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Abstract. We present the meta-theory behind the code generation fa-
cilities of Isabelle/HOL. To bridge the gap between the source (higher-
order logic with type classes) and the many possible targets (functional
programming languages), we introduce an intermediate language, Mini-
Haskell. To relate the source and the intermediate language, both are
given a semantics in terms of higher-order rewrite systems (HRSs). In
a second step, type classes are removed from Mini-Haskell programs by
means of a dictionary translation; we prove the correctness of this step.
Building on equational logic also directly supports a simple but powerful
algorithm and data refinement concept.

1 Introduction and related work

Like many theorem provers, Isabelle/HOL can generate functional programs
from recursive functions specified in the logic. Many applications have taken
advantage of this feature, e.g. the certified termination analysis tool CeTA [19] or
the Quickcheck counterexample search [3]. The initial code generator [2] has since
been replaced by a new design [6] that supports a) type classes and b) multiple
target languages (currently: SML, OCaml and Haskell). This paper describes
the meta-theory underlying this new design. The theoretical contributions can
be summarized as follows:

– The formalization of the various stages of the translation between HOL
and a functional programming language by means of an intermediate lan-
guage, Mini-Haskell, with an equational semantics intermediate language,
Mini-Haskell, with an equational semantics in terms of higher-order rewrite
systems. The equational semantics has two advantages:
• Correctness of the translation is established in a purely proof theoretic

way by relating rewrite systems.
• Instead of a fixed programming language we cover all functional lan-

guages where reduction of pure terms (no side effects, no exceptions,
etc) can be viewed as equational deduction. This requirement is met
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by languages like SML, OCaml and Haskell, and we only generate pure
programs. We are also largely independent of the precise nature of the
source logic because we focus on its equational sublanguage.

– A non-trivial correctness proof for the replacement of type classes by dictio-
naries. In contrast to Haskell, where the meaning of type classes is defined
by such a translation, our starting point is a language with type classes
which already has a semantics. Thus we need to show that this translation
preserves the semantics.

On a practical level we show how the code generator supports stepwise refinement
of both algorithms and data by means of code lemmas that replace less efficient
functions and data by more efficient ones in a uniform and logically sound way.

Related work. Many theorem provers support code generation by translating an
internal functional language to an external one:

– Coq can generate OCaml, Haskell and Scheme both from constructive proofs
and explicitly defined recursive functions [11].

– The language of the theorem prover ACL2 is (almost) a subset of Common
Lisp, i.e. the translation is (almost) the identity function [5].

– PVS allows evaluation of ground terms by translation to Common Lisp [4].

The gap between the functional language of the theorem prover and the target
programming language varies from system to system and needs to be bridged
with care if it is less trivial than in the case of ACL2. We follow common practice
(e.g. [10]) and show the correctness of the key part of our translation by a
standard mathematical proof.

The outline of the paper is as follows: First we introduce the types and terms
of Isabelle/HOL and describe its internal functional language (2). Then we de-
scribe how code generation works in principle and introduce the intermediate
language to abstract from the details of specific target languages (3). The tech-
nical core of the paper is 4, where we prove correctness of a key component of our
code generator, the dictionary translation that eliminates Isabelle’s type classes
from the intermediate language. Finally we describe how the code generator
naturally supports algorithm and data refinement (5).

2 Isabelle/HOL

Isabelle/HOL [14] is an interactive proof assistant for higher-order logic (HOL).
Isabelle’s HOL is a typed λ-calculus with polymorphism and type classes. It is
based on the following syntactic entities, where en denotes the tuple or sequence
e1, . . . , en, where the index can be omitted for brevity.

– classes: c with a subclass relation ⊆
– sorts: s ::= c1 ∩ . . . ∩ cn
– type constructors: κ with fixed arities
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– types: τ ::= κ τ | α::s
– instances: κ :: s → c
– constants: f with most general type scheme ∀α::s. τ
– terms: t ::= f [τ ] | x ::τ | λx ::τ . t | t1 t2

Classes correspond to Haskell type classes in their classical formulation [7]. No-
tationally we treat them as sets of types rather than predicates on types. Sorts
are an auxiliary notion that describes (possibly empty) intersections of classes.
Types are built up in the usual fashion from (sorted) type variables and type
constructors. They form an order-sorted algebra [18]. The type-in-class and type-
in-sort judgments τ :: c and τ :: s induced by subclasses and instances are defined
in 4.

