
Code Obfuscation against Static and Dynamic
Reverse Engineering

Sebastian Schrittwieser1 and Stefan Katzenbeisser2

1 Vienna University of Technology, Austria
sebastian.schrittwieser@tuwien.ac.at

2 Darmstadt University of Technology, Germany
katzenbeisser@seceng.informatik.tu-darmstadt.de

Abstract. The process of reverse engineering allows attackers to under-
stand the behavior of software and extract proprietary algorithms and
data structures (e.g. cryptographic keys) from it. Code obfuscation is
frequently employed to mitigate this risk. However, while most of to-
day’s obfuscation methods are targeted against static reverse engineer-
ing, where the attacker analyzes the code without actually executing it,
they are still insecure against dynamic analysis techniques, where the
behavior of the software is inspected at runtime. In this paper, we intro-
duce a novel code obfuscation scheme that applies the concept of software
diversification to the control flow graph of the software to enhance its
complexity. Our approach aims at making dynamic reverse engineering
considerably harder as the information an attacker can retrieve from the
analysis of a single run of the program with a certain input, is useless for
understanding the program behavior on other inputs. Based on a pro-
totype implementation we show that our approach improves resistance
against both static disassembling tools and dynamic reverse engineering
at a reasonable performance penalty.

Keywords: code obfuscation, reverse engineering, software protection,
diversification

1 Introduction

Today, software is usually distributed in binary form which is, from an attacker’s
perspective, substantially harder to understand than source code. However, var-
ious techniques can be applied for analyzing binary code. The process of reverse
engineering aims at restoring a higher-level representation (e.g. assembly code)
of software in order to analyze its structure and behavior. In some applications
there is a need for software developers to protect their software against reverse
engineering. The protection of intellectual property (e.g. proprietary algorithms)
contained in software, confidentiality reasons, and copy protection mechanisms
are the most important examples. Another important aspect are cryptographic
algorithms such as AES. They are designed for scenarios with trusted end-points
where encryption and decryption are performed in secure environments and with-
stand attacks in a black-box context, where an attacker does not have knowledge

2 Sebastian Schrittwieser and Stefan Katzenbeisser

of the internal state of the algorithm (such as round keys derived from the sym-
metric key). In contrast to traditional end-to-end encryption in communications
security, where the attacker resides between the trusted end-points, many types
of software (e.g. DRM clients), have to withstand attacks in a white-box context
where an attacker is able to analyze the software while its execution. This is
particularly difficult for software that runs on an untrusted host.

Software obfuscation is a technique to obscure the control flow of software
as well as data structures that contain sensitive information and is used to mit-
igate the threat of reverse engineering. Collberg et al. [8] define an obfuscating
transformation τ as a transformation of a program P into a program P ′ so that
P and P ′ have the same observable behavior. The original program P and the
obfuscated program P ′ must not differ in their functionality to the user (aside
from performance losses because of the obfuscating transformation), however,
non-visible side effects, like the creation of temporary files are allowed in this
loose definition. Another formal concept of software obfuscation was defined by
Barak et al. [3]. Although this work shows that a universal obfuscator for any
type of software does not exist and perfectly secure software obfuscation is not
possible, software obfuscation is still used in commercial systems to “raise the
bar” for attackers. In the context of Digital Rights Management systems it is the
prime candidate for the protection against attackers who have full access to the
client software. While the research community developed a vast number of obfus-
cation schemes (see e.g. [5] and [16]) targeted against static reverse engineering,
where the structure of the software is analyzed without actually executing it,
they are still insecure against dynamic analysis techniques, which execute the
program in a debugger or virtual machine and inspect its behavior.

In this work we introduce a novel code obfuscation technique that effectively
prevents static reverse engineering and limits the impact of dynamic analysis.
Technically, we apply the concept of code diversification to enhance the complex-
ity of the software to be analyzed. Diversification was used in the past to prevent
“class breaks”, so that a crack developed for one instance of a program will most
likely not run on another instance and thus each copy of the software needs to be
attacked independently. In this work we use diversification for the first time for
a different purpose, namely increasing the resistance against dynamic analysis.

The main contribution of the paper is a novel code obfuscation scheme that
provides strong protection against automated static reverse engineering and
which uses the concept of software diversification in order to enhance the com-
plexity of dynamic analysis. Note that we do not intend to construct a perfectly
secure obfuscation scheme, as dynamic analysis can not be prevented. However,
our aim is to make attacks significantly more difficult so that knowledge derived
from one run of the software in a virtual machine does not necessarily help in
understanding the behavior of the software in runs on other inputs.

