for in-
dicating the location of jump tables in the data segment, annotations for spec-
ifying the arguments and result registers of procedure calls, and annotations
about memory references for the memory reference disambiguator of the back-
end. An example of the latter is an annotation for volatile memory references
that should not be reordered by the scheduler according to the ANSI C stan-
dard [124].

3.1. OVERVIEW OF THE COMPILER 45

Operation type Mnemonic Optional
Integer add and subtract add, sub No
Integer multiply and divide mul, div, divu, mod, modu Yes
Word load /store 14, st No
Sub-word load /store 1db, 1dh, stb, sth Yes
Integer compare eq, gt, gtu No
Shift shl, shr, shru No
Logical and, ior, xor No
Sign-extend sxbh, sxbw, sxhw Yes
Sub-word insert/extract insb, insh, extb, exth Yes
FP /integer conversion £21, f2u, 12f,u2f Yes
FP load/store 144, 1ds, std, sts Yes
FP operations addf, subf, negf, mulf,divf Yes
FP compare eqf, gtf Yes
User defined operations user defined (see chapter 7) Yes

Table 3.1: The operation repertoire of gcc-move

The operation set of gcc-move is shown in table 3.1. Most operations can be
disabled by means of a compiler switch if the operation is not supported by
the target TTA. In that case the operation is replaced by other operations or a
call to a library function. The current version of gcc-move supports only reg-
ister indirect and absolute addressing modes [103], i.e., load-store FUs do not
perform address arithmetic. Experiments have shown that these two simple
addressing modes are sufficient [1, 14, 182].

Gee-move compiles for 128 32-bit integer and 128 64-bit FP registers. The FP
register file can be disabled by means of a compiler switch. In that case the in-
teger register file is used for storing FP values. Furthermore, a single boolean
register is available for conditional execution. The motivation for a large num-
ber of GPRs is that the back-end re-performs register allocation. A large num-
ber of GPRs prevents that gcc-move will generate spill code that needs to be
removed by the register allocator of the back-end.

The sequential code produced by gcc-move has several restrictions that sim-
plify the scheduling task: (1) sources of operand and trigger moves are always
GPRs or immediates, (2) destinations of result moves are always GPRs, (3) only
moves to the PC (jumps) are guarded, and (4) moves belonging to the same op-
eration are placed after each other. Writing parts of an application in sequential
assembly code is therefore only possible when these restrictions are taken into
account.

46 CHAPTER 3. BASIC BLOCK SCHEDULING

read sequential program (section 3.1.3)
read machine description file (section 3.1.3)
for each procedure do
perform function inlining (section 3.1.6)
for each procedure do
transform an irreducible CFG into a reducible CFG (section 3.1.4)
perform control flow analysis (section 3.1.5)
perform loop unrolling (section 3.1.6)
perform data flow analysis (section 3.1.7)
perform memory reference disambiguation (section 3.1.8)
perform register allocation (section 3.1.9)
for each scheduling scope do
perform instruction scheduling (section 3.2)

write parallel program
Figure 3.2: Transforming a sequential program into a parallel program

3.1.2 The Back-End

Figure 3.2 shows how a sequential program is transformed into a parallel pro-
gram. The back-end starts with reading the sequential program and a machine
description file that describes the target TTA. Next, function inlining is per-
formed to improve ILP and to reduce procedure call overhead. Next, each pro-
cedure is individually transformed into a parallel procedure. This consists of
various analysis phases and the actual scheduling itself. After all procedures
have been processed, the parallel program is written to an output file.

The following sections describe the components of the back-end in more detail.

3.1.3 Reading the Sequential Program and the Machine De-
scription File

The back-end starts with reading the sequential program. The program is
stored in a collection of C++ classes. The hierarchy between the C++ classes
is fairly straightforward; a program consists of a list of procedures, a proce-
dure consists of a list of basic blocks with control flow edges between them, a
basic block consists of a list of instructions, and finally, an instruction consists
of a list of moves.

If available, the back-end reads a file containing profiling data produced by
the sequential code simulator. The profiling data contains execution counts for
each basic block and each control flow edge.

The machine description file contains all information that the back-end needs
to know about the target TTA. It describes the available move buses, sockets,

3.1. OVERVIEW OF THE COMPILER 47

FUs, and RFs. Furthermore, it provides information such as the jump latency
and information about the guarding system. Figure 3.3 shows an example ma-
chine description file.

3.14 Transforming Irreducible CFGs into Reducible CFGs

The scheduler, and also the memory reference disambiguator, operate on re-
ducible CFGs. These are CFGs consisting of loops with a single entry basic
block. Reducible CFGs have the property that they can be reduced (hence the
name reducible) to a CFG consisting of a single node by means of two simple
transformations, T1, which reduces the number of edges, and T2, which re-
duces the number of nodes [3]. When this fails a node, consisting of a number
of basic blocks in the original CFG, with n incoming edges is split into n copies,
one for each incoming edge. This should restart the blocked reduction process.
The node selected for splitting is based on the required amount of code dupli-
cation.

3.1.5 Control Flow Analysis

Control flow analysis computes the dominator and post-dominator relations
between basic blocks, identifies loops, and computes the relations between
loops.

Basic block A dominates basic block B if basic block A is on every path in the
CFG between the entry node and basic block B. Similarly, basic block B post-
dominates basic block A if basic block B is on every path in the CFG between
basic block A and the exit basic block. Both relationships are computed by
solving control flow equations [3]. After computing the dominate relationship
the edges of the CFG are partitioned into backward edges and forward edges.
Backward edges are edges whose head dominates their tail. All other edges
are forward edges which form an acyclic graph.

A basic block is a loop header when it has an incoming backward control flow
edge. The loop body of the loop belonging to the loop header H consists of all
basic blocks from which a tail T' of a backward control flow edge (T, H) can
be reached without going through H. The found loops, called natural loops,
have one header or entry node, and may have multiple backward edges and
exit edges.

3.1.6 Function Inlining and Loop Unrolling

Since procedures are processed by the back-end individually, optimizations
such as scheduling are not performed among operations belonging to differ-
ent procedures. Function inlining removes these barriers by replacing a pro-

MoveBuses {

ml 32, 8,
m2 32, 8,
m3 32, 8,
mé 32, 8,

}

Sockets {
ful o input,
ful_t input,
ful_r output,
fu2_o input,
fu2_t input,
fu2_x output,

}

FunctionalUnits {
ful hybrid,
fu2 hybrid,
fu3 hybrid,

}

RegisterFiles {
Integer
FloatingPoint
Boolean

}

InstructionUnit {
JumpLatency
BoolExprSize

}

CHAPTER 3. BASIC BLOCK SCHEDULING

signed;*
signed;
signed;
signed;

{ml, m2, m3, m4

{m1, m2,

m3, m4,
{ml, m2, m3, m4
{m1, m2,
{ m3, m4,
1, ful_o, ful_t,
3, fu2_o, fu2_t,
1, fu3_o, fu3_t,

)it
m5, m6};
m5, m6};

}:
m5, m6};
m5, m6};

ful r, {add, sub, eq, gt, gtu};¢
fu2_r, {14, st}:
fui_r, {and, ior, xor};

32, {r_i1, r_i2}, {r_ol, r_o2};¢
16, {f_i1, f£_i2}, {f_ol, £_o2};

4,

27

{b_i1};

@ Per move bus, its name, its width, the size of its immediate, and the type of its immediate.

b Per socket, its name, its type, and a set of move buses that it is connected to.

¢ Per FU, its name, its type, its latency, the socket that it is connected to, and its operation set.
4 Per RF, its type, its size, and the sockets connected to its read and write ports.

Figure 3.3: Excerpt of a machine description file

3.1. OVERVIEW OF THE COMPILER 49

cedure call with the body of the callee (the called procedure). This increases
scheduling scopes and therefore exploitable ILP. It also improves the scope of
other optimizations such as register allocation and it eliminates procedure call
overhead. The only reason to omit function inlining is code expansion which
increases the required amount of instruction memory, the number of memory
system stalls (cache misses, TLB misses, and page faults), and the compila-
tion time. Therefore, inlining should be controlled by a heuristic that takes the
possible performance improvement and the required code duplication into ac-
count. The back-end uses the following heuristic for inlining: a function is in-
lined if

1. 100 x a % dl/d2 XCl/Cz > s and

2. d1/02 S 1000

where a is a user specified parameter that controls the aggressiveness (default
value 10), d; the dynamic operation count of the callee, d, the total dynamic op-
eration count of the whole application, ¢; the execution count of the call site, ¢,
the invocation count of the callee, and s the static operation count of the callee.
The first condition prevents excessive code expansion, while the second con-
dition prevents inlining that is not likely to result in a better performance.

Since the back-end operates on complete programs, the function inliner can re-
move procedures that are not referenced anymore, directly or indirectly, after
inlining. Procedures that are referenced once can therefore be inlined without
code size expansion.

Another important scheduling barrier are backward control flow edges. Soft-
ware pipelining schedules operations across backward control flow edges but
software pipelining schedulers are usually limited in the structure of the loops
that they can handle. Loop unrolling replaces the body of a loop with multiple
copies of the loop body. This effectively reduces the number of executed back-
ward control flow edges by NV, where N is the number of copies or the unrolling
factor. The back-end uses the following expression to compute N:

250 x a x d;

N = min{] & x5

1,8}

where a is a user specified parameter that controls the aggressiveness (default
value 10), d, the dynamic operation count of the loop, d; the total dynamic op-
eration count of the whole application, and s the static operation count of the
loop body.

For loops with low trip counts it is usually better to perform loop peeling in-
stead of loop unrolling [15]. Loop peeling places a few copies of the loop body
before the loop header so that their operations can be scheduled with other op-
erations of the scheduling scope enclosing the loop (see figure 3.4). The back-

50 CHAPTER 3. BASIC BLOCK SCHEDULING

e !

*\J

(a) The original loop (b) Loop unrolling (c) Loop peeling

Figure 3.4: Loop unrolling and loop peeling

end performs peeling instead of unrolling if the average trip count of a loop is
less than N.

3.1.7 Data Flow Analysis

Data flow analysis consists of computation of live variables and DU
(definition-use) chains [3]. The former is used for checking the validity
of speculative execution during scheduling and for the computation of the
interference graph used by the register allocator. DU chains are used by the
memory reference disambiguator for building symbolic expressions and by
the register allocator for renumbering live-ranges [39]. Both computations are
performed by means of standard iterative data flow algorithms [3].

For dead result move elimination the scheduler needs to known whether a de-
fined value in a loop may be used by an operation of the same loop in a future
iteration. Similarly, for bypassing the scheduler needs to know whether a used
value in a loop may be defined by an operation of the same loop in a previous
iteration. This information, which we call loop-carried DU chains, is computed
by solving a system of equations similar to the equations used for the compu-
tation of DU chains:

ing = U out’p
Pepred(B)
outy = (ingUinsertg) — killp

The sets in'g and out’y are similar to the inp and outp sets used for the compu-
tation of DU chains. They contain the definitions that are reachable via the loop
header of the loop to which basic block B belongs. The sets injs and outp are

3.1. OVERVIEW OF THE COMPILER 51

BB insert kill in’ out’

A {e,0} 0 {a,b} {a,b}
B 0 {8} {ab} {a}
c c 0 0 f{a {a}
a: define x D] {a} {a} 1]
E 0 ¢ {a,6} {a,b}
F 0 0 {a,b} {a,b}

Figure 3.5: A CFG to illustrate loop-carried DU chains

computed out of killg, which is the same set used for computing DU chains,
and a set called insertp. The set insertp contains all definitions of a loop that
are reachable at the entry of B if B is a loop header and is empty otherwise.

ing N U genys if B is aloop header
insertg = Meloop(B)

] otherwise

Solving the equations by means of an iterative data flow algorithm gives the
required information. Figure 3.5 shows a CFG to illustrate loop-carried DU
chains.

3.1.8 Memory Reference Disambiguation

Memory reference disambiguation determines whether two memory refer-
ences are dependent. Two memory references are dependent if at least one of
them is a store operation and they may refer to a same memory location. Mem-
ory reference disambiguation consists of two steps: (1) deriving symbolic ex-
pressions that describe the address of each memory reference, and (2) testing
whether the symbolic expressions of two memory references can become equal
to each other.

A symbolic expression is a linear expression that describes the address of a
memory reference in terms of (1) incoming procedure arguments, (2) induction
variables of enclosing loops, and (3) definition points. The following example
illustrates symbolic expressions:

52 CHAPTER 3. BASIC BLOCK SCHEDULING

void foo(int *a, int n)

{
int *b = bar(...);
for(int i = 0; i < n; i++) {
a2 * il = ... /* ia(0) + 8iv(0) */
c..o=al2* i+ 1); /% ia(0) + 8iw(0) + 4 */
= b(il; /* dp(_bar -> call) + 4iv(0) */
}
}

The first expression (written as comments) states that the address of a [2*1]
is equal to the contents of the first incoming procedure argument (ia(0)) plus
eight times the iteration counter of the enclosing loop (8:v(0), the size of an
integer is four bytes). Similarly, the last expression states that the address of
b[i] is equal to the result of the procedure call to bar (dp(_bar -> call))
plus four times the iteration counter of the enclosing loop.

The method to find symbolic expressions is similar to methods described
in [74,151]. An expression is derived by chasing DU chains produced by data
flow analysis. If the reaching definition of an address of a memory reference
consists of an integer addition, the expression is obtained by summing the ex-
pressions of the operands of the integer addition. Similar actions are applied
for copy, subtract, multiply, and shift operations. Chasing stops when an im-
mediate, an incoming procedure argument, an induction variable update, or
the stack pointer is encountered, or the expression becomes non-linear (e.g.,
due to a procedure call or a logic operation). In the latter case, the expression
becomes a definition point.

If the symbolic expressions of two memory references are unequal for all inte-
ger values of induction variables, incoming procedure arguments, and values
produced at definition points the two memory references are independent’.
This is a sufficient but not a necessary condition. This means that memory
reference disambiguation is not exact; the disambiguator may report depen-
dences that do not exist in reality. The standard method to find out whether
a linear expression has an integer solution is the ged-test [22,209,213]. The
gcd-test is based on the fact that a linear equation with integer coefficients
¢ =Y i, ciz; has an integer solution if and only if ged(cy, . . ., ¢,) divides c.

Our memory reference disambiguator is limited due to the limited information
that gec can provide about memory references. For example, in the following
code the two references to arrays a and b are clearly independent because the

two arrays are different local variables.

1If the two memory references with symbolic expressions e and ez access elements with dif-
ferent sizes, s1 and s2, where 57 < s2, the memory reference disambiguator has to test for
e1 — ks1 # e for 0 < k < s2/s1. This assumes aligned memory references.

3.1. OVERVIEW OF THE COMPILER 53

void foo()

{

int a(100], b[100], ia[100], ib[100];

for(int i = 0; i < 100; i++) {

int ia_i = ia[il;

int ib_i = ib[i];

alia_il = ...; /* da(sp) + ... */
. = bl[ib_il; /* da(sp) + ... */

}

The information about the references to a and b is lost in an early stage of
gec. The two references become references to locations somewhere within the
current stack frame. This is a major problem for compilers for ILP proces-
sors; scheduling is a low-level optimization that requires source-level infor-
mation for effective memory reference disambiguation. There are two ways to
deal with this problem [88]: (1) perform memory reference disambiguation at
source level and pass the results down to the scheduler, and (2) perform mem-
ory reference disambiguation just before scheduling and pass the required in-
formation down from source level to the disambiguator. Both approaches re-
quire a significant amount of engineering effort to maintain the transferred in-
formation during the numerous intermediate compiler phases.

To alleviate the memory reference disambiguation problem, our compiler sup-
ports annotations that allow the user to specify the absence of dependencies.
For example, in the following code a _not_aliased.. annotation specifies
that the two incoming arguments a and b of foo are not aliased. This allows
the scheduler to reorder the two assignments.

void foo{int *a, int *b)

{

__not_aliased__(a, b);
al...1 = ...;

}

The _not_aliased._. annotation and other annotations that are provided are
implemented by means of pseudo operations. The memory reference disam-
biguator recognizes these operations, removes them, and stores them in a table.
This table is referenced whenever the disambiguator has to disambiguate two
memory references. The pseudo operations are treated as normal operations
during previous phases such as function inlining and loop unrolling.

Annotations for memory reference disambiguation are very useful in an ASP
design environment where a designer is usually willing to add annotations for
a better performance. Annotations are also useful for standard library func-
tions such as memcpy and strcpy.

54 CHAPTER 3. BASIC BLOCK SCHEDULING

3.1.9 Register Allocation

Register allocation is the most profitable optimization for processors with a
modest amount of ILP [103]. For processors with more ILP, scheduling will
become the most important optimization followed by register allocation.

One of the major problems in designing a scheduling compiler is the ordering
of the scheduling and register allocation phases. There are three possibilities:
(1) scheduling after register allocation, called postpass scheduling, (2) scheduling
before register allocation, called prepass scheduling, and (3) combined schedul-
ing and register allocation. Each of the three alternatives has its problems:

1. Postpass scheduling [102] suffers from false dependences introduced by
the register allocator that restricts the scheduling freedom of the sched-
uler. For example, consider the following sequential OTA code:

add prl, pr2, pr3 /* prl = pr2 + pr3 */
st prl, 4(sp) /* store prl at address sp + 4 */
add pr4, pr5, pré /* prd = pr5 + pré */
st pr4, 8(sp) /* store pré4 at address sp + 8 */

where pr1 —pr6 are pseudo registers created by the code generator and
all six pseudo registers are dead after the code fragment. A register al-
locator will assign prl and pr4 to the same physical register since the
live ranges corresponding to these pseudo registers are not overlapping.
The consequence of this assignment is a false dependence between the
first store and the second add operation which serializes the final sched-
ule.

2. Prepass scheduling [47] also has its problems. First, scheduling before
register allocation may needlessly increase lifetimes of pseudo registers
which may increase register pressure significantly and may lead to gen-
eration of spill code. This typically occurs when operations that define
pseudo registers can be scheduled early but the operations that use these
pseudo registers cannot be moved with them because of dependences.
Most schedulers exhibit this behavior; they try to schedule operations as
early as possible.

A second problem of prepass scheduling is that the register allocator in-
serts sequential code in the schedule for spilling, reloading, saving and
restoring caller saved registers around call sites, and saving and restor-
ing callee saved registers in procedure entries and exits. This extra code
needs to be integrated with the already scheduled code by a postpass
scheduling phase.

A third problem of prepass scheduling occurs in combination with
guarded execution. Accurate live-variable analysis of guarded code re-
quired for register allocation is complicated. Consider the following
OTA code:

3.1. OVERVIEW OF THE COMPILER 55

bl: add prl, pr2, pr3; ... /* if(bl) pril
1bl: sub prl, pr2, pr3; ... /* else prl

pr2 + pr3d */
pr2 - pr3 */

Both guarded operations individually cannot kill pr1 but both opera-
tions together can (pr1 is therefore dead above the first instruction). Spe-
cial data structures, such as the predicate hierarchy graph [143], or time
consuming symbolic analysis [73] are required to perform accurate live-
variable analysis.

3. Combined scheduling and register allocation performs the two optimiza-
tions in one phase [74,86]. A physical register is assigned to a pseudo
register when the first operation that uses or defines that pseudo reg-
ister is scheduled. Also this method has its problems. First, solving
two complex problems in one phase leads to a more complex problem
than the ‘sum of the complexities’ of the individual problems. Second, a
stand alone register allocator wants to assign machine registers to pseudo
registers in another order than pseudo registers are encountered by the
scheduler. And third, overlapping of live ranges is not well defined for
partially scheduled code.

The solution to the problems of postpass and prepass scheduling is to make
the first phase aware of how its decisions affect the second phase and the over-
all performance. This is realized for prepass scheduling by letting the sched-
uler keeping track on the number of pseudo register simultaneously alive and
preventing that this number approaches or exceeds the number physical reg-
isters [33,92]. When this limit is approached the scheduler tries to delay oper-
ations that increase the number of live pseudo registers.

Postpass scheduling can be improved by making the register allocator aware
of the code motions the scheduler wants to perform and preventing register
assignments that prevent these code motions [13,159,162]. This is realized by
adding extra interference edges to the interference graph used by a register al-
locator based on graph coloring [46]. In the example above the anti depen-
dence between the second and third operation can be prevented by adding
an extra interference edge between pr1 and pr4. This prevents that the two
pseudo registers will be assigned to the same physical register.

For our compiler we have chosen for postpass scheduling with the above men-
tioned solution to prevent the introduction of false dependences. Our motiva-
tion for this decision is that postpass scheduling is more suitable for our situ-
ation than the other two alternatives. Combined scheduling and register allo-
cation makes the already complicated scheduler for TTAs even more compli-
cated. Prepass scheduling was rejected mainly because the insertion of code
by the register allocator in scheduled code is problematic for TTAs. Inserting
load and store operations is likely to interfere with the already scheduled code..
Consider for example the following scheduled TTA code:

56 CHAPTER 3. BASIC BLOCK SCHEDULING

.o-> 1s.1d_t; ... /* trigger move of a load operation */
prl -> ...; ... /* prl is spilled */
1s.1d_r -> ...; ... /* result move of the load operation */

If prl is spilled it is not possible to simply insert a load operation between the
first and second instruction. The load operation and also the the addition to
compute the address of memory location that is used to spill pr1 needs to be
interleaved with the already scheduled operations where all scheduling con-
straints have to be taken into account. There are many situations where this is
not possible. In that case some of the scheduled code needs to be rescheduled;
a complicated task.

Our compiler performs register allocation by the following steps:

1. A true data dependence graph (TDDG) is built. This is a DDG without
false dependences.

2. A false dependence prevention graph (FDPG) is built. Nodes of the
FDPG correspond to pseudo registers, and edges indicate that assign-
ment of the incident pseudo registers to the same physical register will
result in a false dependence. An FDPG is constructed by scanning the
sequential code and adding an edge between pseudo registers A and B
if (1) there is a move M4 that uses or defines 4, (2) there is a move Mp
that defines B, and (3) the scheduler might want to schedule Mp before
M 4. The last condition is true when there is no path in the TDDG from
My to Mp.

Each FDPG edge has a priority reflecting the possible negative effect on
the performance when the two incident pseudo registers are assigned to
the same physical register. This priority value is proportional to the ex-
ecution count of M 4, the probability that Mp will be executed after M 4,
and inversely proportional to the number of moves between M 4 and Mp
in the sequential code.

execution_count(M4) x probability(Ma, Mp)

priority(A, B) = distance(Ma, Mp)

The rationale for the distance factor is that there is less need for reorder-
ing independent moves located far apart from each other in the sequen-
tial code.

As will be described in chapter 5, DDGs of loops that will be software
pipelined are cyclic. This means that no edges will be added to the
FDPG in case the DDGs of these loops are strongly connected. Therefore,
we have to handle these loops differently. We do this by pre-software
pipelining them before register allocation without considering resource
constraints and false dependences. The resulting schedule is analyzed to
see which operations have been reordered. Edges are added to the FDPG
to avoid register assignments that prevent these code motions.

3.2. THE BASIC BLOCK SCHEDULER 57

3. Register allocation is performed by Briggs’ optimistic register alloca-
tion algorithm [39]. Briggs’ register allocator is an improved version
of Chatin’s register allocator [46]. False dependences are prevented by
adding the edges of the FDPG to the interference graph used by the reg-
ister allocator. When the register allocator runs out of physical registers
(in the select phase of Briggs’ register allocator [39]), it has to choose be-
tween spilling and introducing a false dependence. Our compiler always
chooses for the latter. It does that by ignoring low priority FDPG edges.

The above described register allocator works for a single RF, or one RF for in-
teger and one RF for FP numbers. Code generation for multiple RFs of the
same type can be done by distributing the pseudo registers across the RFs.
The simplest method to do this is by numbering the physical registers such
that register ri is located in RF ¢ mod N, where N is the number of RFs that
are numbered from 0 to N — 1 (low-order interleaving). This requires that all
RFs have the same number of registers and ports. This method is similar to
banked data caches [177,206] used for example in the Intel Pentium [11] and
MIPS R8000/TFP [110] processors. The difference is that access conflicts of
banked caches are handled dynamically. In order to reduce RF port resource
conflicts during scheduling, a smart register allocator should distribute the
pseudo registers such that RF accesses are distributed evenly, spatial and tem-
poral, among the RFs [119].

3.2 The Basic Block Scheduler

The task of a basic block scheduler is to reorder operations of a basic block and
pack them into a minimum number of instructions subjected to dependence
and resource constraints. This problem is known to be NP-complete [31,90],
so a both efficient and optimal algorithm is very unlikely. Several techniques
have been developed that generate optimal or high quality near-optimal code
at the expense of long scheduling times. Examples are [49] which uses branch
and bound techniques, [93] which transforms the scheduling problem to an in-
teger linear programming formulation, [24] which solves the scheduling prob-
lem by means of genetic algorithms, and [62] which uses neural networks. Due
to their time complexity, these techniques are only applicable to small code
fragments and situations where long scheduling times are acceptable.

Virtually all efficient scheduling techniques are based on list scheduling [34,
77,95,102,199] which had its origins in local microcode compaction {134]. List
scheduling works very well in practice. It gives most of the time optimal re-
sults especially when basic blocks are not very large and resource constraints
are not very tight. This is the reason why most existing schedulers, including
ours, are based on list scheduling.

58 CHAPTER 3. BASIC BLOCK SCHEDULING

proc Schedule(DDG = (V, E))

beginproc .
ready = {v | ~3(u,v) € E}
sched =

while sched # V do
v = SelectOperation(ready)
cycle(v) = max{cycle(u) + delay(u,v) | (u,v) € E}
while ResourceConflicts(v, cycle, sched) do
cycle(v) = cycle(v) + 1
endwhile
sched = sched U {v}
ready = {v | v € sched AV(u,v) € E,u € sched}
endwhile
endproc

Figure 3.6: Operation based list scheduling

3.2.1 List Scheduling for OTAs

List scheduling works by repeatedly assigning a cycle to an operation. This is
done without any form of backtracking and lookahead. In order to prevent that
the scheduler will get stuck because an operation cannot be placed within an
interval determined by its scheduled predecessors and successors in the DDG,
operations are scheduled in a topological order, i.e., an operation is scheduled
after all its predecessors have been scheduled.

There are two variants of list scheduling: operation based and instruction based
list scheduling. Figure 3.6 shows the operation based list scheduling algo-
rithm. The input of the scheduler is a DDG (V, E), the result is an assignment
to cycle(v) for every node v € V. The scheduler maintains a ready list of op-
erations that are ready to be scheduled. An operation is ready when it is not
scheduled yet and all its predecessors in the DDG are scheduled. The sched-
uler repeatedly selects an operation from the ready list and places it in the first
cycle where dependence and resource constraints are satisfied. This is repeated
until all nodes are scheduled.

Instruction based list scheduling, shown in figure 3.7, fills one cycle (instruc-
tion) at a time. It proceeds to the next cycle if it is not possible to place more
operations in the current cycle. An operation can be placed in the current cycle
if it is ready and its incoming edges allow it to be placed in the current cycle.
This is repeated until all nodes are scheduled.

Besides scheduling the DDG top-town, where an operation is scheduled af-
ter all its predecessors have been scheduled, it is also possible to schedule the
DDG bottom-up. This means that an operation becomes ready when all its suc-

3.2. THE BASIC BLOCK SCHEDULER 59

proc Schedule(DDG = (V, E))
beginproc
ready = {v | ~I(u,v) € E}
ready’ = ready

sched = ()
current.cycle =0
while sched # V do

for each v € ready’ do
if —~ResourceConflicts(v, current.cycle, sched) then
cycle(v) = current_cycle
sched = sched U {v}
endif
endfor
current_cycle = current_cycle + 1
ready = {v | v & sched AY(u,v) € E,u € sched} ,
ready’ = {v|v € ready AV(u,v) € E, cycle(u) + delay(u,v) < current_cycle}
endwhile
endproc

Figure 3.7: Instruction based list scheduling

cessors are scheduled. Furthermore, operations are moved to an earlier cycle,
instead of a later cycle, if there are resource conflicts with already scheduled
operations. It has been claimed that bottom-up leads to shorter live-ranges and
therefore a lower register pressure [132]. Nevertheless, most schedulers use
top-town scheduling. The main reason for this is that bottom-up scheduling is
hard to combine with extended basic block scheduling. This will become clear
in the next chapter.

The performance of list scheduling is highly dependent on the order in which
the operations are scheduled. This order is determined by the SelectOperation
function in figure 3.6 and the for each loop in figure 3.7. A lower bound on the
schedule length is given by the critical path length L,;. In order to reach
this bound every node should be scheduled between its as-soon-as-possible
(ASAP) and its as-late-as-possible (ALAP) limits.

{ max{asap(u) + delay(u,v) | (u,v) € E} if pred(v) #0
asap(v) =

0 otherwise

min{alap(u) ~ delay(v,u) | (v,u) € E} if succ(v) # 0
alap(v) =
Lmaa: otherwise

60 CHAPTER 3. BASIC BLOCK SCHEDULING

The distance between these limits corresponds to the number of cycles in
which the operation can be placed. This value is known as the slack or mobility
of an operation.

slack(v) = alap(v) — asap(v)

For operation based list scheduling priority should be given to operations with
a small slack above operations with a larger slack. Operations with more slack
have more chance that they can be placed between their asap and alap limits.
For instruction based list scheduling the actual slack of a ready operation cor-
responds to the difference between its alap value and the current cycle instead
of the difference between alap and asap. Therefore, priority should be given
to operations with a low alap value.

3.2.2 List Scheduling for TTAs

Scheduling an operation on a TTA consists of scheduling the moves that per-
form the operation. We schedule the moves of an operation in one indivisible
action. Scheduling moves individually may lead to ineffective hardware usage
or even scheduling deadlocks. For example, operand and trigger moves of an
operations should be scheduled close together to prevent that an operand reg-
ister is needlessly long occupied. At the moment an operand move is sched-
uled it is hard to determine in which cycle the corresponding trigger move will
be scheduled. If it is far away from the operand move, the operand register is
occupied for a long time and other operations cannot use the FU. Scheduling
deadlocks may occur due to the fact that an operand register is occupied from
the moment of the operand move to the corresponding trigger move. There are
scenarios possible where the trigger move of operation A cannot be scheduled
because it depends on an operation B that needs the same FU, and B cannot
be scheduled because operation A has occupied the operand register.

Another motivation for not scheduling moves individually are the problems
that arise because of VTLP FUs. This type of FU requires that results are read
in time before they are overwritten by successive operations scheduled on the
same FU. If moves are scheduled individually and a result move cannot be
scheduled in time, because of resource or dependence constraints, the sched-
uler has to unschedule the operation, and the operations that depend on it, and
schedule the operation on another FU or in a later cycle. This increases compi-
lation time and engineering complexity of the scheduler.

Due to the decision to schedule the moves of an operation in one indivisible
step the choice for operation based list scheduling is the most natural one. In-
struction based list scheduling fills instruction by instruction which is impos-

- sible due to the positive delay between trigger and result moves.

3.2. THE BASIC BLOCK SCHEDULER 61

3.2.3 Resource Assignment

Another important design decision is when to do resource assignments. The
scheduler has to assign FUs to operations, immediate fields to (long) immedi-
ate operands, and move buses and sockets to moves. Ideally, resource assign-
ments should be postponed as long as possible, and during scheduling only
the possibility of an assignment should be checked. In reality it is both hard to
implement and computational expensive to do this for all resources of a TTA.
We decided to perform FU, immediate field, and socket assignment during
scheduling, and to perform move bus assignment after scheduling. The mo-
tivation for this is that there are usually only a few candidates for FU, immedi-
ate field, and socket assignments, i.e., there are usually only one or two FUs per
FU type, one or two immediate fields, and a low number of read /write ports
per RF especially when there are multiple RFs.

— bl bl wl—>rl
— i l [i b2 ? w2 —>12
— bs b3 - wi->r3
OO 7oy e e
bS w5 =>15
wi w5 rl 5
(a) An interconnection network (b) An assignment problem
bl wl->rl bl wl—>rl
b2 w2 ->12 b2 & w2 —>12
b3 w3 ->13 b3 w3—->13
b4 w4 ~> 4 b4 wd —>r14
b5 w5 ~> 15 b5 :><: w5 —=>15
(c) A bipartite matching problem (d) A matching
bl - w3->r3
b2 - wl->rl
b3 - w2->r12
b4 W w5->r15
b5 - wi->d

(e) An assignment

Figure 3.8: Move bus assignment via bipartite matching

Move bus assignment is performed after scheduling. This is necessary for
efficient code generation for irregularly connected interconnection networks
and if we want that quasi full connectivity performs as well as full connectiv-

62 CHAPTER 3. BASIC BLOCK SCHEDULING

ity. Figure 3.8 shows how move bus assignment is checked during schedul-
ing and how the actual assignment is performed after scheduling. The prob-
lem to be solved is: given a set of moves between sockets that have to be per-
formed (w1l — rl,..., w5 — r5 in figure 3.8) and an interconnection network of
move buses (bl,..., b5), can each move be assigned to a different move bus that
is capable to do the data transport? This problem is solved by transforming
it to a bipartite matching problem [5,69,108]. An undirected bipartite graph
G = (V34U Vp, E) is built were V; corresponds to the data transports, V,,, to the
move buses, and E contains an edge between d € V3 and m € V,,, if move bus
m is capable to perform data transport d. An assignment can be made if there is
a matching M with |M| = |V;|. A matching M is a subset of E such that for all
nodes in v € V3UV,,, at most one edge of M is incident on v. Clearly, a match-
ing M of size |V,| gives us directly an assignment we are looking for. The bi-
partite matching problem can be solved exactly by an Q(m+/n) time complex-
ity algorithm, where n is |VzU V| and m is | E| [5, 69]. Due to the large number
of times that the assignment question needs to be answered, it is computation-
ally to expensive to solve it by means of a bipartite matching. Therefore, the
bipartite matching algorithm is preceded by a simple, fast, but inexact first-fit
type assignment algorithm that can handle most cases successfully (> 95% for
irregular interconnection networks). Only if the first-fit type assignment algo-
rithm cannot find an assignment the bipartite matching algorithm is used.