Terms are built up from polymorphic constants, variables, abstractions and
applications. Constants are polymorphic and may appear at different types. If f
has type scheme ∀α::sn. τ , where αn must be the set of all type variables in τ ,
any occurrence of f in a term must be of the form f [τn], where type argument
τ i instantiates type parameter αi. Well-typedness requires τ i :: si (i = 1, . . . ,
n), in which case f [τn] :: τ [τ1/α1,. . . ,τn/αn]. The remaining typing rules for t
:: τ are standard. We assume that type/term variables are consistently tagged
with their sorts/types.

Isabelle/HOL identifies terms up to αβη conversion. Terms of the distin-
guished type prop are called propositions; the most interesting propositions in
our case are equations built from equality = with type scheme ∀α. α ⇒ α ⇒
prop,1 where ⇒ is the function space type constructor.

It is important to realize that types are an integral part of the term language
and that substitutions can affect both type and term variables. For example, we
can have the equations zero [nat ] = 0 and zero [set α] = ∅. The presence of
types ensures that at most one of these two equations is applicable to a given
term: we have zero [set nat ] = ∅ (by instantiation) but not zero [set nat ] = 0.

Isabelle/HOL provides theories as containers of logical (and extra-logical)
data. Internally, a theory is incrementally enriched with primitive definitions
and theorems. Theorems can only be proved by a fixed set of inference rules.
It is this notion of theorems as an abstract type that leads to a small trusted
(and trustworthy) kernel. To make the kernel accessible to humans, high-level
specification and automated proof tools are provided, to which Isabelle’s speci-
fication and proof language Isar provides a coherent interface: Isar theory text
consists of a series of statements, each of which produces new definitions and/or
theorems. For example, this is a specification of queues in Isar: 2

datatype α queue = Queue (α list)

definition empty :: α queue where
empty = Queue []

1 For Isabelle experts: for our purpose we can and have identified ≡ and =.
2 In concrete Isabelle syntax, types are written postfix: (τ) κ rather than κ τ . Lists

have explicit enumeration syntax [. . . ]; cons is written as # and append as @.
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fun enqueue :: α ⇒ α queue ⇒ α queue where
enqueue x (Queue xs) = Queue (xs @ [x ])

fun dequeue :: α queue ⇒ α option × α queue where
dequeue (Queue []) = (None, Queue [])
| dequeue (Queue (x # xs)) = (Some x , Queue xs)

This illustrates datatype and function definitions. Statements for type class spec-
ification and instantiation complete Isabelle/HOL’s functional programming lan-
guage. Here is an example of a lemma with a simple proof (by . . . ):

lemma dequeue-enqueue-empty :
dequeue (enqueue x empty) = (Some x , empty)

by (simp add : empty-def )

3 Code generation

The Haskell code generated from the queue specification contains no surprises:3

newtype Queue a = Queue [a];

empty :: forall a. Queue a;
empty = Queue [];

dequeue :: forall a. Queue a -> (Maybe a, Queue a);
dequeue (Queue []) = (Nothing, Queue []);
dequeue (Queue (x : xs)) = (Just x, Queue xs);

enqueue :: forall a. a -> Queue a -> Queue a;
enqueue x (Queue xs) = Queue (xs ++ [x]);

