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Compiler-component generators, such as lexical analyzer generators and parser generators, have long 

been used to facilitate the construction of compilers. A tree-manipulation language called twig has 

been developed to help construct efficient code generators. Twig transforms a tree-translation scheme 

into a code generator that combines a fast top-down tree-pattern matching algorithm with dynamic 

programming. Twig has been used to specify and construct code generators for several experimental 

compilers targeted for different machines. 

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors-code genera- 

tion, compilers, optimization compiler generators; F.2.2 [Analysis of Algorithms and Problem 
Complexity]: Nonnumerical Algorithms and Problems-pattern matching; F.4.2 [Mathematical 

Logic and Formal Languages]: Grammars and Other Rewriting Systems-parallel rewriting 

systems 

General Terms: Algorithms 

Additional Key Words and Phrases: Code generation, code generator-generator, code optimization, 

dynamic programming, pattern matching 

1. INTRODUCTION 

Research in code generation has yielded theoretical insights and practical tech- 
niques [7, 21, 371. On the theoretical front, efficient algorithms for generating 
provably optimal code on broad classes of uniform-register machines have been 
developed for expressions with no common subexpressions [3,40]. However, once 
common subexpressions are encountered or optimal code needs to be generated 
for machines with irregular architectures, the problem of optimal code generation 
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has been proven to be combinatorially difficult [4, lo], and heuristic techniques 
for generating good code have been proposed and. theoretically analyzed [4, 51. 

On the experimental front, several innovative approaches to retargetable code 
generation have been pursued. These approaches have focused on the use of 
table-driven techniques to separate the machi:ne description from the code- 
generation algorithm. Compilers based on some of these techniques have been 
easily retargeted [ll, 13, 17, 25, 32, 461. 

This paper presents a new language called twig that encapsulates some of these 
theoretical and experimental advances into a tree-based notation for describing 
and implementing code generators. The language builds on the experience of 
grammar-based descriptions of code generators. A compiler for twig has been 
constructed that combines an efficient tree-pattern matching algorithm along 
with a dynamic programming algorithm for optimal code selection. Twig has 
been used by the authors to construct several code generators, including one for 
the VAX that has been incorporated into the pcc2 compiler [32] and one for 
the MIPS-X project [12]. Twig has also been us?d by A. W. Appel to construct 
code generators for the VAX and the Motorola 68020 [9]. In addition to producing 

traditional code generators for compilers, twig can be used as a tool for creating 
tree-rewriting and tree-manipulation programs. In this vein, K. Keutzer and W. 
Wolf have used twig to construct a standard-cell synthesizer for VLSI circuits 
[33, 341. 

2. CODE GENERATION BY TREE REWRITING 

Simply speaking, a compiler consists of a from; end that analyzes the source 
program and transforms it into an intermediate :representation (IR), and a back 
end that transforms the IR into the target program [7]. Many factors are involved 
in choosing an appropriate IR, but in most cases the IR is some encoding of a 
graphical representation of the source program. In this paper, it is sufficient to 
assume the IR is a sequence of trees at the semantic level of the target machine 
as in [ 18, 23, 291. 

Figure 1 shows an IR tree for an assignment statement a [ i I : = b in which a 
and i are locals, stored on the stack, whose run-time addresses are given as 
offsets, const, and consti, from a stack pointer stored in register SP. The 
leaves in the tree are type attributes with subscripts; the subscript indicates the 
value of the attribute. 

The assignment to a [ i ] is an indirect assignment in which the contents of 
the location for a [i 1 are set to the r-value of the global b. The address of the 
first element of the array a is found by adding the value const, to the contents 
of register SP; the value of i is in the location obtained by adding the value 
consti to the contents of register SP. 

In the tree, the ind operator makes its argument a memory address. As the 
left child of an assignment operator, the ind node gives the location into which 
the r-value on the right side of the assignment operator is to be stored. If an 
argument of a + or ind operator is a memory :.ocation or a register, then the 
contents of that memory location or register are .;aken as the value. 

For code generation, the target-machine instructions can be represented by 
tree-rewriting rules, consisting of a replacement node, a tree template, a cost, 
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:= 

/ \ 
ind global, 

+ 
/ \ 

/+\ 

ind 

I 
const, reg,, 

/+\ 
const, regsp 

Fig. 1. Intermediate-code tree for a [ i ] : = b . 

and an action. The target code is generated by a process in which each IR tree is 
reduced into a single node by repeatedly finding subtrees in the IR tree that 
match templates and rewriting the matched subtrees by the corresponding 
replacement nodes. The sequence of subtrees rewritten in this process is called a 
cover of the IR tree. The target code is emitted by the actions associated with 
the rules used in the cover, and the total cost is the sum of the costs of the 
covering rules. 

To be more precise, a tree-rewriting rule is a statement of the form 

replacement t template (cost) = {action) 

where 

(1) replacement is a single node, 

(2) template is a tree, 

(3) cost is a code fragment that computes the cost associated with this template, 
and 

(4) action is a code fragment. 

A set of tree-rewriting rules is called a tree-translation scheme. 
A tree-translation scheme is a convenient way to represent the instruction- 

selection phase of code generation. Each tree template represents a computation 
performed by one or more target machine instructions. The leaves of a template 
are attributes with subscripts, as in the IR tree. Often, certain restrictions apply 
to the values of the subscripts in the templates. For example, a constant may be 
required to fall in a certain range. These restrictions can be specified as semantic 
predicates in the cost function or the action, and these predicates must be 
satisfied before a template can match a subtree of the IR tree. Register allocation 
is done by the user-specified actions. 

As an example of a tree-rewriting rule, consider the rule for a register-to- 
register add instruction, ADD Rj, Ri: 

regi t 
/+\ 

regi regj 

If the IR tree contains a subtree that matches this tree template, that is, a subtree 
whose root is labeled by the operator + and whose left and right children are 
quantities in registers i andj, then we might replace that subtree by a single node 
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Table I. Tree-Rewriting Rules for Some Tarj:et-Machine Instructions 

Rewrite rule zest Instruction 

0) reg;cconst, 2 MOV #c,Ri 

(2) reg, c mem. 2 MOVa,Ri 

(3) x + := 

/\ 
mem, reck 

(4) x c := 

/\ 
ind globalb 

I 
-3 

2 + cost. rc?g, MOV Ri,a 

2 + cost. rc,g, MOV b,* Ri 

(5) regi c ind 2 + cost. rc!gj MOVc(Rj), Ri 

I 
+ 

/ \ 
const, req; 

(6) regi c 

/+\ 

2+cost.rc:g,+cost.regj ADD c(Rj),Ri 

reg, ind 

I 

/+\ 
const, regj 

(7) r-3, + 
/+\ 

l+cost.rfgi+cost.regj ADD Rj, Ri 

r-3: r-3, 

(8) reg, + 

/+\ 

l+cost.reg; INCRi 

regi const, 

labeled regi simulating the execution of the instruction ADD Rj, Ri. If more than 
one template can match a subtree or a portion thereof, then dynamic program- 
ming is used to determine a minimum-cost cover. 