Assigning move buses during scheduling may or may not succeed for the ex-
ample of figure 3.8 depending on the order in which the moves are scheduled
and the used assignment policy. If b1 is assigned to wl — r1 first, then 43 to
w2 = r2, bd to w3 — r3, and b5 to w4 — r4, the assignment fails because b2,
the only free move bus left, cannot be assigned to w5 — r5.

Incorporating multicasts in the move bus assignment algorithm is not directly
possible. A possible solution might be to first try to assign move buses without
using multicasts. If this fails, sets of moves that can be combined by a multicast
can be represented by one element in V;. The bipartite matching problem has
to be solved for each combination until a matching is found. This works aslong
as the number of possible combinations is not too large.

Functional unit, immediate field, and socket assignments are performed by
a first-fit type assignment algorithm. The first free resource that fits is se-
lected. If there are resources with a different but overlapping functionality, it
is preferable that the most specialized resource is selected, and more universal
resources are kept for other operations. For example, if there are two FUs, f;
and f, where the operation set of f, consists of load and store operations, the
operation set of f, consists of only load operations, and both are available fora
load operation, f; is preferred. The order in which resources are examined for
assignment corresponds to the order in which they are listed in the machine
description file. The user should therefore specify the resources in increasing
generality, e.g., f, before f;.

3.2. THE BASIC BLOCK SCHEDULER 63

proc ScheduleOperation(o, ¢, 7)
beginproc
for cycle(t) = FirstCycle(t) to co do
for each f € Flset do
if e Operation(t) € OperationSet(f) A
o IsNotTriggered(f, cycle(t)) A
¢ TransportResourcesAvailable(t, cycle(t)) A
e ScheduleOperandMove(o, t, f) A
¢ ScheduleResultMove(r, t, f)
then
return
endif
endfor
endfor
endproc

Figure 3.9: Scheduling an operation

3.24 Scheduling an Operation

Scheduling an operation on a TTA differs significantly from scheduling an op-
eration on an OTA. On an OTA scheduling an operation consists of (1) comput-
ing the first cycle where the operation can be placed and (2) combining reser-
vation tables of already scheduled operations with the reservation table of the
operation to be scheduled and comparing the result with the resource vector of
the target machine to check whether the operation can be place in a certain cy-
cle. Scheduling an operation on a TTA is much more complex; checking for re-
source conflicts is much more complex and most of the TTA specific optimiza-
tions mentioned in section 2.4.2 have to be performed during scheduling.

The scheduler distinguishes the following operations types: jumps, (proce-
dure or operating system) calls, copies, and data operations. Scheduling
jumps, calls, and copies is not much different from scheduling them for OTAs.
Scheduling a data operation starts with scheduling the trigger move of the op-
eration followed by the operand and result moves of the operation.

Scheduling a data operation consists of finding a cycle c and an FU f such that
(1) the operation is member of the operation set of f, (2) f is not triggered by
another operation in cycle ¢, (3) transport resources are available for the trig-
ger move in cycle ¢, and (4) operand and result moves of the operation can be
scheduled; see figure 3.9. The transport resources include input and output
sockets, amove bus, and if required a long immediate field. Sockets and imme-
diate fields are assigned immediately to the move. Assignment of a move bus
takes place after scheduling; only the possibility of an assignment is checked
during scheduling.

64 CHAPTER 3. BASIC BLOCK SCHEDULING

proc ScheduleOperandMove(o, ¢, f)
beginproc
for cycle(o) = cycle(t) downto FirstCycle(o) do
if IsOperandRegisterOccupied(f, cycle(o)) then
return false
endif
if TransportResourcesAvailable(o, cycle(o)) then
return true
endif
endfor
return false
endproc

Figure 3.10: Scheduling an operand move

Scheduling an operand move starts by trying to schedule the operand move
in the same cycle as the trigger move. It proceeds to an earlier cycle if not all
required transport resources are available. Scheduling of an operand move
fails if the cycle becomes earlier than is permitted by data dependences or if
the operand move overwrites an operand register occupied by another opera-
tion; see figure 3.10. If scheduling fails, the operation has to be scheduled on
another FU or the trigger move has to be delayed.

Scheduling a result move is slightly more complex. The following checks have
tobe made: (1) trigger and result moves have to be scheduled in FIFO order, (2)
on hybrid pipelined FUs the number of operations in the pipeline may not ex-
ceed the capacity of the pipeline in order to prevent pipeline overflows, and (3)
on VTLP FUs collisions have to be prevented. All these tests are performed by
keeping track on the state of the FU. The FIFO ordering is checked by tracking
the number of result moves of other operations that have to take place before
the result move can be scheduled, and by marking the operations that are trig-
gered after the operation being scheduled is triggered. The capacity check is
made by means of information that contains the number of operations per cy-
cle for each FU and cycle. The collision check is made by administrating the
interval [T + L, R} for each operation scheduled on a VTLP FU, where T is the
trigger move cycle, R the result move cycle, and L the latency of the operation.
A collision occurs when these intervals overlap.

Procedure calls on TTAs give extra scheduling constraints (not checked in fig-
ures 3.9-3.11). Operations should not be be scheduled across call sites, i.e., if a
call is scheduled in cycle C, and the latency of a call is L cycles, all moves be-
longing to the same operations should be scheduled either before cycle C' + L
or after cycle C'+ L—1. The algorithms in figures 3.10 and 3.11 should therefore
fail (return false) if an operand/result move is scheduled at the other side of a
call site than their corresponding trigger move.

3.2. THE BASIC BLOCK SCHEDULER 65

proc ScheduleResultMove(r, t, f)
beginproc
count = OperationsInPipeline(f, cycle(t))
for cycle(r) = cycle(t) + 1 to oo do
if IsHybridPipelinedFU(f) A IsFull(f, cycle(r) — 1) then
return false
endif
if IsVTLPPipelinedFU(f) A Collision(f, cycle(t), cycle(r)) then
return false
endif
if IsAnOperationEntered(f, cycle(r)) then
MarkEnteredOperation(f, cycle(r))
endif
if IsAnOperationLeaving(f, cycle(r)) then
if IsOperationLeavingMarked(f, cycle(r)) then
return false
endif
count = count — 1
elseif count > 0 then
continue
elseif cycle(r) < FirstCycle(r) then
continue
elseif TransportResourcesAvailable(r, cycle(r)) then
return true
endif
endfor
endproc

Figure 3.11: Scheduling a result move

66 CHAPTER 3. BASIC BLOCK SCHEDULING

3.2.5 TTA Specific Optimizations

All TTA specific optimizations except operand swapping are performed dur-
ing scheduling. There are many heuristics possible that stimulate these op-
timizations. The problem is how to combine these heuristics, which may be
contradictory, with the critical path heuristic of list scheduling. We have made
several attempts to add TTA specific heuristics to the critical path heuristic but
without any significant success. For example, we experimented with a heuris-
tic to improve dead result move elimination by increasing the priority of us-
ages of a value that is used once or twice in order to try to schedule them in
the same cycle as the result move that defined the value. However the effect
was not significant. Therefore, we just detect and apply TTA specific optimiza-
tions without stimulating them.

Bypassing

Bypassing is required for zero delay between flow dependent operations. Be-
fore a move is scheduled it is checked whether it is flow dependent on a move
scheduled in the same cycle. If this is the case the source field of the move being
scheduled is changed into the source field of the move it depends on. Notice
that a move cannot be flow dependent on more than one move per basic block.
When it turns out later that the move could not be scheduled, its source field
is restored.

Dead result move elimination

If a move is bypassed, the move that it is flow dependent on (usually a result
move) can become dead, and if so, it can be eliminated. This check should be
made before scheduling the move that killed the move so that the freed trans-
port resources can be used by the move being scheduled. A move that defines
a GPR is dead if (1) all moves that are flow dependent on it are scheduled in
the same cycle and (2) the GPR is not used outside the basic block or in a future
loop iteration if move belongs to a loop body. The latter condition is checked
by means of loop-carried DU chains provided by the data flow analysis phase
(see section 3.1.7).

When a move is being killed, its outgoing false dependences are killed as well.
These dependences exist if the register allocator was not able to make a false
dependence free allocation.

Operand sharing

Operand sharing is implemented by checking whether the value that is moved
by an operand move to an operand register of an FU is already present. An

3.2. THE BASIC BLOCK SCHEDULER 67

proc IsSocketFree(s, r, ¢)
beginproc
if IsinputSocket(s) then
return share_count(s,c) =0
else
return share_count(s,c) = 0 V register(s,c) =r
endif
endproc

proc ClaimSocket(s, r, c)

beginproc
share_count(s, ¢) = share_count(s,c) + 1
register(s,c) =r

endproc
proc ReleaseSocket(s, c)
beginproc
share_count(s, ¢) = share_count(s,c) — 1
endproc

Figure 3.12: Functions for socket state administration

operand move s; — d; belonging to a trigger move scheduled in cycle ¢; is
dead due to operand sharing if there is another operand move s2 — d; be-
longing to the same basic block scheduled in cycle cg, such that (1) s5; = s2,
(2)dy = dy, (3) 1 > c2, (4) and s; and d; are not redefined by moves sched-
uled between ¢; and c¢;. Since the operand register will be claimed between
¢y and ¢; and cannot be used by other operations (unless operand sharing is
applied again), the distance between ¢; and ¢; should be restricted. Therefore,
the scheduler uses as heuristic that the number of free move buses between c;
and ¢; should be less than a certain number, called the maximum operand shar-
ing distance. The idea is that when the instructions between ¢; and c; are rea-
sonably filled the chance that another operation can be scheduled within this
range becomes smaller and therefore the distance can become larger.

Socket sharing

Socket sharing is implemented by a counter share_count(s,c) and a register
identifier register(s,c) for each socket s and cycle c¢. The counter contains
the number of moves that share the socket; the register identifier contains the
register that is accessed through the socket. A socket s is free in cycle c if
share_count(s, c) is zero; an output socket is free as well if the register that is
read through s is equal to register (s, c); see figure 3.12. share_count(s, c) is in-
cremented when the socket is claimed, and is decremented when it released.

68 CHAPTER 3. BASIC BLOCK SCHEDULING

Operand swapping

Operand swapping is performed after the DDG has been built and before
the actual scheduling begins. Operand swapping exchanges the sources of
operand and trigger moves of communicative operations if it is expected that
the operand provided via the operand move will be later available. The
sources of operand and trigger moves are exchanged if the trigger move de-
pends on another move within the basic block currently being scheduled and
the operand move not. Operand swapping is not performed if the source of the
operand move is the stack pointer. This exception is made because the stack
pointer tends to be a good candidate for operand sharing.

Operand swapping could be more effective if it would be performed during
scheduling since at that moment the cycles where the two operands are avail-
able are exactly known. However, experiments have shown us that the im-
provement is not worth the increased scheduling complexity. This is mainly
due to the fact that most communicative operations have an immediate and
a non-immediate operand (60-90% of all communicative operations; most of
them are integer additions and equal compares) for which the operand swap-
ping decision is trivial.

References [4, 50] also describe operand swapping of commutative operations
in order to improve performance. They do this to reduce the performance loss
due to an incomplete bypassing network, i.e., not all bypass paths are present.
Similar to our approach, [50] performs operand swapping prior to scheduling.
The other reference, [4], does not consider ILP.

Extended Basic Block
Scheduling

It is well known that the size of a typical basic block is limited; 4.57 operations
for the benchmarks and architecture used in chapter 6. Furthermore, these op-
erations tend to depend on each other. The amount of ILP that can be exploited
by a basic block scheduler is therefore limited. Extended basic block schedul-
ing, or global scheduling, exploits ILP that exists between operations of dif-
ferent basic blocks. This means that operations have to be moved across basic
block boundaries.

The main difference between extended basic block schedulers is their schedul-
ing scope. In section 4.1 we will describe scheduling scopes known from the
literature. Section 4.2 describes possible code motions between basic blocks
and their consequences. The developed extended block scheduler will be de-
scribed in the next two sections. Section 4.3 describes how the scheduling al-
gorithm works for OTAs, and section 4.4 discusses the TTA specific issues of
the scheduling algorithm. Section 4.5 concludes this chapter with a discussion.

4.1 Scheduling Scopes

Extended basic block schedulers partition a CFG of a procedure into acyclic
sub-CFGs and schedule each sub-CFG individually. An important character-
istic of an extended basic block scheduler is the shape of the sub-CFEGs, or
scheduling scopes, they operate on. Five extended basic block scheduling
scopes are known from the literature: traces, superblocks, hyperblocks, decision
trees, and regions. All these scheduling scopes are acyclic and have a single en-
try basic block from which all other basic blocks are reachable. They differ in
the number of execution paths through the scheduling scope, whether they al-

69

CHAPTER 4. EXTENDED BASIC BLOCK SCHEDULING

AV A RV

V4
T 9
s T T
G

AN AN

(a) Trace (b) Superblock (c) Decision tree (d) Hyperblock/region

>7§¢<8

Figure 4.1: Scheduling scopes for extended basic block scheduling

low side-entries, and whether they allow join points.

Trace scheduling was the first extended basic block scheduling technique [79].
A trace is a likely acyclic execution path of basic blocks with possible side-
entries from other traces; see figure 4.1a. Trace scheduling consists of three
actions: (1) trace selection, (2) scheduling, and (3) bookkeeping. Trace se-
lection starts with the basic block with the highest execution count that has
not been scheduled yet. From this seed basic block the trace is extended for-
wards/backwards along the outgoing/incoming edges with the highest exe-
cution counts. A trace is scheduled as a single basic block with constraints that
prevent reordering of branches and incorrect results due to speculative execu-
tion. After scheduling bookkeeping is performed to correct code motions past
fork and join points. These three actions are repeated until all basic blocks are
scheduled.

The difficulty of trace scheduling is the bookkeeping due to the upward code
motion past join points and downward code motion past fork points. This has
led to the development of superblock scheduling [117]. A superblgck is a trace
without join points; what remains is a linear execution path with only outgo-
ing edges; see figure 4.1b. Superblock scheduling starts with trace selection
followed by tail duplication which transforms traces into superblocks. Tail du-
plication duplicates basic blocks after a join point and redirects the side-entry
to the duplicates. By preventing code motion down fork points and the ab-
sence of join points bookkeeping is no longer necessary.

Another attempt to simplify the scheduling task is percolation scheduling [155].
Instead of scheduling operations directly, percolation scheduling schedules
operations by means of semantics-preserving transformations that move op-
erations between adjacent instructions. Repeatedly application of these trans-
formations leads to scheduled code. Drawbacks of this approach are long com-

4.1. SCHEDULING SCOPES 71

pilation times and the possibility of code explosion and overspeculation. Fur-
thermore, it is not very clear how heuristics should drive the transformations.

The major criticism of trace and superblock scheduling is that they only exploit
parallelism within one execution path. It only works when the completion ratio
is close to 100%. The completion ratio is the probability that all basic blocks
of a trace/superblock are executed once it is entered. A high completion ratio
requires biased branches and accurate static branch prediction. The other three
scheduling scopes exploit parallelism along multiple execution paths.

A hyperblock corresponds to a single-entry CFG with possibly multiple exe-
cution paths that has been if-converted to a superblock [143]. In order to
if-convert it the single-entry CFG should not contain procedure calls and it
should be ‘wise’ to do it (see section 2.3.5). After if-conversion the hyperblock
is scheduled similar to a superblock. Promotion is applied to remove some
data dependences between defines of boolean registers and guarded opera-
tions that use those booleans. This makes it possible to move up operations
past compares on which they were control dependent (comparable to specu-
lative execution). After scheduling, reverse if-conversion [201] can be applied if
the target machine does not support guarded execution. The code duplication
for reverse if-conversion is exponential in the number of booleans that are si-
multaneously live.

Decision tree scheduling operates on tree shaped scheduling scopes without
join points [111]. Similar to superblock scheduling, the absence of join points
and code motion down past fork point makes bookkeeping unnecessary. Since
each basic block with multiple predecessors becomes a root of a decision tree,
decision trees tend to be very small in practice. Therefore, a technique simi-
lar to tail duplication is used to duplicate basic blocks with multiple predeces-
sors, one copy for each predecessor. This results in larger decision trees and
therefore more parallelism. Decision tree scheduling and superblock schedul-
ing have in common that all code duplication is performed before scheduling
and that no code duplication is required during scheduling.

Regions! correspond to loop bodies of natural loops [29,141,152]. Similar to
natural loops, regions can be nested within each other, have one entry basic
block, and have no side-entries. Unlike the other scheduling scopes, regions
are not selected based on profiling data but on the structure of the code. This
means that no profiling data is required for region selection although profil-
ing data is useful for selecting between code motions. A region is the most
general scheduling scope; each superblock, hyperblock, and decision tree can
be scheduled by a region based scheduler but not the other way around. A
trace could be scheduled by a region based scheduler if side-entries would be
allowed. Regions have no side-entries simply because of the fact that natural

1Extended basic block scheduling with region scheduling scope should not be confused with
the work described in [96]. This paper describes transformations to distribute parallelism by mov-
ing operations from regions with excessive parallelism to regions with insufficient parallelism.

72 CHAPTER 4. EXTENDED BASIC BLOCK SCHEDULING

Trace Sup. blk. Hyp. blk Dec. tree Region

Multiple execution paths No No Yes Yes Yes
Side-entries are allowed Yes No No No No
Join points are allowed Yes No Yes No Yes
Code motion down pastjoins Yes No No No No
Must be if-convertible No No Yes No No
Code dupl. before scheduling No Yes No Yes No

Table 4.1: A comparison of scheduling scopes

loops have a single entry basic block. Due to this generality, regions should
potentially give the best performance. This is the major reason that we have
chosen a region scheduling scope for our extended basic block scheduler.

Table 4.1 summarizes the most important features of the five scheduling
scopes.

Figure 4.2 shows how a CFG is partitioned into scheduling scopes. Assume
that the most frequently executed path through the two hammocks is 4 —
B - D - E — @G. Trace scheduling partitions the CFG into three scheduling
scopes. The first one corresponds to the most likely path; the other two are the
two remaining basic blocks. Superblock scheduling selects the same traces and
performs tail duplication to convert them into superblocks. The duplicated tail
is D — E — @. Decision tree scheduling duplicates the lower hammock in or-
der to enlarge its scheduling scope. Notice that there can be multiple copies
of the same operation in a decision tree, e.g., operations from basic block D. It
is therefore possible that, without some form of unification, multiple copies of
the same operation are placed on an execution path. Region and hyperblock
scheduling are able to schedule this example CFG without partitioning. For
hyperblock scheduling the CFG needs to be if-convertible and it needs to be
wise to do this. This means that resource and dependence constraints due to
operations in C and F should not dominate the resource and dependence con-
straints due to operations on the most likely path.

4,2 Inter Basic Block Code Motion

Code motion between basic blocks can be upward or downward. Code motion
from basic block A to B is upward if A is reachable from B (there is a path in the
CEG of the scheduling scope from B to A) and is downward if B is reachable
from A. Code motion between basic blocks that are not reachable from each
other makes no sense.

Most schedulers perform only upward scheduling. The reason for this is
shown in figure 4.3. Possible downward code motions are: operation a to ba-
sicblock B,ato C,ato D, cto D, and d to D. The first three code motions are

4.2. INTER BASIC BLOCK CODE MOTION 73

(a) Trace (b) Superblock

(c) Desision tree (d) Hyperblock/region

Figure 4.2: Partitioning a CFG into scheduling scopes

Al a) add r4, r4, 4

b) beqg ...
B c) add rl, rl, r2 c d) sub rl, rl, r2

NS

Dl &) st r1, 8(r4)

Figure 4.3: A CFG to illustrate possible code motions

74 CHAPTER 4. EXTENDED BASIC BLOCK SCHEDULING

often not possible because branches tend to be dependent on the operations in
the same basic block. The last two code motions are not possible because they
produce incorrect results. This is typical for moving operations down past join
points. The register that is defined is usually live on the other incoming control
flow edges and will be overwritten by the downward moved operation.

Upward code motion is less problematic. Possible upward code motions are:
ctoA,dto A, eto B, etoC, and e to A. The first two are speculative; the op-
erations are executed before the branch on which they are control dependent
is resolved. The next two code motions require duplication. Moving an oper-
ation from D to B requires a duplicate in C' and vise versa. The last possible
code motion, e to A, is not speculative and does not require duplication. How-
ever, since e depends on ¢ and d, it requires that these two operations are also
moved to A.

Speculative execution is gambling; it is profitable if control flows to the pre-
dicted direction and useless if control flows to another direction. Static branch
prediction should be used to select between code motions with a different de-
gree of speculation, e.g., code motion from a basic block that has a probability
of 90% to be executed is more likely to be profitable than speculating from a
10% probability basic block.

Speculative execution is valid if no state is changed that should not change in
case the branch is mispredicted?. This means that mispredicted speculatively
executed operations should not (1) produce exceptions, (2) overwrite live reg-
isters, and (3) overwrite live memory locations.

The first requirement is realized by providing non-trapping versions of opera-
tions that may cause an exception and use these operations for speculative ex-
ecution. The consequence is that exceptions produced by correctly speculated
speculatively executed operations will not be signaled anymore. This is often
acceptable for application specific processors, where applications are well de-
bugged and where exceptions should not occur, but it is unacceptable in many
other situations. For these situations there are techniques that postpone ex-
ceptions produced by speculatively executed operations until the branch on
which they are control dependent is resolved. Examples are: shadow regis-
ter files [16,176], exception tag bits [71, 78, 144], and speculative tagging [152).
There are also software techniques available that prove that operations will not
cause exceptions [30,141].

The second requirement means that the register that is defined by the specula-
tively executed operation should not overwrite an off-live register. A register
is off-live if it is live on a mispredicted path. If the defined register is off-live
the scheduler can omit the code motion or it can rename the defined register
and generate a copy operation that commits the result of the speculative oper-

2An operation may be moved past several branches on which it is control dependent. For sim-
plicity, we will discuss speculative execution for moving an operation past a single branch on
which it is control dependent.

4.3. REGION SCHEDULING FOR OTAS 75

ation [71]. Shadow register files [16, 176] can be used to support the last option.

The third requirement is usually realized by forbidding speculative execution
of store operations. Live-variable analysis of memory locations is often inex-
act and hardware support for speculative stores is complicated to implement.
Speculative execution of other operations with side-effects that cannot be un-
done is also forbidden. Examples are procedure calls and I/O operations.

Guarded execution can facilitate speculative execution. Operations can be
speculated safely if they are guarded with a guard expression that evaluates
to false in case of a misprediction [111]. If an operation is guarded, it becomes
flow dependent on the compare operations that define the booleans of the
guard expression.

4.3 Region Scheduling for OTAs

Our extended basic block scheduler is inspired by the global instruction sched-
uler of David Bernstein et al. [28,29] and has extensions for multi-way branch-
ing, predicated execution, usage of profiling data, and TTA specific scheduling
constraints and optimizations.

The scheduler schedules all basic blocks of a region in a topological order, i.e.,
a basic block is scheduled after all its predecessors are scheduled. Scheduling
a basic block b consists of two steps: (1) basic block scheduling of b, and (2) im-
porting operations from basic blocks that are reachable from b into b; see fig-
ure 4.4. The first step is described in chapter 3.

4.3.1 Importing Operations

An operation is ready for importing to the currently being scheduled basic
block b if it does not depend on an operation located in a basic block reachable
from b. This corresponds with the M-ready concept of [28]. The scheduler re-
peatedly tries to import ready operations from reachable basic blocks until all
ready operations have been tried. The order in which the operations are tried
is determined by the priority function described in the next subsection.

To import an operation from basic block b’ to the currently being scheduled
basic block b the scheduler first checks whether code duplication is necessary.
It does this by means of the dominate relation. Code duplication is needed if
b does not dominate ¥'. To determine where duplicates need to be placed the
scheduler computes all intermediate basic blocks between b and ¥':

Ibb)={veV|b~vAv~1b}

where v ~ u means that there is a control flow path within the region from

76 CHAPTER 4. EXTENDED BASIC BLOCK SCHEDULING

proc Schedule(CFG = (V, E))
beginproc
for each b € V in topological order do
while not all operations in b have been scheduled do
v = SelectOperation(b)
Schedule(b, v)
endwhile
is_scheduled(b) = true
reachable = ReachableBasicBlocks(V, E, b)
while not all operations in reachable have been tried do
b' = SelectBasicBlock(reachable)
v = SelectOperation(y’)
TryToImport(b, b', v)
endwhile
RemoveEmptyBasicBlocks(reachable)
endfor
endproc

proc TryToImport(b, ¥, v)
beginproc
dupl__set = DuplicationSet(b, ')
if ~IsSCP(dupl _set) then return
for each b” € dupl_set do
if ~PostDominate(b”, ') then
CheckSpeculativeExecution(b”, ¥, v)
if failure then return
endif
if is_scheduled(b") then
TryToSchedule(d”, v)
if failure then return
else
AddOperation(b", v)
endif
endfor
endproc

Figure 4.4: Extended basic block scheduling

4.3. REGION SCHEDULING FOR OTAS 77

Basic blocks between source and
destination basic blocks

\x Control flow edges where off—liveness
checks have to be performed

b Basic blocks where duplications have
to be placed

b Destination basic block

b’ Source basic block

Figure 4.5: Inter basic block code motion from b’ to b

v to u. A duplicate is needed in each predecessor basic block of I(b, ') and b’
that is not in I(b, b'); see figure 4.5.

D(b,b) ={v eV —I(bb)|3ueIbd)U{b}v—u}

where v — u means that there is a control flow edge between v to u. Note that
D(b,b') includes b. We use the single copy on a path rule (SCP) of [28] which
means that no paths are allowed between elements of D(b, b').

Yu,v € D(b,b), u Zv=>uprv

The SCP rule simplifies scheduling. Importing fails if D(b,b") does not sat-
isfy the SCP rule. After the set of duplication points D(b, b') have been deter-
mined a copy of the imported operation has to be placed in each basic block
b" € D(b,b'). If " is not scheduled yet the operation is added to the operations
of b, otherwise it has to be scheduled in b”. In the last case it is not permitted
to enlarge b" by adding instructions to it. Importing fails if the operation could
not be scheduled between the first and last instruction of &".

To move an operation from basic block b’ to 4" the scheduler has to check
whether the code motion is speculative, and if so, whether it is possible to do
it correctly. The code motion is speculative if b’ does not post-dominate 4". In
that case the scheduler examines all control flow edges between basic blocks
in I(b",b') U {b"} and basic blocks not in I(b",b'):

M(@",b) = {(v,u) € E|v e I(B",b) U{b"} Au g I(b",b)}

78 CHAPTER 4. EXTENDED BASIC BLOCK SCHEDULING

The speculatively executed operation needs to be guarded if it defines a reg-
ister that is live on an control flow edge in M(b",b’) or if it is a store opera-
tion. The guard expression is computed by combining the guard expressions
corresponding to the control flow edges in M (b”,b') for which the operation
needs to be guarded. Importing fails if the compare operations that define
the booleans of the guard expressions have not been scheduled yet, or if the
guard expression is not supported by the target machine. When an operation
is guarded the operation becomes flow dependent on the compare operations
that define the booleans of the guard expression.

Notice that code motion between abasicblock 8’ and b € D(b, b’) canbe specu-
lative even if code motion between b' and b is not speculative. Thismay be a de-
terioration if b” is executed more frequently than b. To prevent these problems,
the basic blocks are scheduled in a topological order such that basic blocks with
a higher execution count are prioritized and it is not allowed to enlarge basic
blocks once they have been scheduled.

After an operation has been imported successfully, live-variable information
has to be updated. This is done by recomputing use and def for all basic blocks
that have been changed and recomputing in and out for all basic blocks in
I(b,b') U D(b,b') U {b'} in a bottom-up fashion.

4.3.2 The Operation Selection Heuristic

The order in which ready operations from reachable basic blocks are tried de-
termines the performance of extended basic block scheduling. The priority to
import operation v of basic block b’ in basic block b should depend on the prob-
ability that control flow will reach b’ after b and the criticality of v. We use the
following priority function:

slack(v)

Tmas(®))

priority(b,b’,v) = probability(b,b') x (1 —

where probability(b,b’) is the probability that b’ will be executed after b,
Limaz(b') the critical path length of b', and slack(v) the slack of operation v
whereby only intra basic block dependences are used.

The critical path component is normalized by means of Ly, to prevent that
operations from small basic blocks are prioritized over operations from larger
basicblocks. This priority function does not take inter basic block dependences
into account. We have experimented with various other functions that do this,
such as the priority function described in [152], but without success. Further-
more, we have experimented with a priority function that prioritized code mo-
tions that do not require code duplication over code motions that do. This was
done by adding a negative constant to the priority function if b does not dom-
inate b'. The effect on the code size was negligible.

4.3. REGION SCHEDULING FOR OTAS 79

' 1p1 Ik

'bl

!

-
b2 \!b2 bl.b2 bl.!'b2

Figure 4.6: Importing jump operations

4.3.3 Importing a Compare Operation

Initially all compare operations define the same boolean register (b0). When a
compare operation is imported from ¥ to b, a check is made to verify whether
the boolean that it defines is live in a basic block of I(b, ')U{b}. If so, the desti-
nation boolean register is renamed to a free boolean register. Importing fails if
this is not possible. This on-the-fly renaming is similar to the register renaming
technique of [158]. The current version of our back-end does not move com-
pares above calls. This requires operations for saving and restoring boolean
registers at calls and returns.

4.3.4 Importing a Jump Operation

Inter basic block code motion of jumps past several basic blocks is complicated,
may result in a large amount of code duplication, and it is often questionable
whether it is useful [163,164]. Therefore, our scheduler performs only code
motion of jumps from basic block b’ to b if b’ is an immediate successor of b.
Figure 4.6 illustrates how a jump is imported. The control flow edge between
band ¥’ is replaced by the the outgoing control flow edges of ¥'. This results
in multi-way branching if both b and &' have multiple successors. The jump
operation of &' named J; will be scheduled in the same cycle as the jump oper-
ation of bnamed J;. If ¥’ contains other operations besides J> they are moved
downward to the successor basic blocks of 3. This requires that these succes-
sor basic blocks have no other predecessors than ', i.e., they are notjoin points.

The guard expressions associated to the control flow edges that describe under
which condition control flow takes place are updated as shown in figure 4.6.
These expressions are used by the scheduler to compute guard expressions for
speculatively executed operations.

Since the current version of our scheduler does not support guard expressions
larger than two booleans, multi-way branching is limited to three-way branch-

3This is the only situation where our scheduler moves operations downward.

80 CHAPTER 4. EXTENDED BASIC BLOCK SCHEDULING

ing. The guard expressions associated with the outgoing control flow edges
are: by, !b;.by, and !b; . !by,. Four-way branching with guard expressions
by . by, !by.by, by . by, and b, . by is possible but requires complex CFG
transformations and requires usually more code duplication.

4.4 TTA Specific Issues

Importing an operation on a TTA is done similar to scheduling an operation
as described in chapter 3. However, some extensions have to be made in order
to schedule operations over basic block boundaries and bypassing is slightly
complicated due to guarded execution.

Scheduling operations over basic block boundaries

As described in chapter 3, scheduling a data operation starts with scheduling
its trigger move followed by scheduling its operand and result moves. Dur-
ing scheduling an operand move it may happen that the scheduler ‘hits’ the
“top” of basic block b, i.e., scheduling the operand move in the first cycle failed.
Similarly, during scheduling of a result move the scheduler may hit the ‘bot-
tom’ of b, i.e., it was not possible to schedule the result move in the last cycle
of b (remember that enlarging b is not allowed while importing). In the first
case the scheduler will try to schedule the operand move in the predecessor
basic blocks of b; and in the second case the scheduler will try to schedule the
result move in the successors of b. The result is that the operand, trigger, and
result moves of an operation are scheduled in different basic blocks, although
the distance between an operand and a trigger move and between a trigger and
a result move is limited to one basic block?; see figure 4.7a.

Pushing a result move downward if it hits the bottom is only needed in the di-
rections it came from. Thus, if an operation is imported from ¥’ to b its result
move does not have to be scheduled in a successor s of b if b’ is not reachable
from s. However, if the operation is scheduled on a hybrid pipelined FU and
its trigger move cannot be guarded with an expression that evaluates to false
if control flows from b to s (because the booleans of the guard expressions are
not ready at that moment) a junk move has to be scheduled in s. This usually
occurs if an operation has a latency longer than the latency of a jump. Schedul-
ing a junk move is similar to scheduling a result move. The only difference is
that a junk move writes data to a non-existing location instead of a register.

Pushing a result move downward is not possible if the successor basic block is
a join point. One way to tackle this problem is to guard the result move such
that it is only executed if control flows from the basic block where its trigger

4This limit has to be removed for long latency operations (> 8 cycles) for which this becomes
a serious problem.

4.4. TTA SPECIFIC ISSUES 81

Op Op Guarded trigger move
L \\\\\\j<:\\\\\-.
No join points Tr Op, Tr Op, ... Tr
.. »\\
4\\ \\ '(\\
Res Res Res
(a) Scheduling over basic block boundaries (b) Scheduling over join points

Figure 4.7: Scheduling operations over basic block boundaries

a) b3: ..p—> r2
/ b3 b3
Bypass conflict

N

b) r2 —> ... b} r2£...