Superficially this appears like a trivial syntactic transformation of Isar text, but
this is misleading: the source of code generation is not the Isar text as typed
by the user, but equational theorems proved in the theory. Typically these re-
sult from the Isar statements above, but they may also have been proved by
the user, which leads to a powerful method for program refinement (see 5). Thus
code generation is the translation of a system of equations in the logic to a corre-
sponding program text which implements the same system. A suitable abstract
framework to describe these equations are higher-order rewrite systems (HRSs)
[13], i.e. rewrite systems on typed λ-terms. Because types are really part of the
term language (see the discussion above), we do not need to extend the HRS
framework to cover our application. HRSs can serve as the uniform basis for
both the source logic and the target programming language. If the code gener-
ator preserves the equations from the logic when turning them into programs,
partial correctness of the generated programs w.r.t. the original equational the-
orems is guaranteed. No claims are stated for aspects which have no explicit
representation in the logic, in particular termination or runtime complexity.
3 Isabelle’s type option is translated to Haskell’s isomorphic type Maybe, and similarly

for lists.
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This scenario assumes that our target languages cover the simply-typed λ-
calculus, and functions can be specified by equations with pattern matching,
which is the case for our targets SML, OCaml and Haskell. Note that code
generation addresses only the pure part of those languages: no side effects or
exceptions. Hence an equational semantics is justified.

3.1 Intermediate language

There remains one substantial difference between equational theorems and a con-
crete target language program: a program cannot specify an arbitrary HRS, but
imposes syntactic restrictions on the equations. Therefore one task of the code
generator is to arrange equational theorems in a fashion such that translation
to a target language becomes feasible. This is conveniently shared between all
target languages by introducing an intermediate language “Mini-Haskell” with
four kinds of statements:

data κ αk = f1 of τ1 | · · · | fn of τn

fun f :: ∀α::sk. τ where
f [α::sk] t1 = t1
| . . .
| f [α::sk] tn = tn

class c ⊆ c1 ∩ · · · ∩ cm where
g1 :: ∀α::c. τ1, . . . , gn :: ∀α::c. τn

inst κ α::sk :: c where
g1 [κ α::sk] = t1, . . . , gn [κ α::sk] = tn

The data and fun statements should be clear. The class statement introduces
a new class c with superclasses c1, . . . , cm and class methods g1, . . . , gn. The
inst statement instantiates class c with type constructor κ, assuming that the
arguments of κ are of the sorts sk. Dropping the type variables we can write κ
:: s → c instead of κ α::s :: c.

Terms occurring as arguments on left-hand sides of equations in fun state-
ments are required to be left-linear constructor patterns, where constructors are
constants introduced by data statements. The class and instance hierarchy must
be coregular [16]: for each instance κ :: si → c and each superclass d of c, there
must be exactly one instance κ :: zi → d and each sj must be a subsort of zj , i.e.
each class in sj must be a subclass (in the transitive reflexive sense) of some class
in zj . Among other things, this guarantees principal types. These and further
standard well-formedness requirements are discussed elsewhere [6].

The equational semantics of a Mini-Haskell program is given by the set of
equations in its fun and inst statements, restricted to well-typed terms. Therefore
the translation from a HOL theory T to Mini-Haskell is straightforward: take
some (user specified) subset of equational theorems from T , turn them into fun
and inst statements, and enrich that with suitable data and class statements to
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form a type correct Mini-Haskell program. The semantic essence, the equations,
are not modified, only the syntax is adjusted.

However, a translation to SML or OCaml requires a further step to eliminate
type classes via dictionaries:

HOL theory

intermediate
program

intermediate program
w/o type classes

HRS HRS w/o type classes

dictionary
translation

⊇
∼

The upper level of the diagram is the actual translation process, the dashed
arrows are the projections to the equations, the lower level are the resulting
HRSs. The dictionary translation process is explained in 4. It alters the HRS
considerably and we show that its semantics is preserved.

The transformation of an intermediate program to a program in a full-blown
SML or Haskell-like target language is again a mere syntactic adjustment and
does not change the equational semantics. Note that in this last step we restrict
ourselves to partial correctness: if evaluation of a term t in the target language
terminates with value v, then t = v is derivable in the equational semantics of the
intermediate program. Therefore we are independent of the evaluation strategy
of the target language.

4 Dictionary translation

In Isabelle/HOL, types are part of the term language via f [τ ] and for class
methods g these types help to determine if a particular equation for g applies or
not. We remove these types and classes by the well-known dictionary translation
(e.g. [7], which we loosely follow) and show that the semantics is preserved.

The dictionary translation is always applied to a whole program. In the
following we avoid carrying around an explicit context but refer implicitly to the
declarations in that program: typing of constants f :: ∀α::s. τ (in fun, class and
data statements), instances κ :: s → c, and classes c ⊆ c1 ∩ · · · ∩ cm.