Table I contains tree-rewriting rules for a fely instructions for a VAX-like 
target machine. Instead of showing the code for l;he actions, we have shown the 
machine instruction that is generated by each rule. The first two rules correspond 
to load instructions, the next two to store instructions, and the remainder to 
indexed loads and additions. Note that rule (8) requires the value of the constant 
to be 1. This condition can be enforced by a semantic predicate in the cost. 

A tree-translation scheme generates code from .ln IR tree in the following way. 
All templates in the tree-rewriting rules are matched against the subtrees of the 
IR tree during a depth-first traversal of the tree. fI each node, the costs are used 
to determine the best match, and the selected su’Dtree is replaced in the IR tree 
by the associated replacement node. Sometimes the replacement is delayed until 
the cost of another larger including match can be evaluated. By this process a 
minimum-cost cover for the IR tree is found. 

Then a second depth-first traversal of the original IR tree is made and the 
actions associated with the rules used in the cover are executed. If an action 
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emits a sequence of target-machine instructions, the instructions become part of 
the output. The sequence of machine instructions thus generated constitutes the 
output of the tree-translation scheme. 

To illustrate, let us use the tree-translation scheme in Table I to process the 
IR tree in Figure 1. The template of the first rule 

regocconst, 

matches the leftmost leaf of the IR tree with i = 0 and c = a. If we use this rule, 
the label of the left-most leaf is changed from cons t, to r eg,, and during 
the second traversal the instruction MOV #a, RO will be generated to load the 

constant a into register RO. The template of the seventh rule with i = 0 and 
j=SP 

rego + /+\ 
rego regsp 

now matches the leftmost subtree with root labeled +. Using this rule, we would 
rewrite this subtree into a single node labeled r ego and later generate the 
instruction ADD SP, RO. Now the tree looks like 

:= 

/ \ 
ind global,, 

I 

/+\ 
rech ind 

I 

/+\ 
const, regsp 

At this point, we could apply rule (5) to reduce the subtree 

ind 

I 

/+\ 
const, regsp 

to a single node labeled reg, . However, we can also use rule (6) to reduce the 
larger subtree 

/+\ 
rego ind 

I 

/+\ 
const, regsp 

into a single node labeled reg, and later generate the instruction ADD i ( SP ) , 
RO. Assuming it is more efficient to use a single instruction to compute the larger 
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subtree rather than the smaller one, we choose the latter reduction to get 

/:=\ 
ind global, 

I 
rego 

This remaining tree is matched by rule (4), which reduces the tree to a single 
node and later generates the instruction MOV b, 1 ~0. 

This sequence of tree reductions defines a covering that generates the following 
code sequence during the second traversal: 

MOV #a, RO 
ADDSP, RO 
ADDi(SP),RO 
MOVb, *RO 

With a tree-translation scheme, specifying a cocle generator is similar to writing 
a syntax-directed specification for a translator. The tree-rewriting rules that 
describe the instruction set of a target machine a::e analogous to the productions 
of a context-free grammar, and the output code is generated as part of a tree- 
pruning process that is reminiscent of parsing. However, there are also several 
major differences. First, tree-pattern matching i.s used instead of parsing and 
there is no left-to-right bias in the matching algorithm as there is with some 
parsing algorithms. Second, a dynamic programming algorithm that runs con- 
currently with the tree-matching process selects sn optimal covering for the IR 
tree using the costs associated with the tree-rewriting rules. Finally, the actions 
are executed after an optimal covering of the IR tree has been found. 

3. PATTERN-DIRECTED CODE GENERATION 

Wasilew [43] and Weingart [44] were among the first to treat code generation 
as a tree-rewriting process. These early approaches employed direct tree-pattern 
matching techniques. Fraser [E] and Cattell [ 111 smphasized the use of heuristic 
search, Fraser relied on knowledge-based rules th.& direct the pattern matching, 
whereas Cattell advocated a goal-directed heuristic search. In Cattell’s approach, 
subgoals are created as the search continues and heuristics are used, both to 
order subgoal selection and to order patterns when trying to match. 

Graham and Glanville pioneered the use of L:R parsing techniques for code 
generation [22, 231. A code generator can be constructed as syntax-directed 
translator in which a linearized prefix form of the IR trees is parsed by an LR 
parse built from a context-free grammar that describes the target machine. In 
this approach, the instructions of the target machine are described by a set of 
grammar rules. A parse of the prefix form of an IR tree corresponds to a covering 
of the tree with instruction templates. The ta::get-machine instructions are 
generated during the reductions of the parsing process. 

With the LR-parsing approach there are several practical difficulties that need 
to be overcome. First, an LR grammar describing a target machine such as a 
VAX can have over 1000 productions [26]. Machine-description grammars can 
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produce large parser tables that may require specialized table-compression tech- 
niques [14]. Second, an LR parser does the pattern matching in a left-operand 
biased fashion. That is, the code for the left operand of an operator must be 
selected without considering the right operand. In a number of cases, the resulting 
code is suboptimal. 

For example, consider the expression op A B that might appear in the prefix 
representation of an IR tree. Usually, machine architectures allow only certain 
combinations of addressing modes for the subexpressions A and B. Examples of 
these addressing-mode restrictions on op-code use are common in microprocessor 
architectures such as the iAPX-86, Z-8000, and MC-68000. If the addressing 
mode for A is selected without considering B, then the code generator may have 
to undo this selection when the time comes to select the machine instruction for 
op. Consequently, extra machine code would be needed to move A to an acceptable 
addressing mode. 

Another problem in a purely syntactic approach is the difficulty of specifying 
target-machine architectural constraints such as register restrictions on address- 
ing modes, of tracking expressions with results in multiple locations, and of 
modeling condition codes. A purely syntactic treatment requires this semantic 
information to be encoded syntactically as much as possible. Several tools and 
techniques have been developed to help cope with some of these difficulties 
[8, 26-29, 381. 