Figure 4.8: A bypass conflict

move is located. This approach has been examined but was rejected because
it is complicated and increases the required number of booleans. The latter is
because booleans have to stay live until join points instead of fork points, and
insertion of boolean assignment operations may be necessary.

Our solution to make scheduling of trigger and result moves over join points
possible is to employ an alternative result-trigger-operand scheduling scheme,
next to the trigger-operand-result scheduling scheme described in chapter 3. The
result-trigger-operand scheduling scheme schedules the result move first fol-
lowed by scheduling the trigger and operand moves in the predecessor ba-
sic blocks. This scheduling scheme is tried before the trigger-operand-result
scheme and results in scheduling operations over join points as shown in fig-
ure 4.7b. If trigger and operand moves are scheduled above a fork point, the
trigger move needs to be guarded such that it only executes if control flows in
the direction of the result move.

Bypassing

As described in section 2.4.3, the bypass logic of an OTA is dynamic and not al-
ways predictable at compile-time. This manifests itself during scheduling for
TTAs in bypass conflicts. Figure 4.8 illustrates a bypass conflict. First, a move

82 CHAPTER 4. EXTENDED BASIC BLOCK SCHEDULING

Cemp D CCmp D CCmp >

i

CRes D CRes D | [Cunk > CRes S

SN XN N

(a) VTLP FUs (b) Hybrid FUs, guarding trigger (c) Hybrid FUs, guarding result
and result move move

Figure 4.9: Guarding a speculatively executed operation

named a that defines GPR r2 is speculated. This move needs to be guarded
with guard expression b3 because r2 is off-live. If another move b is both flow-
dependent on a and another move ¢ it cannot be scheduled in the same cy-
cle as a. This is because it needs to be bypassed due to the flow-dependence
on g, and it should not be bypassed due to the flow-dependence on c. There
are two options when the scheduler signals a bypass conflict, (1) it can delay
a by one cycle which will resolve the bypass conflict, or (2) it can duplicate b
and guard one copy with b3 and the other with !b3. In general, the last op-
tion needs one copy for each move from which it needs to be bypassed, and a
copy if it is flow-dependent on a move from which it should not be bypassed.
This option was rejected because it is very hard for a scheduler to determine
whether it is worthwhile to generate extra copies (which use extra resources)
instead of delaying the move that is being scheduled. Furthermore, the second
option needs multiple input sockets on FU registers if input socket sharing is
not possible due to the used instruction pipelining scheme (see section 2.4.2).
In section 6.2.12 we will measure the negative effect of bypass conflicts on the
performance.

Guarding

Figure 4.9 shows how speculatively executed operations are guarded. Opera-
tions scheduled on VILP pipelined FUs are guarded by guarding their result
move. The operand and trigger moves are allowed to be scheduled before the
compare operation. For operations scheduled on hybrid pipelined FU we have
two options: (1) guarding the trigger and result moves (figure 4.9b), and (2)
guarding only the result move and adding a junk move to remove the opera-
tion from the pipeline in case the result move is not executed (figure 4.9c). The

50r r2 is defined by another move outside the scheduling scope or in a previous iteration if a
loop body is being scheduled. The latter check is made by means of loop-carried DU chains de-
scribed in section 3.1.7.

4.5. DISCUSSION 83

latter option gives the same scheduling freedom as scheduling the operation
on a VTLP pipelined FU at the expense of an extra junk move. Which option is
selected is determined during scheduling. If the trigger move can be guarded,
the first option is chosen, otherwise the second option. Notice that we do not
guard operand moves.

Dead result move elimination

Dead result move elimination and guarded execution is also slightly more
complicated for extended basic block scheduling if operations are scheduled
on hybrid pipelined FUs. The scheduler has to make sure that every opera-
tion that is triggered on a hybrid pipelined FUs is also removed from the FU.
Consider a speculatively executed operation a that is scheduled on a hybrid
pipelined FU without being guarded, and another flow-dependent specula-
tively executed operation b that needs to be guarded. Operation b alone cannot
kill the result move of a because the result of a has to be read if the guard ex-
pression of b evaluates to false. The scheduler should therefore, examine the
guard expressions of the involved operations to determine whether the result
move of an operation scheduled on a hybrid pipelined FU can be removed
safely.

Operand sharing

Operand sharing is also performed over basic block boundaries. If the “top’
of a basic block is ‘hit’, operand sharing proceeds in the predecessor basic
blocks. In predecessor basic blocks the maximum operand sharing distance
becomes infinity. The rationale for this is that predecessor basic blocks are al-
ready scheduled and it is not likely that many other moves will be scheduled
in them. Therefore, operand registers may be occupied for a longer time.

4.5 Discussion

Developing an extended basic block scheduler requires many design decisions,
especially if the target architecture is not yet completely specified and can be
influenced by the compiler writer. The effects of many of these decisions are
usually hard to predict and can only become clear by prototyping. The most
debatable design decisions we had to make are the used scheduling scope and
the guarding mechanism. Furthermore, designing a scheduler leads to many
engineering design decisions such as, what data structures to use, when to
compute which information, how long is information valid, and how to up-
date information?

84 CHAPTER 4. EXTENDED BASIC BLOCK SCHEDULING

I move slot 1 | move slot 2 | [move slot n I gexpll [gexpml
//
I 1.m | source I destination I

Figure 4.10: An alternative instruction format for denser code

The region scheduling scope was mainly chosen for its generality. There are
no experimental results available that compare the performance and imple-
mentation complexity of the five mentioned scheduling scopes. After expe-
riencing several problems with scheduling for TTAs, we came to the conclu-
sion that superblock scheduling could be very appealing alternative for TTAs.
Superblocks (1) have no join points, which avoids the scheduling problems de-
scribed in the previous section, and (2) each move is flow-dependent on at most
one preceding move in the same superblock which means that bypass conflicts
cannot occur. The first advantage comes at the price of tail duplication, i.e.,
code expansion. The second advantage is a consequence of single execution
path parallelization, which is a disadvantage. Hyperblock scheduling is also
appealing; it is relatively easy to implement and seems to work very well in
practice [143]. However, due to multiple path parallelization, bypass conflicts
are re-introduced. Furthermore, we experienced if-conversion as ‘risky’ (see
next chapter). Applying if-conversion too aggressively leads to performance
degradation.

The used guarding mechanism is also debatable. We have chosen for a small
number of booleans and the following expressions:

1. Simple expressions: b, !b;
2. And expressions: b; . by, by . !by, !bs.by, !by. by

3. Or expressions: by +by, by +!by, !bg+by, !by+!by

Where and / or expressions can be disabled via a switch in the machine descrip-
tion file. Other researches have chosen for a large set of booleans without ex-
pressions (guarding is only possible with b;) [123,143,160,170]. The advan-
tage of expressions is that operations can be moved past several branches for
which they need to be guarded. To do this without expressions, compare re-
sults have to be combined by means of guarding compare operations (such as
done by the RK-algorithm [160]), or by means of hardware support (such as
provided by the HPL PlayDoy architecture [123]). There are two disadvan-
tages to guard expressions, (1) evaluating the guard expression may affect the
cycle time, and (2) supporting all and/or expressions of two out of n booleans
requires [3 + 2logn] bits per move slot. The latter problem can be alleviated

4.5. DISCUSSION 85

by limiting the number of guard expressions per instruction as shown in fig-
ure 4.10. Each instruction contains besides n move slots also m guard expres-
sion slots; and each move slot contains a guard expression index field that
refers to one of the m guard expression slots.

Software Pipelining

Backward control flow edges are barriers for an extended basic block sched-
uler; no operations are moved over backward control flow edges. This limits
parallelism and thus performance, especially if much of the execution time of
an application is spent in small loops with high trip counts. The easiest way
to improve this situation is to apply loop unrolling, e.g., the Multiflow Trace
compiler unrolls loops up to 96 times [140]. Unrolling a loop N times roughly
reduces the number of ‘executed” backward control edges of that loop by N!
at the expense of N times code expansion. Software pipelining refers to schedul-
ing techniques that move operations over backward control flow edges. It
achieves potentially the same performance as infinite loop unrolling with a
modest code expansion. Figure 5.1 illustrates software pipelining. The loop
shown in figure 5.1a is translated into the OTA code shown in figure 5.1b. The
loop control code has been omitted for simplicity. Figure 5.1c shows a software
pipeline for this code. A software pipeline consists of a kernel, a prologue, and
an epilogue. The kernel is the loop body of the software pipeline. During the ex-
ecution of the kernel, called the steady state, operations from four adjacent iter-
ations of the original loop are executed. The prologue fills the pipeline with it-
erations, and the epilogue drains the pipeline. Similar to hardware pipelines, a
software pipeline is characterized by its throughput and latency. The through-
put of the example software pipeline is one iteration per cycle and its latency
is four cycles. A high throughput is important for loops with high trip counts,
and a low latency is important for loops with low trip counts. One usually op-
timizes for throughput.

This chapter discusses our software pipelining scheduler. Section 5.1 describes
modulo scheduling, the class of software pipelining algorithms to which the

1 Assuming high trip counts.

87

88

CHAPTER 5. SOFTWARE PIPELINING

1d rl, (r2)
mul r3, rl, 3
sub r4, r3, 1
st r4, (r5)

for(i = 0; i < n; i++)
a[i + 6) = 3 * a[i] - 1;

(a) Example loop (b) OTA code without loop control

1d r1, (r2) :ilniﬁationlnterval (Imy

| r-- -~ TTTT I Prologue
sub x4, r3, 1 | mul r3, r1, 3 | 1d xi, (x2) ' ___________
l st r4, (r5) | sub r4, r3, 1 |mul r3, ri, 3 | 1d rl, (r2) J Kernel
SRR | st r4, (r5) | sub r4, r3, 1 | mul r3, rl, 3 .
e Epilogue
N ~7, st r4, (r5) | subr4, r3, 1

1
L]
]
|
(c) Software pipeline

Figure 5.1: Software pipelining a loop

used software pipelining algorithm belongs. Section 5.2 describes what is
needed to prepare loops for software pipelining. Section 5.3 describes the TTA

spec

5.1

ific issues of our software pipelining scheduler.

Modulo Scheduling

Allan et al. [8] divide software pipelining algorithms into three categories:
modulo scheduling, kernel recognition techniques, and enhanced pipeline

sche

duling.

1. Modulo scheduling [172] determines a schedule of operations and an

initiation interval II such that the schedule can be initiated every II cycles
without resource and dependence conflicts. The goal is usually to mini-
mize II, which corresponds to the number of instructions of the kernel of
the software pipeline. Algorithms belonging to this category are Lam’s
software pipelining algorithm [131,132], slack-scheduling [114], and it-
erative modulo scheduling [169].

. Kernel recognition techniques unroll the loop a number of times, sched-

ule the iterations, and try to identify a repeating pattern in the schedule
which becomes the kernel of the software pipeline. Algorithms belong-
ing to this category are perfect pipelining {6, 7], URPR [184, 185], circular
scheduling [118], and petri net pipelining [9].

. Enhanced pipeline scheduling [70, 72] creates software pipelines by al-
ternating filling an instruction with operations and wrapping the opera-

5.1. MODULO SCHEDULING) 89

tions of the filled instruction around the backward edge of the loop. Re-
peated application of these two steps leads to a software pipeline. Vari-
ations on the original enhanced pipeline scheduling algorithm are de-
scribed in [150, 163].

The software pipelining algorithm used by our scheduler belongs to the mod-
ulo scheduling category and is based on Rau'’s iterative modulo scheduling
[169]. Motivations for choosing for modulo scheduling are: (1) it has been
worked out very well and has been implemented in several production com-
pilers [66,167], (2) previous positive experience with modulo scheduling [104,
109}, and (3) its performance in comparison with other software pipelining al-
gorithms [121].

The weak point of modulo scheduling is its inability to generate software
pipelines for multi basic block loops with multiple initiation intervals. Itera-
tions are initiated in a constant rate independent of the paths taken through
the loop body. This means that multi basic block loops with long infrequently
taken paths through their loop body cannot be software pipelined efficiently.

As alternative for modulo scheduling we considered enhanced pipeline
scheduling. Enhanced pipeline scheduling has been rejected because it re-
quires instruction based scheduling instead of operation based scheduling
which is preferable for TTA code scheduling (see section 3.2.2)2.

5.1.1 Cyclic Data Dependency Graphs

The schedule produced by a software pipelining scheduler contains opera-
tions of one loop iteration. This schedule will be initiated every II cycles.
Data dependences between operations within the same iteration, called intra-
iteration dependences, and between operations of different iterations, called
inter-iteration dependences, have to be satisfied. Adding inter-iteration depen-
dences to a DDG may lead to cyclic DDGs. Figure 5.2 shows the DDG cor-
responding to the example code of figure 5.1b. Each edge of the DDG is la-
beled with two values, its delay and its iteration distance. An edge from node
u to node v with delay delay(u,v) and iteration distance distance(u,v) de-
scribes that the operation corresponding to v in iteration ¢ should be executed
at least delay(u,v) cycles after the operation corresponding to u in iteration
i — distance(u,v). For example, the edge labeled (1, 6) indicates that the load
of a[i+6] should be executed at least one cycle after the store to a[i] of 6
iterations before.

2 Allan introduces in [8] the notion of persistent resource requirements, which means that reser-
vation tables of operations have more than one row. Furthermore, Allan remarks that enhanced
pipeline scheduling is incompatible with architectures with operations with persistent resource
requirements. TTAs belong to these architectures since trigger and result moves of an operation
require resources in different cycles which implies multi row reservation tables.

90 _ CHAPTER 5. SOFTWARE PIPELINING

(delay, distance)

(L6)

Figure 5.2: The DDG corresponding to the code shown in figure 5.1.

5.1.2 Modulo Scheduling Constraints

Similar to basic block scheduling, modulo scheduling has to consider two
scheduling constraints: precedence constraints and resource constraints. A de-
pendence edge from u to v states that v should be executed at least delay(u, v)
cycles after u in the distance(u,v)t" previous iteration which is executed IT -
distance(u, v) cycles before u of the same iteration:

cycle(v) > cycle(u) + delay(u,v) — II - distance(u,v) (5.1)

This formula shows that a lower delay and a higher iteration distance leads to
more scheduling freedom.

If iterations are initiated every II cycles, a resource that is used in cycle c is
also used in cycle ¢ + k - II, where k € N. Therefore, resource conflicts should
not only be checked between operations scheduled within the same cycle, but
between all operations scheduled within the same cycle modulo II; hence the
name modulo scheduling.

5.1.3 Modulo Scheduling

The software pipelining algorithm has to determine a schedule and an initi-
ation interval II. The scheduling constraints depend on II and II depends
on the schedule, i.e., a chicken-and-egg problem. To break this cycle, modulo
scheduling computes a lower bound on I7 called the minimum initiation inter-
val MII. Next, modulo scheduling tries to schedule the loop with this initiation

5.1. MODULO SCHEDULING 91

interval. If this fails, IT is incremented by one cycle and another scheduling at-
tempt is made. This is repeated until a schedule is found.

Computing MII

Modulo scheduling uses resource and precedence constraints to compute MII.
The lower bound on II due to resource constraints ResMII is computed by
computing the number of cycles a resource r is used and dividing it by the
number of available instances of r. The most heavily used resource determines
ResMII.

_ used(r)
ResMII = rerga}%'ces IVW‘I (5.2)
Computation of ResMII becomes slightly more complex if operations can be
performed by multiple FU types, e.g,. if an add operation can be performed by
an ALU FU and a more specialized adder FU. For these situations, the sched-
uler makes a temporary assignment of FUs to operations, in order to compute
used(r) for each FU. The order in which FUs are assigned to operations is such
that operations with more alternatives are handled after operations with fewer
alternatives.

Recurrences, which show up as cycles in the DDG, impose another lower
bound on II called RecMII. A cycle ¢ through node v leads to the following
precedence constraint:

cycle(v) > cycle(v) + Z{delay(e) — IT - distance(e)} (5.3)
e€c

Therefore:

RecMII = min{II € N|Vecyctes, 0 > Z{delay(e) — IT - distance(e)}} (5.4)

ecce

or.

RecMIT = max

cecycles’r Zeec{jelay(e) -‘ (55)

Y ece distance(e)

Straightforward computation of RecMII by enumerating all cycles in DDG is
not tractable since the number of cycles can be exponential in the number of
nodes of the DDG. Lam solved this by means of a symbolic version of Floyd-
Warshall’s all-pairs shortest path algorithm [54,132]. Huff calculates RecMII
by transforming the problem to a minimum cost-to-time ratio cycle problem

92 CHAPTER 5. SOFTWARE PIPELINING

[114,136). We calculate RecMII by means of the Bellman-Ford algorithm for
computing the longest path in a graph [26, 83]. We define the length of an edge
e of the DDG as delay(e) — II - distance(e). The Bellman-Ford algorithm is able
to report the existence of cycles with a positive length which lead to infinitely
long paths. In that case the used II for calculating the edge length is smaller
than RecMII. We use binary search to find the smallest IT such that there are no
cycles with a positive length. This II value corresponds to RecMII. All three
mentioned methads to calculate RecMII, Lam'’s, Huff’s, and our method, have
in common that their time complexity equals O(n?), where n is the number of
nodes in the DDG. This becomes a problem for large loops. One way to re-
duce the computation time of RecMII is to partition the DDG in strongly con-
nected components (SCCs) and to compute RecMIT for each SCC individually.
RecMII of the loop is the maximum of the RecMIIs of the SCCs. Combining
ResMII and RecMII gives MII:

MII = max{ResMII, RecMII'} (5.6)

Both equations 5.2 and 5.5 contain ceiling functions to make ResMII and
RecMII, respectively, integral. If the performance degradation due rounding
up is relatively high, the loop could be unrolled a few times [43, 135]. For ex-
ample, if the loop contains 3 FP operations, 2 FP FUs are available, and the FP
FUs are the critical resources, ResMII becomes [3/2] = 2 cycles. By unrolling
this loop two times ResMII becomes [6/2] = 3 cycles (for two iterations). This
optimization is not performed by the current version of the compiler. The rea-
son is that the compiler should either ensure that the trip count of the loop is a
multiple of the unrolling factor, or it should generate loops with multiple exit
control flow edges. The current version of our compiler has no information
about trip counts and is not capable to software pipeline loops with multiple
exits (see section 5.2.1).

Scheduling the loop

Modulo scheduling a loop for an initiation interval I is similar to operation
based list scheduling of a basic block. Operations are repeatedly selected and
scheduled until all operations have been scheduled. The differences are:

1. In order to implement modulo scheduling constraints, reservation tables
for recording the state of resources need to be accessed modulo I7, i.e.,
instead of accessing element (c,r) for the state of resource r in cycle ¢,
the scheduler should access element (¢ mod I7, 7).

2. Due to cycles in the DDG, it is no longer possible to schedule the oper-
ations of a loop in a topological order as done by list scheduling. This
. means that when an operation is scheduled it is possible that some of its

5.1. MODULO SCHEDULING 93

predecessors have not been scheduled yet. The first cycle in which an
operation can be scheduled is therefore computed as follows:

cycle-min(v) = ueschrg(lﬁ;(red(v) cycle(u) + delay(u, v) — II - distance(u,v)

where sched_pred(v) is the set of scheduled predecessors of v and
max(@) = 0. To schedule an operation v, the scheduler tries to find a re-
source conflict free cycle between cycle_min(v) and cycle-min(v)+ I — 1
starting in cycle_min(v). Searching beyond cycle-min(v) + II — 1is use-
less because of the modulo scheduling constraints; if there is a resource
conflict in cycle ¢, then there is also a resource conflict in cycle ¢ + & - II.
Scheduling fails if no cycle can be found without resource conflicts; the
schedule is discarded, II is incremented, and another attempt is made>.

Another consequence of not being able to schedule operations in a topo-
logical order is that when an operation v is scheduled some of its suc-
cessors in the DDG may have already been scheduled. If a precedence
constraint between v and a scheduled successor u of v has been violated,
ie.,

cycle(u) < cycle(v) + delay(v,u) — II - distance(v, u)

iterative modulo scheduling unschedules u to correct the partial sched-
ule. In order to prevent an infinite loop of scheduling and unschedul-
ing, iterative modulo scheduling uses a scheduling budget. Each time an
operation is scheduled, the scheduling budget is decremented by one.
Scheduling fails when the budget becomes negative. The scheduling
budget is initialized with « - n, where n is the number of operations and
a is a parameter, called the budget ratio, with a value between 1.5 and 4.5
that determines how hard iterative modulo scheduling tries to schedule
a loop for a given II. A larger o may result in better schedules at the cost
of a longer compilation time.

3. The last difference between modulo scheduling and operation based list
scheduling is the scheduling priority. Huff [114] modified the slack based
priority described in section 3.2.1, whereby the delay of an edge has been
replaced by the length of an edge (delay(e) — II - distance(e)). Slacks
of not yet scheduled operations are updated when operations are sched-
uled. Rau [169] uses a DDG height based priority. The DDG height of an
operation is the length of the longest path from that operation to a stop

3The original iterative modulo scheduling algorithm [169] does not give up in this situation. It
unschedules operations which use resources that are required by v. This is not implemented in our
scheduler since it is not trivial for TTAs to determine which operations should be unscheduled.

94 CHAPTER 5. SOFTWARE PIPELINING

pseudo operation that is dependent on all operations in the loop. Prior-
ity is given to the operations with largest DDG height. We have experi-
mented with both priority functions. Neither appeared to be clearly bet-
ter than the other. Therefore we decided to use both. First we use Huff’s
priority function to find a schedule for a given II. If this fails use Rau’s
priority function for a second attempt. If this fails again we increment
II. By using both priority functions, results are always better than one of
them individually. The drawback is a slightly longer compilation time.

Figure 5.3 summarizes the iterative modulo scheduling algorithm. Modu-
loSchedulelteration is repeatedly invoked to schedule the loop for successive
values of II starting with MII until a schedule is found. ModuloScheduleltera-
tion repeatedly selects an operation v based on a priority function, determines
the interval in which v should be scheduled, and searches for a resource con-
flict free cycle within this interval. ModuloSchedulelteration fails if no such
cycle can be found. If a resource conflict free cycle for v can be found, a check
is made to determine whether precedence constraints between v and sched-
uled successors of v have been violated. If so, these scheduled successors are
unscheduled. These steps are repeated until all nodes have been scheduled or
ModuloSchedulelteration runs out of the scheduling budget.

5.2 Preprocessing Loops

Many loops have to be preprocessed to make them suitable for modulo
scheduling or to make modulo scheduling more effective. If-conversion trans-
forms multiple basic block loops into single basic block loops. Promotion re-
moves some of the data dependences introduced by if-conversion in order to
reduce RecMII. Delay lines are inserted to avoid false dependences that limit
RecMII. Finally, some dependences have to be added to the DDG to ensure
correct software pipelining of while loops.

5.2.1 If-conversion

Modulo scheduling is not directly capable to software pipeline loops consist-
ing of multiple basic blocks. There are two methods known from the literature
to make modulo scheduling applicable to multiple basic block loops: hierar-
chical reduction and if-conversion.

A loop consisting of an ‘if-then-else” construct can be modulo scheduled by
means of hierarchical reduction [132, 211] by the following steps illustrated in
figure 5.4:

1. List scheduling of basic blocks B and C (the ‘then’ and ‘else’ parts) by a
basic block scheduler.

5.2. PREPROCESSING LOOPS

proc ModuloSchedule(V, E, budget _ratio)
beginproc
budget = budget_ratio - |V|
II = MinimumInitiationInterval(V, F)
while ~-ModuloSchedulelteration(V, E, II, budget, Huff) A
~ModuloSchedulelteration(V, E, II, budget, Rau) do
II=1m+1
endwhile
endproc

proc ModuloSchedulelteration(V, E, IT, budget, priority_function)
beginproc
sched = 0
while sched # V A budget > 0 do
v = SelectOperation(V — sched, priority_function)

cycle-min = max{cycle(u)+Length(u, v, II) | (u,v) € E,u € sched}

cyclemaz = cyclemin+ II — 1
cycle(v) = cycle-min
while ModuloResourceConflicts(v, cycle, sched, IT) do
cycle(v) = cycle(v) + 1
if cycle(v) > cycle-max then
return false
endif
endwhile
sched = sched U {v}
budget = budget — 1
for each u € suce(v) N sched do
if eycle(u) < cycle(v) + Length(v, u, II) then
sched = sched — {u}
endif
endfor
endwhile
return sched =V
endproc
proc Length(u, v, IT)
beginproc
return delay(u,v) — II - distance(u,v)
endproc

Figure 5.3: Iterative modulo scheduling

95

96 CHAPTER 5. SOFTWARE PIPELINING

Loy

A
. . Enm
scheduling combining am
i N
B ‘
wi] E
||
])\
|
u =)
(a). A multi basic block loop (b) After scheduling B and C (c) After hierarchical reduction
Legend: M :a’normal’ operation . : a pseudo operation

Figure 5.4: Hierarchical reduction.

2. Combining the schedules of B and C and replacing the resultby a pseudo
operation whose resource requirement is the union of the resource re-
quirements of B and C, i.e., the combined schedule uses a resource r in
cycle c if the B schedule or the C schedule uses r in cycle c.

3. Modulo scheduling the pseudo operation with the other operations of
the loop, i.e,. the operations of A and D.

‘Loops consisting of a more complex structure than a single “if-then-else” are
handled in a similar way. A limitation of hierarchical reduction is that the code
should be structured [19], which is not always true for C code. After modulo
scheduling the ‘if-then-else’ is regenerated by expanding pseudo operations
in ‘then’ and ‘else’ parts. Operations, including pseudo operations, that are
overlapping with pseudo operations are duplicated and placed in both parts.

If-conversion is the other method to enable modulo scheduling for multi basic
block loops [10, 66,160, 202]. If-conversion converts a multi basic block loop to
a single basic block loop which can be software pipelined by means of modulo
scheduling.

Both hierarchical reduction and if-conversion have their problems. The main
problem of hierarchical reduction is that pseudo operations resulting from
hierarchical reduction are hard to schedule due to their complex resource
requirements. A pseudo operation usually requires many resources which
makes it hard to find a resource conflict free cycle. Furthermore, the regener-
ation may require a significant amount of code duplication [202]. The main
disadvantage of if-conversion is that more resources are required which may
increase ResMII. The resource requirements of an ‘if-then-else’ construct is the

5.2. PREPROCESSING LOOFPS 97

sum of the requirements of the ‘then’ and ‘else’ parts instead of the union as
is required by hierarchical reduction. Figure 5.5 shows an example that illus-
trates the differences between if-conversion and hierarchical reduction. Hier-
archical reduction requires fewer resources than if-conversion (3 vs. 5 FUs) but
requires more code (9 vs. 4 instructions and 11 vs. 1 conditional jump). The
main disadvantage of hierarchical reduction, the hard to schedule pseudo op-
erations, is not illustrated in this example.

¥

cmp add sub

y
I cmp add sub mul div 3
Y

| mul div I

'

(a) A multi basic block loop (b) Software pipelined by means of if—conversion

(c) Software pipelined by means of hierarchical reduction

Figure 5.5: If-conversion vs. hierarchical reduction. Assume that the mul op-
eration depends on the add operation and the div operation de-
pends on the sub operation. Furthermore, assume single cycle la-
tencies and ample resources. The loop control code has been omit-
ted for simplicity.

In our compiler we have chosen for if-conversion, mainly because of the hard
to schedule pseudo operations. For if-conversion we use a simple scheme
where each compare operation in the loop defines a unique boolean and each
operation is guarded with an expression that is directly derived from its con-
trol conditions relative to the loop header. If the loop requires more booleans
than available or more complex expressions than are supported by the hard-
ware, the loop is rejected for software pipelining. If-conversion of such loops
requires a more advanced if-conversion algorithm such as the RK-algorithm
described in [160].

98 CHAPTER 5. SOFTWARE PIPELINING

5 \ Number of operations

Branch probabilit

80%,

(543+2+2) < 1.5(5+0.8*3+0.2%2+2) (5+3+8+2) < 1.5(5+0.8*%3+0.2*%8+2)
12<14.7 i Accepted 18 <16.5 =—le- Rejected

Figure 5.6: Two loops to illustrate the if-conversion selection heuristic

Furthermore, it should be wise to apply if-conversion. Loops where infre-
quently taken paths through the loop body use, in comparison to the fre-
quently taken paths, many resources and are involved in long recurrences
should not be if-converted, since ResMII and RecMII of these loops will be
determined by the infrequently taken paths. The following selection heuristic
is used to select loops for if-conversion:

Z size(b) < a Z probability(header, b) - size(b)

beloop beloop

where probability (b, b') is the probability that &' will be executed after b, size(b)
the number of operations of b, header the loop header, and a a parameter
that specifies the aggressiveness of if-conversion. The default value for a is
1.5. If-conversion can be more aggressive if more resources are available. Fig-
ure 5.6 illustrates the selection heuristic. The selection heuristic takes only re-
source requirements into account. Dependence information is not used since
it is not available at the moment when loops are selected, e.g., memory refer-
ence disambiguation has not been performed yet. Other compilers that use if-
conversion seem to have the same Problem, e.g., [143].

Other reasons for rejecting loops for software pipelining are: (1) The size of the
loop; large loops are not software pipelined (> 100 operations). (2) The loop
should not contain inner loops or function calls. (3) The loop should not have
multiple backward or exit control flow edges. The first restriction is required
to prevent excessive compilation times; the other two restrictions reduce the
complexity of the scheduler. Other software pipelining schedulers have simi-
lar restrictions [114, 169, 200]. Rejected loops are scheduled by the extended ba-
sic block scheduler after loop unrolling has been performed to improve intra-
iteration parallelism.

5.2. PREPROCESSING LOOPS 99

mul rl, r2, r3
1d x5, 16(sp)
cmp r6, -1

rl, r2, r3 1d 15, 16(sp)

st rl, 12(x6) add r6, r5, 4 st rl, 12(r6) add r6, r5, 4

mu.

(a) Before promotion (b) After promotion

Figure 5.7: Promotion

5.2.2 Promotion

If-conversion as described in the previous subsection has two problems that
limit parallelism: (1) Many data dependences are introduced between com-
pare operations that define booleans and operations that are guarded with ex-
pressions of these booleans. (2) Booleans are often long live which increases
RecMII. This happens when there is a long dependence path between two op-
erations guarded with the same boolean. Such a path with a total delay of N
cycles gives a lower bound on RecMII, i.e., MII > RecMII > N.

Promotion or predicate lifting [143,189] is a technique to alleviate both prob-
lems. Promotion removes some of the data dependences introduced by if-
conversion. This corresponds to moving an operation above one or more com-
pare operations that it is control dependent on. This has some similarities with
speculative execution. This code motion has to be done under the same restric-
tion as speculative code motions, i.e., no off-live registers and memory loca-
tions should be overwritten. Figure 5.7 illustrates promotion. The load and
multiply operations are moved above the compare operation. This requires
that r1 and x5 are dead at the beginning of the right and left branch respec-
tively. The store operation cannot be promoted because it updates a memory
location that might be live at the beginning of the right branch. The add opera-
tion cannot be promoted because r6 is live at the beginning of the left branch.

To exemplify the benefit of promotion, assume that the load has a long latency
of L4 cycles. This has two consequences: (1) Since the load and add operation
are guarded with the same expression and there is a dependence path between
them of L4 cycles, the booleans of their expressions have to be live for at least
Lig + 1 cycles. Remember that this is a lower bound on RecMII. (2) There is
a recurrence cycle through the compare, load, and add operations. This recur-
rence has delay Lig + Lemp + Lada cycles and an iteration distance of one iter-
ation. This causes a lower bound on RecMII of Lig + Lemp + Lagq cycles (see
equation 5.5). Both problems disappear after promotion of the load operation.

100 CHAPTER 5. SOFTWARE PIPELINING

Figure 5.8: The long living register r2 limits RecMII

5.2.3 Delay Lines

The problem of long living booleans, that was alleviated by promotion, also
occurs for general purpose registers. A value that is live for at least NV cycles
results in a RecMII of atleast N cycles. Figure 5.8 shows a DDG that illustrates
the problem. Register r2 is live for 3 cycles since the load and store operations
both have r2 as operand and there is a dependence path between them with a
delay of 3 cycles. This causes a cycle through the DDG with a total delay of 4
cycles and a total iteration distance of 1 iteration, i.e., RecMII = 4. Two meth-
ods are known from the literature to deal with this problem: modulo variable
expansion and rotating register files.

Modulo variable expansion ignores inter-iteration anti dependences during
scheduling and performs register renaming and loop unrolling afterwards to
correct the schedule [132]. Ignoring the two anti dependences between the
load and add operations and between the store and add operations breaks the
cycle described above and reduces RecMII to one cycle. If we assume one FU
for memory and one FU for ALU operations, the loop can be scheduled with
an initiation interval of 2 cycles (II=2, RecMII=1, ResMII=2). Two times un-
rolling and a copy of r2 named r2’ are required to correct the ignorance of the
inter-iteration anti dependences. The kernel of the software pipeline becomes:

st r3, (r2); add r2, r2‘, 4
sub r3, rl, 3; 1d rl, (r2)
st r3, (r27); add r2", r2’, 4
sub r3, rl, 3; 14 rl, (r2’)

If r2 would be post-incremented instead of pre-incremented an intra-iteration
anti dependence will show up in the critical dependence cycle. Such a cy-
cle cannot be broken by means of modulo variable expansion. A technique
called induction variable reversal can be used to transform pre-increments into

5.2. PREPROCESSING LOOPS 101

post-increments and intra-iteration anti dependences into inter-iteration anti
dependences in order to make modulo variable expansion effective [200].