Table 1 describes how dictionary translation operates on intermediate lan-
guage statements. The central idea is that a statement class c . . . translates to
a record-like datatype δc α, a dictionary type, which contains fields for all class
methods of c. The class methods gi are defined as projections of the appropriate
fields from a dictionary of type δc α. Correspondingly a statement inst κ α::sk ::
c . . . translates to a dictionary of type δc (κ α::sk) containing methods defined
in this instance. Superclasses are dealt with by extending dictionary types with
additional fields for superclass dictionaries and by defining corresponding pro-
jections πd→c. Note that the inst translation only works because of coregularity
(see above): otherwise the required dictionaries for the superclasses might not
be well-defined.
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statement statement(s) with dictionaries

data κ αk =
f1 of τ1 | · · · | fn of τn

data κ αk =
f1 of τ1 | · · · | fn of τn

fun f :: ∀α::sk. τ where
f [α::sk] t1 = t1
| . . .
| f [α::sk] tn = tn

fun f :: (|∀α::sk. τ |) where
(|f [α::sk] t1|) = (|t1|)
| . . .
| (|f [α::sk] tn|) = (|tn|)

class c ⊆ c1 ∩ · · · ∩ cm where
g1 :: ∀α::c. τ1,
. . . ,
gn :: ∀α::c. τn

data δc α =
∆c of (δc1 α) · · · (δcm α) τ1 · · · τn

fun πc→c1 :: ∀α. δc α ⇒ δc1 α where
πc→c1 (∆c xc1 · · · xcm xg1 · · · xgn) = xc1

. . .

fun πc→cm :: ∀α. δc α ⇒ δcm α where
πc→cm (∆c xc1 · · · xcm xg1 · · · xgn) = xcm

fun g1 :: ∀α. δc α ⇒ τ1 where
g1 (∆c xc1 · · · xcm xg1 · · · xgn) = xg1

. . .

fun gn :: ∀α. δc α ⇒ τn where
gn (∆c xc1 · · · xcm xg1 · · · xgn) = xgn

inst κ α::sk :: c where
g1 [κ α::sk] = t1,
. . . ,
gn [κ α::sk] = tn

fun cκ :: (|∀α::sk. δc (κ α::sk)|) where
(|κ α::sk :: c|) =
∆c (|κ α::sk :: c1|) · · · (|κ α::sk :: cn|)

(|t1|) · · · (|tn|)
if c ⊆ c1 ∩ . . . ∩ cn

Table 1. Dictionary translation for program statements

Both fun and inst statements are translated by means of three auxiliary func-
tions (|·|) on type schemes, terms and type-in-sort judgments:

Translation of type schemes: (|∀α::s. τ |) turns the sorts s into additional dictio-
nary type parameters:

(|∀α1 :: (c1,1 ∩ · · · ∩ c1,k1) · · · αn :: (cn,1 ∩ · · · ∩ cn,kn
). τ |) =

∀α1· · ·αn. δc1,1 α1 ⇒ · · · ⇒ δc1,k1
α1 ⇒

· · · ⇒ δcn,1 αn ⇒ · · · ⇒ δcn,kn
αn ⇒ τ

Translation of terms: (|t |) replaces type arguments by dictionaries:

f :: ∀α1::s1 · · · αn::sn. τ
(|f [τ1, . . . , τn]|) = f (|τ1 :: s1|) · · · (|τn :: sn|)

(|x ::τ |) = x ::τ (|λx ::τ . t |) = λx ::τ . (|t |) (|t1 t2|) = (|t1|) (|t2|)
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Translation of type-in-sort judgments: The translation of a type-in-class judg-
ment τ :: c amounts to the construction of a dictionary D for type τ . We combine
both into one judgment τ :: c  D :