The remainder of the paper proceeds as follows. After a short overview of
related work (Section 2) we introduce our approach in Section 3. In Section 4
we explain how performance is influenced by our method and evaluate security
aspects. Finally, a conclusion is given in Section 5.

Code Obfuscation against Static and Dynamic Reverse Engineering 3

2 Related Work

There are a number of publications on software obfuscation and their imple-
mentation. A comprehensive taxonomy of obfuscating transformations was in-
troduced in 1997 by Collberg et al. [8]. To measure the effect of an obfuscating
transformation, Collberg defined three metrics: potency, resilience and cost. Po-
tency describes how much more difficult the obfuscated program P ′ is to under-
stand for humans. Software complexity metrics (e.g. [6,12,22,11,13,21,19]), which
were developed to reduce the complexity of software, can be used to evaluate
this rather subjective metric. In contrast to potency that evaluates the strength
of the obfuscating transformation against humans, resilience defines how well it
withstands an attack of an automatic deobfuscator. This metric evaluates both
the programmer effort (how much effort is required to develop a deobfuscator)
and the deobfuscator effort (the effort of space and time required for the de-
obfuscator to run). A perfect obfuscating transformation has high potency and
resilience values, but low costs in terms of additional memory usage and in-
creased execution time. In practice, a trade-off between resilience/potency and
costs (computational overhead) has to be made. However, the main problem of
measuring an obfuscation technique’s strength is that a well-defined level of se-
curity does not exist, even though it can make the process of reverse engineering
significantly harder and more time consuming. Several other theoretical works
on software obfuscation can be found in [17] and [23].

As preventing disassembling is nearly impossible in scenarios where attackers
have full control over the host on which the software is running, the common so-
lution is to make the result of disassembling worthless for further static analysis
by preventing the reconstruction of the control flow graph. To this end, [16] and
[5] use so-called branching functions to obfuscate the targets of CALL instruc-
tions: The described methods replace CALL instructions with jumps (JMP) to a
generic function (branching function), which decides at runtime which function
to call. Under the assumption that for a static analyzer the branching function
is a black box, the call target is not revealed until the actual execution of the
code. This effectively prevents reconstruction of the control flow graph using
static analysis. However, the concept of a branching function does not protect
against dynamic analysis. An attacker can still run the software on various in-
puts and observe its behavior. Medou et al. [18] argue that recently proposed
software protection models would not withstand attacks that combine static and
dynamic analysis techniques. Still, code obfuscation can make dynamic analysis
considerably harder.

An attack is called a class break, if it was developed for a single entity, but
can easily be extended to break any similar entity. In software, for example, we
would speak of a class break if an attacker can not only remove a copy protec-
tion mechanism on the software purchased, but also can write a generic patch
that removes it from every copy of the software. For software publishers, class
breaks are dreaded, because they allow mass distribution of software cracks (e.g.
on the Internet) to people who would otherwise not be able to develop cracks
themselves. The concept of diversification for preventing class breaks of software

4 Sebastian Schrittwieser and Stefan Katzenbeisser

was put forth by Anckaert [1]. An algorithm for automated software diversifica-
tion was introduced by De Sutter et al. [9]. Their approach uses optimization
techniques to generate different, but semantically equivalent, assembly instruc-
tions from code sequences. While software diversification is an effective solution
(see e.g. [2]), it raises major difficulties in software distribution, because each
copy has to be different. There is no efficient way for the distribution of diversi-
fied copies via physical media (e.g. DVD), and software updates for diversified
software are difficult to distribute as well. Franz [10] proposes a model for the
distribution of diversified software on a large scale. The author argues that the
increasing popularity of online software delivery makes it feasible to send each
user a different version of the software. However, a specific algorithm for the
diversification process is not given.

Another approach to protect cryptographic keys embedded in software is
the use of White-Box Cryptography (WBC), which attempts to construct a
decryption routine that is resistant against a “white-box” attacker, who is able to
observe every step of the decryption process. In WBC, the cipher is implemented
as a randomized network of key dependent lookup tables. A white-box DES
implementation was introduced by Chow et al. [7]. Based on this approach,
other white-box implementations of DES and AES have been proposed, but all
of them have been broken so far (see e.g. Jabob et al. [14], Wyseur et al. [24]
and Billet et al. [4]). Michiels and Gorissen [20] introduce a technique that uses
white-box cryptography to make software tamper-resistant. In their approach,
the executable code of the software is used in a white-box lookup table for the
cryptographic key. Changing the code would result in an invalid key. However,
due to the lack of secure WBC implementations, the security of this construction
is unclear.

