
CODE QUALITY EVALUATION METHODOLOGY

USING THE ISO/IEC 9126 STANDARD

Yiannis Kanellopoulos
1
, Panos Antonellis

2
, Dimitris Antoniou

2
, Christos

Makris
2
, Vangelis Theodoridis

2
, Christos Tjortjis

3,4
, and Nikos Tsirakis

2

1
Software Improvement Group, Amsterdam, the Netherlands

y.kanellopoulos@sig.nl
2
 Dept. of Computer Engineering and Informatics, University Of Patras, Greece

{adonel,antonid,makri,theodori,tsirakis}@ceid.upatras.gr
3
Dept. of Engineering Informatics and Telecoms, University of W. Macedonia, Greece

4
Dept. of Computer Science, University of Ioannina, Greece

Christos.Tjortjis@manchester.ac.uk

ABSTRACT

This work proposes a methodology for source code quality and static behaviour evaluation of a software

system, based on the standard ISO/IEC-9126. It uses elements automatically derived from source code

enhanced with expert knowledge, in the form of quality characteristic rankings, allowing software

engineers to assign weights to source code attributes. It is flexible in terms of the set of metrics and

source code attributes employed, even in terms of the ISO/IEC-9126 characteristics to be assessed. We

applied the methodology to two case studies, involving five open source and one proprietary system.

Results demonstrated that the methodology can capture software quality trends and express expert

perceptions concerning system quality in a quantitative and systematic manner.

KEYWORDS

Software Quality Management, Static Analysis, Software Metrics, ISO/IEC 9126

1. I�TRODUCTIO�

Software systems are large, complex and beset with maintenance problems, whilst users expect

high quality and consistent behaviour [1]. However it is hard to assess and assure quality. The

ISO/IEC 9126 standard has been developed in order to address software quality issues [2], [3],

[4], [5]. It specifies software product quality characteristics and sub-characteristics and proposes

metrics for their evaluation. Its main property is that it is generic, which means that it can be

applied to any type of software product by being tailored to a specific purpose [6].

This work focuses on source code quality evaluation. Its contribution is a methodology for the

software product quality assessment, using the ISO/IEC-9126 standard as a frame of reference

and a set of metrics extracted solely from source code. The main characteristics of this

methodology are: a three-step approach and a model that links system level quality

characteristics to code-level metrics, and the application of the Analytic Hierarchy Process

(AHP) [7] to every level of the model’s hierarchy, in order to reflect the importance of metrics

and system properties on evaluating quality characteristics.

Two case studies were conducted in order to evaluate the proposed methodology. Open source

and proprietary systems of different functionality, volume and development paradigm were

used. Experimental results showed that the proposed methodology is able to detect how the

quality characteristics of a software system evolve. Furthermore, they demonstrated that the

methodology has the ability to successfully express expert perceptions concerning system

quality and maintainability in a quantitative and systematic manner.

The remaining of this paper is organized as follows: Section 2 reviews software quality models

and motivates the selection of the ISO/IEC 9126 standard for this work. Section 3 outlines our

method for defining source code attributes, their respective metrics and weights reflecting their

importance on evaluating the ISO/IEC-9126’s characteristics. Section 4 reviews results from the

proposed methodology and assesses its accuracy. Finally, Section 5 concludes the paper.

2. BACKGROU�D

Software quality is still considered an intangible trait which cannot be weighted or measured

[8]. This is attributed to the fact that quality in general is not a single idea, but rather a

multidimensional concept. The dimensions of quality include the entity of interest, the

viewpoint and the quality attributes of that entity. What is more, software quality does not

happen by accident [9], [10]. It happens by design and the institution of a model that facilitates

and quantifies its assessment. Several models which employ a set of quality attributes,

characteristics and metrics were developed for this purpose. We review these in the following

sections, but first, we describe AHP, as we use it for weight assignment.