κ :: sn → c τ1 :: s1  D1 . . . τn :: sn  Dn

κ τ1 · · · τn :: c  cκ D1 · · · Dn

α::(c1 ∩ · · · ∩ cj ∩ · · · ∩ cn) :: cj  αj

τ :: d  D d ⊆ . . . ∩ c ∩ . . .
τ :: c  πd→c D

τ :: c1  D1 . . . τ :: cn  Dn

τ :: c1 ∩ · · · ∩ cn  D1 · · · Dn

The first two rules create dictionaries from cκs and dictionary variables. By
convention we translate a type variable α::s where s = c1 ∩ · · · ∩ cn (and where
the ci are in some canonical order) into dictionary variables α1, . . . , αn such that
each αi represents a dictionary for class ci. The third rule projects superclass
dictionaries. The last rule reduces type-in-sort to type-in-class. It produces a
sequence of dictionaries, one for each class ci in the sort.

Now we define (|τ :: c|) = D if τ :: c  D is derivable (and similarly for
(|τ :: s|) = D and τ :: s  D). There can be multiple derivations of τ :: c with
different Ds, in which case we pick an arbitrary canonical representative of the
possible Ds when defining (|τ :: c|). Although our system is coherent in the sense
of [9], a proof is beyond the scope of this paper.

For an example of the complete dictionary translation see Table 2.
An interesting alternative to the classic dictionary translation formalized

above is Wehr’s representation of dictionaries as ML modules [21]. This avoids
polymorphic recursion which may otherwise arise in the translation (although
this is rare in practice). Our intermediate language allows polymorphic recursion
but the resulting ML code would be rejected by the compiler.

4.1 Correctness

Below we show that dictionary translation preserves reduction semantics. For
reasons of space we do not argue preservation of well-typedness: in the worst
case we end up with an ill-typed program that the target language compiler will
reject. Well-typedness is frequently dealt with in the type class literature (e.g.
[20]) and we concentrate on semantic arguments.

First some preliminaries:

Subclasses We follow [15] and eliminate subclasses: classes no longer inherit
and each occurrence of a class c in a type or term is replaced by the in-
tersection c ∩ c1 ∩ · · · ∩ cn with all its (transitive) superclasses c1, . . . ,
cn. To simplify the presentation below, we assume that subclassing has been
eliminated.
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statement statement(s) with dictionaries

data N = Zero | Suc of N data N = Zero | Suc of N
data Inf α = Fin of α | ∞ data Inf α = Fin of α | ∞
data List α = Nil | Cons of α (List α) data List α = Nil | Cons of α (List α)

class monoid where
pls :: ∀α::monoid. α ⇒ α ⇒ α,
zero :: ∀α::monoid. α

data monoid α =
Monoid of (α ⇒ α ⇒ α) α

fun pls :: ∀α. monoid α ⇒ α ⇒ α ⇒ α
where

pls (Monoid x y) = x

fun zero :: ∀α. monoid α ⇒ α where
zero (Monoid x y) = y

fun plsN :: N ⇒ N ⇒ N where
plsN Zero n = n
| plsN (Suc m) n = Suc (plsN m n)

fun plsN :: N ⇒ N ⇒ N where
plsN Zero n = n
| plsN (Suc m) n = Suc (plsN m n)

fun plsInf :: ∀α::monoid.
Inf α ⇒ Inf α ⇒ Inf α where

plsInf [α::monoid] (Fin a) (Fin b) =
Fin (pls [α::monoid] a b)

| plsInf [α::monoid] ∞ b = ∞
| plsInf [α::monoid] a ∞ = ∞

fun plsInf :: ∀α. monoid α ⇒
Inf α ⇒ Inf α ⇒ Inf α where

plsInf α (Fin a) (Fin b) =
Fin (pls α a b)

| plsInf α ∞ b = ∞
| plsInf α a ∞ = ∞

inst N :: monoid where
pls [N] = plsN, zero [N] = Zero

fun monoidN :: monoid N
monoidN = Monoid plsN Zero

inst Inf (α::monoid) :: monoid where
pls [Inf (α::monoid)] = plsInf [α::monoid],
zero [Inf (α::monoid)] =