Hardware-based approaches would allow to completely shield the actual exe-
cution of code from the attacker. However, this only moves attacks to the tamper
resistance of the hardware, while raising new challenges like difficult support for
legacy systems and high costs. Therefore, hardware-based software protection is
out of scope of this work.

3 Approach

Our approach combines obfuscation techniques against static and dynamic re-
verse engineering. Within this paper, the term static analysis refers to the process
of automated reverse engineering of software without actually executing it. Using
a disassembler, an attacker can translate machine code into assembly language,
a process that makes machine instructions visible, including ones that modify
the control flow such as jumps and calls. This way, the control flow graph of
the software can be reconstructed without executing even a single line of code.
By inserting indirect jumps that do not reveal their jump target until runtime
and utilizing the concept of a branching function we make static control flow
reconstruction more difficult.

Code Obfuscation against Static and Dynamic Reverse Engineering 5

Employing code obfuscation to prevent static analysis is a first step towards
running code securely, even in the presence of attackers who have full access
to the host. However, an attacker is still able to perform dynamic analysis of
the software by executing it. The process of disassembling and stepping through
the code reveals much of its internal structure, even if obfuscating transforma-
tions were applied to the code. Preventing dynamic analysis in a software-only
approach is not fully possible as an attacker can always record executed in-
structions, the program’s memory, and register values of a single run of the soft-
ware. However, in our approach we aim at making dynamic analysis considerably
harder for the attacker by applying concepts from diversification. In particular,
the information an attacker can retrieve from the analysis of a single run of the
program with certain inputs is useless for understanding the trace of another
input. It thus increases costs for an attacker dramatically, as the attacker needs
to run the program many times and collect all information to obtain a complete
view of the program. This concept can be considered as diversification of the
control flow graph.

3.1 Protection against Static Reverse Engineering

In our approach we borrow the idea of a branching function to statically obfus-
cate the control flow of the software. While previous implementations replace
existing CALL instructions with jumps to the branching function, we split the
code into small portions that implement only a few instructions and then jump
back to the branching function. While this increases the overhead, it makes the
blocks far more complex to understand. Because of the small size of code blocks,
they leak only little information: A single code block usually is too small for an
attacker to extract useful data without knowing the context the code block is
used inside the software. The jump from the branching function to the following
code block is indirect, i.e. it does not statically specify the memory address of
the jump target, but rather specifies where the jump target’s address is located
at runtime. Static disassembling results in a huge collection of small code blocks
without the information on how to combine them in the correct order to form a
valid piece of software.

Figure 1 explains this approach. The assembly code of the software is split
into small pieces, which we call gadgets. At the end of each gadget we add a jump
back to the branching function. At runtime, this function calculates, based on
the previously executed gadget, the virtual memory address of the following gad-
get and jumps there. The calculation of the next jump target should not solely
depend on the current gadget, but also on the history of executed gadgets so
that without knowing every predecessor of a gadget, an attacker is not able to
calculate the address of the following one. We achieve this requirement by assign-
ing a signature to each gadget (see Section 3.3). During runtime, the signatures
of executed gadgets are summed up and this sum is used inside the branching
function as input parameter for a lookup table that contains the address of the
subsequent gadget. Without knowing the signature sum of all predecessors of a
gadget, it is hard to calculate the subsequently executed gadget.

6 Sebastian Schrittwieser and Stefan Katzenbeisser

mov esi, ebx
shr esi, 24
add dword [sig], 0x00159269
jmp _branch

and edi, 0xff
mov edi, [te2+edi*4]
add dword [sig], 0x00000645
jmp _branch

xor esi, edi
xor esi, [ebp]
add ebp, 4
add dword [sig], 0x00032847
jmp _branch

[...]

_branch:
save flags on stack
save registers on stack
EAX <= [sig]
ADD lookupTable to EAX
target <= [EAX]
restore registers
restore flags
jump to [target]

Gadgets Branching Function (pseudocode)

1

2

3

4

5

6

Fig. 1. Overall architecture of the obfuscated program: small code blocks (gadgets) are
connected by a branching function.

