
Code Optimization Techniques

Jim Klarkowski, Technical Advisor

Eric Disch, Manager

Sandia National Laboratories

Department 5721, Space Processor Engineering

August 10,2000

Abstract:

Faced with optimizing the Reed-Solomon error correction code, it be~
necessary to synthesize years of code optimization theory and practice. [n ora
optimize the code sufficiently, the types of optimizations available were examinec
ordered into a multi-stage process. As not all optimizations provide the same Ie!
gain, and the order was decided to maximize the effectiveness of the optimizal
Because the wealth of optimization knowledge is relatively old (considerin~
incredible rate at which technology is advancing), many of the lessons discol
needed to be reassessed in light of current technology and the particular applici
Optimization includes a variety of tasks from modifying algorithms to exarr
compiler switches. Proper ordering of the optimization tasks eliminates redu[
optimizations and moves the greatest gains to the beginning of the optimiz
process. By starting with the most effective optimizations, some projects can stop
if the code is fast enough after only a couple stages of the optimization pro
Optimization is tailored to individual projects, but the general optimization proce
applicable to a wide range of applications and project constraints.



*

DISCLAIMER

This repoti was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.



2

Introduction:

Computers transfer data in a number of different ways. Whether through a serial
port, a parallel port, over a modem, over an ethernet cable, or internally from a hard disk
to memory, some data will be lost. To compensate for that loss, numerous error
detection and correction algorithms have been developed. One of the most common
error correction codes is the Reed-Solomon code, which is a special subset of BCH
(Bose-Chaudhuri-Hocquenghem) linear cyclic block codes. In the AURA project, an
unmanned aircraft sends the data it collects back to earth so it can be analyzed during
flight and possible flight modifications made. To counter possible data corruption during
transmission, the data is encoded using a multi-block Reed-Solomon implementation
with a possibly shortened final block. In order to maximize the amount of data
transmitted, it was necessary to reduce the computation time of a Reed-Solomon
encoding to three percent of the processor’s time. To achieve such a reduction, many
code optimization techniques were employed. This paper outlines the steps taken to
reduce the processing time of a Reed-Solomon encoding and the insight into modern
optimization techniques gained from the experience.

Process:

The first task was to research code optimization and get a feel for the general
consensus on optimization do’s and don’ts. Optimization techniques have been around
for years, and not all of the long held beliefs are still applicable today. Because of the
boom in hardware speeds and the drop in hardware prices, many developers have let
code optimization slip to the back of their minds. As a result, the rigorously developed
techniques from years ago have not been updated to account for modern compiler
optimization or hardware features. Synthesizing a sizable volume of data from
opposing viewpoints led to the development of a general outline to follow when
optimizing code. This is the process that was followed during the optimization of the
Reed-Solomon code.

Before beginning any project, it is imperative to choose a programming language.
Many programmers will choose a language they are familiar with, even if it is not the
best language for the project. Speed, flexibility, and ease of coding are a few of the
major factors in deciding which language to use. Whatever the language, knowing it
well will help reduce number of awkward constructs and otherwise improve the quality
of the code. When inheriting code, the programming language is already chosen, but it
may be more efficient to rewrite the code in another language than try to optimize the
existing code. With all of the choices available, choosing the right language can be
difficult, yet is an important part of the optimization process. The Reed-Solomon
implementation for this project was written in C. This was a good choice because the
GNU compiler collection (GCC) has a very good optimizing C compiler, allowing the
compiler to do much of work. The availability of a good optimizing compiler (or fast
command interpreter for an interpreted language) should always be considered when
deciding which language to use.

Assuming the programming language is already chosen and there is little need to
choose a new one, the first step towards optimization is to look at algorithm choice.



3

Choosing a good algorithm can be a difficult task and there is no definitive process for
choosing the right one. The gains of a good algorithm, however, include a major speed
increase and improved code readability and stability. Reducing an 0(N2) algorithm to
an O(N) algorithm will speed up the code (especially for large amounts of data) and
enable later optimization to work with more efficient code to produce even greater
returns. Choosing an algorithm early in the process prevents optimization from being
performed, and then being petformed again after an algorithm change. Any changes to
the algorithm should be petformed as early in the optimization process as possible.

After settling on an algorithm, the compiler ,optimization options should be
enabled. This provides an idea about the final speed and size of the code. The
compiler will also perform many optimization faster and just as well as, if not better
than, the human programmer will. Optimization like moving constant expressions
outside of loops, storing variables in registers, moving functions inline, and unrolling
loops should be performed by the compiler in most cases. Occasionally the
programmer can perform an optimization better than the compiler because he has
additional knowledge about the code that the compiler lacks. For most code, however,
the compiler has enough information to make good decisions and perform the proper
optimization. There are some cases where certain optimization will hinder
performance or unacceptably enlarge the code. To prevent that hindrance the
programmer can specify which optimization to include or omit by using compiler flags.
There is little point in performing an optimization by hand when a ‘compiler can perform
the same optimization faster and more accurately.