Fin (zero [α::monoid])

fun monoidInf :: ∀α. monoid α ⇒
monoid (Inf α) where
monoidInf α =

Monoid (plsInf α) (Fin (zero α))

fun sum :: ∀α::monoid. List α ⇒ α where
sum [α::monoid] Nil = zero [α::monoid]
| sum [α::monoid] (Cons x xs) =

pls [α::monoid] x (sum [α::monoid] xs)

fun sum :: ∀α. monoid α ⇒
List α ⇒ α where

sum α Nil = zero α
| sum α (Cons x xs) =

pls α x (sum α xs)

fun example :: Inf N where
example = sum [Inf N]

(Cons (Fin Zero) (Cons ∞ Nil))

fun example :: Inf N where
example = sum (monoidInf monoidN)

(Cons (Fin Zero) (Cons ∞ Nil))

Table 2. Dictionary translation example (for succintness some type arguments
[τ ] are not printed explicitly)
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Constructor terms We call a term r a constructor term if it only consists of
fully applied constants introduced by data statements. Since data statements
do not constrain the type variables (i.e. constrain them implicitly by the
empty sort) we have (|f |) = f for all data constructors, and hence (|r |) = r.

Terms and substitutions We make use of the notation C [t ] for terms where
the context C is a term with a “hole” that is filled with a subterm t. Because
(|·|) is a homomorphism on terms we have (|C [t ]|) = (|C |)[(|t |)].
Given a substitution σ we define (|σ|) to be the substitution σ ′ such that σ ′(x )
= (|σ(x )|) for all x. By induction on term t we obtain (|σ(t)|) = (|σ|)((|t |)).

Rewriting An HRS E is a set of rewrite rules l = r where l and r are λ-terms
of the same type. The rewrite relation E ` t −→ t ′ holds iff t = C [σ(l)] and
t ′ = C [σ(r)] for suitable C, σ and l = r in E [13].

In the proof below we have to argue about the order in which equations
are applied. These arguments become particularly transparent if we appeal to
a well-known strategy, lazy evaluation as in Haskell. This is admissible for the
following reasons. We focus our attention on the target languages SML, OCaml,
Haskell. They impose a sequentialization of our rewrite systems at the end of
the translation chain: overlapping equations are disambiguated by the order
in which they occur. For example, f(True) = e1, f(x) = e2 is equivalent to
f(True) = e1, f(False) = e2 in the target language. Thus we may as well
assume that all function definitions in a program are non-overlapping to start
with. Therefore the notion of lazy evaluation is well-defined, for example as given
by the Haskell semantics. Now observe that in the theorem below we consider
only reductions to normal forms. Hence Haskell subsumes SML or OCaml: if
SML or OCaml evaluation finds a normal form, so does Haskell.

In the following we are given a fixed program P and its dictionary translation
P∆. Let E and E∆ be the the set of equations contained in fun and inst statements
of P and P∆. We will now study the reduction behavior of E and E∆, i.e. view
them as HRSs.

Theorem 1 (Correctness). If all functions in P are defined by non-overlapping
sets of equations, t is well-typed w.r.t. P , and r is a constructor term, then
E ` t −→∗ r iff E∆ ` (|t |) −→∗ r.

Proof We start by comparing the structure of equations in both systems:

equations E equations E∆
f f [α::s] t = t f α (|t |) = (|t |) f∆

g g [κ β::s] = t
cκ β = ∆c . . . (|t |) . . . ∆I

g (∆c x) = x ∆E

Throughout this proof f will always represent a constant introduced by a fun
statement and g a class method. Equations in E can be partitioned into those
defining f s and those defining gs. In E∆, equations of kind f∆ correspond to
equations of kind f ; equations of kind g have no direct counterpart, but are split
into equations of kind ∆I producing a particular ∆c and equations of kind ∆E
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consuming a particular ∆c. Our proof will work in two steps: first, we establish
an intermediate system which joins the ∆E / ∆I equations of E∆; then we show
that this intermediate system behaves like E.