3.2 Protection against Dynamic Reverse Engineering

The approach effectively prevents static analysis, as a debugger is not able to
connect gadgets to each other without calculating signature sums and executing
the branching function. Dynamic analysis, however, reveals all gadgets used in
a single invocation of the software as well as their order. An attacker can easily
remove the jumps to the branching function by just concatenating called gad-
gets in their correct order. By performing this task for several inputs, he gets
significant information on the software behavior.

To mitigate that risk, we diversify the control flow graph of the software so
that it contains many more control flow paths than the original implementation.
We diversify gadgets (i.e. add semantically identical but syntactical different
gadgets to the code) and add input dependent branches so that different gadgets
get executed upon running the software with different inputs. We can symbolize
this by a gadget graph, where the actual gadget code is stored in the edges
that connect two nodes, which symbolize the state of a program. Figure 2 shows
the multi-target branching concept before gadget diversification. For every node,
we create outgoing edges and fill them with gadgets (i.e. instructions from the
original code). All outgoing edges of one node start with the same instruction
and only differ in gadget length. In a further step, these gadgets are diversified.
Every path through the graph is a valid trace of the program. The branches are
input dependent: based on the program’s input the branching function decides
which path through the graph has to be taken. For a logical connection between
gadgets, we implement a path signature algorithm that uniquely identifies the
currently executed node and all its predecessors (see Section 3.3).

Code Obfuscation against Static and Dynamic Reverse Engineering 7

xor esi, edi
xor esi, [ebp]

and edi, 0xff

and edi, 0xff
mov edi, [te2+edi*4]

xor esi, [ebp]
add ebp, 4
mov esi, ebx

add ebp, 4
mov esi, ebx

and edi, 0xff
mov edi, [te2+edi*4]
xor esi, edi

xor esi, edi
xor esi, [ebp]
add ebp, 4

mov edi, [te2+edi*4]
xor esi, edi
xor esi, [ebp]
add ebp, 4

Fig. 2. Gadget graph.

In order to increase the security of the obfuscation, we prevent that a path
that is valid for one input is also valid for other inputs. We do this by modifying
some instruction’s operands and automatically compensate these modifications
during runtime by corrective input data. Consider, for example, the assembly
instruction add eax, 8. If we replace this instruction with add eax, ebx; sub

eax, 1, where the content of the register eax is derived from the program’s
input, only a value of 9 in ebx would yield to the correct value in register eax.
Figure 3 shows a more complex control flow graph.

���������	
������

�

�

��

�

����

��

����

��

��

���

��

����

��

�� ����

����

��

����

� �

�

����

�� ��

��

��

�� ��

��

����

��

��

�� ��

�� ����

����

��

�� ��

��

����

�� ��

�� �� �� ��

�� �� ��

��

��

��

����

��

��

Fig. 3. Diversified control flow graph.

All paths through this graph are valid and semantically equal traces of the
program. However, because of the inserted modifications to operands, one specific
path yields correct computation only for a specific input (or a group of inputs)

8 Sebastian Schrittwieser and Stefan Katzenbeisser

and fails otherwise. If an attacker would use the trace of one input for running the
program in the context of another input (e.g. by diverting the control flow in the
branching function), our modifications to operands would not be compensated by
the new input and the program would show unexpected behavior and might crash
at some point (e.g. because of access to miscalculated memory addresses). The
process of creating the diversified gadget graph is much easier and faster than
breaking the obfuscation as an attacker has to obtain each trace individually.

At the beginning of our obfuscation algorithm, a random gadget graph is
created from the software to be obfuscated, based on the input parameters for
branching level and gadget size. We then generate unique path signatures (for
details see Section 3.3) inside a depth-first search that traverses through all
possible paths of the graph. Furthermore, we diversify the gadget code (see
Section 3.4), assign the path signature to the gadget and add the gadget to the
output file. For every possible path that can be taken to reach a gadget, we
add the gadget’s memory address and path signature sum to the lookup table.
Finally, we attach the branching function and the lookup table to the obfuscated
code. Algorithm 1 shows the obfuscation algorithm in pseudocode.