Ganapathi and Fischer [17-201 extended the grammatical approach to code 
generation by using an attribute grammar to describe the instruction set of the 
target machine. Grammar productions specify the general form of the machine 
instructions, and semantic attributes and predicates specify architectural restric- 
tions. Attributes are also used to track multiple instruction results and instruction 
selection is done by attributed parsing. Addressing modes are described by 
separate individual productions and so are operation codes. Addressing-mode 
selection is still left biased in the true tree-pattern matching sense, but the 
selection of operation codes is not biased toward any operand. Productions 
corresponding to operation codes usually have symmetric operand patterns. This 
symmetry enables the code generator to delay decisions regarding destination 
requirements. In effect, this decision is made on seeing the entire subtree for the 
operator. Thus, efficient code is produced in cases when either of the operands 
can be used to store the result of evaluation. Only in cases where their original 
results need be preserved is a call made to a register/temporary allocator. 

Ganapathi and Fischer emphasize the incremental development of a code 
generator. Initially, productions describing the most general form of a target- 
language construct are listed. Later, special-case productions can be added to 
improve the performance of the target code [20]. To the scheme in Table I, for 
example, we could add rules to generate three-address instructions if desired. 
These special-case productions make the underlying grammar ambiguous. With 
ambiguous grammars, subsequent modifications can be made to a code generator 
with reduced effort. It is for this reason that ambiguous grammars are particularly 
useful in the design and specification of code generators. Deterministic parsers 
can be mechanically constructed from ambiguous specifications provided rules 
are provided to disambiguate the resulting parsing-action conflicts [6]. 
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Attributes and semantic predicates can also be used to reduce the size of the 
specification of the addressing modes of the target machine. In an attribute 
grammar the number of grammar productions :.s usually smaller (a hundred or 
two productions instead of a thousand) than in a purely grammatical approach. 
Extensive grammar factoring is therefore not needed to implement a code 
generator based on semantic attributes and predicates, but care must now be 
given to the design of the attributes and predicates. 

4. CODE GENERATION BY TREE MATCHING AND DYNAMIC 
PROGRAMMING 

In this paper, we introduce a new language called twig for constructing code 
generators. A target machine is specified as a tree-translation scheme. Twig 
converts this specification into a code generator that combines a fast tree-pattern 
matching algorithm with an efficient dynamic programming algorithm for gen- 
erating high-quality output code. 

The underlying tree-matching algorithm is a generalization of Aho and Cor- 
asick’s linear-time keyword-matching algorithm as suggested by Hoffman and 
O’Donnell [30]. The dynamic programming algorithm is a simplification of Aho 
and Johnson’s optimal code-generation algorithm [3] that has been used in 
several compilers [32,39]. This style of code generation can be readily integrated 
with the tree-matching process. 

This approach seems to have several advantages. A twig machine specification 
is concise. With a tree-translation scheme, similar machine instructions can be 
factored into a common pattern, so that one syntactic match can correspond to 
several instructions. Rules that have the same templates but differing costs and 
actions can be factored into a single rule with multiple cost-action pairs. Similar 
factoring can be performed on rules in which only the operators differ. For 
example, a generic binary operator can often be defined to derive both the 
addition and subtraction instructions of a target machine. Since fewer patterns 
are needed, the description of the code generator is significantly simplified. 

The dynamic programming algorithm allows the rules to be written in any 
order and obviates the need to deal with pattern-matching conflicts. In a parser- 
based approach the order of the productions is important, and parsing-action 
conflicts have to be carefully resolved. The dynamic programming algorithm 
produces code that is optimal with respect to ths costs provided and eliminates 
the need for explicitly breaking cycles to prevent the code generator from looping, 
as may be necessary in a parser-based approach. 

Finally, twig produces code generators quickly, and their size is small. For 
example, our twig specification of a VAX has 115 rules. It takes twig 5 seconds 
on a VAX 11/780 to produce the code generator from this specification, and the 
total size of the resulting code generator is under 50K bytes. 

5. THE AHO-JOHNSON DYNAMIC PROGRAMMING ALGORITHM 

Aho and Johnson [3] presented an algorithm based on the principle of dynamic 
programming to generate code for expressiom on register machines. Their 
algorithm generates optimal code for a uniform-register machine that has r 
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interchangeable registers RO, R 1, . . . , Rr - 1 and instructions of the form 
Ri := E, where E is any expression containing operators, registers, and memory 
locations. The cost of a program is the sum of the costs of the instructions in the 
program. 

The dynamic programming algorithm partitions the problem of generating 
optimal code for an expression E into subproblems of generating optimal code 
for the subexpressions of E. An optimal program for an expression of the form 
El + E, is formed by combining optimal programs for the subexpressions El and 
Ez, in one or the other order, followed by code to evaluate the operator +. The 
subproblems of generating optimal code for El and E2 are solved recursively. A 
program produced by the dynamic programming algorithm has an important 
property: It evaluates an expression “contiguously.” 

Consider the syntax tree T for the expression E = El op Ez 

where Tl and Tz are trees for El and Ez, respectively. We say a machine-language 
program P evaluates T contiguously if it first evaluates those subtrees of T that 
need to be computed into memory and then evaluates the remainder of T, either 
in the order T,, T2, and then the root, or in the order T2, T1, and then the root, 
in either case using the previously computed values from memory whenever 
necessary. As an example of noncontiguous evaluation, P might first evaluate 
part of T,, leaving the value in a register (instead of memory), next evaluate T2, 
and then return to evaluate the rest of Tl. 

For the uniform-register machine, Aho and Johnson proved that given any 
machine-language program P to evaluate an expression tree T, there is a program 
P’ that computes the same expression such that 

(1) P’ is of no higher cost than P, 

(2) P’ uses no more registers than P, and 

(3) P’ evaluates the tree in a contiguous fashion. 

This result implies that every expression tree can be evaluated optimally by a 
contiguous program on a uniform-register machine [3]. 

Some real machines have architectural features that do not always allow 
optimal contiguous evaluations. For example, for machines with even-odd register 
pairs such as the IBM System/370 machines there are examples of expression 
trees in which an optimal machine-language program must first evaluate into a 
register a portion of the left subtree of the root, then a portion of the right 
subtree, then another part of the left subtree, then another part of the right, and 
so on. This type of unbounded oscillation is unnecessary for an optimal evaluation 
of any expression tree using the uniform-register machine. 

The contiguous evaluation property defined above says that for any expression 
tree T there always exists an optimal program that consists of optimal programs 
for subtrees of the root, followed by an instruction to evaluate the root. This 
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property allows us to use dynamic programming to generate an optimal program 
for T. 

The dynamic programming algorithm as presented in [3] proceeds in three 
phases. In the first phase, it computes bottom-up Iror each node n of the expression 
tree T an array C of costs, in which the ith component C[i] is the optimal cost 
of computing the subtree S rooted at n into a register, assuming i registers are 
available for the computation, for 1 I i 5 r. The cost includes whatever loads 
and stores are necessary to evaluate S in the given number of registers. It also 

includes the cost of computing the operator at the root of S. The zeroth 
component of the cost vector is the optimal cost of computing the subtree S into 
memory. The contiguous evaluation property ensures that an optimal program 
for S can be generated by considering combinations of optimal programs only for 
the subtrees of the root of S. This restriction sharply reduces the number of 
cases that need to be considered. 