Because r is a constructor term, it is in normal form. Hence we may restrict
our attention to reductions following a lazy evaluation strategy. First we show
that in a lazy reduction sequence E∆ ` (|t |) −→∗ r, each ∆I step is immediately
followed by its corresponding ∆E step. We note that in (|t |), constants cκ can
only occur in subterms of the form h . . . (cκ . . . ), where h is a constant, and that
this is preserved in each reduction step: the right-hand side of each reduction
rule is either a single variable of non-dictionary type (∆E rules) or (|t |) (f∆ rules)
or ∆c (|t1|) . . . (|tn|) (∆I rules, remember we have no superclasses). Looking at
the rules of E∆ we find that f∆ and ∆I rules do not require their dictionary
arguments to be evaluated. Hence lazy evaluation will unfold f and cκ before
unfolding their dictionary arguments. Finally we consider evaluation of a redex
cκ . . . inside h . . . (cκ . . . ). As we just argued (by laziness) the h cannot be an
f or another (not necessarily different) c ′κ ′. Hence it must be a g, whose only
dictionary parameter is the cκ . . . . Thus we now have a new redex g (∆c . . . )
which lazy evaluation will reduce by the corresponding ∆E rule g (∆c x) = x.

We have shown that lazy evaluation automatically ensures that ∆I and ∆E

steps always occur pairwise. Thus it is legitimate to treat those pairs as fixed
singleton steps. Let (|E |) (a suggestive name!) be the system which results from
E∆ by merging the corresponding ∆I / ∆E equations into equations of a new
kind g∆ (see below). By construction we have:

(|E |) ` (|t |) −→∗ r iff E∆ ` (|t |) −→∗ r

The relationship between E and (|E |) is very close and justifies the name (|E |)
because we have (l = r) ∈ E iff ((|l |) = (|r |)) ∈ (|E |):

equations E equations (|E |)
f f [α::s] t = t f α (|t |) = (|t |) f∆

g g [κ β::s] = t g (cκ β) = (|t |) g∆

The remainder of the proof shows

E ` t −→n r iff (|E |) ` (|t |) −→n r

by induction on n. The case n = 0 is trivial. The induction step works according
to the following picture:

E `

(|E |) `

u

(|u|)

t

(|t |)

r

r

n

n

The right part (solid lines) is the induction hypothesis. For the induction step
it remains to prove the following implications:
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1. E ` u −→ t implies (|E |) ` (|u|) −→ (|t |)
2. (|E |) ` (|u|) −→ v implies ∃ t . (|t |) = v ∧ E ` u −→ t

Proof of 1. The rewrite step E ` u −→ t takes place at a certain redex in u
which is a substitution instance σ(l) of the left-hand side l of an equation l = r
in E. Hence u = C [σ(l)] and t = C [σ(r)]. Therefore

(|u|) = (|C [σ(l)]|) = (|C |)[(|σ(l)|)] = (|C |)[(|σ|)((|l |))] and
(|t |) = (|C [σ(r)]|) = (|C |)[(|σ(r)|)] = (|C |)[(|σ|)((|r |))].

Thus (|E |) ` (|u|) −→ (|t |) using equation (|l |) = (|r |) in (|E |).
Proof of 2. The rewrite step (|E |) ` (|u|) −→ v implies (|u|) = C ′[σ ′((|l |))]

and v = C ′[σ ′((|r |))] for suitable C ′, σ ′ and (|l |) = (|r |) in (|E |). From C ′ and
σ ′ we obtain C and σ by reconstructing type arguments from dictionaries. This
reconstruction is the inverse of function (|τ :: s|). Essentially it turns cκ back
into κ and αj into α. Then we have u = C [σ(l)], (|u|) = (|C |)[(|σ(l)|)] and v =
(|C |)[(|σ(r)|)]. Defining t = C [σ(r)] we obtain the desired E ` u −→ t (using
equation l = r in E ) and (|t |) = (|C [σ(r)]|) = (|C |)[(|σ(r)|)] = v. ut
Although this proof restricts to non-overlapping equations, we believe that this
theorem also holds without the restriction.

5 Program and data refinement

Program refinement is the replacement of less efficient algorithms and data struc-
tures by more efficient ones. We show how the code generator supports both ac-
tivities with surprising ease because we can generate code from arbitrary equa-
tional theorems, not just definitions. Replacing one algorithm by another is in
fact trivial. For example, implementing the standard recursive definition of list
reversal rev (which takes quadratic time and space) by a linear, tail recursive
one itrev of type α list ⇒ α list ⇒ α list simply requires a proof of the lemma
rev xs = itrev xs []. Notifying the code generator of this lemma (which needs
to be done explicitly) has the effect that from then on (for code generation) the
original equations for rev are dropped and rev xs = itrev xs [] is used instead.