Algorithm 1 Obfuscation algorithm in pseudocode

create random gadget graph
DepthFirstSearch (graph)

while path signature of current gadget is not unique do
create random path signature

end while
diversify gadget code
add path signature to gadget
output gadget code
add gadget’s memory address and path signature sum to lookup table

end DepthFirstSearch
output branching function
output lookup table

3.3 Graph construction

The main challenge of our approach against dynamic reverse engineering is the
performance of the obfuscation algorithm. One the one hand, our approach aims
to significantly delay dynamic analysis of an attacker by making it hard to tra-
verse the entire graph within a reasonable time frame (i.e. a brute force attack).
However, on the other hand, the initial construction of the graph has to be
dramatically less time consuming than an attack. We solve this problem with
full knowledge of the structure of the graph at obfuscation time compared to
runtime. The obfuscation algorithm creates the graph and stores its structure
in memory, allowing very efficient graph traversal at obfuscation time. In con-
trast, an attacker only has access to the binary code of the software that does
not contain an explicit description of the graph’s structure. An attacker has to

Code Obfuscation against Static and Dynamic Reverse Engineering 9

execute all (or at least most) paths of the graph through the branching function,
including the gadget’s entire code, in order to rebuild the graph and obtain a
complete view of the software.

Our graph construction algorithm takes the original program code as well as
a minimum and maximum gadget size and a minimum and maximum branching
size as input parameters and is based on a depth-first search. Starting at the root
node, the algorithm adds a random number of child nodes (within the bounds
of the branching size) and assigns a gadget to each connecting edge. All edges
to child nodes contain the same code by means of being filled with a random
number of instructions (within the given bounds on the gadget size) from the
original code. Only the gadget size and therefore the number of instructions
differ at this stage. Gadgets are not diversified at graph construction time. We
define the absolute number of instructions executed until reaching a node of
the graph as node level. Before adding a new node to the graph, the algorithm
calculates the node level of the new node and checks if it already exists anywhere
in the graph. It that case, instead of creating the node, the algorithm links to the
existing node. This method prevents a continually growing width of the graph.

During gadget graph construction, we calculate and store a path signature in
each node. We make it unique (see below) so that it clearly identifies the node
and all its predecessors. The signature is based on simple ADD and SUB assem-
bly instructions on a fixed memory location. Each gadget adds (or subtracts) a
random value to (or from) the value stored in memory. When traversing through
the graph, the value stored at the memory location identifies the currently ex-
ecuted gadget and the path that was taken through the graph to reach this
gadget. A node can have more than one signature, as more than one path of the
graph could reach this node. In that case, each node signature uniquely identifies
one of the possible paths from the root to the node. During signature assignment
we prevent collisions (two nodes sharing the same signature), by comparing the
current signature to all previously calculated signatures and choosing a differ-
ent value for the ADD or SUB instruction if needed. We decided to implement
a trail-and-error approach instead of an algorithm that generates provable dis-
tinct signatures to avoid performances bottlenecks at runtime. Figure 4 shows
the path signature for a small graph.

We further add a second input parameter to the branching function described
in the static part of our approach. Now, both the program’s input and the
path signature are input parameters for a lookup table that determines the next
gadget to be called. To eliminate any information leakage from the branching
function’s input value, only a hash value of the program’s input and the path
signature is stored in the lookup table.

3.4 Automatic Gadget Diversification

An efficient generation of semantically equivalent mutations of gadgets is the key
challenge for software diversification. This process has to be fully automatic to
be able to process large amounts of source code and the transformation function

10 Sebastian Schrittwieser and Stefan Katzenbeisser

-1|-2

5|4|79|8

4

-3

0

3-3 1

31-3

2

610

Fig. 4. Path signatures.

is preferably one-way to prevent differential analysis of gadgets. Pattern-based
diversification algorithms (e.g. [9]) are a reasonable first code replacement step.
However, the fact that an attacker only has local view on a gadget, can help to
improve the strength of the diversification by inserting code dependency prob-
lems that are locally undecidable for an attacker.

We propose a combination of dummy code insertions and a process we call
instruction splitting. The idea is to split basic instructions into two ore more
instructions that are in combination semantically equivalent to the original in-
struction and then insert dummy code instructions in between them. We create
bogus dependencies between the actual gadget code and dummy instructions
by accessing data of split instructions inside the dummy code. To identify and
remove dummy instructions, an attacker has to be sure that the code does not
perform any vital operations on the code that is executed afterwards. However,
this problem is hard to decide due to dependencies between gadgets. Because
of the small gadgets sizes, an attacker only has local view on a gadget without
knowledge of the subsequently executed gadget.