To compute C[i] at node n, the algorithm considers each machine instruction 
R : = E whose expression E matches the subexpression rooted at node n. By 
examining the cost vectors at the corresponding descendants of n, it determines 
the costs of evaluating the operands of E. For those operands of E that are 
registers, it considers all possible orders in which the corresponding subtrees of 
T can be evaluated into registers. In each ordering the first subtree corresponding 
to a register operand can be evaluated using i available registers, the second using 
i - 1 registers, and so on. To account for node n, it adds in the cost of the 
instruction R : = E that was used to match node n. The value C[i] is then the 
minimum cost over all possible orders. 

The cost vectors for the entire tree T can be computed bottom-up in time 
linearly proportional to the number of nodes in T. The smallest cost in the vector 
for the root of T gives the minimum cost of evaluating T. 

In the second phase, the algorithm traverses T, using the cost vectors to 
determine which subtrees of T must be computed into memory. In the third 
phase, the algorithm traverses each tree using tne cost vectors and associated 
instructions to generate the final target code. The code for the subtrees computed 
into memory locations is generated first. These two phases can also be imple- 
mented to run in time linearly proportional to the size of the expression tree. See 
Aho and Johnson [3] and Aho et al. [7] for more details. 

Twig uses a simplified form of this algorithm. In the compilers so far imple- 
mented with twig, the IR trees have been sufficiently simple that it was possible 
to separate register management from instruction selection. Consequently, twig 
uses an algorithm in which each subtree of the IR lree is characterized by a single 
scalar cost, rather than a cost vector. These scalar costs are computed using the 
cost expressions in the tree-translation scheme. Register assignment is done 
separately by a user-provided routine. These modifications have increased the 
speed and flexibility of twig without noticeably degrading the quality of the code 
generated for the VAX. More research is needed to determine how generally 
these observations apply to other machines. 

6. TREE-PATTERN MATCHING 

Several tree-pattern matching algorithms have been presented [30, 31, 35, 36, 
411. For code generation applications, a scheme proposed by Hoffman and 
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O’Donnell [30] appears promising. They suggested that template matching can 
be done efficiently by extending the Aho-Corasick multiple-keyword pattern- 
matching algorithm [l] into a top-down tree-pattern matching algorithm. 

First consider the problem of finding all substrings of an input string that are 
contained in a given set of keywords. The essence of the Aho-Corasick algorithm 
is to construct a trie from the set of keywords, convert the trie into a pattern- 
matching automation, and then use the pattern-matching automaton to perform 
a parallel search for the keywords in the input string. 

Let K be the set of keywords. The trie is built by first making a root node and 
then, for each keyword in K, creating a path from the root to a node whose 
branch labels spell out the keyword. Each node of the trie is thus uniquely 
characterized by the sequence of symbols on the branch labels of the path from 
the root to that node. 

The pattern-matching automaton is constructed from the trie. The states of 
the automaton are the nodes of the trie; the start state is the root and the 
accepting states are those corresponding to complete keywords. There is a 
transition from state s to state t on input character c if there is a branch in the 
trie labeled c from node s to node t. In addition, we add a transition from the 
start state to itself on every input character that is not the first character of a 
keyword. 

The pattern-matching automaton has a failure function for every state other 
than the start state. The failure function for a state characterized by a string u 
is a pointer to the state characterized by the longest prefix of some keyword in 
K that is also a proper suffix of u. 

Both the trie and the pattern-matching automaton can be constructed in time 
linearly proportional to the sum of the lengths of the keywords in K. The 
resulting pattern-matching automaton can be run on an input string x in time 
linearly proportional to the length of X, independent of the size of K. Thus the 
entire problem of finding all substrings of x that are contained in K can be done 
intimeO(]K] + 1x1) [l]. 

This algorithm can be directly generalized into a tree-matching algorithm by 
noting that a tree is characterized by the set of paths from its root to its leaves 
when the branches from each node are numbered 1,2, . . . , according to the left- 
to-right ordering of the children [30]. For example, consider the following three 
tree-replacement rules 

rc 
/+\ 

rc 
/+\ 

TCC 

r i r r 

/+\ 
C r 

which we will refer to as ti, t2, and t3, respectively. They have the following set 
of path strings: 

+lr 

+2il+lc 

+2il+2r 

+2r 
C 
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Fig. 2. Path-string-matching cmtomaton. 

The first string +l r represents the leftmost path in the tree templates of both t1 
and tz. Note that a path of length j in ti is reprec’ented by a path string of length 
2j + 1. From the set of path strings, using the methods in Aho and Corasick [l], 
we can construct a pattern-matching automaton to match the path strings in 
parallel. 

From the trees above, we would construct the pattern-matching automaton 

shown in Figure 2. State 0 is the start state and the doubly circled states are 
accepting. In this automaton the failure functior. for state 7 points to state 1, for 
state 8 to state 2, for state 10 to state 4, and for all the other states to state 0; 
the failure functions that do not point to state ‘3 are shown as dashed lines. At 
each accepting state, we also know which path string of which tree templates has 
been recognized. For example, at state 3, the recognized string +l r matches the 
leftmost path in the tree templates of tl and tz. 

Let T be a set of tree-replacement rules of the form li + tip where Zi is a label 
and ti a tree template. We can build an automaton similar to the one above to 
recognize the tree templates in T in parallel in a subject tree. Let succ(~, a) 
denote the state reached from state u on input symbol a by the automaton. The 
automaton creates a record of information at each node n of the subject tree: 
n.parent is the parent of n, n.symbol is a path-string symbol associated with n, 
and n&de is the state of the automaton after it visits n. We assume that nodes 
in the subject tree and the tree templates labeled by the same symbol have the 
same arity. The following routine, visit(n), will tl averse the subject tree in depth- 
first order starting at node n, assign a state to each node, and call post-process 
to determine the matching tree templates. 

Ii&(n) 
( 

if n is the root then 
n.stute c WCC (0, n.symbol) 

where 0 is the start state of the automaton 
else 

n.state c succ(succ(n.parent.stute, k), n.symt ol) 
where n is the kth child of nparent 

for every child c of n do 
visit(c) 

post-process(n) 
I 
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A path-string match occurs at node n in the subject tree if n.state is accepting. 
It is easy to find the node in the subject tree at which this match began by tracing 

the path from n toward the root in the subject tree. A node of the subject tree 
matches a tree template if that node begins matches for all the path strings in 
the tree template. 