If the code is still not fast enough after the compiler optimizations, there are a
number of hand optimization that can be performed. Before optimizing all the code, it
is a good idea to profile the code and get a sense of where the bottlenecks are. In
general, most of the code in a program will only run once, and most of the processing
time is spent in an inner loop. Optimizing just that loop will reap the greatest benefits,
as a single optimization will save on each run through the loop. Any good optimization
book will outline basic optimization techniques, but it is good to keep in mind the
capabilities of the compiler. The programmer knows many aspects of the code better
than the compiler and can therefore perform some optimization the compiler cannot.
Like any other tools, compilers are not perfect so it is important to understand the
specific compiler being used. As good as the compiler may be, it is foolish to rely on it
to do all of the work. When done properly, utilizing a compiler’s features is quicker,
easier, and more effective than doing all the work by hand.

For code that needs to be extremely streamlined, assembly language is a good
choice. Some programming languages, like C, allow assembly statements to be
inserted directly into the code. It is also possible to write an entire section of code in
assembly. For many programmers, modifying compiler-generated assembly will
produce the best results in the least amount of time. Skilled assembly programmers,
however, may be able to write entire blocks of assembly that will outperform compiler-
generated assembly. Even so, using the compiler-generated assembly is a good way to
start out and it is always possible to write the assembly from scratch if modifying the
compiler-generated assembly does not yield great enough gains. It is not always a
good idea to write an entire program in assembly. For code that only runs once, or for
which the compiler produces good assembly, it will often be faster to use a high-level



.

4

language than to hand-code assembly. The loss in code performance may not offset
the time saved by using a high-level language.

If all optimization fail to make the code run fast enough it may be necessary to
explore hardware options. Implementing the code in hardware allows faster processing
than that attainable by software. Because there is a minimum number of cycles
required to perform any given task, it may be necessary to use faster hardware.
Ultimately there will be some project constraint imposing a limit on the speed of the
code, and the solution may be difficult to find or accept.

Equipment:

The target system was a PowerPCTM 604e RISC microprocessor running
VxWorks 5.4 by Wind River Systems. The code was developed on a Windows NT 4.0
(SP6?) PC using Wind River Systems’ Tornado 2.0 development environment powered
by version 2.7.2 of the GNU C compiler. The Reed-Solomon implementation used was
by Phil Karn, September 1996. The initial optimizations to the code were made by Tad
Ashlock as a proof-of-concept that a software implementation could be fast enough for
the project.

Application:

The modifications to Phil Karn’s implementation by Tad Ashlock increased the
speed of the code by just under a factor of three. Those modifications transformed a
nested loop into a single loop with a constant external array. Using two pointers, the
array could be iterated upon much more efficiently than the nested loop could. Also, by
moving data that remained constant outside of the loop, calculations could be
performed once and referenced by a pointer instead of being calculated over and over
again. After careful examination of the remaining loop, it was decided that there was no
way to move any more data out of the loop or to reduce the number of calculations
needed to perform the encoding.

With the algorithm comfortably decided, there was freedom to look at the
compiler optimizations. The GNU C compiler has three basic levels of optimization
(enabled by the -o flag) and several flags that can be used for fine-tuning. Turning on
optimization (using the lowest level, -01)improved the speed of the code dramatically.
With the lowest level of optimization, the code was approximately a three and a half
times faster than the code using just the new algorithm. The higher levels of
optimization (-02 and -03) slimmed down the code, but did not produce as great a
change as did the first level of optimization. At this point, the code was just about as
fast as it was going to get, and was ten times as fast as the original code. With the
highest level of optimization, the GNU C compiler enables most of the optimization
flags, and disabling individual flags did not increase the speed any. The two major flags
that are not enabled by the highest level of optimization are the -f unroll-loops and
-funroll-all-loops flags. The first flag tells the compiler to unroll any loop
(example 1) that it believes will create a speed increase, Because branching operations
can be more costly then arithmetic and other basic operations, a loop may run faster in



5

an unrolled form. Also, if the compiler can determine how many times the loop will
execute, it is unnecessary to perform comparisons during run-time to decide if the loop
should stop executing. Unlike many of the other optimizations, loop unrolling always
increases the size of the program file and may not be a good idea when storage space
is at a premium. The size increase is why the option is not enabled with the highest
optimization flag. The compiler optimizations aim to increase the speed of the code
while decreasing the size of the application file, and loop unrolling increases file size.
The - funroll-al 1-loops flag tells the compiler to unroll any loop it can, and will
often slow down the code in addition to increasing file size. When optimizing by hand,
reducing the strength of a loop (example 2) might be a reasonable alternative to
complete loop unrolling. The Reed-Solomon code, with the new algorithm, benefited
from -funroll-loops, but not -funroll-all-loops.