2.1. Analytic Hierarchy Process (AHP)

One of the main characteristics of the proposed methodology is that it uses weights in order to

reflect the importance of metrics and attributes on evaluating source code quality. For this

reason we employed AHP, a decision-making technique that allows consideration of both

qualitative and quantitative aspects of decisions [7]. AHP reduces complex decisions to a series

of one-on-one comparisons and then synthesizes the results. Compared to other techniques, like

ranking or rating, AHP emulates the human ability to compare single properties of alternatives.

It does not only help decision makers choose the best alternative, but also provides a

quantifiable rationale for the choice.

2.2. Software Quality

Quality is the “totality of characteristics of an entity that bear on its ability to satisfy stated and

implied needs” [2]. By employing the term “satisfaction”, ISO/IEC 9126 implies “the capability

of the software to satisfy users in a specified context of use”. This section reviews several

software quality models and standards.

2.2.1. The ISO/IEC 9126 Software Engineering – Product Quality Standard

ISO/IEC 9126 Software Engineering – Product Quality Standard consists of the following parts:

• ISO/IEC 9126-3 assesses a system’s internal quality, as the totality of characteristics of the

software product from an internal viewpoint [4]. It can be assessed during design,

implementation, and testing. The proposed methodology focuses on internal quality.

• ISO/IEC 9126-2 evaluates external quality, which is the totality of characteristics of the

software product from an external viewpoint [3]. It is the quality when the software is

executed, measured and evaluated in a simulated environment. As this work aims to

evaluate code quality, it excludes external quality.

• ISO/IEC 9126-4 assesses quality in use, which is the end user’s view of the quality of the

software product, when it is used in a specific environment and a specific context of use [5].

Quality in use is also excluded from the proposed methodology.

ISO/IEC 9126-3 (internal quality), the base of the proposed methodology, consists of six

characteristics: a) functionality, which is mostly concerned with what the software does to fulfil

stated and implied user needs, b) reliability, which evaluates the capability of software to

maintain a specified level of performance when used under specified conditions, c) usability,

which assesses how understandable and usable is the software to the user, d) efficiency, which

evaluates the capability of the software to provide the required performance relative to the

amount of resources needed, e) maintainability, which is the capability of the software to be

modified; these modifications can be corrective, adaptive, and perfective [11], and f) portability,

which measures the capability of software to be transferred from one environment to another.

2.2.2. Related Software Quality Models

Chidamber and Kemerer presented the Metrics for Object-Oriented (OO) Software Engineering

(MOOSE) metrics suite [12]. It consists of six metrics that assess different OO system

attributes: a) Weighted Methods per Class (WMC) measures complexity, b) Lack Of Cohesion

in Methods (LCOM) measures cohesion, c) Coupling Between Objects (CBO) measures

coupling, d) Depth of Inheritance Tree (DIT) and e) Number Of Children (NOC) assess

inheritance, and finally f) Response For a Class (RFC) assesses messaging. This empirically

validated work pioneered OO system quality evaluation, but offers no clear and explicit

relationship between the employed metrics and the quality characteristics of a software system

[13]. MITRE Corp. has developed the Software Quality Assessment Exercise (SQAE) which

provides a set of tools and evaluation methods that give a repeatable and consistent measure of

software quality and its associated risks [14]. It is built upon a three - layer model composed of

4 quality areas, 7 quality factors, and 76 quality attributes.

NASA’s Software Technology Assurance Center (SATC), has developed the SATC Software

Quality Model for Risk Assessment [15]. This model includes goals, associated attributes and

metrics. It supports risk management and quality assessment of the processes and products of

software development projects. Abreu and Carapuca presented the Metrics for Object Oriented

Design (MOOD) suite [16]. Its objective was to enable identifying quality OO designs by

employing metrics for OO attributes (e.g. encapsulation) that are supposed to be responsible for

internal quality, and to be able to express external quality attributes (e.g. defect density) as

functions of these metrics. The original MOOD set consisted of eight metrics: Method

Inheritance Factor (MIF), Attribute Inheritance Factor (AIF), Coupling Factor (CF),

Polymorphism Factor (PF), Method Hiding Factor (MHF), Attribute Hiding Factor (AHF),

Clustering Factor (CLF) and Reuse Factor (RF).