A rotating register file is a hardware method to deal with long living registers
defined in loops. It is supported by the Cydra 5 architecture [25,65,170]. Ro-
tating register files are rotated every loop iteration, i.e., r; becomes r;;; and
rn—1 becomes rq. The kernel for an architecture with a rotating register file
becomes:

st r3, (r2"); add r2, r2, 4
sub r3, rl, 3; 1ld rl, (x2)

Registers r2 and r2” have to be allocated to a rotating register file where r2”
has to be allocated two positions before r2 such that r2” has the value of r2
of two iterations before.

Our compiler uses another method to deal with long living registers defined in
loops. Modulo variable expansion was not applicable to our situation since it
requires prepass scheduling. Rotating register files were rejected because they
may affect the cycle time and we did not want to introduce hardware support
for loop scheduling. Our method for the long living register problem are delay
lines. Delay lines are the software counter part of rotating register files imple-
mented as a sequence of copy operations. The kernel of the software pipeline
with a delay line looks like:

st r3, (r2'); add r2, r2, 4; mov r2’', r2
sub r3, rl, 3; 1@ rl, (r2)

In this case the delay line consist of one copy operation (mov r2’,r2). Fig-
ure 5.9 illustrates the operation of a delay line. The software pipeline has three
stages of two cycles. Register r2 is defined in stage one and used in stages one
and three. A copy operation in stage two allows that r2 can be redefined in
the next iteration before it is used for the last time in stage three. The compiler
generates delay lines before register allocation. It builds a DDG for the loops
without false dependences and determines MII. Next, it determines for each
register 7 defined within the loop the length L, of the longest path from the
define of 7 to a consumer of r. Next, it generates a delay line of n = | L,/ MII
copy operations:

mov r', r
mov r", r’

;;v rf, -1

The delay line is inserted after the define of 7, at the loop entry, or at both lo-
cations depending on where the consumers of r are located. Finally, usages of
r are renamed to a proper copy of r which depends on the length of the path
between the define of r and the usage of r.

102 CHAPTER 5. SOFTWARE PIPELINING

Stage Time
<4_> —l-
lldd x2,x2,4; 1ld ri, (r2){ mov r2’,r2; sub r3,rl,3} st rd, (x2*)
add r2,r2,4; 1d rl,(r2)|mov r2’,x2; sub rd,rl, 3] st x3,(x2’)
LOOP iteration add r2,r2,4; 14 rl,(r2)| mov x2,r2; sub r3,r1,3} st x3, (r2¢) I

Figure 5.9: A software pipeline with a delay line of one copy operation

‘ - Backward control flow edge

Next interation speculation dependence

r3islive /

Figure 5.10: Next iteration speculation dependences

5.2.4 Software Pipelining While Loops

When the termination condition of a loop becomes true in iteration I;,4, the
kernel of the software pipeline terminates and the epilogue is entered to exe-
cute the remaining operations of iteration Ij,,; and iterations before Ij,,; that
have not completed yet. At this moment, several iterations after I;o,; may
havebeen initiated. Operations of these iterations should not change state, i.e.,
memory locations and registers, that is required after execution of the loop.
This can be prevented by stopping the kernel earlier or by dependences that
prevent operations that change state required after execution of the loop will be
executed before the loop termination condition is known. The first option cor-
responds usually to changing upper bounds of for loops, e.g., instead of testing
for i<n the loop condition becomes i<n-~1 or i<n-2. We have chosen for the
second option for two reasons: (1) it is complicated to change loop conditions
when the program representation does not contain any explicit information
about loop bounds, and (2) we want to be able to software pipeline loops where
the trip count cannot be determined before entering the loop. Such loops arise
from while and do/while loops, but also from for loops (e.g., the loop shown in
figure 5.11a).

Next iteration speculation (NIS) dependences are inter-iteration dependences to
prevent that state used after execution of the loop will be overwritten by op-
erations of iterations after I;o,;. These are store operations and operations that
define registers that are live at the exit of the loop. Figure 5.10 shows how a NIS
dependence is used to prevent that r 3, which is live after execution of the loop,
will be overwritten by operations of iterations after Ij,.:. The tail of a NIS de-
pendence with as head operation O is either the compare operation O, that

5.3. TTA SPECIFIC ISSUES 103

evaluates the loop condition or the backward jump O;ymp.

1. A NIS dependence from Oy, to O: O will be guarded with the boolean
defined by Ocmyp such that O will not be executed if the loop condition
evaluated in the previous iteration becomes false. The delay of such a
NIS dependence is equal to the latency of the compare operation. If O
was already guarded, because of if-conversion, it will be guarded with
the conjunction of its original guard expression and the boolean defined
by Ocmp. If this is not possible, because the target architecture does not
support the required guard expression, the compiler has to choose for the
second option, a NIS dependence from Oy, to O.

2. A NIS dependence from Ojy,, to O: the delay of the NIS dependence
will be equal to the jump latency. This archives the same as the previous
option without using guarded execution.

The first option is preferable since it allows O to be started L., cycles after
Ocmp of the previous iteration instead of Lemp + L jump cycles, where Ly, and
L jumyp are the latencies of compare and jump operations, respectively. This al-
lows for a lower RecMII. The second option is only used if the first option is
not possible due to the above mentioned reason.

Tirumalai et al. describe in [189] a similar method to deal with loops whose trip
count cannot be determined before the loop is entered. The main difference be-
tween this method and our method is that their method relies on loop support
of the Cydra 5 architecture.

5.3 TTA Specific Issues

Software pipelining for TTAs has several TTA specific issues besides the issues
discussed in sections 3.2 and 4.4.

Resource constraints checking

First, one should be aware that iterations are initiated every II cycles. This has
for example consequences for checking the FIFO ordering constraint of trigger
and result moves of operations scheduled on the same FU. For example, an
operation O; whose trigger and result moves are scheduled in cycles 2 and 6,
respectively, cannot be scheduled on an FU with another operation O; whose
trigger and resultmoves are scheduled in cycles 8 and 10if II is 5 cycles. In this
situation there would be a FIFO ordering conflict between the O; of iteration
i and Oy of iteration ¢ + 1. Similar situations occur with other TTA specific
resource checks and optimizations.

104 CHAPTER 5. SOFTWARE PIPELINING

for(p = list; p; p = p->next)
if (p->data > 0)
sum += p->data;

(a) The C code
Ll: r4d -> add_o; 4 -> add_t; add_r -> r3 /* r3 = &p->data */
r3 -> 1d_t; 1ld_r -> r5 /* rS = p->data */
r5 -> gt_o; 0 -> gt_t; gt_r -> b0 /* p->data > 0? */
1b0:L2 -> jump /* skip addition */
ré -> add_o; r5 ~> add_t; add_r -> ré /* sum += p->data */
L2: rd -> 1d t; 1d r -> rd /* p = p->next */
r4d -> eqo; 0 -> eg_t; eg.r -> b0 /* p == NULL? */
tb0:L1 -> jump /* next iteration */

(b) The sequential code (after register allocation, before if-conversion)

Ll: r4 -> £3.add; 4 -> f3.add; rd4 -> £1.1d

f3.add -> f1.1d

0 -> f4.eq

£1.1d -> f4.eq; 4 -> £3.add; f1.1d -> £3.add; £1.14 -> f1.1d

£f1.1d -> r5; 0 -> f3.gt; £1.1d -> £3.gt; fd.eq -> b0; f3.add -> fl1l.1ld

£3.gt -> bl; r6 -> £5.add; r5 -> £5.add; b0:L3 -> jump; 0 -> fd.eq

£1.1d -> fd4.eq; 4 -> £3,add; f1.1d -> f£3.add; bl:f5.add -> ré; £1.1d -> fi1.1d
L2: f3.add -> £1.14; fi.1d ~> r5; 0 -> £3.gt; £1.1d -> £f3.gt; fd.eq -> b0

0 -> fd.eq; £f3.gt -> bl; r6 -> £5.add; r5 -> f£5.add; !'b0:L2 -> jump

£1.14 -> fd4.eq; 4 -> £3.add; f1.1d -> f3.add; bl:£5.add -> r6; £1.1d -> £1.1d
L3:

(c) The software pipeline

Figure 5.11: A software pipeline to illustrate bypassing between iterations.
The loop computes the sum of positive integers stored in a linked
list. The “_o/_t/_r’ suffixes in the scheduled code (figure c) have
been omitted.

Bypassing

Software pipelining makes bypassing significantly more complex. The compli-
cations arise from not being able to schedule operations in a topological order
and bypassing between inter-iteration flow dependent operations. Since oper-
ations are not scheduled in a topological order, moves which are flow depen-
dent on a move being scheduled may already have been scheduled. If a move
m, is being scheduled in cycle cycle(m,), and a flow dependent successor m;
of m; has already been scheduled, and

cycle{ms) = cycle(m;) — II - distance(my, ma),

the value defined by m; and used by m; needs to be bypassed. This means that
the source field of m3 has to be modified. To do this, the transport resources
of my are released, the source field of m, is modified, and new transport re-

5.3. TTA SPECIFIC ISSUES 105

sources are assigned?. The whole situation is restored if no transport resources
are available for my or my could not be scheduled for another reason.

Bypassing between moves from adjacent iterations is another source of com-
plications. Consider the loop shown in figure 5.11. Assume a three cycle la-
tency for load operations, single cycle latencies for all other operations, and
VTLP FUs. The critical recurrence in this loop is caused by thep = p->next
operation, which corresponds to the r4 -> 1d_t; 1d.r -> r4 operation in the
sequential code. This critical recurrence results in a RecMII of three cycles.
In order to schedule this loop in three cycles, r4 should be bypassed from
1d.r -> r4d to r4 —> 1d_t of the next iteration. However, r4 should not be
bypassed in the first iteration of the loop which means that the first occurrence
of r4 -> 14t in the prologue should not be changed. This is shown in figure
5.11¢c, r4 is fetched from the RF in the first cycle of the prologue, and after that
it is bypassed.

Requiring a different schedule for the first iteration® conflicts with modulo
scheduling where all iterations are supposed to have the same schedule. Our
scheduler handles this situation by assigning two sets of transport resources
to the move whose source is bypassed. One set for the un-bypassed version
for the first iteration and one set for the bypassed version for the remaining it-
erations. This is not an ideal solution to the problem; the transport resources
for the un-bypassed version are not used in the kernel of the loop where most
of the execution time is spent. In the example code of figure 5.11c, the move
bus and the RF read port used by r4 -> 14d.t in the first cycle of the prologue
are unused in the last cycle of the kernel. Improving this situation requires a
significant amount of engineering effort.

Unscheduling

Unscheduling of operations is also more complex for TTAs. Unscheduling an
operation O; with an operand bypassed from O; requires that O, is unsched-
uled as well if the result move of O, has become dead due to bypassing from
O to O,. Similarly, if operation Oy is unscheduled and an operation O3 has an
operand that is bypassed from O1, Os needs to be unscheduled as well because
bypassing is no longer valid. This may lead to a small ‘chain reaction.” A better
solution for the first case might be to try to “un-kill’ the result of O, move by
finding transport resources for it. For the second case it might be better to undo

4As described in section 3.2.3, sockets are assigned during scheduling and move buses after
scheduling. Only the possibility of a move bus assignment is checked during scheduling,

5The same situation occurs with the last iteration. A result move can be dead in all iterations
except the last one. This occurs for example if variable p allocated in r4 of the code shown in fig-
ure 5.11 would have been live on exit of the loop. In such a situation our compiler keeps 1d.r -> r4
alive. Killing 1d_r -> r4 in all iterations except the last one is quite complicated. It requires an
extra move in the epilogue which a problem when there is no epilogue, such as in figure 5.11, or
there are no transport resources available in the cycle where it should be placed.

106 CHAPTER 5. SOFTWARE PIPELINING

NIS dependences
o~

I (LD Oug.
' Lo,0)
I COres.) T dependence

(€8]

Cemp. res. D Comp. res. D LiumpD)
L.0) 1.0)

Cjump D C_jump

(a) Alternative 1 (b) Alternative 2

Figure 5.12: NIS dependences for an operation O scheduled on a hybrid
pipelined FU

the bypassing and to try to find transport resources. Both solutions are signif-
icantly more complex to implement and may fail in which case unscheduling
is still required.

If-conversion

If-conversion guards operations as described in section 4.4; operations sched-
uled on hybrid pipelined FUs have both their trigger and result moves
guarded, and operations scheduled on VTLP FUs have only their result move
guarded. The latter leads to lower RecMIIs. NIS dependences for operations
scheduled on VILP FUs are handled similar; only their result move is guarded.
For an operation O scheduled on hybrid pipelined FUs we have two alterna-
tives shown in figure 5.12.

1. NIS dependences between the result move of O.mp and the trigger and
result moves of O. The effect is that the result move of O cannot be exe-
cuted earlier than 1 + Lo cycles after the result move of Ocp,p, where Lo
is the latency of O.

2. A NIS dependence between O;,mp and the result move of O with a delay
equal to the jump latency L ymp. In this case the result move of O cannot
be executed earlier than 1 + L;m, after the result move Oy

Clearly, which alternative is preferred depends on Lo and L;mp. Option 1 is
preferable for Lo < Ljumyp and option 2 for Lo > Ljump. For Lo = Ljymp the
scheduler uses option 2 which may reduce the live time of the boolean defined
by Ocmp.

Architecture and
Compiler Evaluation

Measurements play an important role in computer architecture. Architectural
features, implementation alternatives, and compilation techniques have to be
evaluated to understand their behavior and to determine whether it is cost ef-
fective to incorporate them. This chapter describes several measurements re-
lated to TTAs, compilation techniques for TTAs, and compilation for ILP pro-
cessors in general.

Section 6.1 describes the methodology, consisting of the used benchmark set,
architectural parameters, and measurement trajectory. Section 6.2 describes
the experiments and their results. Section 6.3 describes bottlenecks in ILP ex-
ploitation found by analysis of scheduled code.

6.1 Methodology

Table 6.1 shows the architectural parameter values that we shall use for our ex-
periments. All parameters values are fairly realistic with exception of the fully
connected interconnection network and the perfect memory system. The in-
fluence on performance of a partially connected interconnection will be mea-
sured in section 6.2.11. The influence of a non-perfect memory system cannot
be measured with the used measurement trajectory.

In most experiments we shall vary the number of move buses in order to mea-
sure how the evaluated feature depends on the amount of ILP provided by the
hardware.

For our experiments we use a benchmark set of 30 programs; 20 of them are
workstation-type applications, the other 10 are DSP applications. Table 6.2 lists
the benchmarks, together with a short description, their dynamic operation

107

108 CHAPTER 6. ARCHITECTURE AND COMPILER EVALUATION

Parameter Value

Move buses 12, 64-bits wide
Functional units: Number Latency Type Operations
¢ LSU 2 2 VTLP load and store
e ALU 3 1 VILP int. w/o mul. and div.
¢ MUL 1 3 VTLP int. multiply
e DIV 1 8 non-pip. int. divide and modulo
e FPU 1 3 VILP floating point
Immediates:
e short 12 x 8-bits signed
s long 2 x 32-bits
Register files: Number Registers Ports
e boolean 1 4 1w
e integer 1 48 3W+3R
¢ floating point 1 48 3W+3R
Jump latency 2 cycles (1 delay slot)

Guard expressions simple, and, and or expressions; see section 4.5
Interconn. network fully connected
Memory system perfect (no cache and TLB misses)

Table 6.1: Architectural parameters

count, their source code size, their average degree of superpipelining for the ma-
chine described in table 6.1, and the used input data set. The average degree
of superpipelining (ADSP) of a machine m and an application a is the average
latency of the operations of m weighted with their relative frequency in a [122]:

adsp(m,a) = Z latency(o, m) - frequency(o, a)

o€ operation_set(m)

This number corresponds to the average number of operations that are in ex-
ecution when the machine issues one operation per cycle. Multiplying it by
the average number of operations issued per cycle gives the average number
of operations in execution per cycle, i.e., the amount of exploited ILP.

Most of the workstation-type applications are GNU utilities; the exceptions are
compress, djpeg, mpeg._play, and virtex. These applications have been selected
based on their computational requirements and the absence of system calls
that are hard to support by our simulator (process management, signal han-
dling, etc.). The DSP applications are from [75]. They have been included in
the benchmark set because of their resemblance with typical ASP applications.
In order to facilitate memory reference disambiguation, a few annotations have
been added to the DSP applications. This is usually acceptable for DSP/ASP
applications. The workstation-type benchmarks have not been modified. All
DSP applications except g722 and mulaw operate on single precision floating
point data.

6.1. METHODOLOGY 109
Benchmark Description Operations Lines’ ADSP InputData
a68 68K assembler 2805K 13565 1.61 stanford.s
bison Parser generator 5153K 9636 157 flexy
cmp File compare 855K 1747 167 2x563K Ccode
compress File compression 3’M 1516 159 563K Ccode
cpp C preprocessor 1983K 7657 163 stanford.c
diff File compare 29M 11424 153 2x563K Ccode
djpeg JPEG decoding 27M 8856 154 jp.jpg(512x683)
expand Tab expansion 29M 1510 160 563K Ccode
flex Scanner generator 12M 10454 160 flexl
gs Postscript interpreter 39M 42134 159 pipeline.ps
gzip File compression 108M 9064 152 563K Ccode
mpeg.play MPEG decoding 54M 3132 148 anim.mpg (24 fr)
od Octal dump 20M 3132 157 stanford.c
sed Stream editor 46M 11971 155 563K Ccode
sort Sort lines 80M 2410 153 563K Ccode
sum Checksum computation 1M 1297 159 563K Ccode
tr Translate characters 8555K 3005 160 563K Ccode
uniq Report repeated lines M 1887 148 563K Ccode
virtex Text formatting 49M 20313 1.60 man.tex (42K)
wce Word count 7192K 1313 168 563K C code
arfreq Autoregressive freq. estim. 13M 367 184 audio sample
equaliz Equalization 3460K 525 182 audio sample
8722 Adaptive differential PCM 18M 891 161 audio sample
instf Frequency tracking 3140K 436 1.86 audio sample
interp3 Sample rate conversion 3900K 504 1.81 audio sample
mulaw Speech compression 330K 207 176 audio sample
music Music synthesis 44M 321 164 audio sample
radproc Doppler radar processing 29M 387 1.82 audio sample
rfast Fast convolution using FFT ~ 3098K 559 192 audio sample
rtpse Spectrum analysis 2090K 388 1.86 audio sample

?Excluding header files and library code.

Table 6.2: Benchmark characteristics

110 CHAPTER 6. ARCHITECTURE AND COMPILER EVALUATION

Data sets Profiling data
Benchmark | Compile Simulate Schedule Combine Dynamic ‘“fa

benchmark

benchmark results

Sequential code
Architecture parameterd and compiler options

Figure 6.1: Measurement trajectory

benchmark

The measurement trajectory, shown in figure 6.1, consists of the following four
steps: (1) compiling the benchmark applications to sequential code with the
highest optimization level of gcc-move, (2) simulation of the sequential code
with representative data sets listed in table 6.2, (3) scheduling the sequential
code for a specified configuration and according to specified scheduling op-
tions, and (4) combining information from the parallel code with the profiling
data in order to obtain dynamic information such as cycle counts. To speed
up our measurements, we schedule the procedures that are responsible for at
least 99% of the operation count. This introduces a very small error in our
results, but allows us to perform a large number of experiments (more than
22,000 scheduling steps) within a reasonable time.

6.2 Experiments

Each of the following 13 subsections describes an experiment that evaluates
an aspect of TTAs, compilation for TTAs, or compilation for ILP processors in
general. Subsection 6.2.14 summarizes the experiments.

6.2.1 Speedup

Table 6.3 shows results of scheduling the benchmarks for a 12 move bus con-
figuration. The speedup relative to a single move bus configuration varies be-
tween 3.14 and 7.67, with averages of 4.30 and 6.38 for workstation-type and
DSP-type applications, respectively. The average number of operations exe-
cuted per cycle varies between 1.91 and 4.58, with averages of 2.52 and 3.28.
Multiplying these numbers by the ADSP gives the average number of opera-
tions simultaneous in execution, i.e., the amount of exploited ILP. This varies
between 3.04 and 7.51, with averages of 3.95 and 5.90 for workstation-type and
DSP-type applications, respectively. The DSP-type applications contain clearly
more exploitable ILP than the workstation-type applications. This is due to the
well known fact that many DSP applications are characterized by loops with a

6.2. EXPERIMENTS

111

significant amount of relative easy to exploit inter-iteration parallelism.

Benchmark Operations/cycle Speedup relative to 1 move bus
ab8 215 N 403 I

bison 226 NS 3.83 IS

cmp 3.01 N 598 NN
compress 191 I 345 IS

cpp 259 N 328 NN

diff 235 N 426 NN

djpeg 254 I 515 I
expand 253 IS 3.87 N

flex 245 IS 3.34 IS

gs 249 IS 382 IS

gzip 250 I 314 S

mpeg_play 219 379 N

od 301 I 562 I
sed 241 NS 413 I

sort 2.86 IR 456 IS

sum 252 I 511 I

tr 340 I 657 NN
uniq 241 I 408 IR

virtex 219 I 349 I

wce 2.62 I 4.05 IENNNENG_

arfreq 346 I 767 I
equaliz 272 IR 479 IR

g722 341 I 652 I
instf 311 6.35 NN
interp3 340 I 7.35 IS
mulaw 320 I 6.60 NN
music 458 NN 75 R
radproc 3.06 I 592 IR
rfast 2,33 NN 576 NN
rtpse 3.02 I 599 NN
avg. WS-type 252 IS 430 I

avg. DSP-type 3.28 I 6.38 I

Table 6.3: Operations per cycle and relative speedups

6.2.2 Scheduling Scope

In this section we shall measure the effect of scheduling scope on performance.
The considered scheduling scopes are the three scheduling scopes described
in the preceding three chapters, together with a restricted variant of extended
basic block scheduling. In this variant, the scheduler has no non-trapping ver-
sions of operations that may cause exceptions at its disposal. Without these
operations the scheduler cannot schedule trapping operations above compares
on which they are control dependent. Figure 6.2 shows the results. The y-axis
shows the speedup relative to a single move bus configuration. The arithmetic
mean is used to combine the speedups of the 30 benchmarks.

112 CHAPTER 6. ARCHITECTURE AND COMPILER EVALUATION

5 T Y . : :
45 +
3
g at
g
E 35 |
o)
-
-
8 3 |
.5 250 Bxuaax_g.nﬂa_xg_)
& 2 Software pipelining —— -
Extended basic block scheduling ---
1.5 Restricted extended basic block scheduling -%--- 4
Basic block scheduling -~
1 1 1 L

2 4 6 8 10 12
Number of move buses

Figure 6.2: Speedup curves for four scheduling scopes

Basic block scheduling is not able to utilize more than 4 move buses. Extended
basic block scheduling is therefore a necessity. Extended basic block schedul-
ing is 79% faster for a 12 move bus configuration. Restricted extended ba-
sic block scheduling is 65% faster. The benefit of software pipelining above
extended basic block scheduling is small, 3.5% for a 12 move bus configura-
tion. For a small number of move buses (< 5), software pipelining is even per-
forming worse than extended basic block scheduling. This is caused by the
if-conversion selection heuristic described in section 5.2.1 that does not con-
sider the amount of ILP provided by the target machine. For better results, the
user should lower the if-conversion aggressiveness parameter, or the selection
heuristic should be modified.

Benchmark Software pipelining ratio Speedup

arfreq 0.814 1.146
cmp 0.997 1.298
djpeg 0.365 1.022
g722 0.505 1.089
instf 0.833 1.039
interp3 0.793 1.146
mulaw 1.000 1.579
od 0.425 1.087
radproc 0.324 1.047
rfast 0.727 0.994
rtpse 0.264 1.004
sort 0.206 1.003
tr 0.994 1.078

Table 6.4: Software pipelining ratio and speedup due to software pipelining

6.2. EXPERIMENTS 113

There are several reasons for the modest improvement of software pipelining
over extended basic block scheduling. First, without software pipelining loops
are unrolled in order to increase intra-iteration parallelism which is already
quite effective. Second, only a fraction of the loops are suitable for software
pipelining. Table 6.4 shows the fraction of the execution time spend in soft-
ware pipelined loops, called the software pipelining ratio, and the speedup due
to software pipelining. Only the benchmarks with a software pipelining ratio
higher than 20% are shown. A more flexible software pipelining algorithm that
can handle loops with multiple backward and exit control flow edges is nec-
essary in order to increase the software pipelining ratio. A third reason is the
low trip counts of many loops; software pipelines are optimized for through-
put instead of latency.

6.2.3 Scheduling Freedom

TTAs offer extra scheduling freedom; operand and trigger moves do not have
to be scheduled in the same cycle, and a result move can be scheduled after
the result it fetches becomes available. In order to measure the benefit of this
freedom we define four scheduling models:

1. OTR: No freedom between operand, trigger, and result moves; operand
and trigger moves are scheduled in the same cycle and result moves as
soon as the result becomes available.

2. OT: No freedom between operand and trigger moves; operand and trig-
ger moves are scheduled in the same cycle.

3. TR: No freedom between trigger and result moves; result moves are
scheduled as soon as the result becomes available.

4. Free: No scheduling restrictions.

Figure 6.3 shows the results of scheduling the benchmarks for the four schedul-
ing models. The extra scheduling freedom results in a better performance
when transport resources are constraining the performance. For the used
benchmark set and architectural parameters, the effect of extra scheduling free-
dom becomes negligible for more than eight move buses. This point will ‘shift
to the right’ for applications with more exploitable parallelism since these ap-
plications are able to utilize more move buses. Figure 6.3 furthermore shows
~ that the freedom between operand and trigger moves is more valuable than
the freedom between trigger and result moves (TR performs better than OT).

Figure 6.4 illustrates scheduling freedom in a different way. The relative per-
formance is shown as function of the OT-freedom and TR-freedom. OT-freedom
is the maximal distance between corresponding operand and trigger moves,
and TR-freedom is the maximal distance between the moment a resultbecomes

114 CHAPTER 6. ARCHITECTURE AND COMPILER EVALUATION

1.12 y
Free ——
5 11 TR -x--
5 OT -%
2 108f OIR -8
2
§ 106} .
[
@ -
g 104
[o4
E 1.02 .
i
[1 T s . |
0.98 L L 1 ;
2 4 6 8 10 12

Number of move buses

Figure 6.3: Effect of scheduling freedom

Relative performance

0S5
SS9
1100 ~ ’ 1.100
088 e
1075 708 ’@ 1075
1.050 \’@ 1.050
1.025 @29 ’@ 1.025
1.0@ \
1.000 | 1.02 @ 1.000
0.975 1.024) 0.975
4\\ .
3 \ @ 3
TR~freedom 2 1\ ' 2 OT-freedom
)

Figure 6.4: Effect of scheduling freedom for 3 move buses

6.2. EXPERIMENTS 115

1.16 1 1 1 L] 1
114 one of the three TTA specific optimizations —+— |
. No dead result move elimination -»--
. No operand sharing -*--- |
@ VA2 Fommmene No operand swapping 8-
& 11}
E .
g 1.08
g o6 R
2 kT
5 1.
1.02 b"":.g: ----- *onen
- ---..A.,,,ﬂ._4,_.4..'..3.:.:.:.:;3:‘,‘:.: N
1k i) SLELA ”""‘"ﬂ-v-«---..-...,._‘!.___.« FS |
0‘98 1 L 1 L 1
2 4 6 8 10 12

Number of move buses

Figure 6.5: Effect of TTA specific optimizations

available and the result move that fetches it. Figure 6.4 shows again that OT-
freedom is more important than TR-freedom.

6.2.4 TTA Specific Optimizations

To measure the effect of operand swapping, operand sharing, and dead re-
sult elimination, we have scheduled the benchmark set without these opti-
mizations enabled. Figure 6.5 shows the results. Similar to the scheduling
freedom experiment in the previous section, these TTA advantages are most
valuable when resource constraints are limiting the performance. Dead result
move elimination is clearly the most profitable TTA specific optimization; the
speedup is more than 8% for small TTAs. The benefit of operand sharing and
operand swapping is small, 0 — 2%, but of course still valuable.

Again, similar to scheduling freedom, the TTA specific optimizations will be-
come more important when applications contain more exploitable parallelism.

6.2.5 Register File Port Requirements

TTAs have a lower RF port requirement than OTAs. This is because (1) not all
operations produce a result and use two register operands, (2) bypassing, dead
result move elimination, operand sharing, and operand swapping save RF ac-
cesses, and (3) RF ports are not coupled to FUs.

Table 6.5 shows the results of several measurements that were performed to get
some insight in the RF port requirements of TTAs. The first two measurements
show that the RF port requirement of the sequential code is already lower than

116 CHAPTER 6. ARCHITECTURE AND COMPILER EVALUATION

Measurement Result
Register operands per operation for sequential code 1.03
Results per operation for sequential code 0.63
Register operands per operation for parallel code 0.62
Results per operation for parallel code 0.37
% Operand and trigger moves that are bypassed 42.9%
% Dead result moves due to dead result move elimination 35.8%
% Dead operand moves due to operand sharing 1.7%

Moves that share the same RF read port (socket sharing) 1.21

Table 6.5: Results of various measurements.

Relative performance

1.50

125

1.00

0.75

Figure 6.6: Performance of 16 RF configurations for 12 move buses

two read and one write port per operation; on average 1.03 read and 0.63 write
ports. The next two lines show these numbers for scheduled code; 0.62 read
and 0.37 write ports'. It should be noticed that this is, unlike the two read
and one write port requirement of OTAs, an average requirement. In order to
be able to execute up to N operations per cycle, the hardware should usually
have to provide more than [0.62N] read and [0.37N write ports, unless the
smoothability of the application is very good.

The next four lines show results of experiments that quantify contributions to
the RF port reduction. 42.9% of all register operands are bypassed. 35.8% of
the produced results do not have to be written to an RE. 1.7% of all operand
moves are dead due to operand sharing; part of them accesses an RF. Finally,
each RF read port is used by 1.21 moves on average due to socket sharing.

In the next experiment we schedule the benchmark set for 16 RF configura-
tions where the number of read and write RF ports on the integer and FP RFs

Excluding port sharing.

6.2. EXPERIMENTS 117

1.4) 1 T L) 1] -
3W+3R —~— T ey
o 1351 2W43R -x-- o
+ 2W+2R -%---
E 1.3 {W+2R -8 4
2 15 | IWHR = 1
2
:‘3 1.2 <
¥
; 1.15 """"" o s = ATt = I - R | |
[N /Ctn S - o Yo
g S N .
% 105 F g 4
P [o= SR SN NI W S S J— L DT |
0.95 : 4 L
2 4 6 8 10 12
Number of move buses

Figure 6.7: Relative performance of 5 RF configurations

is varied between 1 and 4. Figure 6.6 shows the results. The performance is ex-
pressed relative to the performance of a 1W+1R ported RF configuration. The
results show that a 3W+3R ported RF is a good choice for a 12 move bus con-
figuration. Adding more ports does not increase the performance significantly.
Figure 6.6 also tells us which combinations of read and write ports are optimal.
For example, the optimal 5 ported RF has 3 read and 2 write ports. Figure 6.7
shows performance of 5 optimal RF configurations relative to a IW+1R ported
RF as function of the number of move buses.

6.2.6 Partitioned Register Files

Section 3.1.9 described a simple method to generate code for partitioned regis-
ter files. The registers are distributed over the register files such that register ri
is placed in RF ¢ mod N, where N is the number of RFs that are numbered from
0to N — 1. Scheduling for partitioned register files is done by constraining the
sockets that can be used to access a register. Input/output socket wpi/rpi can
be used to write/read register rj if (i — j) mod N = 0. Figure 6.8 illustrates
how a 6W+6R ported RF with 48 registers is partitioned in three 2W+2R ported
RFs with 12 registers each.

We shall use 5 RF configurations, shown in table 6.6, to measure the effect of
register file partitioning. The configurations differ in the number of RFs and
the number of ports per RE. All configurations have 48 registers in total. The
number of transistors is an indication of the cost of a configuration. This num-
ber is calculated according to the model described in [196] for 32-bit registers.
The number of transistors for 64-bit wide RFs is 1.85 — 1.94 times larger. The
last column of table 6.6 shows Hellerman’s estimated read / write bandwidth of

118 CHAPTER 6. ARCHITECTURE AND COMPILER EVALUATION

rQ rl r2

r3 rd r5

0 - 147 —- : : ;
rd5s rdé r47
FYTTTY AR Wi T il
Yrrrrr Wwwwww LYWW Trrww rrww
PPPPPP PPPPPP pppp DPPP pPppp
012345 012345 0303 1414 2525

Figure 6.8: Partitioning an RF (C3x2 from table 6.6)

a configuration [100]. This corresponds to the expected number of read / write
accesses before the first RF port (resource) conflict occurs assuming that the ac-
cesses are uniformly distributed over the RFs?. This estimation is optimistic in
the sense that accesses are assumed to be uniformly distributed, and it is pes-
simistic in the sense that no more accesses will be scheduled on an RF after the
first port conflict has occurred.

Configuration RFs Ports/RF Regs/RF Transistors Bandwidth

Cixs 1 3W+3R 48 19,152 3.00
Caxa 2 2W+2R 24 15,808 3.13
Cax1 4 IW+1R 12 12,016 222
Csxa 3 2W+2R 16 16,800 4.05
Csx1 8 1W+1R 6 14,144 3.24

Table 6.6: Five register file configurations

Figure 6.9 shows the results of scheduling the benchmarks for the five RF con-
figurations. Both the integer and floating point RFs are partitioned in this ex-
periment. The boolean RF is left unimpaired. The required number of tran-
sistors and the estimated bandwidth are shown on the right hand-side of fig-
ure 6.9. The estimated bandwidth appears to be a reasonable performance pre-
dictor. The performance impact of partitioning is relatively small. Only the
Cix1 configuration exhibits a cycle count increase of 3.2%. The C3x3 configu-
ration performs even better than the more expensive C x3 configuration. From
this experiment we can conclude that it is very well possible to partition RFs
in order to improve the cost/performance.