More interesting is a change of data structures, also known as data refine-
ment [8]. The key is the insight that data statements of our intermediate language
do not contribute to a program’s equational semantics, by definition. Hence we
can replace one datatype by another as long as we can still express our functions
by pattern matching over the new rather than the old type.

Our approach to data refinement is best explained by an example. The queues
presented in 2 are the natural abstract specifications that one can reason about
in a straightforward manner. However, the generated code is suboptimal; a more
efficient implementation would use amortized queues [17], which are pairs of
lists. The queue corresponding to such a pair is obtained by reversing the first
list and appending it to the second:

definition AQueue :: α list ⇒ α list ⇒ α queue where
AQueue xs ys = Queue (ys @ rev xs)

12



This is a classic case of data refinement and AQueue is the abstraction function:

representation

abstraction

[c, b], [a] [c], [a, b]

Queue [a, b, c]

α list, α list

α queue

A
Q

ue
ue

A
Q

ueue

For the primitive queue operations we can now prove alternative equations which
perform pattern matching on AQueue rather than Queue:

empty = AQueue [] []

enqueue x (AQueue xs ys) = AQueue (x # xs) ys

dequeue (AQueue xs []) =
(if null xs then (None, AQueue [] []) else dequeue (AQueue [] (rev xs)))

dequeue (AQueue xs (y # ys)) = (Some y , AQueue xs ys)

We instruct the code generator to view AQueue as a constructor. Now it produces
the following Haskell program:

data Queue a = AQueue [a] [a];

empty :: forall a. Queue a;
empty = AQueue [] [];

dequeue :: forall a. Queue a -> (Maybe a, Queue a);
dequeue (AQueue xs (y : ys)) = (Just y, AQueue xs ys);
dequeue (AQueue xs []) =
(if null xs then (Nothing, AQueue [] [])
else dequeue (AQueue [] (reverse xs)));

enqueue :: forall a. a -> Queue a -> Queue a;
enqueue x (AQueue xs ys) = AQueue (x : xs) ys;

Clients of the abstract type α queue can continue to use the primitive opera-
tions empty, enqueue and dequeue and reason in terms of the abstract constructor
Queue. Upon code generation, the primitive operations will now be implemented
in terms of the concrete constructor AQueue. If a client has broken the abstrac-
tion and has used Queue for pattern matching in some function f, code gener-
ation for f will fail because Queue is no longer a constructor. Isabelle already
objects, but even if it did not, Haskell would. For example, code generation for
this perfectly good function definition fails:

fun peek :: α queue ⇒ α option where
peek (Queue []) = None
| peek (Queue (x # xs)) = Some x

13



Of course we can view peek as another primitive operation on queues and prove
the following executable equation in terms of AQueue:

lemma peek-AQueue [code]:
peek (AQueue xs ys) = (if null ys then

(if null xs then None else Some (last xs)) else Some (hd ys))

A considerably larger example are Lochbihler’s finite functions and their
refinement to executable code [12].

Related work. ACL2 allows replacement of subterms at code generation time
with other provably equal subterms [5]. Coq also allows replacement of one
function by another at code generation time but this is completely unchecked.
Neither system supports data refinement in the way we showed in our queue
example.

6 Conclusion

We have presented the essentials behind Isabelle/HOL’s code generator: it trans-
forms a system of equations into a program in an intermediate language captur-
ing the essence of functional programming languages. Type classes are supported
and we proved that dictionary translation preserves their semantics. Program
development in the form of algorithm and data refinement is supported by the
underlying equational logic.

Recently the scope of the code generator has been extended towards logic
programming [1]. Inductive predicates are translated to recursive functions and
the equivalence is proved automatically within HOL. The code generator itself
is left untouched.

Acknowledgement. We sincerely thank Alex Krauss and the referees for their
many comments and suggestions.
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