In [30], Hoffman and O’Donnell propose two techniques for determining nodes 
beginning matches. The first technique associates a set of counters for each tree 
template ti at each node in the subject tree. When a path string of ti is recognized, 
its counter is incremented at the node beginning the match. The template ti 
matches a subtree rooted at node n as soon as the value of its counter at node n 
equals the number of path strings in tie 

Twig uses the second technique of maintaining bit strings rather than counters 
to keep track of partial matches. With each node n in the subject tree twig 
associates a bit string n.bi for each tree template ti. The number of bits in bi is 
equal to one plus the length of the longest path in ti; the bits of bi are indexed 
consecutively from the right starting with 0. When a path string in ti of length 
2j + 1 is recognized at node n in the subject tree, bit j of n.b; is set. Intuitively, if 
bit j of n.bi is set, then node n in the subject tree matches a node at depth j in 
tree template tie (The root of a tree is at depth 0.) Bit strings allow overlapping 
matches to the same tree template to be recorded. 

Tree recognition occurs in the call of post-process after all the children of a 
node have been visited (see the function visit above). At each node n, the new bit 
string n.bi is computed by shifting the bit strings for ti at the children of n right 
1 bit (this is equivalent to dividing by 2) and bitwise or’ing their logical product 
with the current bit string n.bi. The intuition is that node n of the subject tree 
matches a node of ti at depth j if the label of n matches the node of ti and all of 
n’s children match the nodes of ti at depth j + 1. Under the assumption of 
matching arities of similarly labeled nodes, this method provides a necessary and 
sufficient condition for tree matching. The following routine gives the details of 
the tree-matching process. 

post-process(n) 

( 
r5.b; c 0 
if n.state is accepting then 

set-partial (n, n.stute) 
for every ti do 

n.bi c n.bi or nIcECcn) c.bi/2 
where C(n) is the set of all children of node n 

do-reduce(n) 

1 

set-partial(n, a) 

1 
for each path string of ti of length 2j + 1 recognized at o do 

n.bi c n.bi or 2’ 

The routine do-reduce keeps track of reductions, which are discussed in the 
following paragraphs. The routine set-partial sets the jth bit of bi for each 
recognized path string of ti of length 2j + 1; set-partial requires the length of the 
recognized path strings to be available at the accepting states. After post-process, 
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ti matches the subtree rooted at node r if and only if r.bi is odd, that is, its 
rightmost bit is set to 1. 

To find a cover, it is necessary to consider reductions. That is, once the tree 
part of ti is recognized, the possible reduction cd the tree part to the label of ti 
must be considered in order to find covers conta .ning this match of ti. Since twig 

is considering many matches in parallel, the process of reduction should not 

change the shape of the subject tree; only some node fields are updated to reflect 
the reduction. The routine do-reduce performs the updates and implements 
dynamic programming. 

The function COSt(tiy n) determines the cost 01’ a rule ti matching at node n. In 
general, the cost of a match will also depend on .;he costs of matches at leaves of 
tj that are label symbols. The dynamic programming costs are kept in an array 
n.cost. Each element n.cost[Z] is the cost of th? cheapest match of some rule 
1 t tree. The index of the rule that achieves n.cost[Z] is stored in n.match[Z]; 
that is, if n.match[Z] = j, then cost(ti, n) = n.cast[Z] and I = 6. Initially, before 
the first call of visit, n.cost[Z] = 00 and n.match[Z: = 0 for all nodes n. 

do-reduce(n) 

( 
for every ti such that the zeroth bit of nabi is 1 do 

if cost(ti, TZ) c n.coSt[Zi] then 

( 
n.COSt[Zi] C COSt(ti, TZ) 

n.match[li] t i 
if n is the root then 

u t succ(0, lj) 
else 

(3 c succ(succ(fl.parent.state, k), li) 
where n is the kth child of n.parent 

if (T is an accept state then 
set-partial (n, a) 

For example, consider the rule set T = {t 1, t 2, !s ) as given at the beginning of 

this section. At each node n, let the cost function be 

cost(h, n) = 3 + cost of matches at leaves labeled r 
cost (t2, n) = 1 + cost of matches at leaves labeled r 
cost(ts, n) = 1. 

Consider the subject tree 5’: 

+ 

/ \ 

/+\ 

C C + 

/ ‘\ 

C C 
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symbol = + 
state = 1 

b, = 1, b, = 0, bzj = 0 
cost[r] = 7 

match[r] = 1 

symbol = + symbol = i 
state = 1 state = 5 

b, = 102, bz = 11, b, = 0 bl = lo,, b, = 0, b3 = 0 
cost[r] = 3 cost[r] = CQ 

mutch[r] = 2 match[r] = 0 

I 

symbol = c symbol = c symbol = + 
state = 13 state = 13 state = 7 

b, = lo,, b, = 102, b, = 1 bl = 0, b, = lo,, b, = 1 b, = 1002, b, = 1, b, = 0 
cost[r] = 1 cost[r] = 1 cost[r] = 3 

match[r] = 3 match[r] = 3 match[r] = 2 

symbol = c 

state = 9 

b, = lOlO,, b, = 102, ba = 1 
cost[r] = 1 

match[r] = 3 

symbol = c 
state = 13 

b, = lOOO,, b, = 102, b, = 1 
cost[r] = 1 

match[r] = 3 

Fig. 3. An algorithm that finds matches not included in any cover. 

Applying visit to the root of S yields the values at each node shown in Figure 3. 
The subscript 2 on the values of the bi denotes “binary string.” 

In Figure 3, we see that the only cover starts with rule tl at the root and has 
cost seven. 

The algorithm finds matches that are not included in any cover. For example, 
at the node with symbol + on the right branch of the root, the tree pattern tz 
matches with cost three. The cover is shown below in a form reminiscent of a 
parse tree with arrows indicating reductions. 

r 

+ 
/ \ 

r i 

f I 

/+\ 

+ 

/ \ 

r r C r 

f f t 
C C C 
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7. TWIG-A LANGUAGE FOR MANIPULATING TREES 

Twig is a language for processing trees that incorporates the algorithms described 
above. Although twig can be used in other tree-manipulation contexts, this section 
only presents its use in code generation. For other applications of twig, see 
Keutzer [33] and Keutzer and Wolf [34]. 

A twig program, hereafter called a twig specification, is a set of pattern-action 
rules together with ancillary declarative statements. To construct the twig portion 
of a code generator, we compile the twig specification with the twig compiler to 
create a C source file. This file will contain a subroutine that performs the 
matching operation. Once it has been compiled, the subroutine can be linked 
with the twig runtime library and the other parts of the code generator. To invoke 
the pattern matcher, we call the generated subroutine on the root of the tree to 
be matched. In the following sections, this tree is referred to as the subject tree. 