The Quality Model for Object-Oriented Design (QMOOD) is a comprehensive quality model

that establishes a clearly defined and empirically validated model which assesses OO quality

characteristics, such as understandability and reusability, and relates these to structural OO

design attributes, such as encapsulation and polymorphism [17]. It also provides metrics and a

method to quantify these attributes. The QMOOD model consists of six equations that establish

relationships between six quality characteristics (reusability, flexibility, understandability,

functionality, extendibility, and effectiveness) and eleven design properties.

2.2.3. Comparison with ISO/IEC-9126: Criticism and Refinements

The models presented in the previous section have characteristics similar to ISO/IEC-9126, in

the sense that they indicate relationships between metrics and system quality characteristics.

However, ISO/IEC-9126, unlike these models, is an international standard that has been agreed

upon by the community and which countries like Japan, have decided to standardize upon. It

defines a common language relating to software product quality and is widely recognized as

such [18]. All these make the ISO/IEC-9126 a good frame of reference for communication

about software product quality and the basis for our methodology.

Nevertheless, ISO/IEC-9126 is not flawless: it has been criticized as difficult to be made

operational and non-practical, as it does not provide guidance or heuristics on trading off

metrics. It suggests metrics that are not based on direct observation of the software product, but

rather of the interaction between the product and its environment (maintainers, testers and

administrators) or on comparison of the product with its specification, which itself could be

incomplete, out of date, or incorrect [19]. Moreover, the metrics provide guidance for a

posteriori evaluation of the quality characteristics based on effort and time spent on activities

related to the software product, such as maintenance [20]. Unfortunately, such metrics do not

provide predictive power for quality characteristics. Neither does ISO/IEC-9126 provide

guidance on how to weigh or collate metrics criteria in order to reflect their importance

concerning quality factors.

In order to address those issues several refinements of ISO/IEC-9126 have been proposed. The

“Evaluation Method for Internal Software Quality” (E.M.I.S.Q.) was recently presented [21]. It

consists of a quality and assessment model, a set of documents and a tool. The proposed model

consists of five quality attributes and three to nine sub-attributes per attribute. It assesses quality

attributes and sub-attributes, and overall quality. On the level of sub-attribute assessment, an

expert evaluator rates on a three-valued scale (ok, critical, very critical) how the results of the

static code analysis tools are affecting them. On the level of quality attributes, the expert checks

the plausibility of the available ratings as calculated median values.

Another model is proposed in [20], which maps a set of well-chosen source-code measures onto

maintainability sub-characteristics according to ISO/IEC-9126, following pragmatic mapping

and ranking guidelines. More specifically, the proposed model links system-level

maintainability characteristics to code-level measures in two steps. Firstly, it maps these

system-level characteristics to properties on the level of source code, e.g. the changeability

characteristic of a system is linked to properties such as complexity of the source code.

Secondly, one or more source code measures are determined for each property, e.g. source code

complexity is measured in terms of cyclomatic complexity. The common features of these

approaches are that: a) they attempt to map metrics onto ISO/IEC-9126’s sub-characteristics and

characteristics in a non quantitative way following the standard’s proposed hierarchy; b) they

lack a sophisticated way for eliciting weights for metrics and sub-characteristics in order to

reflect their importance when evaluating ISO/IEC-9126 characteristics. However, there is no

consensus among these two approaches when selecting quality metrics in order to assess

ISO/IEC-9126 sub-characteristics and characteristics.

2.3. Contribution

In this research work we propose a source code quality evaluation methodology based on the

ISO/IEC-9126 software quality standard. Similarly to the work of [20] it enhances the hierarchy

of the model by introducing a layer which will reflect the attributes of a software system’s

source code, such as volume, size, complexity, cohesion, coupling etc. Those attributes directly

influence the sub-characteristics and characteristics of the ISO/IEC-9126 quality model. The

difference though is that our work is not focusing only on maintainability but also on

portability, functionality and efficiency. This makes it similar to the work in [21], which

however is not using the intermediate layer of source code properties. It employs the AHP for

the assignment of relative weights to the employed metrics and source code attributes in order to

reflect their importance on evaluating ISO/IEC-9126’s characteristics and sub-characteristics.