2Let X; be a set of independent discrete random variables with a uniform distribution between
1 and N. Let Y be the maximum K such that X; ... X do not have the same value more than
M times. The estimated bandwidth of configuration C x as corresponds to E(Y').

6.2. EXPERIMENTS 119

o 1.035 T 1] T T

X Cyix1 —+— 12K/2.22

S 18} Gl e

] 2 7

= 1025 | Cixs =~

-% Cixz ==

T;..’ 1.02 | B

g 105} .

e | S e oo mm e Yhm = m X

£ 10} Hemm 4

: AN

1.005 4 e .
8 //,x------x S U .
.§ 1 ;—_-:i;;-:;t::;:;]:;;.:‘::5.:?.::.:5‘:::.::5::.:::n.ﬂ,“-.:.::g:::.m.g._.:t.:..B..........I 19K /3.00
=

v 0.995 1 1 1 ! 1 = 17K/405

2 4 6 8 10 12
Number of move buses

Figure 6.9: Effect of partitioning RFs

6.2.7 Multi-Way Branching and Guarding

Our scheduler supports a restricted form of multi-way branching; two
guarded jumps can be scheduled in the same cycle which results in a three-way
branch. Figure 6.10 shows the effect of multi-way branching. The average im-
provement for a 12 move bus configuration is 4.9%. Most of this improvement
comes from wc (26.0%), 68 (13.4%), cpp (10.5%), and gzip (8.8%). Seven of the
ten DSP application exhibit no improvement, and the other three DSP applica-
tions exhibit an improvement of less than 0.8%. This is obviously due to the
fact that many DSP applications have a high software pipelining ratio.

To measure the effect of guarding support, we have scheduled the benchmarks
with and without and /or guard expressions (see section 4.5). Without and /or
guard expressions, the scheduler is not able to generate multi-way branches, it
cannot schedule an operation above more than one branch on which it is con-
trol dependent and for which it should be guarded, and it is limited in its if-
conversion capabilities. Figure 6.11 shows the performance improvement due
to and/or guard expressions. The average improvement for 12 move buses is
6.4%. Most of this difference comes from wc (22.8%), od (15.1%), a68 (14.1%),
and cpp (12.2%).

The 6.4% performance improvement is not decisive to either reject and/or
guard expressions and use a software method that achieves the same with sim-
ple guard expressions [123, 160] or to adopt it, possibly in combination with the
method sketched in section 4.5 to reduce code size. Further research is required
to make this decision.

The required number of booleans appeared to be very small. For simple guard
expressions, 2 booleans will suffice; adding a third boolean improved the av-

120 CHAPTER 6. ARCHITECTURE AND COMPILER EVALUATION

1.05 T
1.045 |
1.04
1.035 |
1.03
1.025 |
102
1.015
101
1.005 -

1 1 Il 1 1

2 4 6 8 10 12
Number of move buses

Improvement

Figure 6.10: Performance improvement due to multi-way branching

1.07 T T T T T
1.06
1.05
1.04

1.03

Improvement

1.02

1.01

1] i) 1 L
10 12

6
Number of move buses

Figure 6.11: Performance improvement due to and/or guard expressions

6.2. EXPERIMENTS 121

5 i T T 1 T
sb |
-—"*-——-'x
g 4f ? -
&
< Va
E 35+ <
£ 4
Y —
)
B 25 <
8
& 2} -
15+ VTLP FUs —+— |
’ Hybrid pipelined FUs -»--
1 1 1 1 1 1
2 4 6 8 10 12
Number of move buses

Figure 6.12: Hybrid pipelined vs. VILP FUs

erage performance by 0.15%. For and/or guard expressions, 2 booleans is also
sufficient; adding a third boolean improves performance by 0.59% and a fourth
boolean gives another 0.32% performance improvement.

6.2.8 Functional Unit Pipelining

Section 2.3.7 described two alternatives for pipelined FUs: hybrid pipelined
FUs and VTLP FUs. Hybrid pipelined FUs give more scheduling freedom
while VTLP FUs are easier to implement and are more convenient in combi-
nation with speculative execution. In order to determine which FU type is
preferable, we have scheduled the benchmarks for an architecture with hybrid
pipelined FUs and one with VTLP FUs. Figure 6.12 shows the results. VTLP
FUs are clearly preferable; VILP FUs are easier to implement, and perform up
to 4.5% better than hybrid pipelined FUs.

6.2.9 Memory Reference Disambiguation

In order to measure the effect of memory reference disambiguation on perfor-
mance, we introduce three levels of memory reference disambiguation capa-
bilities:

1. No disambiguation: Two memory operations are dependent unless both
accesses are load operations.

2. Realistic disambiguation: Two memory operations are independent if
they can be disambiguated by the memory reference disambiguator de-
scribed in section 3.1.8.

122 CHAPTER 6. ARCHITECTURE AND COMPILER EVALUATION

1.18 ;

1.16 |- Perfect disambiguation —+—
Realistic disambiguation -x--
114 | No disambiguation -

§
:
2
E 112 -
2
T 1.1 _
g
e 1.08 v a— e -—-Tk
e HemmmT 4
® 1.06
o1 1.04 -
g
E 1.02 4
£
g]
0.98 1 1 1 1 i
2 4 6 8 10 12
Number of move buses

Figure 6.13: Effect of memory reference disambiguation

3. Perfect disambiguation: Two memory operations of which at least one is
a store operation are dependent if they have referred to a common mem-
ory location during simulation of the sequential code.

Perfect disambiguation detects only the dependencies that occurred during
simulation of the sequential code and is therefore dependent on the used data
sets. It is used to give an upper bound on what can be achieved by improving
the memory reference disambiguator. Figure 6.13 shows the results of schedul-
~ ing the benchmarks with the three levels of disambiguation capabilities. Only
the workstation-type benchmarks are used in this experiment because of the
annotations for memory reference disambiguation havebeen added to the DSP
applications. The difference in performance between no disambiguation and
realistic disambiguation is 7.5%. The difference between realistic and perfect
disambiguation is 7.8%. The latter is likely to increase when the target machine
becomes wider or load latencies increase. Furthermore, the gap between real-
istic and perfect disambiguation varies greatly between the benchmarks. For
example, 0% for cmp, tr, and wc, 23% for expand, and 35% for mpeg_play.

6.2.10 Multicasts

A multicast is a one-to-many data transport over a single move bus. It reduces
the move bus requirements at the expense of extra multicast destination ids. To
get an idea on what can be gained by multicasts we have modified the move
bus assignment part of our scheduler®. Multiple moves can share a move bus

3We have implemented this in an older version of our scheduler. This version performs first-
fit move bus assignment during scheduling instead of the bipartite matching based assignment
algorithm described in section 3.2.3.

6.2. EXPERIMENTS ' 123

11 T - T T v

1.09 P Multicast fanout: oo —+—
= 3 e

1.08 T N 2 % o

Improvement

1 1 1 1 1
2 4 6 8 10 12
Number of move buses

Figure 6.14: Effect of multicasts

if they have the same source. The maximum number of moves that can share
amove bus is called the multicast fanout.

Figure 6.14 shows the results of scheduling the benchmarks for TTAs with
multicast support with multicast fanouts 2, 3, and infinity. In this experiment
there are no constraints on the combinations of data transports that can be
performed by multicasts. Such constraints would be required in realistic im-
plementations. The results of the experiment are clear; multicasts reduce the
move bus requirement, and improve therefore the performance when move
buses constrain the performance. This experiment also shows that a multicast
fanout of three is sufficient. '

Further research is necessary to determine how multicasts can be incorporated
in the scheduler (section 3.2.3 gave already a possible solution), which multi-
casts are required, how multicasts affects guarded execution (in the performed
experiment we assumed one guard expression per multicast destination), and
whether it is cost effective.

6.2.11 Partial Connectivity

Realistic TTAs will have a partially connected interconnection network. This
leads to the following questions: (1) How much connectivity is needed, i.e.,
how many connections can be removed from a fully connected network before
the cycle counts starts to increase? (2) Which connectivity is required for an
application or an apphcatlon domain? The first question will be treated in this
section; the latter question in section 7.1.2.

To answer the first question, we schedule the benchmarks for a sequence of
configurations with decreasing connectivity starting with the fully connected

124 CHAPTER 6. ARCHITECTURE AND COMPILER EVALUATION

2 T T r
L First-fit assignment —

19 Bipartite matching assignment -----

1.8 - Stanford, bipartite matching assignment ------ .

1.7
1.6
15
14 |
13
12 |
11

Cycle count increase

0.9 1 1 i L
0 50 100 150 200 250
Number of connections removed

Figure 6.15: Effect of partial connectivity

configuration. This sequence is optimized for the stanford benchmark and
is computed by means of the algorithm described in section 7.1.2. The stan-
ford benchmark is a collection of ten small benchmarks such as queen, hanoi,
quicksort, and FFT. In order to reduce measurement time, we use a smaller
configuration with fewer connections than the configuration described in ta-
ble 6.1. The used configuration contains 2 LSUs, 2 ALUs, 1 FPU, 8 move buses,
a 3W+3R ported integer RF, and a 2W+2R ported FP RF. This configuration has
256 connections when it is fully connected. This connectivity can be reduced
to 45 connections; the stanford benchmark cannot be scheduled anymore when
more connections are removed.

Figure 6.15 shows the results of this experiment. Three lines are shown. The
bottom line shows the cycle count increase of the stanford benchmark as func-
tion of the number of removed connections. The cycle count of stanford starts
to increase rapidly after 175 connections have been removed. The middle line
shows the average cycle count increase for the 30 benchmarks when they are
scheduled for TTAs with interconnection networks that are optimized for the
stanford benchmark. In this case the cycle count starts to increase after 120
connections have been removed. The top line shows the cycle count increase
for the 30 benchmarks in case a first-fit move bus assignment algorithm would
have been used. In this case the cycle count starts to increase after 40 connec-
tions have been removed. This experiment shows that the bipartite matching
move bus assignment algorithm performs substantially better that the first-fit
assignment algorithm; 4% on average.

6.2. EXPERIMENTS 125

1.02 T 1 4 i T

1.015

1.01

1.005

Cycle count increase

0.995 1 1 1 1 1
2 6 10 12
Number of move buses

Figure 6.16: Performance degradation due to bypass conflicts

6.2.12 Bypass Conflicts

TTAs perform bypassing at compile-time. This works only if the compiler can
determine whether bypassing is required and, if it is required, from which FU.
In chapters 4 and 5 we have seen that this is not always possible. We have
called these situations bypass conflicts. Bypass conflicts are resolved by our
scheduler by delaying the move being scheduled. This may increase the cycle
count. In order to measure the performance degradation due to bypass con-
flicts, we schedule the benchmarks with an option that instructs the scheduler
to ignore bypass conflicts. Obviously, the produced code is therefore no longer
correct.

Figure 6.16 shows the cycle count increase due to bypass conflicts. This is 1.4%
for a 12 move bus configuration. The main contributors to this increase are:
compress (6.5%), gzip (4.2%), expand (3.1%), and gs (3.1%). The cycle count in-
crease for the DSP applications is negligible; the only exception is music which
exhibits an increase of 1.2%. As described in section 4.4, resolving bypass con-
flicts without delaying the move being scheduled is hard. It requires extra re-
sources which makes it hard for the compiler to determine whether it is worth-
while to use these resources to resolve the bypass conflict. Furthermore, it re-
quires extra input sockets on FU inputs if the instruction pipelining scheme
does not allow for input socket sharing (see section 4.4).

6.2.13 Register Allocation

In section 3.1.9 we motived our decision for post-pass scheduling and de-
scribed a method to deal with the problem of post-pass scheduling: false de-

126 CHAPTER 6. ARCHITECTURE AND COMPILER EVALUATION

pendences due to register re-use that reduce scheduﬁﬁg freedom. In this sec-

tion we want to measure the effectiveness of this method. To do this we com-
pile the benchmarks in three different ways:

1. Without a register allocator. In this case every live range is placed in a
different register.

2. With a register allocator that does not generate caller/callee save /restore
code and without a FDPG (false dependence prevention graph).

3. With a register allocator that does not generate caller/callee save /restore
code and with a FDPG.

Dividing the cycle counts of (2) by (1) gives the cycle count increase due to
spilling and register re-use when no FDPG is used. These results are shown
in column 2 of table 6.7. Dividing the cycle counts of (3) by (1) gives the cy-
cle count increase when a FDPG is used. These results are shown in columns
3 and 4 of table 6.7, for 48 and 32 registers, respectively. Since 32 and certainly
48 registers should be enough in order to avoid spilling for most of the bench-
marks, the reported cycle count increase is a tight upper bound on the cycle
count increase due to register re-use, whereby the upper bound for the 32 reg-
ister measurement is less tight than the upper bound for the 48 register mea-
surement.

From table 6.7 we can see that usage of a FDPG to prevent false dependences
reduces the cycle count increase from 25.5% to 1.3% for a 48 register config-
uration, and to 2.6% for a 32 register configuration. Only, a few benchmarks
exhibit a significant cycle count increase: sed (7.4%), gzip (5.2%), wc (3.6%),
and expand (3.0%). Further research has to find out how the false dependence
prevention mechanism can be improved and whether pre-pass scheduling or
integrated scheduling and allocation give better results.

6.2.14 Conclusions

Table 6.8 summarizes the results from the experiments and the conclusions that
can be drawn from them. -

6.3 ILP Exploitation Bottlenecks

Why is the speedup of a 12 move bus configuration over a 1 move bus config-
uration less than 12 times even though most applications have enough ILP for
12 move buses, in other words, what are the ILP exploitation bottlenecks? To
answer this question, we have spent some time to analyze the code produced
by the scheduler, especially the parts where the move bus utilization is low.
The main bottlenecks we encountered are listed below.

6.3. ILP EXPLOITATION BOTTLENECKS 127

Benchmark Cycle count increase due to register re-use and spilling
48 GPRs, w/o FDPG 48 GPRs, w/FDPG 32 GPRs, w/FDPG

compress 1155 1R 1.007 | 1.007 |
a68 1.020 1015 | 1.014 |
mpegplay 1125 W 1.001 | 1070 &
virtex 1229 1l 1001 | 1.056 1
bison 1070 W 1.006 | 1.006 |
diff 1111 M 1.022 | 1.027 1
uniq 1208 1018 |} 1.023 1
sed 1.360 R 1074 B 1201 W
flex 1126 W 1.020 1 1.020 |
gs 1197 R 1.007 1 1.009 |
gzip 1249 IR 1052 1 1.087 W
sum 1221 N 0.994 0.994
expand 1259 1.030 1 1041 1
djpeg 1136 W 1.023 1 1.039 8§
cpp 1.057 1 1.009 | 1.026 1
wc 1.092 W 1036 1 1.036 1
sort 1072 W 1.003 ! 1.028 1-
cmp 1.000 1.000 1.000
od 1.09 W 1013 | 1019 |
tr 1.397 N 1.000 1.000
equaliz 1044 1 1.000 1.000
rfast 1.532 1.000 1.000
rtpse 1449 N 1.008 | 1.001 !
radproc 1417 1.018 | 1.047 1
instf 1.389 NN 0.999 1.000
mulaw 2299 NN 1.000 1.000
interp3 1157 1R 1.009 | 1.009 |
8722 1.508 NG 1.018 | 1.020 1
arfreq 1277 A 1.000 1.000
music 1.392 N 1.000 1.000
average 1255 1013 | 1.026 |

Table 6.7: Effect of register allocation

128

CHAPTER 6. ARCHITECTURE AND COMPILER EVALUATION

Experiment

Results and conclusions

Speedup

Scheduling scope

Scheduling freedom

TTA specific opt.

RF port requirement

Partitioned RFs

Guarding

FU pipelining

Memory ref. disamb.

Multicasts

Partial connectivity

Bypass conflicts
Register allocation

The average speedup of a 12 move bus configuration relative to
a single move bus configuration is 4.30 for workstation-type ap-
plications and 6.38 for DSP-type applications. Average number
of operations initiated per cycle: 2.52 (WS) and 3.28 (DSP). Aver-
age number of operations in execution per cycle: 3.95 (WS) and
5.90 (DSP).

Basic block scheduling cannot utilize more than 4 move buses.
Extended basic block scheduling gives a performance improve-
ment over basic block scheduling of 79%. Software pipelining
gives another 3.5% improvement.

Valuable when transport resources are constraining the perfor-
mance. The performance improvement is 2 - 10% for TTAs with
a small number of move buses.

Valuable when transport resources are constraining the perfor-
mance. Dead result move elimination: 4 - 10% improvement.
Operand swapping and operand sharing: 0 - 2% improvement.
The average RF port requirement per operation is 0.63 read
ports and 0.37 write ports. A 3W+3R configuration is sufficient
to perform 2.77 operations per cycle on average.

The presented method seems to work well. RFs can be parti-
tioned in order to reduce their costs without a significant per-
formance loss.

Multi-way branching: 4.9% improvement. And/or guard ex-
pressions instead of simple guard expressions: 6.4% improve-
ment. A 2 -3 boolean RF is sufficient.

VTLP is preferable; easier to implement and up to 4.5% faster
than hybrid pipelining.

7.5% performance improvement in comparison with no mem-
ory reference disambiguation. Up to 7.8% improvement can be
achieved by a better memory reference disambiguator.

5-9% performance improvement when transport resources are
constraining the performance.

With the bipartite matching move bus assignment algorithm it
is possible to remove a large percentage of the connections be-
fore the cycle count starts to increase. 47% percent of the con-
nections of a fully connected configuration can be removed be-
fore the cycle count increase becomes more than 1%.

1.4% performance degradation on average.

The used method to prevent false dependences introduced
by register allocation before scheduling seems to work well.
The average cycle count increase caused by register re-use and
spilling is 1.3% for 48 registers, and 2.6% for 32 registers.

Table 6.8: Results and conclusions

6.3. ILP EXPLOITATION BOTTLENECKS 129

1. Ambiguous memory references. The inability to disambiguate mem-
ory references results in serialization of memory references. This oc-
curs mainly when components of address computations are loaded from
memory or passed via procedure arguments.

2. The latency of conditional jumps. A conditional jump takes four cycles
for the architecture described in table 6.1.

r2 -> cmp.eq o0; r3 -> cmp.eqg_t /* trigger compare operation */
cmp.eq r -> b2 /* move result to boolean RF */
b2: target -> jump /* guarded jump */

e /* delay of guarded jump */

Reducing this to three or two cycles improves performance. The jump
delay can be removed by some form of dynamic branch prediction. The
delay between the define of a boolean and using it can be reduced to
zero cycles by bypassing the boolean RF. This is illustrated in figure 6.17.
Moves can be guarded by booleans in the boolean RF and the booleans
currently written to the boolean RF. Whether this is possible without af-
fecting the cycle time has to be researched. A quick experiment produced
the following results:

0,
Improvement Cycle count decrease (%)

Average Maximum
Boolean RF bypassing 4.54 11.79 (uniq)
Single cycle jumps 5.03 17.24 (a68)
Both 10.27 29.33 (wc)

Figure 6.17: Boolean RF bypassing

3. Thelatency of load operations. A load with offset calculation takes three
cycles whereas most RISC processors do this within one or two cycles.
An unsigned sub-word load operation takes another cycle for zero ex-
tension (a bitwise-and operation). Reducing the load latency, by a faster
data cache or memory, has a significant influence on the performance, es-
pecially in code where load operations show up in critical paths due to

130

CHAPTER 6. ARCHITECTURE AND COMPILER EVALUATION

ambiguous memory references. A quick experiment produced the fol-
lowing results:

Cycle count increase (%)

Load latency Average Maximum
1 0.00 0.00
2 8.79 18.08 (sed)
3 23.53 39.62 (sed)
4 37.22 69.65 (sed)

. The SCP rule. The SCP rule discussed in section 4.3.1 constrains inter

basic block code motions. Bernstein describes in [28] a solution to this
problem. He ‘breaks’ all JS-edges by inserting empty basic blocks. A JS-
edge is a control flow edge from a fork point to a join point. After all JS-
edges have been eliminated, the set of basic blocks where duplicates of
the operation being imported have to be placed (D(b, b') in section 4.3.1)
satisfies always the SCP rule. Figure 6.18 illustrates JS-edge breaking; af-
ter inserting an empty basic block between A and C it becomes possible
to import operations from C to B.

JS-edge breaking prior to scheduling is not directly possible in our sched-
uler. The problem is that the scheduler removes basic blocks whenever
they become empty. A better solution would be to break JS-edges on-the-
fly during scheduling whenever the SCP rule restricts a code motion. Im-
plementing this requires a significant amount of engineering effort.

(a) Before JS—edge breaking (b) Ater JS—edge breaking

Figure 6.18: Breaking JS-edges

. Short frequently taken paths though large loops. There are many loops

where frequently taken paths though the loop are short and do therefore
not contain sufficient ILP, but where the loop is too large for loop un-
rolling. The solution to this problem is partial loop unrolling illustrated
in figure 6.19. Assume that B is a large sub-CFG and A -+ C — D is the
frequently taken path through the loop. Figure 6.19c shows the loop of
figure 6.19a unrolled two times without duplicating B.

Partial loop unrolling is described and evaluated in appendix A.

6.3. ILP EXPLOITATION BOTTLENECKS 131

(a) Before loop unrolling (b) Full loop unrolling (c) Partial loop unrolling

Figure 6.19: Full and partial loop unrolling

Design Space Exploration

Designing an ASP by means of a templated ASP consists finding a proper con-
figuration for the given application, where a configuration corresponds to a set
of values for the architectural parameters of the templated ASP. The design ob-
jectives are to minimize the cycle count, cycle time, cost, and sometimes power
consumption. These objectives are conflicting and the relative importance de-
pends on the design situation. In this thesis we will not consider power con-
sumption. However, power consumption is more or less proportional to chip
area and therefore costs, so minimizing costs minimizes power consumption
as well. Furthermore, we will assume that FUs, RFs, and the instruction fetch
unit are designed for the same cycle time, e.g., 20ns. This means that the cycle
time is only dependent on the number of connections on the move buses.

It should be clear that it is very unlikely that examining an application or its
features is adequate to find a proper configuration for a non-trivial application.
This means that the design process should be based on quantitative feedback of
the compiler and processor generator. Design space exploration consists there-
fore of evaluating the interesting areas of the design space. Since the design
space of a realistic templated ASP becomes very large and manual exploration
is tedious and error prone work, it is highly desirable to automate the search
procedure.

This chapter presents the developed design space exploration method in sec-
tion 7.1 and describes a case study in section 7.2. Section 7.3 concludes with
related work.

133

134 CHAPTER 7. DESIGN SPACE EXPLORATION

7.1 The Design Process

The MOVE framework consists of a set of tools together with a method to design
ASPs based on TTAs by means of these tools. The design procedure consists
of the following steps:

1. Development of the application and implementing it in C/C++. This
can be done on any workstation that offers a C or C++ programming en-
vironment similar to the compiler of the MOVE framework (e.g., same
word size). The reason for not using the framework compiler is the ex-
ecution speed; binaries produced by the framework compiler have to
be simulated, which is about 5-50! times slower than execution on real
hardware.

2. Identification of critical procedures. These procedures, where most of
the execution time is spent, will be used to identify special FUs and to
reduce the design space exploration time. Standard profiling tools such
as prof, gprof, and pixie or MOVE framework tools can be used for this

purpose.

3. Identification of special FUs. The MOVE framework offers support for
special FUs (SFUs) for user defined operations. Critical program frag-
ments which are relatively easy to implement in hardware but cannot
be executed efficiently by traditional operations can by implemented by
SFUs. To identify SFUs, the designer should have some knowledge about
what is efficiently implementable in hardware. An example of SFUs will
be given in section 7.2.

The MOVE framework requires that user defined operations are explic-
itly coded in the C/C++ source code; the compiler is not able to recognize
user defined operations by itself. This situation is usually acceptable for
an ASP design environment.

4. Compilation to sequential code. After the application is coded in
C/C++itis compiled by means of gcc-move to sequential TTA code. This
should be done for several operation sets. For example, with and without
FP operations, with and without sub-word support, and with or without
user defined operations; see table 3.1. The MOVE framework asks some
insight from the designer to determine which operation sets are useful,
e.g., it makes no sense to compile an FP intensive application without FP
operations.

1The MOVE framework offers two possibilities for simulation (1) an instruction interpreter, and
(2) a translator that converts TTA code to C code which can be compiled and executed on the host
system.

7.1. THE DESIGN PROCESS 135

5. Profiling of the sequential code. Each of the binaries produced by the
previous step needs to be simulated to obtain profiling information. Ob-
viously, this needs to be done with representative data sets.

6. Resource optimization. This is the first step of the design space explo-
ration. A search algorithm explores the design space and presents anum-
ber of ‘interesting’ configurations to the designer. All these configura-
tions have a different cost/performance ratio. It is up to the designer to
choose a configuration that is the best for his/her situation. Resource op-
timization will be detailed in section 7.1.1.

7. Connectivity optimization. The result of resource optimization is a fully
interconnected TTA. Connectivity optimization reduces the connectivity
of the TTA chosen in the first step and presents again a set of interesting
configurations to the designer from which he/she can choose. Connec-
tivity optimization will be detailed in section 7.1.2.

8. Generation of the processor and executable. Finally, after the architec-
tural parameter values have been determined, a TTA processor is gen-
erated/implemented with these parameter values and an executable is
generated for it. A processor generation system for TTAs is described
in [58].

As described above, design space exploration is divided into two steps, re-
source optimization and connectivity optimization. The goal of resource op-
timization is to find a configuration, which is fully connected, with the right
cost/performance ratio. During this step the influence of the full connectivity
on the cycle time will not be taken into account. It is assumed that the cycle
time of the final configuration, after connectivity optimization, will not be de-
termined by bus load. The goal of the second step is to reduce the bus load, by
removing socket move bus connections, such that it does not longer determine
the cycle time. Reducing costs is a secondary goal.

The motivation for performing design space exploration in two steps is that
combining them is problematic and would be computationally too expensive.
The problem is how to connect, for example, an FU to an existing configura-
tion. When it is connected too strongly, e.g., fully connected, the cycle time
degradation may be more than the cycle count improvement. On the other
hand, when it connected too loosely, the cycle count improvement may not be
large enough to justify the costs of the FU. In both cases the explorer will not
add the FU, although it could be good decision if it would be well connected.
Similar problems also occur when FUs are removed from a configuration.

136 CHAPTER 7. DESIGN SPACE EXPLORATION

X * Realizable configuration A: Reducing bus load
. X Pareto point B: Optimal configurations
« o C: Too many connections removed
g g
3 X -3
] . =
Xt i .
x -
Costs Connections removed
(a) Resource optimization (b) Connectivity optimization

Figure 7.1: Results of resource and connectivity optimization

7.1.1 Resource Optimization

The design space is infinite, discrete, and has a large number of dimen-
sions. An evaluation function maps the design space to a two-dimensional
cost/execution time space. A configuration is evaluated by invoking the com-
piler and processor generator. The compiler compiles the profiled application
for the configuration and returns a cycle count; and the processor generator
returns a cycle time and cost estimation.

Only a subspace of the cost/execution time space will be realizable (for exam-
ple configurations with zero costs are not realizable), and of that subspace only
a subspace will be of interest to the designer. These are the so called Pareto
points [35,64]. A configuration is a Pareto point if it is realizable and there are
no other realizable configurations that are both faster and cheaper, i.e.,

P={(c,e) e R|V(c,e) R, >cVe >e}

where P is the set of Pareto points, R the set of realizable configurations, and
(¢, e) represents a configuration with cost ¢ and execution time e. Figure 7.1a
illustrates the Pareto point concept.

The objective of resource optimization is to present a large set of Pareto points
to the designer from which he/she can make a choice. Instead of presenting
Pareto points we could confine with minimizing a user specified quality func-
tion. We prefer presenting Pareto points since it is usually very difficult for the
designer to define a quality function for his/her situation.

We find Pareto points by means of a local search algorithm shown in figure 7.2.
Exploration starts with a user specified oversized configuration (init),i.e., 6 in-
teger FUs, 20 move buses, and 128 integer GPRs. From this configuration we
go to aneighbor configuration by removing one resource of it. This is repeated

7.1. THE DESIGN PROCESS 137

until we reach the minimum configuration that is needed to compile the ap-
plication successfully. Which resource is removed is determined by a quality
function.

1
costs(config)®.execution_time(config)?

quality(config) =

where o and 3 are constants that are reflecting the importance of cost and per-
formance respectively. After the initial configuration has been reduced to the
minimum configuration, the process is reversed by putting the removed re-
sources back until the initial configuration is reached again. Which resource
is put back is also determined by the quality function. Several of these re-
duce/extend passes are made between the initial and minimum configurations
for different values of a and 3. For reduce and extend passes we use the fol-
lowing set of 2-tuples (o, 3):

reduce: {(1,1),(1,1.5),(1,2),{,2.5),(1,3)}
extend: {(1,1),(1.5,1),(2,1),(2.5,1), (3, 1)}

During the reduce passes we want to stay as close as possible to the cost axis.
This is achieved by 8 > a. Similarly, during the extend passes we want to stay
close to the execution time axis which is achieved by a > 3. This set of used o
and J values was obtained by means of experimentation. Adding more pairs
to it did not lead to finding significantly more Pareto points, it only increased
the exploration time.

The resources that are considered by the explorer are currently: (1) FUs, (2)
move buses, (3) GPRs (integer, floating point, and boolean), and (4) RF ports.
Removing a move bus from a configuration is done incrementally by reducing
its width in steps from 64 bits to 32 bits to 1 bit to 0 bits. Adding move buses
proceeds in the other direction. This can lead to configurations such as two 64-
bit buses for floating point numbers, six 32-bit buses for integers, and one 1-bit
bus for booleans. GPRs are removed/added in groups such that the number
of GPRs per RF is always 2" or 2" + 2"+1 n > 0. This is because the difference
in cost and performance of, for instance, a 32 and a 31 integer RF configuration
is very small.

The explorer has several profiled sequential executables of the application
compiled for different operation sets at its disposal. When it needs to evalu-
ate a configuration it chooses the executable with the lowest dynamic opera-
tion count that uses only operations that are supported by the configuration.
For example, if there are two executables, one of 1M operations with FP oper-
ations and one of 1.3M operations without FP operations, it chooses the first
one if the configuration does support FP operations, and it chooses the second
configuration if it does not support them.

The exploration time of the algorithm shown in figure 7.2 can be fairly long,
especially if the initial configuration is very large and the evaluation time of

138 CHAPTER 7. DESIGN SPACE EXPLORATION

proc ResourceOptimization(init)
beginproc
curr = init
foreach a € {1,1.5,2,2.5,3} do
repeat
neig = {n € P(init) | n = curr — {r}, r € curr, IsValid(n')}
cand = {n € neig | Vn' € neig, Quality(n, 1,) > Quality(n',1,a)}
if cand # 0 then
curr = Select(cand)
endif
until cand =
repeat
netg = {n € P(init) | n = curr U {r}, r & curr}
cand = {n € neig | Vn' € neig, Quality(n, a, 1) > Quality(n’,a, 1)}
if cand # 0 then
curr = Select(cand)

endif
until cand = 0
endfor
endproc
proc Quality(config, a, 3)
beginproc

return Costs(config)~*- CycleCount(config)~?- CycleTime(config)—#
endproc

Figure 7.2: The algorithm for resource optimization. A configuration is repre-
sented as a set of resources. IsValid(c) determines whether config-
uration c has sufficient resource to compile the application success-
fully. Select(s) returns a member of s. Costs(c), CycleCount(c), and
CycleTime(c) return the costs, cycle count, and cycle time, respec-
tively, by invoking the compiler back-end and hardware modeler.

7.1. THE DESIGN PROCESS 139

a configuration is long. Fortunately, there are several methods to reduce the
exploration time.

1. Evaluating the configuration only for the most critical procedures of the
application. For example, the set of procedures where 99% of the execu-
tion time will be spent.

2. Using a rule-based hardware modeler instead of a processor generator to
estimate cycle time and costs. Figure 7.3 shows an example of a hardware
model file used by the hardware modeler.

3. Removing resources from the initial configuration that have no effect on
the cycle count before the actual exploration begins. These resources will
not be added during the extend passes.

4. Memorizing all configurations together with their evaluation resultsin a
hash table to prevent unnecessary evaluations.

5. Selecting a neighbor configuration immediately if it has a better quality
than the current configuration instead of evaluating all neighbor config-
urations and selecting the best one. We call this first fit instead of best fit
exploration.

After several reduce and extend passes the explorer determines which config-
urations are Pareto points and presents them to the designer. The designer se-
lects a few Pareto points that seem to be the most appropriate for his/her situ-
ation. The selected configurations are evaluated in more detail by generating
processors for them for an accurate cycle time and cost estimation, and eval-
uating them with other data sets. Finally, the designer has to choose one con-
figuration which is passed to the next stage of the design process: connectivity
optimization.

7.1.2 Connectivity Optimization

Connectivity optimization transforms the fully connected configuration found
by resource optimization into a partially connected configuration that has less
load on the move buses and therefore a shorter cycle time. This is accom-
plished by removing move bus socket connections from the move buses in a
round robin fashion. The move bus socket connection that is removed from a
bus is the first connection that has no influence on the cycle count. If no such
connection exists we take the connection with the lowest influence on the cycle
count. We repeat this process until the cycle time remains constant (limited by
other factors than bus load) and the cycle count starts to increase. By remov-
ing connections in a round robin fashion we balance the bus load, i.e., all move
buses have approximately the same number of connections.