Example 1, unrolling a simple loop

/’ original code ‘/ /’ unrolled code ‘/

unsigned int a [5] ; unsigned int a [5] ;

for (int i = O; i < 5; i++) { a[O] = 2;
a[i] = (i + 2); a[l] = 3;

} a[2] = 4;
a[3] = 5;
a[4] = 6;

Example 2, strength reduction of a simple loop

/ * original code * / / * strength reduced code ‘/

unsigned int a[200] ; unsigned int a[200] ;

for (int i = O; i < 200; i++) { for (int i = O; i < 200; i++) {
a[i] = (i + 2); a[i] = (i + 2); i++;

} a[i] = (i + 2); i++;
a[i] = (i + 2); i++;
a[i] = (i + 2); i++;
a[i] = (i + 2); i++;
a[i] = (i + 2); i++;
a[i] = (i + 2); i++;
a[i] = (i + 2); i++;
a[i] = (i + 2); i++;
a[i] = (i + 2);

}



●

6

The hand optimization to the C code were limited, and did not produce an
appreciable gain in speed. A few of the calculations eliminated were related to the
constants that define the Reed-Solomon block (specifically, KK and m where KK isthe
amount of data and m is the total block size). Instead of leaving (KK - 1) in the
code, that calculation can be replaced by its final value (the values of KK and m are
fixed for a given implementation). While the (KK - I) is more readable, its numeric
equivalent executes faster. To make up for the lost readability of the code, comments
were inserted showing the equivalent code fragments. The code had to be able to
handle shortened blocks, which means it has to pad the existing data with zeros to
make it the right size (KK). Instead of copying the data and adding zeros to the end, it
was faster to split the main loop into two loops. One loop performed calculations on the
data passed in, and the second loop petformed the calculations as if the data was zero.
It was possible to know where to split the loop because the length of the data was also
passed into the function. The first loop would execute DataLength times (where

DataLength is the amount of data passed in and DataLength < KK) and the second
loop would execute (KK - DataLength) tkTX2S.

The final stage of optimization was to modify the compiler-generated assembly.
It was while working with the assembly code that it was discovered that one of the loops
petformed better in loop form instead of the unrolled formed. The reason for the
performance difference was that it was a tight loop in which the microprocessor could
accurately predict when the branch was going to be taken. The main speed
improvement gained from working with the assembly was freeing up two additional
registers to store temporary values. That increase was small compared to some of the
previous gains; the speed improvement was only one percent. The register holding the
counter variable could have been freed by using the special purpose counter register, ~
but loading and storing its values for comparison would have overshadowed any gains
by doing so. The first freed register was gained by redefining one pointer in terms of the
other. This also saved one calculation per pass in the main loop. In the original code,
the second pointer was incremented and referenced each cycle; in the new code, the
first pointer is referenced with an offset in place of referencing the second pointer. The
other register freed is only available for part of the function. The register is the one
holding the length of the data and after the last use of that value, the register can be
reused. Since that coincides with the second loop derived from the main loop (to
enable shortened block processing as discussed above), those calculations can be
preformed slightly faster than those in the first loop. The last major change to the
assembly code was eliminating a number of lines of repetitive code. While each line of
code was necessary, a whole portion of code was repeated for use in a separate
branch. Eliminating the extra code and rewriting the branch reduced the file size by
almost ten percent, but did not improve performance.

Conclusions:

After going through each stage of optimization for the Reed-Solomon code, it is
clear that there is very little correlation between the difficulty and quality of
optimization. The easiest optimization (i.e., turning on the compiler flags) had one of



.
t’

.

7

the greatest benefits while the hardest (i.e., working with the assembly code) produced
only a small improvement in speed and file size. The final code, however, ran ten. times
faster then the original, and the file was ten percent smaller. Though not quite as fast
as originally hoped, the code now performs at an acceptable level. Unfortunately, when
optimizing code there is a limit that makes each additional increase in speed harder to
attain and less pronounced than the previous one.

When optimizing code, it is best to start with the optimizations that produce the
greatest returns in the shortest amount of time and with the least amount of effort. It is
inefficient and time-consuming to start with the most difficult and least rewarding
optimizations. The order used in optimizing the Reed-Solomon code was effective and
limited the amount of unnecessary work done, Picking a good algorithm has the
greatest potential for improvement and should be done first. Even if it does not increase
the speed of the code, a good algorithm will enhance the stability and readability of the
code. Compiler optimizations are one of the easiest most effective optimization
methods and should be performed before any hand optimization. After letting the
compiler perform its optimizations is a good time to perform hand optimizations and
possibly modify the compiler-generated assembly code. If software still proves too
slow, it may be necessary to examine various hardware options.

Acknowledgements:

I would like to thank Tad Ashlock for the initial optimizations to the Reed-
Solomon code and getting me up and running with the equipment I needed. Thank you
to Jim Klarkowski, my Project Lead and Technical Advisor, for overseeing my work and
keeping me informed. Thanks also to my Manager, Eric Disch, for introducing me to the
world of microprocessors and embedding computing.

Reference:

Rorabaugh, C. Britton, f%or Cocfhg Cookbook: Practical C/C++ Routines and Recipes
for Error Detection and Correction, McGraw-Hill, New York, 1996.

PowerPC’M Microprocessor Family: The Programming Environments for 32-Bit
Microprocessors, Motorola Inc., 1997.

PowerPC’M 604e: RISC Microprocessor User’s Manual with Supplement for PowerPC
604 Microprocessor, Motorola Inc., 1998.

GCC Home Page: chttp://www.gnu. org/software/gcc/gcc. html>

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.


