
Code In The Air: Simplifying Sensing on Smartphones

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

Citation Kaler, Tim et al. “Code in the Air.” Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems - SenSys ’10.
Zurich, Switzerland, 2010. 407. ©2010 ACM

As Published http://dx.doi.org/10.1145/1869983.1870046

Publisher Association for Computing Machinery

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/62221

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/62221
http://creativecommons.org/licenses/by-nc-sa/3.0/


Code In The Air: Simplifying Sensing on Smartphones

Tim Kaler, John Patrick Lynch, Timothy Peng,
Lenin Ravindranath, Arvind Thiagarajan, Hari Balakrishnan, and Sam Madden

MIT Computer Science and Artificial Intelligence Laboratory

1 Introduction
Modern smartphones are equipped with a wide variety

of sensors including GPS, WiFi and cellular radios capable
of positioning, accelerometers, magnetic compasses and gy-
roscopes, light and proximity sensors, and cameras. These
sensors have made smartphones an attractive platform for
collaborative sensing (aka crowdsourcing) applications where
phones cooperatively collect sensor data to perform various
tasks. Researchers and mobile application developers have
developed a wide variety of such applications. Examples of
such systems include BikeTastic [4] and BikeNet [1] which
allow bicyclists to collaboratively map and visualize biking
trails, SoundSense [3] for collecting and analyzing micro-
phone data, iCartel [2] which crowdsources driving tracks
from users to monitor road traffic in real time, and Transit-
genie [5], which cooperatively tracks buses and trains.

What do all these applications have in common? Today,
anyone who wants to develop a mobile phone crowdsourcing
application needs to:

1. Write and debug low-level application software for one
or more phone platforms (iPhone OS, Android, Sym-
bian, etc.).

2. Publish the application on an official distribution chan-
nel like the iPhone App Store or the Android Market,
and incentivize enough volunteers with phones to use
the application, a challenging task.

3. Deal with issues of privacy, energy and intermittent net-
work connectivity. For example, a traffic monitoring
app that always collects GPS location samples once a
second would drain the battery, and users would not
want to install it.

4. Filter out irrelevant portions of sensor traces from
phones that do not apply to the problem at hand. For
example, Transitgenie, which cooperatively tracks pub-
lic transit, filters out location traces when the user is
stationary, walking or indoors.

What if we had a platform with a large pre-existing in-
stalled base of phone users that enabled researchers and de-
velopers to instantly develop and deploy their own applica-
tions without having to worry about any of the above con-
cerns? To realise this vision, we are building Code in the
Air, a platform for developing mobile crowdsourcing appli-
cations that deals with all the low-level details. Code in the
Air comprises four key components:

• A background phone service that users install and con-
figure once on their phones. Users specify system-wide
privacy settings (how much and what data they are will-

ing to share) and energy and bandwidth budgets (the
platform should not reduce my battery life by more
than 30%, and should not upload more than 30 MB of
data).

• A web service that enables researchers to develop, visu-
alize and configure applications for the entire installed
base of phones running the service. Apps are written
entirely as simple server-side scripts without requiring
a researcher to write or debug a single line of low-level
phone code, or handle the low-level details of wireless
communication, energy optimization and intermittent
server connectivity.

• A declarative language for writing server-side scripts
that supports a rich set of filters to specify conditions
when code should be executed, and actions to be exe-
cuted when the filters become true. For example, “Start
collecting GPS data sampled every minute when the
user starts walking outdoors”.

• An intelligent optimizer that is energy- and bandwidth-
aware, that optimizes scripts written in the high-level
language and distributes them to individual phones. It
uses the filter conditions to target each script to the
most relevant set of phones. For example, it would
not distribute a Boston traffic monitoring application
to a phone user living in San Francisco. The optimizer
also decides the optimal method to use to execute fil-
ters, and the optimal filter ordering (e.g. check if user
is moving first before turning on the GPS). It uses a
simple pre-configured model of sensor sampling energy
costs and data rates for each phone device to determine
an efficient execution plan.

2 System Description
Figure 1 shows a mock-up of the Code in the Air web in-

terface. A developer can quickly create a new crowdsourcing
task by typing in or uploading a server-side script. The script
is written in a simple high-level language that supports fil-
ters, actions to execute when the filters are or become true,
and targeting conditions that specify how much data should
be collected and from how many phones or users. A script
can consist of multiple filters and associated actions for each
filter. Researchers can use the UI to add some kinds of filters
visually: e.g. they can draw a geographic bounding box, like
the one shown in red in the figure, and target the application
to phones within that box. They can also select predefined
filter conditions and actions from a drop-down menu (not
shown in the mock-up). The web interface can also be used
(privacy settings permitting) to view, control and configure



Figure 1. Code in the Air Web Interface.

the phones selected to run a “Code in the Air” task, view its
energy consumption and terminate or reconfigure the task.

We are in the middle of implementing Code in the Air as
a background service for the Android operating system.