140

CHAPTER 7. DESIGN SPACE EXPLORATION

define BaseCost =
(
4.5 ‘
yi
define MoveBusCost{nbits) =
(
3.5 + 2.0 * nbits / 32
):
define SocketCost(nbits, nbuses) =
(
0.02 + 0.1 * nbits * nbuses / 32
}:
define RegisterFileCost (nbits, nregs, nwports, nrports) =
{
nbits * nregs * (0.4 + 0.1 * (nwports + nrports)) / 32
)i
define FunctionalUnitCost (operations) =
(
if operations =~ {’add, ’‘sub} then 1.0
else if operations =~ {’mul) then 6.0

else if operations =~ {’div, ‘divu} then 6.0
else if operations =~ {’shl, ‘shr, ’‘shru} then 3.0
else if operations =~ {’and, ‘ior, ’‘xor} then 1.0

else if operations =~ {’eqg, ’‘gt, ‘gtu} then 1.0
else -1
)i

define BaseCycleTime =
{
20.0
)i
define MoveBusCycleTime (nwriters, nreaders) =
(
12.0 + 0.4 * (nwriters + nreaders)
)i
define RegisterFileCycleTime(nbits, nregs, nwports, nrports) =
{
20.0
)i
define FunctionalUnitCycleTime (operations) =
(
20.0
):

Figure 7.3: Excerpt of a hardware model file. The rules for computing the es-

timated cycle time and costs are written in an expression language
called simple. Costs are expressed relative to the cost of a 32-bits
adder; cycle time is expressed in nano seconds.

7.2. CASE STUDY: AN ASP FOR MCCD 141

Figure 7.1b shows how the execution time of the application depends on the
number of removed connections. First, removing connections has a positive
effect on the execution time since it reduces the bus load. Next, after sufficient
connections have been removed the execution time is no longer determined
by bus load. Last, when too many connections are removed the cycle count
starts to increase and therefore the execution time as well. These results are
presented to the designer who can select a configuration.

Figure 7.4 summarizes the design space exploration trajectory.

Application
Operation se Compiler front-end
Seq. exec. Seq.exec. .. Seq.exec.
M}s;ﬁ:or‘zl
Seq. exec. & prof. Seq. exec. & prof. ... Seq. exec. & prof.
Hardware model

_ _ Configuration evaluation _ _ ___ _ _ t _______

Init. config. imizati

Resource optimization ! Cycle time
| Costs Hardware modeler]
Sex). exec. & prof. Fully conn. config. : Configuration

| Seq.exec. & prof. Compiler back-end]
| Cycle count

Connect. optimization

Seq. exec. & prof. Partially conn. config.

[Compiler back-end J [Processor generator]

Y Y

Par. exec. Processor

Figure 7.4: The design space exploration trajectory

7.2 Case Study: An ASP for MCCD

In this section we will illustrate the design space exploration method by de-
signing an ASP for minimum cost contour detection (MCCD) [32]. The MCCD
algorithm is able to detect a contour in an image. As shown in figure 7.5, it can
be used to generate the contour of the heart in an echocardiogram of the heart.
This is a useful application in medicine for estimation of the volume of a heart.
In practice, images are processed real-time, i.e., 30 images have to be processed

142 CHAPTER 7. DESIGN SPACE EXPLORATION

Figure 7.5: Minimum cost contour detection (MCCD)

Characteristic Value
Lines of C code 2,851
Number of executed operations/image 1,147,561
Average number of operations per basic block 6.51
Percentage add /subtract operations 44.0%
Percentage load /store operations 14.5%
Percentage shift operations 3.1%
Percentage compare operations 12.1%
Percentage logic operations 9.0%
Percentage multiply operations 2.3%
Percentage divide operations 0.0%
Percentage floating point operations 0.0%
Parallelism upper bound based on trace analysis 14.46
Parallelism exploitable by our compiler 3.85
Average number of live integer GPRs 9.41

Table 7.1: Characteristics of the MCCD algorithm

per second. For each image a new contour has to be computed and drawn. The
MCCD algorithm uses the contour of the previous image to reduce the search
area for the next image.

Table 7.1 lists characteristics of the MCCD algorithm. The parallelism upper
bound and average number of live integer GPRs are obtained by means of the
instruction trace analysis. As discussed in section 2.1.4, the value of parallelism
upper bounds is limited since it is usually far from achievable in practice. The
average number of live GPRs gives an indication for the number of required
GPRs. The amount of exploitable parallelism was measured by compiling the
application for wide TTA with single cycle latencies.

7.2. CASE STUDY: AN ASP FOR MCCD 143

Procedure Description Operation count

gvis Gray value interpol. 329,741 I

path Find min. cost path 144,482 IEEEE————

cost Cost function calc. 108,765 ==

sptr Spatial transf. 60,176 =

norm Normalize costs 46,244 wmm

next Next contour prep. 37,009 ==

ipol Interpolation 8,738 1

sqrt Integer square root 7,168 1

smth Contour smoothing 5,565 1
Miscellaneous 6,075 1

Total 747,888

Table 7.2: The operation profile of the MCCD algorithm

void gvi5(...)
{
for(...) {
sum = 0;
for(i = -2; i <= 2; i++)
for(j = -2; J <= 2; j++)
sum += imagel[... + il[... + j1;

*results++ = sum;

Figure 7.6: The original gvi5 routine

7.2.1 Special Functional Units

Table 7.2 shows the profile of the MCCD application. Procedure gvi5 is clearly
the most critical procedure; 44% of all operations are executed in gvi5. Fig-
ure 7.6 shows the source code of gvi5. It computes the sum of the 8-bit pixel
values of a 5 x 5 matrix within a 512 x 512 image. It does this for a number of
5 x 5 matrices. The simplest method to speed up gvi5 is by unrolling the two
inner loops completely. This reduces loop overhead?. The result is a chain of
24 additions, 25 byte loads, and 25 address computations.

Further improvement is possible by processing 32-bit words of 4 8-bit pix-
els instead of one pixel at a time. This technique has been successfully ap-
plied in general purpose CPUs, such as the Sun UltraSPARC [94] and HP PA-
7100LC [138], to speed up multi-media applications. What we need for gvi5is

2Loop unrolling is also performed by the back-end. However, the loop unroller of the back-end
is not sophisticated enough to detect that the trip counts of both loops are always five times.

144 CHAPTER 7. DESIGN SPACE EXPLORATION

SIC SIC, SIC

1 2 3

-~ 13 bit operand |- ------ | 4x8 bit operands|- | 4 selection bits | -1

! I

i & lag |
I

|

! S-input la— & (@ !
I

adder . |

: - & - :
i

I

-

! -] & [2 |

! |
i

- 13bitresult |----------"-"-"-"-"-"-"-"-"-"--"-"-"—-"————

dst

Figure 7.7: An SFU for MCCD

an operation that adds four 8-bit values to a 13-bit partial sum. The additions
need to be conditional since only the pixels of the word located within the 5 x 5
matrix should be added to the partial sum. The result is an operation with the
following description:

dstis..0 = src1,12...0 + if srcs o then srep 7.0 else O
+ if sreg,y then sreg 15,5 else 0
+ if 8TC3,2 then 87rC2.23...16 else 0
+ if 8reC33 then §TC231...24 else 0

With this operation, which we will call add4, we can compute the sum of the
5 X 5 matrix by means of 10 add4 operations, 10 word loads, 10 address com-
putations, and a few extra operations to compute the four selection bits. An
SFU that implements add4 is shown in figure 7.7. Its complexity is compara-
ble to a 32-bits adder. Notice that add4 and therefore the SFU that implements
it remains useful when, due to an algorithmic change, gvi$ is replaced by, for
instance, gvi7 which computes the sum of a 7 x 7 matrix.

The MOVE framework supports user defined operations but requires that
these operations are explicitly coded in the application source code. Figure 7.8
shows how gvi5 has been modified for add4 after its two inner loops have
been unrolled. A user defined operation is used by means of

_userdef_nm_ (i, t, 01, ..., Og)

Where n is the number of operands, m the number of results, i the user defined
operation index, t a type specifier, and o; . . .o, the operands of the operation.
Type specifier PURE_FUNCTION as opposed to SIDE_EFFECTS indicates that the
operation is free of side effects. User defined operations will usually be used

7.2. CASE STUDY: AN ASP FOR MCCD 145

#define addd(x, y, z) __userdef_31__ (1, PURE_FUNCTION, x, vy, 2)

void gvi5(...)
{

__not_aliased__ (image, results);

for(...) {
x0 = ... - 2; /* corner of 5x5 square */
y0 = .- 25
sell = Ox0f >> (x0 & 3); /* sell = 1111, 0111, 0011, or 0001 */
sel2 = 0x78 >> (x0 & 3); /* sel2 = 1000, 1100, 1110, or 1111 */
x0 &= ~3; /* align x0 */
sum = add4 (o0, *(int *) &image[y0 + 0][x0 + 0], sell):;
sum = add4 (sum, *(int *) &image(y0 + 0][x0 + 4], sel2);
sum = add4 (sum, *(int *) &image(y0 + 1][x0 + 0], sell):
sum = add4 (sum, *(int *) &image([y0 + 11[x0 + 4], sel2);
sum = add4(sum, *(int *) &image[y0 + 2][x0 + 0], sell);
sum = add4 (sum, *(int *) &image(y0 + 2][x0 + 4], sel2);
sum = add4 (sum, *(int *) &image[y0 + 3][x0 + 0], sell);
sum = add4 (sum, *(int *) &image(vy0 + 3][x0 + 4], sel2);
sum = add4 (sum, *{int *) &image(y0 + 4]1[x0 + 0], sell);
sum = add4 (sum, *(int *) &imagely0 + 4]1[x0 + 4], sel2);
results++ = sum; / store result */

Figure 7.8: The modified gvi5 routine

via a macro or an inline procedure.

In order to compile and simulate user defined operations, the designer needs
to provide five small C++ functions which will be linked with the tools of
the MOVE framework. These functions specify (1) how to simulate user de-
fined operations, (2) their names (e.g., add4) in machine description and hard-
ware model files, (3) whether the operations are commutative, (4) whether it
is allowed to speculate them without proper guarding, and (5) possible de-
pendencies between user defined operations. To illustrate the latter two func-
tions, consider two user defined operations modi fy and 1ookup for accessing
a lookup table. Clearly, a modify needs to be guarded if it is executed specu-
latively, and two table lookup accesses are dependent unless both accesses are
lookup operations.

Figure 7.8 also illustrates the _not_aliased__annotation. Without this anno-
tation the memory reference disambiguator is not able to disambiguate the ac-
cesses to image and results which are both incoming procedure arguments.
This limits the iteration overlap of the for loop.

146 CHAPTER 7. DESIGN SPACE EXPLORATION
Resource Cost
Functional units:

o INT add, sub, gt, gtu 1

e MEM 14, 1db, 1dh, st, stb, sth 11

¢ LOG and, ior, xor, eq 1

¢ SHF shl, shr, shru 3

eMUL mul 6

¢ SFU add4 1
Move buses 3.5+ 0.0625W
Register files (0.0125 + 0.003125P)WN
Sockets 0.02 + 0.003125WC
Base (instruction fetch unit, etc.) 4.5

Table 7.3: The hardware cost model. W stands for number of bits, N for num-
ber of registers, P for number of ports, and C for number of connec-
tions.

By adding a user defined operation to the operation set, the operation count
of gvi5s is decreased by 57% from 329,741 to 144,281 and the total operation
count is decreased by 25% from 747,888 to 562,428. This illustrates the power
of SFUs; a significant operation count reduction can be achieved by means of
inexpensive application specific SFUs.

7.2.2 Resource Optimization

The design exploration starts with compiling the MCCD application to a num-
ber of sequential executables with different operation sets and determining an
initial oversized configuration. Based on the application characteristics shown
in table 7.1, sub-word load and store operations should be included, emulat-
ing them would be too expensive, and divide and floating point operations can
be excluded. For multiply and the user defined add4 operations it is not clear
whether they should be included. Therefore we compile the application to four
operation sets, one without mul and add4, one with mul, one with add4, and
one with both mul and add4.

We shall assume six FU types, INT for integer operations, MEM for load and
store operations, LOG for logic operations, SHF for shift operations, MUL for
multiply operations, and SFU for add4 operations. The latency of the MEM
FU is 2 cycles, the latency of MUL FU is 4 cycles, and all other FUs have a sin-
gle cyclelatency. All FUs are VTLP pipelined. Furthermore, we assume a jump
latency of 2 cycles and guard expressions of 2 booleans. As initial configura-
tion we shall use a TTA with 16 32-bit move buses, 3 INT FUs, 3 MEM FUs, 1
MUL FU, 2 LOG FUs, 2 SHF FUs, 2 SFU FUs, a 4W+4R ported integer RF of 64
registers, and a dual ported boolean RF of 8 registers.

7.2. CASE STUDY: AN ASP FOR MCCD 147

60 T i] 1 1 T J

mach-0192 =
50 F mach-0165 e
mach-0111

40

30

20 |

Execution time (ms)

10

0 1 1 1 1 1 L i
20 40 60 80 100 120 140 160 180
Cost (adders)

Figure 7.9: The result of resource optimization

Table 7.3 shows the used hardware cost model. This model is based on results
produced by a processor generator for 1 micron CMOS technology [58]. The
costs are expressed relative to a 32-bit integer FU. As cycle time model we use:

T(config) = max{20, max{12 + 0.4 x connections(b) | b € buses(config)}}

This means that cycle time is only determined by the number of connections
on the move buses and has a minimum value of 20ns.

Figure 7.9 shows the result of resource optimization. 76 Pareto points are pre-
sented to the designer varying from a configuration with cost 33.6 that pro-
cesses a frame in 2.7M cycles with 0.51 operations per cycle to a configuration
with cost 175.9 that processes a frame in 188K cycles, with 3.23 operations per
cycle. Computing this curve required about 1.5 hours on a 47 SPECint92 work-
station (1383 evaluations of about 3.5 seconds). All procedures for the compu-
tation of a frame were included for the evaluation of a configuration.

Three configurations, named mach-0192, mach-0165, and mach-0111, are marked
in figure 7.9 and are shown in figure 7.10. These three configuration differ in
the number of move buses, the number of INT FUs, the presence of a MUL
FU, the number of integer registers, the number of boolean registers, and the
number of ports on the integer RF. Because mach-0192, unlike the other two
configurations, does not contain a MUL FU, it requires another executable than
the other two configurations.

Which configuration the designer will choose depends on the design situation.
In case of cost or performance constraints, the designer will simply choose the
fastest/cheapest configuration that meets the cost/performance constraints.
In other situations the decision will be based on the price the designer is willing

148 CHAPTER 7. DESIGN SPACE EXPLORATION

WAy hgy Byy By M § 4

INT SFU MEM LOG SHF IRF BRF IFU
16 regs 1reg

(a) mach-0192: cycle count: 980,465; operations per cycle: 1.18; costs: 49.7

(L IR Rl R EEE I OOl o o N mEx

VW B9y Rov Bpvy Byy A99 Byv By M §y 13

INT INT MUL SFU MEM LOG SHF IRF BRF IFU
24 regs 3 regs

(b) mach-0165: cycle count: 408,073; operations per cycle: 1.46; costs: 76.4

propm pusy o p— ey e o gy — T — — N

¥WOAW 9y Byev R g0 Bgd Ayf Bygddl _§ §1

INT INT MUL SFU MEM LOG SHF IRF BRF IFU
24 regs 4 regs

(c) mach—0111: cycle count: 261,197; operations per cycle: 2.34; costs: 101.2

Figure 7.10: Three configurations resulting from resource optimization. IRF
stands for integer RF, BRF for boolean RF, and IFU for instruction
fetch unit.

to pay for more performance.

7.2.3 Connectivity Optimization

Let us assume the designer chooses for the mach-0111 configuration shown in
figure 7.9c. The next step is connectivity optimization. The result is shown
in figure 7.11. The designer has to choose a configuration on the flat part of
the curve. The two extremes are the configuration where the cycle time stops
falling (100 connections removed) and the configuration where the cycle count
starts to rise (160 connections removed). The first configuration is slightly
more expensive than the latter (110 vs. 105). On the other hand the first config-
uration is better proof against changes in the application that change the trans-

7.2. CASE STUDY: AN ASP FOR MCCD 149

0
E]
Q
£
£ |
g .
X
m
5 1 1 i 1
0 50 100 150 200 250
Number of connections removed
Figure 7.11: The result of connectivity optimization
[T THHTH T HH T Hel H He [} 212
H n H H.|.H.0 o - 37%
. uN o H o L - 69%
H — H H [H B ~ [1o 74%
= H H — Bl H b 91%
ol 4 H | I— H o] I mbd F 75%
— Hel .0 He - 76%
C°H H He HF . 87%
T ST N T2 N T N T2 N T 7711
INT INT || MUL || sFu || MEM || LOG || sHF IRF BRF IFU
76% 34% 12% 12% 54% 15% 12% || 24regs || 4regs

mach-0111/mach—0198: cycle count: 261,197; operations per cycle: 2.34; costs: 105.4

Figure 7.12: A configuration resulting from connectivity optimization

port requirements. The designer can therefore trade-off cost for flexibility.

Figure 7.12 shows mach-0111 where 140 connections have been removed. FUs
and move buses are shown with their utilization obtained by means of simu-
lation of the parallel code. Notice that FUs with a high utilization (the left INT
and MEM FUs) have more connectivity to the interconnection network than
FUs with a low utilization (the MUL and SHF FUs).

7.24 Miscellania

In order to get confidence in our local search algorithm for resource optimiza-
tion, and in the spirit of Karl Popper’s falsification [99], we have implemented
a search algorithm based on simulated annealing [126] that tries to maximize
the above mentioned quality function for a given a and 8. Simulated annealing
has been used by others for design space exploration, for example [20, 52, 113].

150 CHAPTER 7. DESIGN SPACE EXPLORATION

60 T T T
Best fit local search ~——
50 | First fit local search -----]
Simulated annealing: 0. =6,f=1 +
B a=5p=1 x
g 40 - a=4B=1 »
Kl a=3p=1 o
g a=2,g=1 n
& i a=3,B=2 o
g ¥ a=1p=1 o
.§ a:l,ﬁ:z A
e 20
@
10 |
0 ! 1 1 L . R ,

20 40 60 80 100 120 140 160 180
Cost (adders)

Figure 7.13: Best fit vs. first fit vs. simulated annealing

The results of searching by means of simulated annealing for eight different
values for o and 3 are shown in figure 7.13. All points found by simulated an-
nealing were also found by the local search algorithm which gives us confi-
dence in our local search algorithm.

Figure 7.13 also shows the difference between best fit and first fit local search.
The difference is very small. First fit required 856 evaluations instead of 1383,
and found 65 Pareto points instead of 763. We have found similar results with
other cases [107]. This has led us to the conclusion that first fit quite useful to
reduce exploration time.

7.2.5 Limitations

The current tools have several limitations that have to be removed to make
them more valuable. The following items need to be incorporated: caches,
code size, and real time constraints.

Caches may have a large impact on the cost and performance of a processor.
Therefore, cache parameters, such as number of lines, line size, and associativ-
ity, have to be considered during resource optimization. The problem with in-
cluding cache parameters is that cache performance is dependent on how the
code is scheduled. Speculative execution of load operations affects the data
cache performance [151], and code duplication affects the instruction cache
performance. Furthermore, it is not possible to predicted cache performance
accurately by means of some sort of profiling of the sequential executables. For
accurate performance estimation, the parallel code produced by the back-end

3Notice that the number of found Pareto points does not say much about the quality of the ex-
ploration algorithm.

7.3. RELATED WORK 151

has to be simulated for every configuration evaluation. This is usually far too
expensive.

Code size is often an important issue for ASPs. It depends on compiler param-
eters which control function inlining and loop unrolling, and on the utilization
of move slots. The latter depends on the discrepancy in ILP of the application
and ILP provided by the hardware. To take code size into account, the back-
end of the compiler should be able to report the code size, the hardware mod-
eler should be able to compute the cost of code size, and the explorer should
be able to change compiler parameters that affect code size.

Many ASPs have to guarantee real-time response to external events. This re-
quires that the compiler can guarantee minimal and maximal execution times
of certain execution paths. This is in general an undecidable problem. The
only way to guarantee real-time responses with the current tools is by means
of manual verification of Pareto points found by resource optimization.

7.3 Related Work

Developing tools and methodologies for designing or synthesizing hardware
and software for a specific application is the objective of many research projects
in the industry and academia. This section describes briefly some related work
in this area that is known to the author. This work can be divided into three cat-
egories: templated ASPs, hardware/software co-design, and high-level syn-
thesis.

Templated ASPs

Breternitz and Chen divide the ASP design process into specification and im-
plementation optimization [36,37]. Specification optimization determines a
VLIW configuration with a central RF for the given application. The designer
explores the design space manually by compiling the application for config-
urations with various architectural parameter values. Implementation opti-
mization replaces the central RF by a set of single-ported RFs and a partially
connected interconnection network between the RFs and FUs in order to make
a cost effective implementation possible. To do this variables should be allo-
cated to RFs such that variables referenced in the same cycle (according to the
schedule produced in the specification optimization step) are assigned to dif-
ferent RFs. A graph coloring based algorithm is used for this allocation prob-
lem that minimizes the required number of RFs.

The SCARCE project [153,164], the work of Potasman [165], the CASTLE
project [40,183], and the LIFE project [129,130] are examples of frameworks
for ASP design that provide tools for processor generation and/or code gen-
eration for these processors based on an architectural template but do not pro-

152 CHAPTER 7. DESIGN SPACE EXPLORATION

y SW compilation j—® CPU
Application Partitioning \ Memory
HW HW synthesis f—® ASIC

Figure 7.14: Hardware/software co-design

vide tools or methodologies to explore the design space. They leave this task
to the designer.

Hardware/software co-design

In the hardware/software (HW/SW) co-design community one partitions an
application into a software component, that runs on a standard processor, and
ahardware component that is implemented in an ASIC (application specific in-
tegrated circuit) [63]. The processor and the ASIC are usually connected via the
memory bus of the processor (see figure 7.14); which can be a serious commu-
nication bottleneck if there is a lot of communication between the CPU and the
ASIC [76]. Two systems are known to the author where the partitioning is per-
formed automatically; the Cosyma system [76] and the Vulcan system [97,98].
Both systems start with an initial partitioning which is repeatedly evaluated
and modified until the partitioning meets the design constraints. The initial
partitioning of the Vulcan system is a hardware only partitioning, while the
initial partitioning of the Cosyma system is a software only partitioning. Both
systems are programmed in a C like programming language.

Razdan and Smith [173], Athenas and Silverman [18], and others describe
systems where standard processors are augmented with programmable FUs
(PFUs) based on field programmable gate arrays (FPGAs). PFUs are similar to
SFUs in that they are used to improve performance by providing special oper-
ations for the critical parts of the application. Unlike SFUs, PFUs can be repro-
grammed at run-time by downloading a new image into their FPGAs. Primary
disadvantage of this approach is the relatively slow FPGA technology and the
time required to reprogram FPGAs.

High-level synthesis

High-level synthesis (HLS) is an active area of research where one translates
a behavioral description of an application, usually written in a hardware de-
scription language such as VHDL, into a structural description, usually a
netlist of a data path [41,63,87]. This process consists of several partitioning,
scheduling, allocation, and library binding steps. The resulting data path is

7.3. RELATED WORK 153

Issue HLS HW/SW co-design Templated ASPs
Problem size small large large
Programming language special general general
Pipelined control no yes yes
Interruptible systems no yes ‘ yes
Communication overhead - high Zero
Functionality overhead zero medium medium
Reprogrammable no yes yes

Table 7.4: Primary differences between three methods for system design

controlled by a finite state machine or a microcode engine that is generated af-
ter the data path has been synthesized and the application has been scheduled
for the data path.

Comparison

Table 7.4 lists the primary differences between three major methods for system
design: HLS, HW/SW co-design, and templated ASPs.

1.

Problem size. Current HLS systems are not able to handle large applica-
tions, e.g., a postscript interpreter. The other two design methods do not
have problems with large applications.

. Programming language. HLS designs are usually specified in a hard-

ware description language, such as VHDL, or a special purpose lan-
guage, such as Silage [193]. Designs for the other two methods are
usually programmed in a (software) HLL, such as Pascal, C, or C++.
These languages provide powerful constructs, e.g., dynamically allo-
cated memory and have a larger user base.

. Pipelined control. HW/SW co-design and templated ASP systems are

based on Von Neumann processors whose control can be pipelined in or-
der to achieve a faster cycle time. The controller of an HLS system waits
for control signals from the data path before it proceeds to the next con-
troller stage or microcode instruction. There is no equivalent of branch
latency in an HLS system.

. Interruptible systems. HW/SW co-design and templated ASP systems

are interruptible. HLS systems have to use some form of polling to mimic
this functionality.

. Communication overhead. The overhead of the communication be-

tween the hardware part of a HW/SW co-design system, that imple-
ments the critical sections of the application, and the software part canbe

154

CHAPTER 7. DESIGN SPACE EXPLORATION

fairly high [76]. In templated ASPs there is no overhead in communica-
tion between special FUs (comparable to the hardware part of a HW /SW
co-design system) and the general FUs (comparable to the software part).
In HLS systems there is no such separation.

. Functionality overhead. HLS designs can be very small. This is due to

the fact that there is no functionality overhead. HW/SW co-design sys-
tems always contain a standard processor, while templated ASPs always
contain some extra hardware that is part of the template, e.g., the pro-
gram counter and the instruction register.

. Reprogrammability. HW/SW co-design and templated ASP systems

are reprogrammable when their instructions are stored in RAM or ex-
ternal ROM. This is very useful when design specifications are not yet
stabilized or the system has to be used in other products with (slightly)
different specifications.

The overall conclusion can be that the advantage of HLS is the absence of
functionality overhead. HW/SW co-design and templated ASPs have a lot in
common, they can handle large problems, they are programmed by general
programming languages, they provide pipelined control and interrupts, and
they can be made reprogrammable. The main difference is the communica-
tion overhead between the general part and the application specific part of the
system.

Conclusions

This chapter concludes this thesis. Section 8.1 provides a summary, section 8.2
describes the current status of the compiler, section 8.3 puts this work in per-
spective, and section 8.4 describes possible future research.

8.1 Summary

Transport triggered architectures (TTAs) push one on the main principles of RISC
and VLIW architectures to its limits: do what you have to do in hardware and
let the compiler do the rest. The task of controlling the data transports between
the functional units (FUs) and register files (RFs) has been shifted from the
hardware to the compiler. TTAs are therefore programmed by specifying data
transports instead of operations as is done by traditional operation triggered ar-
chitectures (OTAs). This results in better control over the hardware and better
utilization of the transport buses and register file ports, which are critical re-
sources in instruction-level parallel processors. A better utilization improves
the cost/performance ratio.

Whether migrating responsibilities from hardware to the compiler is a good
idea depends on how well the compiler can handle these responsibilities. The
work described in this dissertation demonstrates that it is very well possible
to develop and implement a compiler with state-of-the-art compilation tech-
niques for TTAs. The main features of the developed compiler are:

1. Based on GNU compiler of the Free Software Foundation with front-ends
for ANSI C, C++, and Fortran 77. :

2. Applies extended basic block scheduling in order to exploit inter ba-

155

156 CHAPTER 8. CONCLUSIONS

sic block parallelism. The used scheduling scope consists of regions,
which are single entry, acyclic control flow graphs. Speculative execu-
tion, guided by profiling information, is applied to increase parallelism.
Guarded execution is applied to facilitate speculative execution. Multi-
way branching is applied to improve performance of branch intensive
code.

3. Applies software pipelining in order to exploit inter-iteration paral-
lelism. The used software pipelining algorithm belongs to the class
of modulo scheduling algorithms and uses if-conversion to software
pipeline multi basic block loops. Delay lines are used to deal with long
living variables defined within loops that limit the initiation interval of
the software pipeline.

4. Highly parameterized. All information about the target TTA is specified
in a machine description file. Furthermore, the scheduler offers support
for user defined operations provided that these operations are explicitly
specified in the source code. These operations are very useful within a
design system for application specific processors (ASPs).

5. All TTA specific optimizations are implemented. These are: dead result
move elimination, bypassing, operand sharing, operand swapping, and
port sharing.

6. Register allocation is performed before scheduling in such a way that the
register allocator tries to prevent false dependences that limit the free-
dom of the scheduler.

7. Functional unit, socket, and immediate field assignments are performed
during scheduling. Move bus assignment is performed after scheduling;
only the possibility of amove bus assignment is checked during schedul-
ing. This makes it possible to schedule efficiently for TTAs with an irreg-
ular interconnection structure.

The compiler has been implemented within a period of approximately 2.5
years by the author. Another 0.5 to 1 year is required to make it operational.
The key to a successful development of a compiler for TTAs is making the right
trade-offs between expected performance and engineering complexity. Sev-
eral times we rejected design options because of their complexity and chose
for easier to implement options with a lower performance. A few of these cases
are reported in chapters 3, 4, and 5. The major design decisions made during
the development of the compiler along with their motivations are listed in fig-
ure 8.1.

Figure 8.2 shows the progress of the scheduler during its development. It illus-
trates the step-by-step development. Performance improvements were made
every time an optimization or enhancement, such as function inlining, loop un-
rolling, multi-way branching, or software pipelining, was implemented.

8.1. SUMMARY 157

1. The GNU compiler as front-end

The GNU compiler produces production quality code, is stable, and provides front-
ends for ANSI C, C++, and Fortran. Drawback is the limited amount of information
it can provide for memory reference disambiguation.

2. Register allocation before scheduling

Register allocation during scheduling was considered too complex. Register allocation
after scheduling is problematic since: (1) scheduling may increase register pressure, (2)
live variable analysis for guarded code is not trivial, and (3) inserting spill/reload code
into scheduled TTA code is problematic.

3. FU, socket, and immediate field assignments during scheduling

Delaying all assignments until scheduling has been performed is too complex. Further-
more, in practice there is usually not much to choose, e.g., the number of FUs that sup-
port a particular operation is usually one or two.

4. Move bus assignment after scheduling
Necessary for efficient code generation for irregular interconnection networks.

5. Scheduling all moves of an operation in one atomic step

Scheduling the moves of an operations one-by-one interleaved with moves from other
operations may lead to inefficient FU usage and scheduling deadlocks. Scheduling
heuristics and deadlock prevention mechanisms would be required to prevent this.

6. Operation based list scheduling

A direct consequence of decision 5. Trigger and results moves of an operation have to
be scheduled in different instructions. This is not compatible with instruction based list
scheduling where one instruction is filled at a time.

7. No scheduling heuristics to stimulate TTA specific optimizations

Attempts to develop these heuristics failed; the average improvement was not worth
the complexity. The problem is combining these heuristics with the critical path heuris-
tic of list scheduling.

8. Region scheduling scope for extended basic blocks scheduling

A region is the most general scheduling scope of all scheduling scopes known from the
literature. Multiple path parallelization is realized without code duplication prior to
scheduling (tail duplication in superblock and decision tree scheduling) and without
the if-conversion requirement of hyperblock scheduling.

9. Modulo scheduling type software pipelining

Modulo scheduling has been chosen because: (1) it has been worked out very well, (2)
previous positive experience with modulo scheduling, and (3) its performance in com-
parison with other algorithms. Enhanced pipeline scheduling, an attractive alternative,
is not compatible with operation based list scheduling.

Figure 8.1: Major design decisions and motivations

158 CHAPTER 8. CONCLUSIONS

2.5e+07 T T T T T T T T T T T

2e+07

1.5e+07

Cycle count

1e+07 | L

5e+06 r— -

0 L 1 1 1 1 1 L 1 1] 1
jun93 jul aug sep oct nov dec jan feb mar apr9%4

Figure 8.2: Progress of the scheduler during its development. The graph
shows the cycle count of the stanford benchmark. This benchmark
was frequently used during the development of the scheduler to
verify its operation and to evaluate design alternatives.

With a compiler for TTAs at our disposal, we were able to perform experiments
to evaluate TTAs and features of TTAs and we were able to develop a method
for design space exploration. The results of the performed experiments are
summarized in table 8.1.

The design space exploration method, to find an ‘optimal’ configuration for a
given application, consists of two steps as shown in figure 8.3: resource op-
timization and connectivity optimization. Resource optimization computes a
set of so called Pareto points, each corresponding to a configuration with a cer-
tain cost and performance for the given application. Each Pareto point is opti-
mal in the sense that resource optimization could not find other configurations
that both cost less and have a better performance. The Pareto points computed
by the developed design exploration tool vary in the number of move buses,
functional units, general purpose registers, and register file ports. All Pareto
points have a fully interconnected network. The set of Pareto points is pre-
sented to the user who selects a configuration that meets his/her requirements.
Next, the selected configuration is passed to the second pass of design space
exploration: connectivity optimization.

Connectivity optimization determines the connectivity for the configuration
selected in the resource optimization step. It does this by removing connec-
tions in an order such that the performance loss is minimal and the bus load is
balanced. The resultis a sequence of configurations with an increasing number
of removed connections. The user is asked again to select a configuration.

The design space exploration method has been demonstrated by designing a

8.1. SUMMARY

159

Experiment

Results and conclusions

Speedup

Scheduling scope

Scheduling freedom

TTA specific opt.

REF port requirement

Partitioned RFs

Guarding

FU pipelining

Memory ref. disamb.

Multicasts

Partial connectivity

Bypass conflicts
Register allocation

The average speedup of a 12 move bus configuration relative to
a single move bus configuration is 4.30 for workstation-type ap-
plications and 6.38 for DSP-type applications. Average number
of operations initiated per cycle: 2.52 (WS) and 3.28 (DSP). Aver-
age number of operations in execution per cycle: 3.95 (WS) and
5.90 (DSP).