Pattern-Action Rules 

The syntax of a rule in twig is 

label-id :pattern[(costJ] [= ‘action11 

(1) The label-id is an identifier that is ana1ogot.s to the left-hand nonterminal 
symbol of a production in a context-free grammax. 

(2) The pattern is a parenthesized prefix expression representing a tree. The 
pattern matcher will find all subtrees of the scbject tree matching this tree 

pattern. When a subtree matches the pa.ttern and the cost part does not abort, 
we say that the rule matches. Abortion is explained later. 

(3) The cost is C source code executed by the p&tern matcher when it finds a 
subtree matching the tree pattern. This code shou Id return a cost to the matcher 
for purposes of dynamic programming. The code al so determines when the action 
part should be called by the pattern matcher if this rule is in the minimal cost 
cover of the subject tree. 

The cost part is optional. When omitted, the twi&; compiler and pattern matcher 
assume the default cost is returned. The default cast is specified elsewhere in the 
twig specification. 

(4) Like the cost part, the action is also C source code. The code is called by 
the matcher once it has been determined that this rule is part of the minimal 
cost cover. The code may return a tree to replace the subtree matching this rule. 
If no return value is given, then the subtree is 1eYt unchanged. The action part 
may also perform other functions, such as emitting code and updating code 
generator data structures. 

The action part is also optional. If the action is missing, the default action is 
to leave the subtree unchanged. 

Tree Patterns 

Tree patterns are written in parenthesized prefix form and can be described by 
the following BNF: 

pattern c node-id 
pattern c label-id 
pattern t node-id(subtree-list) 
subtree-list c pattern 
subtree-list e pattern, subtree-list 
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That is to say, a tree pattern is written with its root identifier, followed by an 
optional parenthesized list representing the subtrees of the root in order from 
left to right. For example, 

identifier 
op(left, right) 
plus(expr, times(constant, expr)) 

are all tree patterns. 
As the BNF above suggests, there are two types of identifiers in twig, 

node-ids and label-ids, corresponding to the terminals and nonterminals of tree 
patterns. A node-id denotes an internal node or leaf while a label-id forms the 
label part of a rule. Each of the node-ids and label-ids is assigned a unique 
integer by twig. The identifier-to-integer mapping is provided in a generated 
source file. During pattern matching, twig will call a user-supplied function 
mtvalue(n) that returns the integer corresponding to the symbol of node n. 

Leaves of a pattern with label-ids are called labeled leaves. The textually 
leftmost labeled leaf is first, the next second, and so on. Labeled leaves play a 
special role as they represent rules matching subtrees rooted at their position 
just as nonterminals stand for reductions of substrings in context-free grammars. 
For example, the subject tree given in the example at the end of Section 6 can 
be written as 

plus(plus(c, c), i(plus(c, c)) 

and the rules tl, tz, and tS are written as 

r: plus(r, i(plus(c, r)); 
r: plus(r, r); 
r: c; 

respectively. The symbol plus is used instead of + because the latter would be 
syntactically incorrect in twig. In the cover shown at the end of Section 6, the 
first labeled leaf r of tl represents a match of tz in the subject tree; the second 
labeled leaf is a match of t3. 

Trees, Costs, and Actions 

The twig pattern matcher treats trees and costs as an abstract data type, so as 
to minimize the constraints placed on their representation. All manipulations 
and accesses to tree and cost values are done via a well-defined procedural 
interface. The details of the interface are given in [42]. 

All legal C constructs are permitted in the C source code of the cost and action 
part of a rule. In addition, the following notations are provided for access to the 
subject tree and internal data structures of the pattern matcher. 

(1) $%n$ denotes a pointer to the matcher data structure for the nth labeled 
leaf. The next section will discuss this data structure in more detail. To 
access the cost value associated with that leaf, the notation $%n$ --, cost 
may be used. 

(2) $$ denotes a point to the root of the subject tree. 

(3) $n1.n2.n3 . . . nk-l.nk$ denotes a pointer to child nk of child n&l of child 
n&Z . . . of child nl of the root of the subject tree. Each ni is a positive integer. 
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(4) Cost values can be returned to the matcher b:r assigning to the variable cost 
in the cost part of a rule. 

Refinements on Pattern Matching 

The pattern matcher used in twig is similar to that described in Section 6 with a 
few additional modifications for improved efficiency. 

The function cost(&, n) used in the function do-reduce of Section 6 is 
implemented by calling the cost code associated with rule tie A match is aborted 
if, during the execution of the cost code, the ABORT statement is encountered, 
this is identical to returning an infinite cost value. The cost code also determines 
the mode of a match, which is described below. 

Once a cover has been found, the reductions an! performed during which time 
the action parts of the tree rules forming the covx are executed. Traditionally, 
one thinks of a reduction as consuming a subtree and replacing it with the label 
or nonterminal symbol of the rule. In twig, it is the execution of the action part 
of the rule during reduction that is important. Although the action part may 
modify the subject tree, twig does not require this to happen. 

In the following, the word reduction will be used to mean the execution of the 
action part of a matching rule. The standard course of action is for twig to reduce 
matches in depth-first order. For the example of Section 6, the order of reductions 
is given by the numbers on the arrows in the following tree: 

r 

/+\ 
r i 

/+\ /‘\ 
r r C r 

1, t 41 
C C C 

However, this standard order is changed if them are top-down mode matches. 
For example, if reduction 3 is from a top-down Llatch, then it will be invoked 
before reductions 1 and 2. In fact, the latter two reductions will only be invoked 
if the built-in functions tD0 ( $ % I$ ) and tD0 ( :; % 2 $ ) are encountered while 
executing the action part of the rule causing reduction 3. In general, the function 
tD0 ( $%n$ ) initiates reduction at the nth labeLed leaf (and not at the nth 
reduction.) Explicit invocation allows the user to c Jstomize the exact ordering of 
execution in the cover. 

A match can also be of rewrite mode. In that case the action code of the 
matching rule is executed immediately during the? pattern-matching operation 
before any covers are computed. Matches below the rewrite-match in the tree are 
not reduced. To add this feature, the function visit is modified to call, just before 
returning, the routine do-rewrite given below. 
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do-rewrite(n) 

I 
if min{n.cost) = n.cost[l] for some 1 and n.match[t] = m 

and t, matches with mode rewrite then 
execute the action associated with t,,, 

ui.sit(n) 

1 

Executing the action part of the tree-rewriting rule t, may modify n and its 
subtree. Pattern matching continues after rewriting by calling visit(n) to recon- 
sider the new subtree rooted at n. This can be done without modifying other 
parts of the tree because the bit-string technique of tracking partial matches will 
not propagate pattern-matching information of the replaced subtree past n 

toward the root. Rewrite-matches transform the subject tree during pattern 
matching. They are useful for canonizing subtrees for commutative operators 
and for performing constant folding. 