By using this method of multicriteria decision making, and using certain elements of

subjectiveness, such as expert opinion, the proposed methodology can make recommendations

that approach the model’s entity relationships with more accuracy.

3. PROPOSED METHODOLOGY

As the scope of our methodology is to evaluate code quality with metrics calculated using input

elements extracted solely from source code, some of the six ISO/IEC-9126 characteristics do

not fit our purposes. More specifically, reliability, usability and time behaviour, a sub-

characteristic of efficiency, are excluded, as they are more related to dynamic system behaviour.

Therefore, internal quality is assessed based on four characteristics (functionality, efficiency,

maintainability, portability) and their respective sub-characteristics. These are evaluated by

employing a set of metrics. For instance, the quality level for maintainability takes into account

the measured values of four sub-characteristics. By aggregating the values of these sub-

characteristics a single value on a composite measure of maintainability can be derived. The

above quality characteristics are abstract concepts and therefore not directly measurable and

observable. Each of them is characterized by a set of sub-characteristics that are presented in

Fig. 1. This final set of quality characteristics is generic enough to satisfy the main goal of this

work, which is to create a model that supports system quality evaluation.

Figure 1. ISO/IEC 9126 Internal Quality Characteristics and Sub-Characteristics

Figure 2. Hierarchy for the Proposed Methodology

3.1. Hierarchy of Characteristics, Attributes and Metrics

The proposed methodology is flexible in order to facilitate addressing varying perspectives,

goals and objectives. Fig. 2 depicts the proposed hierarchy, where at the lowest level are metrics

for assessing source code attributes, assigned to ISO/IEC-9126 characteristics and sub-

characteristics. The methodology enables employing different sets of metrics or source code

attributes, even changing the subset of ISO/IEC-9126 characteristics to be assessed.

3.1.1. Source Code Attributes

Source code attributes directly influence ISO/IEC 9126 characteristics and sub-characteristics

[2]. They are tangible concepts that can be directly assessed by examining the static behaviour,

relationship and functionality of software artefacts. For example, an evaluation of a class’s

coupling and the examination of its member methods and data reveals significant information

concerning its structural and behavioural characteristics.

The OO approach involves source code attributes similar to the structured approach [17]. These

attributes are abstraction, encapsulation, coupling, cohesion, complexity and volume. However,

attributes such as messaging, composition, inheritance and polymorphism represent concepts

that have been introduced by the OO paradigm and are vital for the OO system quality

assessment [17], [7]. Table 1 presents the source code attributes that influence ISO/IEC 9126

characteristics, along with their definitions.

Table 1. Source Code Attributes

Attribute Definition

Volume It measures the volume of the system [22].

Complexity It is determined in terms of structural characteristics by examining how

objects are interrelated [22].

Abstraction The ability to engage with a concept, whilst safely ignoring some details [22].

Encapsulation The grouping of related concepts into one element [22].

Coupling The connections between objects (how tightly objects are related) [22].

Cohesion The degree to which an object has all operations working together in order to

achieve a single, well-defined purpose [23].

Messaging Collaboration between objects by message exchange [22].

Polymorphism The ability of different objects to respond to the same message in different

ways, enabling objects to interact without knowing their exact type [24].

Composition A strong form of aggregation where the “whole” is completely responsible for

its parts and each “part” object is only associated to one “whole” object [4].

Inheritance A measure of relationships such as “is a” and “is like” [22].

3.1.2. Selected Metrics

Software demonstrates regular behaviour and trends, which can be measured [25]. Software

quality assessment requires the collection of such metrics in order to provide a systematic

approach of code evaluation based on a set of predefined rules. These metrics can also be useful

as indicators for identifying potential problematic areas. Each of the source code attributes,

mentioned in the previous section, can be objectively assessed using one or more well-defined

metrics.