Basic block scheduling cannot utilize more than 4 move buses.
Extended basic block scheduling gives a performance improve-
ment over basic block scheduling of 79%. Software pipelining
gives another 3.5% improvement.

Valuable when transport resources are constraining the perfor-
mance. The performance improvement is 2 ~10% for TTAs with
a small number of move buses.

Valuable when transport resources are constraining the perfor-
mance. Dead result move elimination: 4 — 10% improvement.
Operand swapping and operand sharing: 0 -2% improvement.
The average RF port requirement per operation is 0.63 read
ports and 0.37 write ports. A 3W+3R configuration is sufficient
to perform 2.77 operations per cycle on average.

The presented method seems to work well. RFs can be parti-
tioned in order to reduce their costs without a significant per-
formance loss.

Multi-way branching: 4.9% improvement. And/or guard ex-
pressions instead of simple guard expressions: 6.4% improve-
ment. A 2 - 3 boolean RF is sufficient.

VTLP is preferable; easier to implement and up to 4.5% faster
than hybrid pipelining.

7.5% performance improvement in comparison with no mem-
ory reference disambiguation. Up to 7.8% improvement can be
achieved by a better memory reference disambiguator.

5 - 9% performance improvement when transport resources are
constraining the performance.

With the bipartite matching move bus assignment algorithm it
is possible to remove a large percentage of the connections be-
fore the cycle count starts to increase. 47% percent of the con-
nections of a fully connected configuration can be removed be-
fore the cycle count increase becomes more than 1%.

1.4% performance degradation on average.

The used method to prevent false dependences introduced
by register allocation before scheduling seems to work well.
The average cycle count increase caused by register re-use and
spilling is 1.3% for 48 registers, and 2.6% for 32 registers.

Table 8.1: Results of the experiments described in chapter 6 and the conclu-
sions that can be drawn from them (copy of table 6.8 on page 128)

160 CHAPTER 8. CONCLUSIONS

Initial configuration .
Selection
e rean el L EE I
icatio! imization § | @ e, .
Aapplication » P user
- Intermediate configuration
L . Selection
> Connectivity by Final configuration.
_ | optimization
user
Conn. removed

Figure 8.3: Design space exploration

TTA for the minimum cost contour detection application.

8.2 Current Status of the Compiler

The developed compiler is nearly operational. What is missing is the final
step in the compilation process: generating an executable binary. The cur-
rent version of the compiler generates a textual representation of the sched-
uled code. Generating a binary involves low-level issues such as instruction
encoding and relocation of code and data. None of these issues should present
new problems. Besides this work, other partners within the MOVE project are
currently (1) developing a graphical user interface for the MOVE framework
tools, (2) developing heuristics for multiple RF register allocation, (3) imple-
menting static branch prediction techniques, (4) integrating the compiler and
design space explorer with the processor generator tools, and (5) researching
issues listed in section 8.4.

The work described in this thesis has drawn the attention of several industrial
R&D groups; among them are: Océ (Venlo, NL), HP labs (Bristol, UK), TNO
FEL (The Hague, NL), GMD (Bonn, DE), SPASE (Nijmegen, NL), and Philips
Natlab (Eindhoven, NL). Several of them are interested in a fully operational
compiler together with other MOVE framework tools.

8.3 Perspective

In this dissertation we advocated templated ASPs and using TTAs as founda-
tion for an ASP design system. Nevertheless, it is good to think critically about
the questions whether it makes sense to use ASPs instead of standard proces-
sors and to use TTAs instead of OTAs.

8.3. PERSPECTIVE 161

Applications Applications
(e <=
\/
(a) Positive scenario (b) Negative scenario

Figure 8.4: Venn diagrams illustrating the territories of ASPs, GPPs, and DSPs.
Membership of a processor type class represents that this processor
type is most cost effective for the application.

First, does it makes sense to use ASPs instead of standard general purpose pro-
cessors (GPPs) or digital signal processors (DSPs)? The answer is simple; it
only makes sense to use an ASP if an ASP has a better cost/performance. ASPs
win cost/performance by providing the hardware for an application that is
missing in a standard processor (e.g., special FUs) and omitting the hardware
that can be omitted (FP FUs, memory management, etc.). On the other hand,
ASPs lose cost/performance on the point of hardware efficiency. The market
for a GPP or DSP is usually much larger than for an ASP which makes it possi-
ble to put much more effort in the design process. Large parts of the design can
be done manually by an experienced design team. The design of an ASP has to
be done by means of synthesis tools in order to limit the design effort. The pro-
duced quality of these tools is usually significantly lower than (largely) hand-
crafted designs [58]; the consequence is a longer processor cycle time and a
larger die area, i.e., a lower cost/performance. Whether the cost/performance
gain of ASPs will be larger than the loss will depend on the ‘exoticness’ of the
application for which the ASP is intended; the more an application deviates
from standard (SPECmark-type) applications for which standard processors
are designed, the higher the probability that it is cost effective to use an ASP.
Case studies have to determine the territories of ASPs, GPPs, and DSPs. These
territories are illustrated in figure 8.4. Figure 8.4a shows a positive scenario,
from the ASP point of view, where ASPs have the best cost/performance for
most of the applications, while figure 8.4b shows a less positive scenario.

The second question, are TTAs a good idea and are they ‘better” than VLIW
OTAs, is also hard to answer. Figure 8.5 tries to illustrate the differences in cost
and performance between TTAs and OTAs as function of the number of FUs,
i.e., the amount of ILP. The cycle time of TTAs is expected to increase slower
than the cycle time of OTAs as FUs are added; see figure 8.5a. This is moti-
vated by the facts that TTAs have a simpler control and have a lower RF port re-
quirement. The same holds for the costs of TTAs and OTAs. TTAs are easier to
design, require less control hardware, fewer buses, and fewer RF ports. There-
fore, the cost of TTAs will increase slower than the cost of OTAs; see figure 8.5b.
The cycle count of an application is likely to be slightly lower for OTAs than

162 CHAPTER 8. CONCLUSIONS

-
-
-
-

-
-
-

Cycle time
\
1
1
1Y
\ 1
Cost
\
i
A
1
\
\
1
A
\
\
\
\
Cycle coi

Number of FUs Number of FUs Number of FUs

(a) Cycle time (b) Cost {c) Cycle count
‘g ;8: Legend.
3 El BeSolnht Y B DT L N OTA
é a ™
=3 =3
E (higher is better) E (higher is better)

Number of FUs Number of FUs

(d) Cost/performance, positive scenario {e) Cost/performance, negative scenario

Figure 8.5: Cost, performance, and cost/performance of TTAs and OTAs

for TTAs for configurations with a large number of FUs; see figure 8.5¢c. This
is due to bypass conflicts (1.4% performance degradation on average, see sec-
tion 6.2.12), and the complexity of code generation for TTAs. When the same
effortis put into the development of a TTA compiler as in the development of
an OTA compiler, it is likely that the OTA compiler will produce better results.
This is because an OTA compiler is easier to implement and to debug and it is
easier to fine-tune scheduling heuristics, to analyze scheduling inefficiencies,
and to extend it with new optimizations.

Most of above mentioned contributions to cost and performance are hard to
quantify. Therefore, it is hard to state something relevant about differences in
cost/ performance between OTAs and TTAs. For a small number of FUs, the
cost/ performahce of TTAs will be better. However, for a large number of FUs
itis hard to determine whether the cost and cycle time benefits of TTAs will be
more than the cycle count disadvantage (figure 8.5d) or less (figure 8.5e).

8.4 Future Work

The work described in this dissertation can be extended in several directions:

1. Enhancing the software pipeliner. Possible extensions are: pipelining
loops with multiple backward and exit control flow edges, pipelining
multiple basic block loops with multiple initiation intervals {203], and
performing loop unrolling prior to software pipelining.

2. Increasing the amount of exploitable ILP. This can be achieved by better
memory reference disambiguation, various code transformations, more

8.4. FUTURE WORK 163

Seq.code: r2 -> add_o; r3 -> add_t; add_r -> r4 /* rd
r4d -> shl_o; 2 -> shl_t; shl_r -> x5 /* 5

Par. code: r2 -> ful.add_o; r3 -> ful.add_t; 2 -> fu2.shl_t*
fu2.shl_r -> r5

nn
R
w
*
~

Figure 8.6: Chaining. Results of operations executing on FU ful canbe passed
via a chaining path and a multiplexor to fu2. This makes it pos-
sible to schedule the add and shl operations in the same cycle.
The multiplexor is controlled by the trigger move; the trigger move
specifies whether the ‘left’ operand comes from the operand regis-
ter or from ful.

flexible code motions, and better scheduling heuristics.

3. Evaluating read/write RF ports. A bidirectional read /write RF port for
both read and write accesses has approximately the same costs as a unidi-
rectional read or write RF port but provides more functionality. Schedul-
ing for TTAs with read /write RF ports gives no new problems; it has al-
ready been implemented in our compiler. Initial results for the bench-
marks listed in table 6.2 and the architectural parameters listed in ta-
ble 6.1 are encouraging:

RF Ports Configuration RF Porttype Speedup over IW+1R

3 1W+2R unidirectional 1.143
3 3WR bidirectional 1.344
4 2W+2R unidirectional 1.341
4 4WR bidirectional 1.413

4. Investigating multicasting. We have performed initial experiments to
quantify the potential benefit of multicasting and we have briefly de-
scribed how multicasts can be incorporated in the scheduler. However,
several questions regarding multicasts are not answered, such as which
multicasts are required, how does it affect guarded execution, how does
it affect the move bus assignment, and is it cost effective.

164

CHAPTER 8. CONCLUSIONS

I operation slot 1 | operation slot 2 I I operation slot N I
T

Lopcode I srcreg. 1 l src port 1 J srcreg. 2 I src port 2 I dst. reg. l dst port I

Figure 8.7: Instruction format of an OTA with controllable RF access

5. Investigating chaining. Chaining refers to passing data between flow

dependent operations without latching it in a register. The goal is to re-
duce the latency of chains of flow dependent operations. For example,
two single cycle flow dependent operations can be scheduled in the same
cycle if the time to do both operations after each other is less than the
cycle time. Figure 8.6 explains how chaining might be implemented in
TTAs. So far, chaining has been used by the high-level synthesis commu-
nity [41,87] and for dynamically scheduled superscalar processors [146,
186], but not for statically scheduled VLIWs.

. Enhancing the design space exploration tool. Including cache param-

eters, code size, and real-time aspects makes the exploration tool more
valuable.

. Providing compiler feedback. Feedback about resource utilization, crit-

ical paths, and ambiguous memory references in a readable form can
help the user to rewrite his/her application in order to improve ex-
ploitable ILP.

. Investigating a best-of-both-worlds architecture. Figure 8.7 shows the

instruction format of an OTA where each register specifier is accom-
panied with an RF port specifier. This specifier indicates the RF port
through which the register should be accessed. A port specifier belong-
ing to a register operand contains a null value if the operand does not
need an RF access because it is bypassed. Similarly, a port specifier be-
longing to a register result contains a null value if it does not need an RF
access because the write back is dead. Such an architecture has an RF port
requirement very close to the RF port requirement of a TTA. The major
reasons that TTAs have a lower RF port requirement (average number of
register operands per operation, bypassing, dead write backs, and socket
sharing; see table 6.5) hold for this architecture as well. However it does
not suffer from bypass conflicts and generating code for it is not signifi-
cantly more complex than generating code for traditional OTAs.

Bibliography

[1] ABNOUS, A., AND BAGHERZADEH, N. Architectural Design and Analysis of a
VLIW Processor. Tech. Rep. UCIICS-TR-92-79, University of California at Irvine,
Information and Computer Science Department, Irvine, CA, 92717, July 1992.

[2] ABRAHAM, S. G., ET AL. Predictability of Load/Store Instruction Latencies. In
Proceedings of the 26th Annual International Workshop on Microprogramming (Austin,
Texas, Dec. 1993), pp. 139-152.

[3] AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compilers: Principles, Techniques and
Tools. Addison-Wesley Series in Computer Science. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1985.

[4] AHUJA, P. S., CLARK, D. W., AND ROGERS, A. The Performance Impact of
Incomplete Bypassing in Processor Pipelines. In Proceedings of the 28th Annual
International Workshop on Microprogramming (Ann Arbor, Michigan, Nov. 1995),
pp. 36-45.

[5] AHuja, R. K., MAGNANTI, T. L., AND ORLIN,]. B. Network Flows: Theory, Algo-
rithms, and Applications. Prentice Hall, 1993.
[6] AIKEN, A., AND NICOLAU, A. Perfect Pipelining: A New Loop Parallelization

Technique. Tech. rep., Cornell University, Department of Computer Science, Cor-
nell University, Ithaca, NY 14853, USA, Oct. 1987.

[7]1 AIKEN, A., AND NICOLAU, A. Optimal Loop Parallelization. In Proceedings of the
SIGPLAN'88 conference on Programming Language Design and Implementation (At-
lanta, Georgia, June 1988), pp. 308-317.

(8] ALLAN, V. H., JONEs, R. B, LEE, R. M., AND ALLAN, S.]. Software Pipelining.
ACM Computing Surveys 27, 3 (Sept. 1995).

[9] ALLAN, V. H., RAJAGOPALAN, M., AND LEE, R. M. Software Pipelining: Petri
Net Pacemaker. In Proceedings of the IFIP Working Conference on Architectures and
Compilation Techniques for Fine and Medium Grain Parallelism (Orlando, Florida,
Jan. 1993).

[10] ALLEN,]. R., ET AL. Conversion of Control Dependence to Data Dependence.
In Proceedings of the 10th ACM Symposium on Principles of Programming Languages
(Jan. 1983), pp. 177-189.

{11] ALPERT, D., AND AVNON, D. Architecture of the Pentium Microprocessor. IEEE
Micro 13, 3 (June 1993).

165

166 BIBLIOGRAFPHY

[12] ALVERSON, R., ET AL. The Tera Computer System. In Proceedings of the 1990
International Conference on Supercomputing (Juny 1990).

[13] AMBROSCH, W., ET AL. Dependence-Conscious Global Register Allocation. In
Programming Languages and System Architectures (Zirich, 1994), J. Gutknecht, Ed.,
Springer LNCS 782, pp. 125~136.

[14] AM29000 32-bit Streamlined Instruction Processor. Sunnyvale, California, Feb.
1988.

[15] ANANTHA, K., AND LONG, F. Code Compaction for Parallel Architectures. Soft-
ware Practice & Experience 20, 6 (June 1990).

[16] ANDO, H., ET AL. Unconstrained Speculative Execution with Predicated State
Buffering. In Proceedings of the 22nd Annual International Symposium on Computer
Architecture (Santa Margherita Ligure, Italy, June 1995), pp. 126-137.

[17] ANDREWS, K., AND SAND, D. Migrating a CISC Computer Family onto RISC via
Object Code Translation. In Proceedings of the Fifth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (Boston, Mas-
sachusetts, 1992}, pp. 213-222.

[18] ATHANAS, P. M., AND SILVERMAN, H. F. Processor Reconfiguration Through
Instruction-Set Metamorphosis. IEEE Computer (Mar. 1993), 11-18.

[19] BAKER, B. S. An Algorithm for Structuring Flow Graphs. Journal of the ACM 24,
1 (Jan. 1977), 98-120.

[20] BAKER, K. R., BROWN, A. D., AND CURRIE, A. J. Optimization Efficiency in
Behavioral Synthesis. IEE Proceedings — Circuits, Devices and Systems 141, 5 (1994),
399-406.

[21] BALL, T., AND LARUS, J. R. Branch Prediction for Free. In Proceedings of the
SIGPLAN "93 Conference on Programming Language Design and Implementation (June
1993}, pp. 300-313.

[22] BANERJEE, U. Dependence Analysis for Supercomputing. The Kluwer International
Series in Engineering and Computer Science. Kluwer Academic Publishers, Nor-
well, Massachusetts, 1988.

[23] BANNON, P., AND KELLER, J. Internal Architecture of Alpha 21164 Microproces-
sor. In Proceedings of COMPCON 95 (1995), pp. 79-87.

[24] BEATY, S.]. Genetic Algorithms and Instruction Scheduling. In Proceedings of
the 24th Annual International Workshop on Microprogramming (Albuquerque, New
Mexico, Nov. 1991), pp. 206-211.

[25] BEcCK, G. R., YEN, D. W. L., AND ANDERSON, T. L. The Cydra 5 Minisuper-
computer: Architecture and Implementation. The Journal of Supercomputing 7,1/2
(May 1993), 143~180.

[26] BELLMAN, R. On a Routing Problem. Quaterly of Applied Mathematics 1,16 (1958),
87-90.

[27] BERNSTEIN, D., AND COHEN, D. Dynamic Memory Disambiguation for Array
References. In Proceedings of the 27th Annual International Workshop on Micropro-
gramming (San Jose, California, Nov. 1994), pp. 105-111.

BIBLIOGRAPHY 167

[28] BERNSTEIN, D., COHEN, D., AND KrRAWCZYK, H. Code Duplication: An Assist
for Global Instruction Scheduling. In Proceedings of the 24th Annual International
Workshop on Microprogramming (Albuquerque, New Mexico, Nov. 1991), pp. 103
113.

[29] BERNSTEIN, D., AND RODEY, M. Global Instruction Scheduling for Superscalar
Machines. In Proceedings of the SIGPLAN ‘91 Conference on Programming Language
Design and Implementation (June 1991), pp. 241-255.

[30] BERNSTEIN, D., AND RODEY, M. Proving Safety of Speculative Load Instructions

at Compile Time. In Proceedings of the Fourth European Symposium on Programming
(1992), pp. 344-354.

[31] BERNSTEIN, D., RODEY, M., AND GERTNER, I. On the Complexity of Scheduling
Problems for Parallel /Pipelined Machines. IEEE Transactions on Computers 38, 9
(Sept. 1989), 1308-1313.

[32] BoscH, J. G., ET AL. Real-Time Frame-to-Frame Automatic Contour Detection
on Echocardiograms. In Proceedings of Computers in Cardiology (1994).

[33] BRADLEE, D. G., EGGERS, S. J., AND HENRY, R. R. Integrating Register alloca-
tion and instruction scheduling for RISCs. In Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems (Santa Clara, California, Apr. 1991), pp. 122-131.

[34] BRADLEE, D. G., HENRY, R. R., AND EGGERS, S. J. The Marion System for Re-
targetable Instruction Scheduling. In Proceedings of the SIGPLAN ‘91 Conference
on Programming Language Design and Implementation (Toronto, Ontatrio, Canada,
June 1991), pp. 229-240.

[35] BRAYTON, R., AND SPENCE, R. Sensitivity and Optimization. Elsevier, 1980.

[36] BRETERNITZ, JR., M., AND SHEN, J. P. Architecture Synthesis of High-
Performance Application-Specific Processors. In Proceedings of the 27th Design Au-
tomation Conference (June 1990).

[37] BRETERNITZ, JR., M., AND SHEN, . P. Implementation Optimization Techniques
for Architecture Synthesis of Application-Specific Processors. In Proceedings of
the 24th Annual International Workshop on Microprogramming (Albuquerque, New
Mexico, Nov. 1991), pp. 114-123.

[38] BREWER, T. A Highly Scalable System Utilizing up to 128 PA-RISC Processors.
In Proceedings of COMPCON ‘95 (1995).

[39] BRIGGS, P. Register Allocation via Graph Coloring. PhD thesis, Department of Com-
puter Science, Rice University, Houston, Texas, Apr. 1992.

[40] CAMPOSANO, R., AND WILBERG, J. Embedded System Design. Tech. rep., GMD,
Germany, 1993.

[41] CAMPOSANO, R., AND WOLF, W., Eds. High-Level VLSI Synthesis. Kluwer Aca-
demic Publishers, 1991.

[42] CAPITANIO, A., DUTT, N., AND NICOLUA, A. Partitioned Register Files for
VLIWSs: A Preliminary Analysis of Tradeoffs. In Proceedings of the 25th Annual In-
ternational Workshop on Microprogramming (Portland, Oregon, Dec. 1992), pp. 292-
300.

168 BIBLIOGRAPHY

[43] CARR, S., DING, C., AND SWEANY, P. Improving Software Pipelining With
Unroll-and-Jam. Tech. Rep. May, Michigan Technological University, Depart-
ment of Computer Science, 1995.

[44] CASE, B. ARM Architecture Offers High Code Density. Microprocessor Report
(Dec. 1991).

[45] CasE, B. Philips Hopes to Displace DSPs with VLIWSs. Micropracessor Report (Dec.
1994).

[46] CHAITIN, G.]. Register Allocation & Spilling Via Graph Coloring. In Proceedings
of the SIGPLAN ’82 Conference on Programming Language Design and Implementation
(June 1982), pp. 201-207.

[47) CHANG, P. P, ET AL. The Importance of Prepass Code Scheduling for Super-
scalar and Superpiplined Processors. IEEE Transactions on Computers 44, 3 (Mar.
1995), 353-370.

[48] CHEN, W. Y., ET AL. Tolerating Data Access Latency with Register Preloading.
In Proceedings of the 1992 International Conference on Supercomputing (July 1992),
pp- 104-113.

[49] CHoU, H.-C., AND CHUNG, C.-P. An Optimal Instruction Scheduler for Super-
scalar Processor. IEEE Transactions on Parallel and Distributed Systems 6, 3 (Mar.
1995), 303-313.

[50] CoHN, R., GROSs, T., LAM, M., AND TSENG, P. S. Architecture and Compiler
Tradeoffs for a Long Instruction Word Microprocessor. In Proceedings of the Third
International Conference on Architectural Support for Programming Languages and Op-
erating Systems (Boston, Massachusetts, Apr. 1989), pp. 2-14.

[51] CoLwELL, R. P., ET AL. A VLIW Architecture for a Trace Scheduling Compiler.
In Proceedings of the Second International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Oct. 1987), ACM, pp. 180-192.

{52] CONTE, T. M., MENEZES, K. N. P., AND SATHAYE, S. A. A Technique to Deter-
mine Power-Efficient, High-Performance Superscalar Processors. In Proceedings
of the 28th Hawaii International Conference on System Sciences (Maui, Hawaii, Jan.
1995), vol. 1, pp. 324-333.

[53] CONTE, T. M., AND SATHAYE, S. W. Dynamic Rescheduling: A Technique for
Object Code Compatibility in VLIW Architectures. In Proceedings of the 28th
Annual International Workshop on Microprogramming (Ann Arbor, Michigan, Nov.
1995), pp. 208-218.

[54] CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. Introduction to Algorithms.
The MIT Press, Cambridge, Massachusetts, 1992.

[55] CorPORAAL, H. MOVE32INT, Architecture and Programmer’s Reference Man-
ual. Tech. Rep. 1-68340-44-(1992)01, Delft University of Technology, Department
of Electrical Engineering, The Netherlands, Jan. 1992.

[56] CORPORAAL, H. Transport Triggered Architectures: Design and Evaluation. PhD the-
sis, Department of Electrical Engineering, Delft University of Technology, Delft,
The Netherlands, 1995.

[57] CORPORAAL, H., AND HOOGERBRUGGE, J. Code Generation for Transport Trig-
gered Architectures. In Code Generation for Embedded Processors, G. Goossens and
P. Marwedel, Eds. Kluwer Academic Publishers, 1995, ch. 14, pp. 240-259.

BIBLIOGRAPHY 169

[58] CORPORAAL, H., AND LAMBERTS, R. TTA processor synthesis. In Proceedings of
the First Annual Conference of the Advanced School for Computing and Imaging (Hei-
jen, The Netherlands, May 1995), . van Katwijk, J. J. Gerbrands, M. R. van Steen,
and J. F. M. Tonino, Eds.

[59] CORPORAAL, H., AND MULDER, H. MOVE: A Framework for High-
Performance Processor Design. In Proceedings of Supercomputing-91, Albuquerque
(Nov. 1991), pp. 692-701.

[60] CORPORAAL, H., MULDER, H., AND SADINSKY, I. Evaluation of Transport Trig-
gered Architectures. Tech. rep., Delft University of Technology, Department of
Electrical Engineering, The Netherlands, Nov. 1991.

[61] CORPORAAL, H., AND VAN DER AREND, P. MOVE32INT, a Sea of Gates Real-
ization of a High Performance Transport Triggered Architecture. Microprocessing
and Microprogramming 38 (Sept. 1993), 53-60.

[62] DE GLORIA, A., FARABOSCHI, P., AND OLIVIERI, M. A Non-Deterministic
Scheduler for a Software Pipelining Compiler. In Proceedings of the 25th Annual In-
ternational Workshop on Microprogramming (Portland, Oregon, Dec. 1992), pp. 41—
44.

[63] DE MICHELI, G. Hardware-Software Codesign. IEEE Micro (Aug. 1994), 9-16.
[64] DEMICHELI, G. Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[65] DEHNERT,].C., Hsu, P. Y. T., AND BRATT, . P. Overlapped Loop Support in the
Cydra5. In Proceedings of the Third International Conference on Architectural Support
for Programming Languages and Operating Systems (Boston, Massachusetts, 1989),
pp- 26-38.

[66] DEHNERT, J. C., AND TOWLE, R. A. Compiling for the Cydra 5. The Journal of
Supercomputing 7, 1/2 (May 1993), 181-228.

[67] DEUTSCH, A. Interprocedural May-Alias Analysis for Pointers: Beyond k-
Limiting. In Proceedings of the ACM SIGPLAN 94 Conference on Programming Lan-
guage Design and Implementation (June 1994), pp. 230-241.

[68] DOBBERPUHL,D. W., ET AL. A 200-MHz 64-b Dual-Issue CMOS Microprocessor.
IEEE Journal of Solid-State Circuits 27, 11 (Nov. 1992).

[69] DOLAN, A., AND ALDOUS,]. Networks and Algorithms: An Introductory Approach.
John Wiley and Sons, 1993.

[70] EscioGLu, K. A Compilation Technique for Software Pipelining of Loops with
Conditional Jumps. In Proceedings of the 20th Annual International Workshop on Mi-
croprogramming (Dec. 1987).

{71] EBcioGLu, K. Some Design Ideas for a VLIW Architecture for Sequential Na-
tured Software. In Proceedings of the IFIP WG 10.3 Working Conference on Parallel
Processing (Pisa, Italy, Apr. 1988), pp. 1-21.

[72] EBcioGLy, K., AND NAKATANI, T. A New Compilation Technique for Paralleliz-
ing Loops with Unpredictable Branches on a VLIW Architecture. In Proceedings
of the Second Workshop on Programming Languages and Compilers for Parallel Com-
puting (University of Illinois at Urbana-Champaign, 1989).

[73] EICHENBERGER, A. E., AND DAVIDSON, E. S. Register Allocation for Predicated
Code. In Proceedings of the 28th Annual International Workshop on Microprogram-
ming (Ann Arbor, Michigan, Nov. 1995), pp. 180-191.

170 BIBLIOGRAPHY

[74] ELLIs, J. R. Bulldog: A Compiler for VLIW Architectures. ACM Doctoral Disserta-
tion Awards. MIT Press, Cambridge, Massachusetts, 1986.

[75] EMBREE, P. M. C Language Algorithms for Real-Time DSP. Prentice Hall, 1995.

[76] ERNST, R., HENKEL, J., AND BENNER, T. Hardware-Software Cosynthesis for
Microcontrollers. IEEE Design & Test of Computers (Dec. 1993), 64-75.

[77] ERTL, M., AND KRALL, A. Instruction Scheduling for Complex Pipelines. In
Proceedings of the International Workshop on Compiler Construction (Paderborn, Ger-
many, Oct. 1992).

[78] ERTL, M., ANDKRALL, A. Delayed Exceptions — Speculative Execution of Trap-
ping Instructions. In Proceedings of the International Conference on Compiler Con-
struction (Edinburgh, Scotland, Apr. 1994), pp. 158-171.

[79] FISHER, J. A. Trace Scheduling: A Technique for Global Microcode Compaction.
IEEE Transactions on Computers C-30, 7 (July 1981), 478-490.

[80] FISHER, J. A., ET AL. Parallel Processing: A Smart Compiler and a Dumb Ma-
chine. In Proceedings of the ACM SIGPLAN ’84 Symposium on Compiler Construction
(Montreal, Canada, June 1984), pp. 37-47.

[81) FISHER, J. A., AND FREUDENBERGER, S. M. Predicting Conditional Branch Di-
rections From Previous Runs of a Program. In Proceedings of the Fifth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems (Boston, Massachusetts, Oct. 1992), ACM, pp. 85-95.

[82] FISHER,]. A., ANDRAU, B. R. Instruction-Level Parallel Processing. Science 253,
5025 (Sept. 1992), 1233-1241.

[83] FORD,JR.,L.R., AND FULKERSON, D. R. Flows in Networks. Princeton University
Press, 1962.

[84] FRANKLIN, M. The Multiscalar Architecture. PhD thesis, Computer Sciences De-
partment, University of Wisconsin-Madison, Madison, W1, 53706, 1993.

[85] FRANKLIN, M., AND SOH], G. S. Register Traffic Analysis for Streamlining Inter-
Operation Communication in Fine-Grain Parallel Processors. In Proceedings of the
25th Annual International Workshop on Microprogramming (Portland, Oregon, Dec.
1992), pp. 236-245.

(86] FREUDENBERGER, S. M., AND RUTTENBERG, J. C. Place Ordering of Register Al-
location and Instruction Scheduling. In Code Generation-Concepts, Tools and Tech-
niques (1991).

[87] Gaski, D., DUTT, N., WU, A., AND LIN, S. High-Level Synthesis; Introduction to
Chip and System Design. Kluwer Academic Publishers, 1992.

[88] GALLAGHER, D. M. Memory Disambiguation to Facilitate Instruction-Level Paral-
lelism Compilation. PhD thesis, Department of Electrical and Computer Engineer-
ing, University of Illinois at Urbana-Champaign, 1995.

[89] GALLAGHER, D. M., ET AL. Dynamic Memory Disambiguation Using the Mem-
ory Conflict Buffer. In Proceedings of the Seventh International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (San Jose, Cali-
fornia, Oct. 1994), ACM, pp. 183-195.

[90] GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and company, New York, 1979.

BIBLIOGRAPHY 171

[91] GOFF, G., KENNEDY, K., AND TSENG, C.-W. Practical Dependence Testing. In
Proceedings of the SIGPLAN "91 Conference on Programming Language Design and Im-
plementation (June 1991), pp. 15-29.

[92] GOODMAN,]. R., AND Hsu, W.-C. Code Scheduling and Register Allocation in
Large Basic Blocks. In Proceedings of the International Conference on Supercomputing
(St. Malo, France, July 1988), pp. 442-452.

[93] GOVINDARAJAN, R., ALTMAN, E. R., AND GAO, G. R. Minimizing Register Re-
quirements under Resource-Constrained Rate-Optimal Software Pipelining. In
Proceedings of the 27th Annual International Workshop on Microprogramming (San
Jose, California, Nov. 1994), pp. 85-94.

[94] GREENLEY, D., ET AL. UltraSPARC: The Next Generation Superscalar 64-bit
SPARC. In Proceedings of COMPCON ‘95 (1995), pp. 442-451.

[95] GRIESEMER, R. Scheduling Instructions by Direct Placement. In Proceedings of the
International Workshop on Compiler Construction (Paderborn, Germany, Oct. 1992).

[96] GUPTA, R., AND SOFFA, M. Region Scheduling: An Approach for Detecting and
Redistributing Parallelism. IEEE Transactions on Software Engineering 16, 4 (Apr.
1990), 421-431.

[97] GuptA,R. K., COELHO]R., C. N., AND DE MICHELI, G. Program Implementa-
tion Schemes for Hardware-Software Systems. IEEE Computer (Jan. 1994), 48-55.

[98] GuPTA, R. K., AND DE MICHELI, G. Hardware-Software Cosynthesis for Digital
Systems. IEEE Design & Test of Computers (Sept. 1993), 29-41.

[99] HACKING, 1. Representing and Intervening, Introductory Topics in the Philosophy of
Natural Science. Cambridge University Press, Cambridge, 1983.

[100] HELLERMAN, H. On the Average Speed of a Multiple-Module Storage System.
IEEE Transactions on Computers 15, 8 (Aug. 1966), 670.

[101] HENDREN, L. J., HUMMEL, J., AND NICOLAU, A. Abstractions for Recursive
Pointer Data Structures: Improving the Analysis of Imperative Programs. In Pro-
ceedings of the ACM SIGPLAN ’92 Conference on Programming Language Design and
Implementation (July 1992), pp. 249-260.

[102] HENNESSY, J. L., AND GROSS, T. Postpass Code Optimization of Pipeline Con-
straints. Transactions on Programming Languages and Systems 5, 3 (July 1983), 422~
448.

[103] HENNESSY, J. L., AND PATTERSON, D. A. Computer Architecture, a Quantitative
Approach. Morgan Kaufmann publishers, 1990.

[104] HOOGERBRUGGE, J., AND CORPORAAL, H. Comparing Software Pipelining for
an Operation Triggered and a Transport Triggered Architecture. In Proceedings
of the International Workshop on Compiler Construction (Paderborn, Germany, Oct.
1992), pp. 219-228.

[105] HOOGERBRUGGE, J., AND CORPORAAL, H. Register File Port Requirements of
Transport Triggered Architectures. In Proceedings of the 27th Annual International
Workshop on Microprogramming (San Jose, California, Nov. 1994), pp. 191~195.

[106] HOOGERBRUGGE, J., AND CORPORAAL, H. Transport Triggering vs. Operation
Triggering. In Proceedings of the International Conference on Compiler Construction
(Edinburgh, Scotland, Apr. 1994).