A simple example is the instruction add eax, 5 that can be split into the
two instructions add eax, 2 and add eax, 3. Of course, this simple transfor-
mation provides only very limited security against automatic gadget matching
algorithms. We can, however, tremendously improve the strength of the trans-
formation by inserting dummy code. For example, the instruction mov dword

[0x0040EA00], eax can be considered as dummy code, if the value that is
stored in 0x0040EA00 is not used anywhere later in the software. The instruction
sequence add eax, 2; mov dword [0x0040EA00], eax; add eax, 3 is only
semantically equivalent to add eax, 5, if mov dword [0x0040EA00], eax is
dummy code. For an attacker with only local knowledge, this is an ambiguous
problem.

Code Obfuscation against Static and Dynamic Reverse Engineering 11

Simple pattern based transformations do not withstand automated attacks
aiming at reversing the diversification. The instructions test eax, eax and
cmp eax, 0 are semantically equivalent, but the transformation is weak, be-
cause a very simple matching algorithm can easily identify them as equivalent.
However, analogous to the instruction splitting method, multi-instruction pat-
terns can be combined with dummy code insertions to enable strong diversifi-
cation. To provide an example, consider the instructions push ebp; mov ebp,

esp. A semantically equivalent expression would be push ebp; push esp; pop

ebp. A simple substitution transformation of one version for the other would
most likely not withstand an automated attack. However, if the transformation
is combined with dummy code insertion (e.g. push ebp; push esp; add esp,

[0x0040EA00]; pop ebp, where 0x0040EA00 is 0), an attacker with local knowl-
edge of the gadget can not reveal the dummy code instructions and hence can
not decide gadget equivalence locally.

xor esi, [ebp]

add ebp, 4

add ebx, 4

mov eax, [esp+4]

jmp branch

τ⇒

xor esi, [ebp]

sub ebp, eax

add ebp, 12

add eax, 5

add ebx, 2

mov dword [0x0040EA00], ebx

add ebx, 2

mov eax, [esp+4]

jmp branch

Fig. 5. Code block diversification and obfuscation.

Figure 5 shows the transformation of a small code block. The transformation
function τ adds dummy code (lines 4 and 6) and modifies the instruction add

ebp, 4 so that it only provides the correct functionality if the corresponding
input 8 is loaded into register eax. This modification prevents an attacker from
extracting this specific (and fully functional) trace and using it with other inputs.
To be able to generalize a trace, all input dependent operand modifications would
have to be removed, thus the entire code would have to be analyzed instruction
by instruction.

4 Discussion

The following section discusses the impact of our obfuscation scheme on perfor-
mance and size of the resulting program and evaluates security aspects.

Performance and Size. To demonstrate the effectiveness of our approach, we
implemented a prototype that reads assembly source code and generates an
obfuscated version of it. We measured the performance losses of a simple bench-
marking tool as well as a standard AES implementation using 8 different gadgets

12 Sebastian Schrittwieser and Stefan Katzenbeisser

sizes. While the dynamic part of our approach accounts for an increase in re-
quired memory space because of diversified copies of gadgets, execution time
heavily depends on the size and implementation of the branching function, as
it inserts additional instructions. The performance decreases with the number
of gadgets, due to calls to the branching function, which are required to switch
between gadgets. In contrast, the strength of the obfuscation is directly propor-
tional to the number of gadgets, so a trade-off between obfuscation strength and
performance has to be made. We compared different gadget sizes from 1 to 50
with the execution times of the non-obfuscated programs (see Figure 6). While
very small gadgets result in significant performance decreases, the execution time
for a program with a gadget sizes of 10 and bigger approximates the execution
time for the original program.

size aes movs
1 218,00 18,166666666667 1 28 112
2 113 9,4166666666667 2 14 56
3 77 6,4166666666667 3 8 32
4 57 4,75 4 6 24
5 47 3,9166666666667 5 4,8 19,2
10 27 2,25 10 2,6 10,4
20 19 1,5833333333333 20 1,2 4,8
50 15 1,25 50 0,5 2
Original 12 Original 2,5

1 18,166666667 1 112
2 9,4166666667 2 56
3 6,4166666667 3 32
4 4,75 4 24
5 3,9166666667 5 19,2
10 2,25 10 10,4
20 1,5833333333 20 4,8
50 1,25 50 2

0

40

80

120

0 5 10 15 20 25 30 35 40 45 50

ov
er

he
ad

number of instructions per gadget

AES
MOV benchmark

Fig. 6. Execution time for different gadget sizes.

Security. We classified our method with Collberg’s metric. Potency (strength
against humans) can be evaluated with software complexity metrics. Program
Length [11], Nesting Complexity [12], and Data Flow Complexity [22] are in-
creased by our obfuscating transformation and we rate its potency level simi-
lar to Collberg’s transformation “Parallelize Code” (potency level: high). Both
methods hide the control flow graph and allow the attacker only local view on
small code blocks.