3.2. Software System Entities

A key feature of the proposed methodology is a model which models source code attributes and

metrics in order to assess static internal quality. The definition of this model requires

specification of software system entities and their respective attributes. Entities were selected to

be applicable to all types of software systems, and easily identifiable, i.e. clearly named in a

program. For instance, methods or functions are present in any type of software system, whereas

classes exist only in OO systems. These entities should also model a large proportion of the

code, thus ensuring that any subsequent analysis covers a large part of a system under

evaluation. Moreover, entities need to contain a common set of attributes in order to enable

uniform assessment. This allows for entity evaluation on the basis of their attributes. The

number of selected attributes needs also to be sufficient in order to avoid misleading

comparisons. Selected attributes can be both quantitative and qualitative [26], [27].

Software systems employ larger units of abstraction in order to separate the development of

different constituents. Concepts such as the C code-file, Java package, C++ namespace and

Delphi unit facilitate the development of isolated modules and cater for programmers to write

their own applications in an abstract way [29]. In the case of systems developed using the

structured approach the most important structures are functions (or subroutines, methods,

procedures and blocks) [28]. On the other hand the design of an OO system is defined by

modules (packages in Java, namespaces in C++ and units in Delphi), classes, and the

relationships between them.

A function (or member method in OO systems) constitutes of input parameters, variables and its

body of statements. A set of attributes that play an important role in the evaluation of the quality

of a function includes: name, parameter types, number of parameters, parameters passing (by

value, by reference), return type, complexity, coupling, number of statements, number of

comments, and size. In case of an OO system methods are also evaluated based on their

visibility; that is if they are public, protected or private. Functions are processing data variables

in order to perform the required operations. Therefore, data variables are the most fundamental

components in a software system. A set of attributes that influence the evaluation of the data

variables is: name, type and kind (primitive or user defined).

A class constitutes of member data which represent its attributes. A set of operations (methods)

that operates on a class’ member data constitute its member methods. Another important

characteristic of OO systems are the class hierarchies that organize groups of related classes.

Member data form the basis of an OO system; the set of attributes that can influence the

evaluation of their quality includes: name, visibility (public, protected, private), qualifiers

(static, constant) and type.

Classes are evaluated based on their constituents (i.e. member methods and data) and their

interactions with other classes. A set of attributes that can influence the evaluation of classes’

quality includes: name, visibility (public, protected, private), name of ancestor,

package/namespace/unit name, number of children, number of methods (public, protected,

private), depth of inheritance tree, coupling, cohesion, complexity, number of statements and

number of comments.

Figure 3. Entity Hierarchy

A set of attributes that can influence the evaluation of classes’ quality includes: name,

afferent (inward) and efferent (outward) couplings. Fig. 3 presents the hierarchy of

entities of a software systems’ quality evaluation model.

3.3. Employing AHP for weights assignment

The proposed methodology employs AHP at every level of its hierarchy, as shown in fig. 2. At

the lower level we evaluate source code attributes using metrics (volume, complexity, etc.). We

apply AHP also at the intermediate level to evaluate sub-characteristics using source code

attributes. Finally, quality characteristics are evaluated at the top level from their respective sub-

characteristics. So at lower level we construct a pair-wise comparison table for each of the

attributes, reflecting expert knowledge on how much does a metric influence each attribute.

Then, by applying normalization and the Eigenvalues extraction to each matrix, we obtain the

each metric’s weight for calculating the score for every attribute. This is repeated at the

intermediate level of the hierarchy. Finally, at the top level, a pair-wise comparison table is also

constructed reflecting expert knowledge of how much does each sub-characteristic influence its

respective quality characteristic. The weights are also calculated by normalization and the

Eigenvalues extraction.