Modes are determined by the cost code of a rule. While executing the cost 
code, if the built-in TOPDOWN is encountered, the match will be of top-down 
mode; if REWRITE is encountered, the mode will be rewrite; and if neither is 
encountered, the match is executed in the standard fashion. 

Twig uses some additional techniques to improve its efficiency. If there are 
many tree rules, keeping a bit string for each rule at each node would consume 
large amounts of memory. In twig only the nonzero bit strings of each node are 
recorded. This saves memory because, on average, the number of rules that have 
nonzero bit strings is significantly smaller than the total number of rules. 

Our version of twig does not keep the fields cost, state, and bi in the actual 
subject tree. A separate structurally isomorphic tree is built by twig to hold this 
information. 

Example 1 

This twig specification generates VAX code for the subtract instruction: 

prologue [ NODEPTRgettemp( ); ]; 
node long constant sub; 
label operandtemp; 

operand: long; /* rule 1 */ 
operand: constant; /* rule 2 */ 
operand: temp; /* rule 3 */ 

temp: operand; /* rule 4 */ 

I cost=TEMP-COST+$%l$+cost; ) 
={ NODEPTRt= gettemp( ); 

emit ("MOV", $$,t, 0); 
return(t); 

I; 
operand: sub(operand, operand) /* rule 5 */ 

I cost= SUB-COST+$%l--+cost+$%2$--+cost; ) 
=[ NODEPTRt= gettemp( ); 

emit("SUB", $I$, S2$, t, 0); 
return(t); 

I ; 
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temp: sub(temp, constant) 
[ if(value($2$)==1) 

cost= DEC-COST+$%l$+cost; 
else ABORT; 

/* rule 6 */ 

=[ emit("DEC", $l$, 0); 
return($l$); 

I i 

Notes 

(1) The prologue statement provides C somce code that can be referenced 
by the action and cost code in the rules. 

(2) The node and labe 1 declarations indicate the node and label identifiers. 

(3) SUB-COST and DEC-COST are the cost values for a subtract and decre- 

ment instruction, respectively. They should be provided by the user in a separate 
source file. 

(4) Rules 3 and 4 form a potential loop, temp.+operand-+temp+operand 

’ * -3 which is broken by the matcher recognizing that the cost of the second 
match of temp is less than that of the first match of temp. 

(5) In Rule 5, the cost is the sum of the cost of the leaves plus the cost of the 
subtract instruction. The action clause emits cods to subtract the two operands 
and to leave the result in a temporary location. The temporary is returned as a 
substitution for the subject tree. 

(6) Rule 6 handles a special case where the left operand is already in a 
temporary and the constant is 1. In this case, the temporary is directly decre- 
mented and returned as the new tree. 

(7) The routine emit takes a variable number of arguments, and value 0 
marks the end of the argument list. The first argument is the opcode and 
subsequent arguments are operands of the instruction. Each operand node is 
converted to a representation dependent on the ts.rget machine. 

Example 2 

The following is a twig specification for the tree-rewriting rules in Figure 2: 

node const mem assign plus ind; 
label reg no-value; 

reg: const 

I cost=2; ) 
=( NODEPTRregnode =getreg( ); 

emit('MOV', $l$, regnode, 0); 
return(regnode); 

I; 

/* rule 1 */ 

reg:mem 

1 cost=2; ) 
=[ NODEPTRregnode=getreg( ); 

emit('MOV', $l$, regnode, 0); 
return(regnode); 

I; 

/* rule 2 */ 
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no-value: assign(mem, reg) 

I cost= 2+$%1$-+cost; ) 
= ( emit("MOV", $2$, $l$, 0); 

return(NULL); 

/* rule 3 */ 

no-value: assign(ind(reg), mem) 

1 cost= 2+$%1$--Pcost; ) 
r I emit( "MOV", $2$, $I$, 0); 

return(NULL); 

reg:ind(plus(const, reg)) 

I cost= 2+$%1$-+cost; ) 

=( NODEPTRregnode =getreg( ); 
emit( "MOV", $$, regnode, 0); 
return(regnode); 

I; 

/* rule 4 */ 

/* rule 5 */ 

reg:plus(reg, ind(plus(const, reg))) 

i cost= 2+$%1$+cost+$%1$-+cost; 1 

/* rule 6 */ 

= [ emit("ADD", $2$, $l$, 0); 
return($l$); 

I; 

reg:plus(reg, reg) 

i cost= l+$%l$-+cost+$%2$+cost; ] 
= ( emit("ADD", $2$, $I$, 0); 

return($l$); 

I ; 

reg:plus(reg, constant) 

I if(value($2$)==1) 
cost= l+$%l$+cost 

else ABORT; 

I 
= ( emitop("INC", $I$, 0); 

return($l$); 

/* rule 7 */ 

/* rule 8 */ 

Notes 

(1) In rules 4 and 6, we assume that the emit routine will convert the tree 
ind(reg) and ind(plus(const, reg ) ) into the correct target-machine 
addressing modes. 

Additional details and applications of the twig language can be found in [42]. 
Appel [9] discusses twig specifications for the VAX and Motorola 68020 in detail. 

8. EXPERIMENTAL RESULTS 

To test these ideas, an experimental code generator for a VAX computer was 
built using twig and incorporated into the pcc.2 C compiler [32]. The modular 
design of the pcc2 compiler made it easy to conduct this experiment. The 
compiler with the twig code generator is abbreviated t cc. Table II summarizes 
the overall compile times for tee and the original pee 2 compiler on 13 C 
programs. The first column gives the lines of code in each of these benchmark 
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Table II. Comparison of tee and pee 2 Compile Times 

Percentage 
Program Lines tee pcc2 improvement 

test1 .c” 47 1.2 (0.6) 1.6 (0.6) 25.0 

nm.cb 391 10.0 (1.3) ..2.3 (1.2) 18.7 

test3.c' 442 29.4 (2.8) ~i5.0 (2.8) 34.7 

grep.c 458 12.1 (1.7) :.5.2 (1.5) 20.4 

local2. cc 530 8.9 (1.0) :.2.3 (1.5) 27.6 

1oca1.cc 553 10.6 (1.3) :.2.8 (1.3) 17.2 

pmach.c 610 17.4 (2.3) :!0.4 (2.5) 14.7 

yacc 792 34.0 (3.0) dL9.0 (2.9) 30.6 

reader.c 1005 29.2 (2.6) ~10.0 (2.4) 27.0 

genc0de.c" 1017 41.1 (4.6) !i2.8 (4.2) 22.2 

vmmem.P 1041 19.3 (1.9) :!4.4 (2.3) 20.9 

cgram.cc 1181 30.4 (2.8) :18.6 (2.6) 21.2 

ed.c 1729 42.5 (3.9) ft7.0 (3.4) 9.6 

’ Tests arithmetic operators. 