Resilience (strength against automated deobfuscators) is based on the run-
time of a deobfuscator and the scope of the obfuscation transformation. The
runtime grows exponentially with the size of the software and the branching
level of the resulting graph, as a deobfuscator has to traverse through the entire
graph to reconstruct the control flow. For example, splitting a small program
(100 assembly instructions) into gadgets of 12 to 15 instructions and building
a gadget graph where every node has 2 to 3 child nodes, yields to more than
1800 different paths through this graph. In Collberg’s classification, the scope of

Code Obfuscation against Static and Dynamic Reverse Engineering 13

our transformation is “global”. The combination of both measures results in the
resilience level “strong”.

We furthermore used two state-of-the-art reverse engineering tools to evaluate
the strength of the static part of our approach. At first, we tried to reconstruct
the program’s control flow with the disassembler IDA Pro 5.6. Table 1 compares
the automated disassembling rates for the original versions of the code and the
obfuscated ones. The values in the table are the percent of successfully recon-
structed areas. While IDA Pro was able to reconstruct nearly 38% of the original
AES code, the percentage for the obfuscated version declined to about 10%. For
the MOV benchmark, the difference was even larger. The results show that for
both the AES algorithm and the MOV benchmark, the obfuscated version was
much more difficult to reconstruct for IDA Pro. The huge differences between the
two examples was caused by different amount of obfuscated code. While for the
MOV benchmark the entire code was obfuscated, in the AES example only the
algorithm itself was obfuscated. IDA Pro was able to reconstruct non-obfuscated
parts of the code correctly, but failed at reconstructing obfuscated code. The dis-
assembler is not able to determine the jump targets of the branching function
without actually executing it.

AES algorithm MOV benchmark

original obfuscated original obfuscated

37.96% 10.27% 100% 0.13%

Table 1. Amount of successfully reconstructed code areas (IDA Pro).

The second tool we used for evaluation is Jakstab [15] which aims at recover-
ing control flow graphs. Jakstab was not able to resolve the indirect jump at the
end of the branching function of our sample program. Although it successfully
extracted some of the jump targets from the lookup table, the correct order of
the jumps still remained unknown to Jakstab.

Although both tools implement methods for disassembling software and re-
constructing control flow graphs, it is not surprising to see them fail at breaking
our proposed obfuscation technique as they are not tailored to our particular
implementation. Hence, for a more realistic evaluation we also discuss on what
a possible deobfuscator for our approach would look like.

One of the main strengths of our approach is that obfuscated software does
not contain an explicit representation of the graph structure. It is hidden inside
the lookup table, which only reveals the direct successor of a gadget within a
single trace during runtime. If an attacker wants to manipulate the software
(e.g. remove a copy protection mechanism) he could pursue the following two
strategies:

– Reconstructing the entire graph. Without obfuscation, an attacker would
search for the copy protection code inside the software and then remove it.
In our diversified version of the software, however, multiple different ver-

14 Sebastian Schrittwieser and Stefan Katzenbeisser

sions of the copy protection are distributed over the entire code. Moreover,
they are split into small blocks to fit into the gadgets. An attacker could
execute every possible trace of the software and so reconstruct the entire
control flow graph. The result would, without doubt, reveal the structure of
the code as the individual traces can be analyzed separately. However, the
enormous number of possible paths through the graph makes this approach
time consuming.

– Removing diversity of a single trace. Alternatively, the attacker could
remove the copy protection code from one trace and then make this trace
valid for all inputs (i.e. remove diversity). The main challenge of this ap-
proach is, that the attacker has to analyze and understand the entire trace
to be able to identify and remove modifications to operands that were in-
serted during obfuscation time to bind the code to a specific input.

Neither strategy can likely be performed without human interaction. In the
first one, a large number of variants of the same copy protection mechanism
would have to be identified and removed manually from the individual traces. In
the second strategy, a human deobfuscator would have to analyze an entire trace
to be able to identify the inserted modifications that make the trace specific to
a single input. We believe, that this high amount of manual effort significantly
raises the bar for reverse engineering attacks.