172 BIBLIOGRAPHY

[107] HOOGERBRUGGE, J., AND CORPORAAL, H. Automatic Synthesis of Transport
Triggered Processors. In Proceedings of the First Annual Conference of the Advanced
School for Computing and Imaging (Heijen, The Netherlands, May 1995), J. van
Katwijk, J. J. Gerbrands, M. R. van Steen, and J. F. M. Tonino, Eds.

[108] HOOGERBRUGGE, J., AND CORPORAAL, H. Resource Assignment in a Compiler
for Transport Triggered Architectures. In submitted for publication (1996).

[109] HOOGERBRUGGE, J., CORPORAAL, H., AND MULDER, H. Software Pipelining
for Transport Triggered Architectures. In Proceedings of the 24th Annual Inter-
national Workshop on Microprogramming (Albuquerque, New Mexico, Nov. 1991),
pp. 74-81.

[110] Hsu, P. Y. T. Designing the TEP Microprocessor. IEEE Micro 14, 2 (Apr. 1994),
23-33.

{111] Hsu, P. Y. T., AND DAVIDSON, E. S. Highly Concurrent Scalar Processing. In Pro-
ceedings of the 13th Annual International Symposium on Computer Architecture (June
1986), pp. 386-395.

[112] HUANG, A., AND SLAVENBURG, G. Speculative Disambiguation: A Compila-
tion Technique for Dynamic Disambiguation. In Proceedings of the 21th Annual
International Symposium on Computer Architecture (Apr. 1994), pp. 200-210.

[113] HUANG, 1. Co-Synthesis of Instruction Sets and Microarchitectures. PhD thesis,
Advanced Computer Architecture Laboratory, University of Southern California,
1994.

[114) HUFF, R. A. Lifetime-Sensitive Modulo Scheduling. In Proceedings of the SIG-
PLAN 93 Conference on Programming Language Design and Implementation (June
1993), pp. 258-267.

[115] HUMMEL, J., HENDREN, L. J., AND NICOLAU, A. A General Data Dependence
Test for Dynamic, Pointer-Based Data Structures. In Proceedings of the ACM SIG-
PLAN ‘94 Conference on Programming Language Design and Implementation (June
1994), pp. 218-229.

[116] HUNT, D. Advanced Performance Features of the 64-bit PA-8000. In Proceedings
of COMPCON ‘95 (1995), pp. 123~128.

[117] Hwu, W. W, ET AL. The Superblock: An Effective Technique for VLIW and Su-
perscalar Compilation. The Journal of Supercomputing 7,1/2 (May 1993), 229-249.

[118] JAIN, S. Circular Scheduling: A New Technique to Perform Software Pipelining.
In Proceedings of the SIGPLAN 91 Conference on Programming Language Design and
Implementation (June 1991), pp. 219-228.

[119] JANSSEN, J., AND CORPORAAL, H. Partitioned Register Files for TTAs. In Pro-
ceedings of the 28th Annual International Workshop on Microprogramming (Ann Ar-
bor, Michigan, Nov. 1995), pp. 303-312.

[120] JoHNSON, W. M. Superscalar Microprocessor Design. Prentice Hall, 1991.
[121] JonEs, R. B. Constrained Software Pipelining. Master’s thesis, Utah State Uni-
versity, Logan, Utah, Aug. 1991.

[122] Jourpl, N. P., AND WALL, D. W. Available Instruction-Level Parallelism for Su-
perscalar and Superpipelined Machines. In Proceedings of the Third International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems (Boston, Massachusetts, Apr. 1989), pp. 272-282.

BIBLIOGRAPHY 173

[123] KATHAIL, V., SCHLANSKER, M., AND RAU, B. HPL PlayDoh Architecture Spec-
ification: Version 1.0. Tech. Rep. HPL-93-80, Hewlett Packard Computer Systems
Laboratory, Palo Alto, CA, Feb. 1994.

[124] KERNIGHAN, B. W., AND RITCHIE, D. M. The C Programming Language, sec-
ond ed. Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[125] KESSLER, R. E., AND SCHWARZMEIER, J. L. CRAY T3D: A new dimension in
CRAY research. In Proceedings of COMPCON 93 (Feb. 1993), pp. 176-182.

[126] KIRKPATRICK, S., GELATT]JR., C. D., AND VECCHI, M. P. Optimization by Sim-
ulated Annealing. Science 220, 4598 (May 1983), 671-680.

[127] Kuck, D.]., ET AL. Dependence Graphs and Compiler Optimization. In Confer-
ence Record of the Eighth ACM Symposium on Principles of Programming Languages
(Jan. 1981), pp. 207-218.

[128] KURPANEK, G., ET AL. PA7200: A PA-RISC Processor with Integrated High Per-
formance MP Bus Interface. In Proceedings of COMPCON 94 (1994), pp. 375-382.

[129] LABROUSSE,]., AND SLAVENBURG, G. A. A 50MHz Microprocessor with a Very
Long Instruction Word Architecture. In Proceedings of ISSCC ‘90 (Feb. 1990).

[130] LABROUSSE,]., AND SLAVENBURG, G. A. CREATE-LIFE: A Modular Design Ap-
proach for High Performances ASIC’s. In Proceedings of COMPCON "90 (1990).

[131] LaMm, M. S. Software Pipelining: An Effective Scheduling Technique for VLIW
Machines. In Proceedings of the SIGPLAN ‘88 Conference on Programming Language
Design and Implementation (June 1988), pp. 318-328.

[132] LaMm, M. S. A Systolic Array Optimizing Compiler. The Kluwer International Series
in Engineering and Computer Science. Kluwer Academic Publishers, Norwell,
Massachusetts, 1989.

[133] LAM, M. S., AND WILSON, R. P. Limits of Control Flow on Parallelism. In Pro-
ceedings of the 19th International Symposium on Computer Architecture (May 1992),
pp- 46-57.

[134] LANDSKOV, D., ET AL. Local Microcode Compaction Techniques. ACM Comput-
ing Surveys 12, 3 (Sept. 1980), 261-294.

[135] LAVERY, D. M., AND Hwu, W. W. Unrolling-Based Optimizations for Modulo
Scheduling. In Proceedings of the 28th Annual International Workshop on Micropro-
gramming (Ann Arbor, Michigan, Nov. 1995), pp. 327-337.

[136] LAWLER, E. L. Combinatorial Optimization: Networks and Matroids. Saunders Col-
lege Publishing, 1976.

[137] LEE, R. L. Precision Architecture. IEEE Computer 22, 1 (Jan. 1989), 78-91.

[138] LEE, R. L. Accelerating Multimedia with Enhanced Microprocessors. IEEE Micro
15, 2 (Apr. 1995).
[139] LEvITAN, D., THOMAS, T., AND TU, P. The PowerPC 620 Microprocessor: A

High Performance Superscalar RISC Microprocessor. In Proceedings of COMP-
CON 95 (1995), pp. 285-291.

[140] LowNEY, P. G., ET AL. The Multiflow Trace Scheduling Compiler. The Journal of
Supercomputing 7, 1/2 (May 1993), 51-142.

174 BIBLIOGRAPHY

[141] MAHADEVAN, U., AND RAMAKRISHNAN, S. Instruction Scheduling over Re-
gions: A Framework for Scheduling Across Basic Blocks. In Proceedings of the In-
ternational Conference on Compiler Construction (Edinburgh, Scotland, Apr. 1994),
pp- 419-434.

[142] MAHLKE, S. A., ET AL. Compiler Code Transformations for Superscalar-Based
High-Performance Systems. In Proceedings of the 1992 International Conference on
Supercomputing (July 1992).

[143] MAHLKE,S. A, ET AL. Effective Compiler Support for Predicated Execution Us-
ing the Hyperblock. In Proceedings of the 25th Annual International Workshop on
Microprogramming (Portland, Oregon, Dec. 1992), pp. 45-54.

[144] MAHLKE, S. A., ET AL. Sentinel Scheduling for VLIW and Superscalar Proces-
sors. In Proceedings of the Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (Boston, Massachusetts, Oct. 1992),
ACM, pp. 238-247.

[145] MAHLKE, S. A., ET AL. Characterizing the Impact of Predicated Execution on
Branch Prediction. In Proceedings of the 27th Annual International Workshop on Mi-
croprogramming (San Jose, California, Nov. 1994), pp. 217-227.

[146] MALIK, N., EICKEMEYER, R. J., AND VASSILIADIS, S. Interlock Collapsing ALU
for Increased Instruction-Level Parallelism. In Proceedings of the 25th Annual In-
ternational Workshop on Microprogramming (Portland, Oregon, Dec. 1992), pp. 149-
157.

[147] MAYDAN, D. E., HENNESSY, J. L., AND LAM, M. S. Efficient and Exact Data De-
pendency Analysis. In Proceedings of the SIGPLAN "91 Conference on Programming
Language Design and Implementation (June 1991), pp. 1-14.

[148] MCFARLING, S., AND HENNESSY, J. Reducing the Cost of Branches. In Pro-
ceedings of the 13th Annual International Symposium on Computer Architecture (June
1986), pp- 396403

[149] MIRAPURI, S., WOODACRE, M., AND VASSEGHI, N. The MIPS R4000 Processor.
IEEE Micro 12, 2 (Apr. 1992), 10-22.

[150] MOON, S., AND EBCIOGLU, K. An Efficient Resource-Constrained Global
Scheduling Technique for Superscalar and VLIW Processors. In Proceedings of the
25th Annual International Workshop on Microprogramming (Portland, Oregon, Dec.
1992), pp. 55-71.

[151] MOON, S., AND EBCIOGLU, K. A Study on the Number of Memory Ports in Mul-
tiple Instruction Issue Machines. In Proceedings of the 26th Annual International
Workshop on Microprogramming (Austin, Texas, Dec. 1993), pp. 49-58.

[152] MoUDGILL, M. Implementing and Exploiting Static Speculation on Multiple Instruc-
tion Issue Processors. PhD thesis, Department of Computer Science, Cornell Uni-
versity, Ithaca, NY, 14853, Mar. 1994.

[153] MULDER,]J. M., AND PORTIER, R. J. Cost-Effective Design of Application-
Specific VLIW Processors Using the SCARCE Framework. In Proceedings of the
22nd Workshop on Microprogramming and Microarchitectures (Aug. 1989).

[154] NAKATANI, T., AND EBCIOGLU, K. “Combining” as a Compilation Technique for
VLIW Architectures. In Proceedings of the 22nd Annual International Workshop on
Microprogramming and Microarchitecture (Dublin, Ireland, Aug. 1989), pp. 43-55.

BIBLIOGRAPHY 175

[155] NICOLAU, A. Percolation Scheduling: A Parallel Compilation Technique. Tech.
Rep. TR 85-678, Cornell University, Department of Computer Science, Cornell
University, Ithaca, NY 14853, USA, May 1985.

[156] NicoLAU, A. Run-Time Disambiguation: Coping with Statically Unpredictable
Dependencies. IEEE Transactions on Computers 38, 5 (May 1989), 663~678.

[157] NICOLAU, A., AND POTASMAN, R. Incremental Tree Height Reduction for High
Level Synthesis. In Proceedings of the 28th ACM/IEEE Design Automation Conference
(San Francisco, California, June 1991), pp. 770-774.

[158] NICOLAU, A., POTASMAN, R., AND WANG, H. Register Allocation, Renaming,
and their Impact on Parallelism. Languages and Compilers for Parallel Computers,
589 (1991).

[159] NORRIS, C., AND POLLOCK, L. L. A Scheduler-Sensitive Global Register Allo-
cator. In Proceedings of the International Conference on Supercomputing (Portland,
Oregon, Nov. 1993), pp. 804-813.

[160] PARK, J. C. H., AND SCHLANSKER, M. On Predicated Execution. Tech. Rep.
HPL-91-58, Hewlett Packard Computer Systems Laboratory, Palo Alto, CA, May

1991.
[161] PEELING, N. E. ANDF Features and Benefits. Tech. rep., DRA Malvern UK;
British Crown, 1992.

[162] PINTER, S.S. Register Allocation with Instruction Scheduling: a New Approach.
In Proceedings of the SIGPLAN "93 Conference on Programming Language Design and
Implementation (June 1993), pp. 248-257.

[163] PORTIER, R.]J. GEPS: Global Enhanced Pipeline Scheduling. In Proceedings of the
Sixth Workshop Computer Systems (Delft, The Netherlands, Jan. 1993).

[164] PORTIER, R.]J. VLIW Processor Architecture Design: Exploration of the Design Space
by Means of Compilation Techniques. PhD thesis, Department of Electrical Engineer-
ing, Delft University of Technology, Delft, The Netherlands, 1996, in preparation.

[165] POTASMAN, R. Percolation-Based Compiling for Evaluation of Parallelism and hard-
ware Design Trade-Offs. PhD thesis, Department of Information and Computer
Science, University of California at Irvine, Irvine, CA, 92717, 1991.

[166] PUGH, W. The Omega Test: A Fast and Practical Integer Programming algorithm
for Dependence Analysis. In Proceedings of Supercomputing-91, Albuquerque (Nov.
1991), pp. 4-13.

[167] RAMAKRISHNAN, S. Software Pipelining in PA-RISC Compilers. Hewlett-Packard
Journal (July 1992), 39-45.

[168] RAU, B. R. Dynamically Scheduled VLIW Processors. In Proceedings of the 26th
Annual International Workshop on Microprogramming (Austin, Texas, Dec. 1993),
pp- 80-92.

[169] RAU, B. R. Iterative Modulo Scheduling: An Algorithm For Software Pipelining
Loops. In Proceedings of the 27th Annual International Workshop on Microprogram-
ming (San Jose, California, Nov. 1994).

[170] RAU, B. R., ET AL. The Cydra 5 Departmental Supercomputer; Design Philoso-
phies, Decisions and Trade-Offs. IEEE Computer (Jan. 1989), 12-35.

176 BIBLIOGRAPHY

[171] RAvy, B. R., AND FISHER, J. A. Instruction-Level Parallel Processing: History,
Overview, and Perspective. The Journal of Supercomputing 7, 1/2 (May 1993), 9-
50.

[172] RAU, B. R., AND GLAESER, C. D. Some Scheduling Techniques and an Easily
Schedulable Horizontal Architecture for High Performance Scientific Comput-
ing. In Proceedings of the 14th Annual International Workshop on Microprogramming
(Oct. 1981), pp. 183-198.

[173] RAzZDAN, R., AND SMITH, M. D. A High-Performance Microarchitecture with
Hardware-Programmable Functional Units. In Proceedings of the 27th Annual In-
ternational Workshop on Microprogramming (San Jose, California, Nov. 1994).

{174] SiTES, R. L. Alpha Architecture Reference Manual. Digital Press, Burlington, MA,
1992.

[175] SMITH,]. E., AND SoHI, G. S. The Microarchitecture of Superscalar Processors.
Proceedings of the IEEE 83, 10 (Dec. 1995).

[176] SMITH, M. D., HOROWITZ, M., AND LAM, M. S. Efficient Superscalar Perfor-
mance Through Boosting. In Proceedings of the Fifth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (Boston, Mas-
sachusetts, Oct. 1992), ACM, pp. 248-261.

[177] SoHI, G., AND FRANKLIN, M. High-Bandwidth Data Memory Systems for Su-
perscalar Processors. In Proceedings of the Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (Santa Clara,
California, 1991), pp. 53-62.

[178] SoHI, G. S., BREACH, S. E., AND VIJAYKUMAR, T. N. Multiscalar Processors.
In Proceedings of the 22nd Annual International Symposium on Computer Architecture
(June 1995), pp. 414-425.

[179] SoHI, G.S., AND VAJAPEYAM, S. Tradeoffs in Instruction Format Design for Hor-
izontal Architectures. In Proceedings of the Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Boston, Mas-
sachusetts, Apr. 1989), pp. 15-25.

[180] STALLMAN, R. M. Using and Porting GNU CC. Tech. rep., Free Software Foun-
dation, Cambridge, MA, 1988.

[181] STEENKISTE, P. The Impact of Code Density on Instruction Cache Performance.
In Proceedings of the 16th Annual International Symposium on Computer Architecture
(Jerusalem, Israel, June 1989), pp. 252-259.

(182] STEVEN,F.L., STEVEN, G. B., AND WANG, L. Using a Resource-Limited Instruc-
tion Scheduler to evaluate the iHARP Processor. IEE Proceedings — Computers and
Digital Techniques 142, 1 (1995), 23-31.

[183] STRAVERS, P. Embedded System Design. PhD thesis, Department of Electrical En-
gineering, Delft University of Technology, Delft, The Netherlands, 1994.

[184] Su, B., DING, S., WANG, J., AND X14,]. GURPR — A Method for Global Soft-
ware Pipelining. In Proceedings of the 20th Annual International Workshop on Micro-
programming (Colorado Springs, CO, Dec. 1987), pp. 97-105.

[185]} Su, B., DING, S., AND XIA, J. URPR — An Extension of URCR for Software

Pipelining. In Proceedings of the 19th Annual International Workshop on Micropro-
gramming (New York, NY, Oct. 1986), pp. 104-108.

BIBLIOGRAPHY 177

[186] SUN MICROSYSTEMS. The SuperSPARC Microprocessor, Technical White Paper.
Tech. rep., Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, CA,1992.

[187] THEOBALD, K. B., GAO, G. R., AND HENDREN, L. J. One the Limits of Program
Parallelism and its Smoothability. In Proceedings of the 25th Annual International
Workshop on Microprogramming (Portland, Oregon, Dec. 1992), pp. 10-19.

[188] THISTLE, M. R., AND SMITH, B. J. A Processor Architecture fo Horizon. In Pro-
ceedings of Supercomputing ‘88 (Orlando, Florida, Nov. 1988), pp. 35-41.

[189] TIRUMALAIL P., LEE, M., AND SCHLANSKER, M. S. Parallelization of Loops with
Exits on Pipelined Architectures. In Proceedings of Supercomputing-90 (Nov. 1990),
pp- 200-212.

[190] TouzeAU, R. F. A Fortran Compiler for the FP5-164 Scientific Computer. In Pro-
ceedings of the ACM SIGPLAN ’84 Symposium on Compiler Construction (Montreal,
Canada, June 1984), pp. 48-57.

{191] TULLSEN, D. M., EGGERS, S.]., AND LEVY, H. M. Simultaneous Multithreading:
Maximizing On-Chip Parallelism. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture (Santa Margherita Ligure, Italy, June 1995),
pp- 392-403.

[192] TYsoON, G. S. The Effects of Predicated Execution on Branch Prediction. In Pro-
ceedings of the 27th Annual International Workshop on Microprogramming (San Jose,
California, Nov. 1994), pp. 196-206.

[193] VANHOOFE, J., ET AL. High-Level Synthesis for Real Time Digital Signal Processing.
The Kluwer International Series in Engineering and Computer Science. Kluwer
Academic Publishers, 1993.

[194] VEEN, A. Dataflow Machine Architecture. ACM Computing Surveys 18, 4 (Dec.
1986), 365-396.

[195] VERBERNE, A., AND CORPORAAL, H. Towards Efficient Code Scheduling for
Transport Triggered Architectures. In Proceedings of the Fourth Workshop Computer
Systems (Amsterdam, The Netherlands, Oct. 1991), pp. 31-41.

[196] WADA, T., RAJAN, S., AND PRZYBYLSKI, S. A. An Analytical Access Time Model
for On-Chip Cache Memories. IEEE Journal of Solid-Sate Circuits 27 (Aug. 1992),
1147-1156.

[197] WALL, D. Predicting Program Behavior Using Real or Estimated Profiles. In Pro-
ceedings of the SIGPLAN "91 Conference on Programming Language Design and Imple-
mentation (Toronto, Ontatrio, Canada, June 1991), pp. 59-70.

[198) WALL, D. W. Limits of Instruction-Level Parallelism. In Proceedings of the 4th In-
ternational Conference on Architectural Support for Programming Languages and Op-
erating Systems (Apr. 1991), pp. 176-188.

[199] WARREN, H. S. Instruction Scheduling for the IBM RISC System/6000 Processor.
IBM Journal Research Development 34, 1 (Jan. 1990), 85-92.

[200] WARTER, N. J. Modulo Scheduling With Isomorphic Control Transformations. PhD
thesis, Department of Electrical and Computer Engineering, University of Illinois
at Urbana-Champaign, 1994.

[201] WARTER, N.]J., ET AL. Reverse If-Conversion. In Proceedings of the ACM SIGPLAN
’93 Conference on Program Language Design and Implementation (June 1993).

178 BIBLIOGRAPHY

[202] WARTER, N.]., HAAB, G. E., AND BOCKHAUS, J. W. Enhanced Modulo Schedul-
ing for Loops with Conditional Branches. In Proceedings of the 25th Annual Interna-
tional Workshop on Microprogramming (Portland, Oregon, Dec. 1992), pp. 170-179.

[203] WARTER-PEREZ, N. J., AND PARTAMIAN, N. Modulo Scheduling with Multi-
ple Initiation Intervals. In Proceedings of the 28th Annual International Workshop on
Microprogramming (Ann Arbor, Michigan, Nov. 1995), pp. 111-118.

[204] WEAVER, D., AND GERMOND, T. The SPARC Architecture Manual, Version 9. Pren-
tice Hall, 1994.

[205] WOLF, M.E.,ANDLAM, M.S. A Loop Transformation Theory and an Algorithm
to Maximize Parallelism. IEEE Transactions on Parallel and Distributed Systems 2, 4
(Oct. 1991), 452-471.

[206] WOLFE, A., AND BOLEYN, R. Two-Ported Cache Alternatives for Superscalar
Processors. In Proceedings of the 26th Annual International Workshop on Micropro-
gramming (Austin, Texas, Dec. 1993), pp. 41-48.

[207] WOLFE, A., AND CHANIN, A. Executing Compressed Programs on an Embed-
ded RISC Architecture. In Proceedings of the 25th Annual International Workshop on
Microprogramming (Portland, Oregon, Dec. 1992), pp. 81-91.

[208] WOLFE, A., AND CHEN, J. P. A Variable Instruction Stream Extension to the
VLIW Architecture. In Proceedings of the 4th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (Apr. 1991), pp. 2-
14.

[209] WOLEE, M. Optimizing Supercompilers for Supercomputers. MIT Press, Cambridge,
Massachusetts, 1989.

[210] WOLFE, M. Beyond Induction Variables. In ACM SIGPLAN 92 Conference on
Programming Language Design and Implementation (San Francisco, California, June
1992), pp. 162-174.

[211] WooD, G. Global Optimization of Microprograms through Modular Control
Constructs. In Proceedings of the 11nd Annual International Workshop on Micropro-
gramming and Microarchitecture (1979), pp. 1-6.

[212] WU, Y., ANDLARUS,J.R. Static Branch Frequency and Program Analysis. In Pro-
ceedings of the 27th Annual International Workshop on Microprogramming (San Jose,
California, Nov. 1994), pp. 1-11.

[213] ZiMA, H., AND CHAPMAN, B. Supercompilers for Parallel and Vector Comput-
ers. ACM Press Frontier Series. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1990.

Partial Loop Unrolling

There are many loops that are too large for unrolling but where the frequently
taken paths through the loop body are too short to contain sufficient ILF. In
chapter 6 we proposed partial loop unrolling as a technique to deal with this
problem. In this appendix we describe partial loop unrolling and report on an

experiment that measures its effectiveness!.

As far as we know, partial loop unrolling or a similar technique has not been
proposed before.

A.1 Motivating Example

A motivating example for partial loop unrolling is shown in figure A.1. This
code computes the first size primes by means of the well-known sieve of Er-
atosthenes. Since the probability that a number n is prime is approximately
Inn/n for large n [54], the frequently taken path through the outer loop consists
of testing is_prime[1],incrementing i, and testing i < size. This path con-
tains two basic blocks with six operations, which is too short to contain a suffi-
cient amount of ILP. Full unrolling of the outer loop requires duplication of the
inner loop. Partial unrolling makes it possible to unroll the outer loop without
duplication of the inner loop. This reduces code size expansion and/or allows
for a larger unrolling factor of the outer loop in order to expose more paral-
lelism.

1The reason that partial loop unrolling is described in this appendix is that we developed it
when the first six chapters of this thesis were already written. During the development of the back-
end we considered it several times but we thought that it would not be possible without generating
irreducible code.

179

180 APPENDIX A. PARTIAL LOOP UNROLLING

memset (is_prime, TRUE, sizeof (is_prime));

for(i = 2; i < size; i++) {
if (is_primeli]) {
for(j =2 * i; j < size; j += i)
is_prime([j) = FALSE;

Figure A.1: The sieve of Eratosthenes to compute primes

A.2 The Algorithm

Partial loop unrolling duplicates every basic block belonging to the loop being
unrolled a number of times that depends on its size and the fraction of the op-
eration count spend in it. Our implementation uses the following formula to
determine the duplication count N, of basic block b:

250 X a X dp

Ny = min{[7 X o

1,5} (A.1)
where a is a user specified parameter that controls the aggressiveness (default
value 10), d; the dynamic operation count of b, d; the total dynamic operation
count of the whole application, and s, the static operation count of b. Next, the
found duplication counts are decremented until the following inequality holds
for every basic block:

Ny < max{N, | pis a predecessor of b belonging to the same loop} (A.2)

The reason for this inequality is to prevent generation of loops with basic
blocks without predecessors (dead code) that have to be removed afterwards.
Figure A.2 illustrates the actual unrolling. In this example Ny = Ng = Np =
Nr = 3, N¢c = 2,and Ng = 1. The loop is unrolled max; N, times which
is three times for the example loop. The minor loop bodies? are numbered as
shown in figure A.2b, i.e., from the ‘bottom’ of the major loop body to the ‘top’.
A basic block b is omitted in minor loop body N if N > N;. These basic blocks
are shown as ‘phantom’ basic blocks in figure A.2b. Next, control flow edges
arriving at a phantom basic block b are redirected to the ‘real’ copy of b in minor
loop body N;. For example, the control flow edge from A" to E'” is redirected
to E' since E"" is a phantom basic block and Ng = 1.

The final step of partial unrolling is updating the profiling data. This is done as
follows. First, we assume that the loop header (4") of the unrolled loop is exe-
cuted T times. Next, we compute the execution counts of the other basic blocks

2The major loop body corresponds to the loop body of the unrolled loop, and a minor loop body
corresponds to theloop body of the original loop. In this example, a major loop body contains three
minor loop bodies.

A.2. THE ALGORITHM 181

Minor #3 Minor #3

Phantom basic block

(a) Original loop (b) Partial loop unrolling (c) Full loop unrolling

Figure A.2: Partial and full loop unrolling

by traversing the control flow graph in a topological order (ignoring backward
control flow edges) and using successor probabilities. For example, if B" is ex-
ecuted 0.97 times and the probability that D is executed after B equals 0.5, then
the execution count of D" is 0.45T". Next, we sum these execution counts of all
copies of the original loop header (A, A", and A™), let us say 2.6T times, and
compare this with the execution count of the loop header of the original loop
(A), let us say 1000 times. This gives us the value of T'. For the example val-
ues this is T' = 1000/2.6 ~ 385. Finally, we substitute the found value for T’
in execution counts expressed in T computed in the first step. Notice that up-
dating the profiling data requires approximation. It is assumed that successor
probabilities are independent of the loop iteration.

There are also some disadvantages to partial unrolling. First the trip count of
a partially unrolled loop depends on the paths taken trough the loop body.
This makes it impossible to remove exit control flow edges when the compiler
has information about the trip count of the original loop. For example, if the
trip count of the original loop in figure A.2a is 3n where n > 0, it is possi-

182 APPENDIX A. PARTIAL LOOP UNROLLING

Cycle count decrease due Code expansion (moves)

Benchmark to partial unrolling (%) Full unrolling Partial unrolling
bison 9.5 3,555 2,208
compress 9.8 296 1,194
cpp 6.1 7,698 2,829
djpeg 5.9 228 3,585
expand 17.2 144 720
flex 52 3,979 2,137
gzip 27.2 564 689
mpeg_play 9.6 270 6,034
music 10.6 776 424
sed 79 960 405
sort 9.2 1,366 1,299
sum 8.0 220 208
virtex 5.8 2,515 3,849

Table A.1: Partial loop unrolling results

ble to remove two exit control flow edges in the fully unrolled loop shown in
figure A.2c. This is not possible for the partially unrolled loop shown in fig-
ure A.2b. A second disadvantage related to this is that induction variables may
disappear which may reduce the performance of the memory reference disam-
biguator. A more general induction variable definition is required to deal with
this problem [210].

A.3 Evaluation

We compiled the benchmarks listed in table 6.2 for the architecture described
in table 6.1 with full and partial loop unrolling. Table A.1 presents the results.
Only the benchmarks with a cycle count decrease of more than 5% are listed.
None of the benchmarks exhibited a cycle count increase. The cycle count de-
creases by 4.9% on average while the code size expansion remains approxi-
mately the same on average although changes in the amount of code duplica-
tion fluctuate heavily. This is due to that (1) some loops that are not unrolled
by full unrolling are unrolled by partial unrolling and (2) some loops that are
unrolled by full unrolling are unrolled with less code duplication by partial
unrolling.

Samenvatting

Code Generatie
voor
Transport Triggered Architectures

Recentelijk (1991) is een nieuwe klasse van instruction level parallel (ILP)
computer architecturen geintroduceerd, genaamd transport triggered architec-
tures (TTA’s), met gunstige eigenschappen op het gebied van schaalbaarheid,
ontwerpcomplexiteit, haalbare klokfrequenties en prijs-prestatie verhouding.
Deze eigenschappen worden voornamelijk verkregen door het overhevelen
van complexiteit van de hardware naar de compiler. De vraag is of de com-
piler deze complexiteit aan kan. Verder is het wenselijk te weten hoe groot
de voordelen van TTA’s zijn en of er ook nadelen zijn. Dit proefschrift tracht
deze vragen te beantwoorden door een compiler voor TTA’s te ontwikkelen en
experimenten met deze compiler uit te voeren die eigenschappen van TTA's
kwantificeren.

De ontwikkelde compiler is gebaseerd op de GNU C/C++/Fortran compiler
en bevat de volgende technieken die noodzakelijk zijn om een aanzienlijke
hoeveelheid ILP te kunnen exploiteren:

1. Extended basic block scheduling: het schedulen van operaties over basic
block grenzen om ILP tussen basic blocks te exploiteren. De scheduler
verplaatst operaties tussen basic blocks die tot de zelfde region behoren,
waarbij een region gedefinieerd is als een maximale acyclische control flow
graph met één entry basic block.

2. Software pipelining: het schedulen van operaties over loop iteratie gren-
zen om ILP tussen loop iteraties te exploiteren. Het gebruikte software
pipelining algoritme is gebaseerd op modulo scheduling.

3. Speculative execution: het schedulen van operaties voor operaties waar-
van zij control flow afthankelijk zijn.

183

184 SAMENVATTING

4. Guarded execution: het omzetten van control flow afhankelijkheden in data
flow afhankelijkheden om complexe scheduling transformaties mogelijk
te maken.

5. Multi-way branching: het schedulen van meerdere branch operaties in één
instructie.

Verder bevat de compiler de volgende TTA specifieke optimalizaties:

1. Bypassing: het doorsluizen van data van functional unit (FU) naar FU zon-
der de data tussentijds op te slaan in een register file (RF).

2. Dead result move elimination: het verwijderen van zinloze schrijfacties
naar een RE

3. Operand sharing: het delen van operand transporten naar een FU met
meerdere operaties.

4. Socket sharing: het delen van RF leespoorten met meerdere operaties.

5. Operand swapping: het verwisselen van operanden van commutatieve
operaties om de scheduling vrijheid te verhogen.

In vergelijking met een compiler voor traditionele ILP architecturen is een
compiler voor TTA’s veel gecompliceerder door de complexere resource admi-
nistratie en de TTA specifieke optimalizaties die gedurende het schedulen van
de code worden uitgevoerd. Desalniettemin is gebleken dat het goed mogelijk
is om een efficiénte compiler voor TTA's te ontwikkelen.

Met de ontwikkelde compiler zijn een groot aantal experimenten uitgevoerd
om inzicht te krijgen in de eigenschappen van TTA’s. Gebleken is dat TTA’s
veel efficienter met resources omspringen dan traditionele architecturen. Dit
betekent dat TTA’s minder hardware nodig hebben dan gelijk presterende
traditionele architecturen, of anders gezegd, TTA’s presteren beter dan gelijk
kostende traditionele architecturen. Met andere woorden, TTA’s hebben een
betere prijs-prestatie verhouding.

Naast het ontwikkelen van een TTA compiler is in dit onderzoek aandacht
besteed aan de vraag: gegeven een applicatie en een aantal ontwerprandvoor-
waarden, wat is een goede TTA configuratie voor deze applicatie? Om deze
vraag te beantwoorden is een methode ontwikkeld waarmee naar een ‘op-
timale’ configuratie voor een applicatie kan worden gezocht binnen de ont-
werpruimte van TTA’s. Deze methode bestaat uit twee stappen. In de eerste
stap worden de hoeveelheden FU’s, RF poorten, registers en transport bussen
bepaald. In de tweede stap wordt bepaald hoe de FU’s en de RF’s op de trans-
port bussen worden aangesloten. De methode is gedemonstreerd door deze
toe te passen op een beeldverwerkings applicatie.

Curriculum Vitae

Jan Hoogerbrugge was born on April 7, 1967 in Capelle aan de IJssel. From
1979 to 1987 he attended three levels of technical education (LTS, MTS, and
HTS). In 1991 he received his masters degree cum laude from the Computer Sci-
ence department of Delft University of Technology. In 1992 he joined prof. Ad
van de Goor’s computer architecture group at the Electrical Engineering de-
partment where he performed the research described in this dissertation.

Jan's research interests include all aspects of parallel processing and in partic-
ular compilation techniques for instruction level parallel processors.

185