’ Prints symbols from object module. 

‘Part of pcc2. 

d part of Unix kernel. 

programs. The second and third columns give the, compile times in seconds on a 
VAX-11/780. The first number in these columns ir; the time spent in the compiler, 
the second parenthesized number is the time spent in the operating system. 

As the table indicates, tee is faster than pee 2 (the average improvement was 
23 percent). However, the system times for tee ;ire higher; these higher system 
times are caused by calls to the runtime system jlor dynamic storage. For a tree 
node, the average storage requirement is about 20C1 bytes; this storage is reclaimed 
and reused for every new IR tree. The faster compile times of t c c are due to the 
efficient tree-matching algorithm. 

Creating the twig specification for tee was straightforward. The twig specifi- 
cation for the VAX without the indexed-addressing modes was done in two weeks 
(while concurrently debugging the tree walker). The indexed-addressing modes 
were then added in a few hours once we were confident that the initial twig 
specification was correct. The final twig specificat ion for the VAX code generator 
had 115 rules. Of these, 17 described addressing modes, another 17 were chain or 
transfer productions, 3 described labels, 1 reversed evaluation order, and the rest 
described single instructions or sequences of instructions. The specification file 
contained 853 lines of twig (about 14 pages). The :Figures are comparable to those 
of Appel’s twig VAX specification [9]. 

The twig specification was also easy to modify. One reason is that new rules 
can be added to a twig specification independently of the other rules. The dynamic 
programming algorithm eliminates the possibility of looping and assures that an 
optimal covering of templates will always be chosen. Another reason is speed of 
the twig compiler. The twig compiler produced the code-generation tables from 
this specification very quickly, in 5.2 seconds to be precise. Thus, creating and 
testing the code generator could be done quickly. The code-generation tables 
were also very small-7.5K bytes. The entire twig-generated code generator for 
the VAX was 47.5K bytes in size. 
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Since pee 2 also uses dynamic programming, it was not surprising to note that 
the code generated by pcc2 for the sample programs was of the same quality as 
code generated by tee. Only a few minor differences were noticeable because of 
different targeting and register-allocation strategies used by the two compilers. 
Occasionally tee did better targeting. For example, t cc would generate 

add13 -4(fp),--8(fp),--12(fp) 

where pc c 2 would generate 

add13 --4(fp), ---8(Q), r0 
movl r0, -12(fp) 

However, it should be pointed out that the peephole optimizer usually used with 
pc c 2 will perform this retargeting. 

Occasionally pc c 2 handled temporary registers better. For example, t c c would 
generate 

cvtbl (rO),rl 

using two registers, where pee 2 would only use one: 

cvtbl (ro), r0 

This aspect of code generation is a symptom of how temporary registers were 
allocated in t c c. Registers were allocated before code was emitted, and thus any 
registers freed during code emissions were not reused until they were explicitly 
freed by the action rule. 

The MIPS-X Compiler 

For the MIPS-X project [12], a new compiler was generated using twig and 
compared with a previously hand-generated compiler written in Pascal. The twig- 
generated code generator compiled significantly faster (about 40 percent) than 
the hand-generated compiler and generated slightly faster code (a few percent) 
even though the hand-generated compiler did some peephole optimizations. 
However, precise numerical comparisons are not meaningful here because the 
hand-generated MIPS-X compiler worked by generating MIPS code that a cross 
assembler transformed into MIPS-X code. 

9. CONCLUSIONS 

We believe the main advantages of twig’s approach to code generation are 
specification ease, compact tables, and fast generation times. We have found the 
twig-style tree-specification scheme well suited for describing the instruction- 
selection phase of code generation. Since twig automatically finds a minimum- 
cost covering using dynamic programming, the user does not need to worry about 
the order of the patterns in the tree-specification scheme. Moreover, additional 
patterns can be easily added subsequently to take advantage of machine idioms 
and peephole optimizations. As a consequence, we feel that a strong point of twig 
is its concise and expressive notation for describing efficient code generators. 
The fast compilation time of twig due to the efficient algorithm for constructing 
tree-pattern matchers also facilitates the incremental design of a code generator. 
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Another advantage of twig is the quality of t ne output code. The dynamic 

programming algorithm guarantees a minimum ccst cover for each target tree. If 
the intermediate representation has been generated with care and if the costs of 
the target machine instructions have been faithfully represented in the twig rules, 

then our experience has shown that the output code is at least as good as can be 
generated by a hand-crafted code generator. However, twig does not do common 
subexpression elimination, algebraic simplification, or any other high-level opti- 
mizations, so further code improvement is still po,ssible. 

The speed of a twig-generated code generator is still slow compared with that 
of hand-crafted code generator for a specific machine, but, as we have seen, the 
speed of a twig-generated code generator is comparable to that of a retargetable 
compiler like pcc2. Of the total compile time, 130 percent was spent in code 
generation. However, we believe the speed of a twig-generated code generator can 
be further improved in several ways. 

(1) About 80 percent of the time in a twig-generated code generator goes into 
the pattern matcher; of this, 20 percent is in simulating the automaton, 
35 percent is in bookkeeping for the dynamic programming, and 6 percent is in 
computing costs. The current compact representation of the tree-pattern match- 
ing automaton uses a linear list to represent the transitions at each state except 
at the start state where an array representation is used. More efficient represen- 
tations of the other states would speed up the tree-pattern matching. For example, 
storing the transitions of all states of the patterr -matching automaton for the 
twig-generated VAX code generator as arrays wculd use about 50K bytes but 
would provide a significant performance improvement. 

(2) For every transition of the pattern-matching automaton a twig-generated 
code generator performs at least one procedure ca:.l to access a tree node. These 
procedure calls can be replaced by in-line macros. 

(3) A twig specification may contain many chain rewrite rules such as 

operand: temp 

These rules increase the running time of twig since the effect of each of these 
rewrite rules is computed at run time. In many cases, it is possible to precompute 
the effect of these chain rewrite rules. 

In summary, we feel twig is a promising tool for helping automate the construc- 
tion of code generators. Integrating peephole optimization into code generation 
gives significant advantages [16, 201, and it would be interesting to evaluate 
adding peephole optimization into framework of twig. 
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