5 Conclusion

This paper proposed a novel software obfuscation method, based on control
flow diversification, which makes it difficult for an attacker to relate structural
information obtained by running a program several times and logging its trace.
By splitting code into small portions (gadgets) before diversification, we achieve
a complex control flow graph and static analysis can only reveal very limited
local information of the program. We practically evaluated the strength of our
approach against automated deobfuscators and showed that it can dramatically
increase the effort for an attacker. A performance evaluation showed observable
slowdowns for very small gadgets sizes, due to the vast amount of inserted jumps.
Versions with bigger gadgets, however, yield to very reasonable performance
results.

Future work includes the development of more sophisticated diversification
techniques. In contrast to the current implementation where diversification is
done only inside gadgets, we consider inter-gadget diversification as an even
more effective method against automated gadget matching algorithms.

References

1. B. Anckaert and K. De Bosschere. Diversity for Software Protection.
2. B. Anckaert, B. De Sutter, and K. De Bosschere. Software piracy prevention

through diversity. In Proceedings of the 4th ACM workshop on Digital rights man-
agement, DRM ’04, pages 63–71, New York, NY, USA, 2004. ACM.

Code Obfuscation against Static and Dynamic Reverse Engineering 15

3. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. On the (im) possibility of obfuscating programs. In Advances in Cryp-
tology—Crypto 2001. Springer, 2001.

4. O. Billet, H. Gilbert, and C. Ech-Chatbi. Cryptanalysis of a white box AES
implementation. In Selected Areas in Cryptography, pages 227–240. Springer, 2005.

5. J. Cappaert and B. Preneel. A general model for hiding control flow. In Proceedings
of the tenth annual ACM workshop on Digital rights management. ACM, 2010.

6. S. Chidamber and C. Kemerer. A metrics suite for object oriented design. Software
Engineering, IEEE Transactions on, 20(6), 2002.

7. S. Chow, P. Eisen, H. Johnson, and P. van Oorschot. A white-box DES implemen-
tation for DRM applications. Digital Rights Management, pages 1–15, 2003.

8. C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transforma-
tions. 1997.

9. B. De Sutter, B. Anckaert, J. Geiregat, D. Chanet, and K. De Bosschere. In-
struction set limitation in support of software diversity. Information Security and
Cryptology–ICISC 2008, pages 152–165, 2009.

10. M. Franz. E unibus pluram: massive-scale software diversity as a defense mech-
anism. In Proceedings of the 2010 workshop on New security paradigms. ACM,
2010.

11. M. Halstead. Elements of software science. Elsevier New York, 1977.
12. W. Harrison and K. Magel. A complexity measure based on nesting level. ACM

Sigplan Notices, 16(3), 1981.
13. S. Henry and D. Kafura. Software Structure Metrics Based on Information Flow.

IEEE Transactions on Software Engineering, 7(5):510–518, 1981.
14. M. Jacob, D. Boneh, and E. Felten. Attacking an obfuscated cipher by injecting

faults. Digital Rights Management, pages 16–31, 2003.
15. J. Kinder and H. Veith. Jakstab: A static analysis platform for binaries. In Com-

puter Aided Verification, pages 423–427. Springer, 2008.
16. C. Linn and S. Debray. Obfuscation of executable code to improve resistance to

static disassembly. In Proceedings of the 10th ACM conference on Computer and
communications security. ACM, 2003.

17. B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and techniques for ob-
fuscation. In Advances in Cryptology-EUROCRYPT 2004. Springer, 2004.

18. M. Madou, B. Anckaert, B. De Sutter, and K. De Bosschere. Hybrid static-dynamic
attacks against software protection mechanisms. In Proceedings of the 5th ACM
workshop on Digital rights management, pages 75–82. ACM, 2005.

19. T. McCabe. A complexity measure. IEEE Transactions on software Engineering,
1976.

20. W. Michiels and P. Gorissen. Mechanism for software tamper resistance: an appli-
cation of white-box cryptography. In Proceedings of the 2007 ACM workshop on
Digital Rights Management, pages 82–89. ACM, 2007.

21. M. Munson Taghi and C. John. Measurement of data structure complexity. Journal
of Systems and Software, 20(3):217–225, 1993.

22. E. Oviedo. Control flow, data flow and program complexity. McGraw-Hill, Inc.,
1993.

23. H. Wee. On obfuscating point functions. In Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing. ACM, 2005.

24. B. Wyseur, W. Michiels, P. Gorissen, and B. Preneel. Cryptanalysis of white-box
DES implementations with arbitrary external encodings. In Proceedings of the
14th international conference on Selected areas in cryptography, pages 264–277.
Springer-Verlag, 2007.

	Code Obfuscation against Static and Dynamic Reverse Engineering