3 Demonstration Examples
We will demonstrate two examples of crowdsourcing

applications written in our declarative language: remote
traffic monitoring and indoor WiFi access point tagging.

Traffic Congestion Monitoring.

FILTER phone.InBBox(42.3,-71.2,42.4,-71)
AND phone.IsDriving() and phone.Speed() < 20
ACTION SELECT phone.Time(), phone.GPS() EVERY ’5s’
INSERT INTO trafficdata(time, lat, lng) KEY time
TARGET 10 phones

Here, InBBox, IsDriving and Speed are all pre-defined fil-
ters the system knows about. The script instructs the sys-
tem to collect time-stamped GPS coordinates every 5 sec-
onds (0.2 Hz) from at least 10 phones detected to be driving
within the Boston area, but moving slower than some cutoff
speed. The script will populate a server side table, trafficdata
which can be dumped out to access the data.

The optimizer chooses to execute the three filters in the
following order. Whenever fewer than 10 phones are run-
ning this script, a server process periodically looks up the
last known GPS location of each phone and excludes far
away phones unlikely to enter the bounding box (e.g. in San
Francisco). It then installs the filters on candidate phones
near the box. These phones first use the low-energy ac-
celerometer to check if they are driving, and then sample
GPS periodically, first at a low rate to see if the speed and
position filters are satisfied. When all three filters are satis-
fied, the GPS is activated at 0.2 Hz and samples are sent to
trafficdata.

Demo Details. For this demo, we will ask volunteers to
drive a few cars in real-time around the city of Zurich with
Android phones that have Code in the Air preinstalled. The
demo viewers will be able to see the locations of phones
near the relevant bounding box that are targeted by the
above script, the most recent traffic data from these phones,
and the real-time status of whether the accelerometer and
GPS are being sampled and what rate. Whenever a driver
stops driving or is too far away from the bounding box,
the corresponding phone will stop sampling GPS frequently
and start sampling the accelerometer. Demo viewers will

be able to reprogram the phones live to change the GPS
sampling rate or bounding box of interest, or remove or add
filters and see how this changes which sensors are sampled.

Indoor Access Point Tagging.

FILTER phone.IsIndoors() AND phone.IsWalking()
ACTION SELECT phone.Id(), phone.Time(),
phone.WiFiAPs() AS aps EVERY ’2 min’
INSERT INTO seenaps(id, time, aps) KEY aps
TARGET 10 phones

FILTER NEW aps IN seenaps(id, time, aps)
ACTION SELECT phone.User(),
phone.WiFiAps(), phone.Text(’Tag’)
INSERT INTO aptags(id, aps, locname string) KEY id
LIMIT count(EACH userid) <= 5
TARGET GetPhone(id)

This application collaboratively tags indoor locations, as-
sociating user-specified location names with WiFi access
point signatures for localization. It has two FILTER con-
ditions. The first runs on all targeted phones and samples
WiFi access points at a low frequency (every 2 minutes)
when the user is walking indoors. The second is a simple
trigger that is executed whenever the server-side seenaps
table has a new key i.e. when we see a previously unseen
WiFi access point. When this happens, the phone executes
Text(), which beeps the user and displays a simple prede-
fined form (a text box with a button saying ’Tag’) that re-
quests the user to tag the current location. The LIMIT clause
says that each key in the aptags table should have at least 5
rows, which prevents the system from prompting each user
more than 5 times (and annoying them). The TARGET clause
here instructs the action to target a specific phone with the
appropriate id.

Demo Details. For this part of the demo, we will ask vol-
unteers to tag locations while walking around the conference
venue. We will display tags and associated access points col-
lected from these users, and also show a live view of the
sensors being sampled and the rate being used to sample
them. Demo participants will see that the system prompts
a user for a tag only when he/she enters a new zone where
a new access point is seen. If the conference venue does not
have access points, we will fall back to remote volunteers
performing the task in the MIT CSAIL building.

4 References
[1] S. Eisenman, E. Miluzzo, N. Lane, R. Peterson, G. Ahn,

and A. Campbell. The bikenet mobile sensing system for
cyclist experience mapping. In Sensys 2007, 2007.

[2] ”http://icartel.net”.

[3] H. Lu, W. Pan, N. Lane, T. Choudhury, and A. T. Camp-
bell. Soundsense: scalable sound sensing for people-
centric applications on mobile phones. In Mobisys 2009,
2009.

[4] S. Reddy, K. Shilton, G. Denisov, C. Cenizal, D. Estrin,
and M. Srivastava. Biketastic: sensing and mapping for
better biking. In CHI 2010, 2010.

[5] A. Thiagarajan, T. Gerlich, J. Biagioni, and J. Eriksson.
Cooperative transit tracking using gps-enabled smart-
phones. In Sensys 2010, 2010.


	1 Introduction
	2 System Description
	3 Demonstration Examples
	4 References