The values for each entity for the ISO/IEC-9126 quality characteristics are calculated using the

following utility function U(Ci):

U(Ci) = v(sc1)*w(sc1i) +v(sc2)*w(sc2i) + ...+ v(scn)*w(scni) Equation (1)

where

v(sci) = v(d1)*w(d1i) + v(d2)*w(d2i) + ...+ v(dn)*w(dni) Equation (2)

and

v(d i) = v(m1)*w(m1i) + v(m2)*w(m2i) + ...+ v(mn)*w(mni) Equation (3)

U(Ci) = Utility Function of ISO/IEC-9126 characteristic I

v(sci) = Value of Sub-characteristic j

w(scji) = Weight of Sub-characteristic j for ISO/IEC-9126 Characteristic i

v(di) = Value of Source Code Attribute di

w(dji) = Weight of Source Code Attribute dji for Sub -Characteristic i

v(mi) = Value of Metric mi

w(mji) = Weight of Metric mj for Attribute i

4. EVALUATIO�

The proposed methodology was evaluated based on the following criteria:

• It should be flexible; that means to be suitable for evaluating systems with different

functionality, developed using either the structured or the object oriented paradigm.

• It should be valid; that means to reflect the views and intuitions of domain experts

concerning system level quality.

Based on the above criteria, the assessment of the methodology involved the following case

studies:

• The analysis of two open source application servers, the Apache Geronimo and the JBoss

AS, both developed in Java. The aim of this case study was to evaluate the ability of the

proposed methodology to reflect the system trends in terms of ISO/IEC-9126 quality

characteristics. The release notes for each version of these systems were used in order to

validate the outcome of our methodology.

The maintainability evaluation of four software libraries, three open-source and one proprietary,

used for developing telecommunication products based on the Session Initialisation Protocol

(SIP). These libraries are developed either in C, C++ or a mix of both. The aim of this case

study was to help the software engineers of a systems on-a-chip supplier, to select among these

libraries the one that would be most suitable with regards to reuse, for the development of a

soft-phone. The outcome of this evaluation was validated by the software engineers based on

their perception and intuition of the maintainability levels of the four libraries.

4.1. Case Study 1: ISO/IEC-9126 Quality Characteristics Trend Analysis

As the proposed methodology employs source code attributes for assessing ISO/IEC-9126

characteristics, these should indicate trends that are required by systems that exhibit a certain

level of quality. These trends are related with the laws of software evolution [30]. Firstly,

functionality and efficiency are expected to increase from one version to the next as new

features are added and capabilities are extended in order to incorporate additional requirements.

In this way a software system remains adaptable to continuous changes and satisfactory in use.

This is compatible with the laws of continuing change and growth of software systems [30].

However, maintainability is expected to decrease initially as new features are added and

capabilities are extended by adding new classes and methods, thus making source code more

complex. This is normal according to the law of the increasing complexity, which states that, as

software systems evolve their complexity increase unless work is done to maintain or reduce it

[30]. On the other hand when most of the required capabilities of a software system have been

incorporated, maintenance effort focuses on reducing code and design complexity.

We evaluated Apache Geronimo, version 1.0 [31] and JBoss AS, version 4.0 [32]. Table 2

presents the size of the two software systems, measured in classes and in lines of code.

Table 2. Size of Apache Geronimo – JBoss AS

Apache Geronimo # Classes KLOC Release Date

Ver 1.0 1650 166 05/01/2006

Ver. 1.1 1642 161 26/06/2006

Ver. 1.1.1 1657 164 18/09/2006

JBoss AS # Classes KLOC Release Date

Ver. 4.0.0 5907 283 20/09/2005

Ver. 4.0.2 5885 288 02/05/2005

Ver. 4.0.4 6887 325 15/05/2006

Ver. 4.0.5 6517 296 18/10/2006

In order to depict the actual trends of the ISO/IEC-9126’s characteristics of versions 1.0 and 4.0

of Apache Geronimo and JBoss AS respectively, we normalised the derived characteristics’

values according to the first version of each system. More specifically, the values of each

characteristic were divided by the characteristics’ values in the first version.

4.1.1. Selected Metrics

Table 3 outlines the selected metrics and their purpose when evaluating a software system’s

quality according to ISO/IEC-9126. It should be noted that all the proposed metrics apply to a

system’s classes except from Design Size in Classes (DSC), which applies to the system level.

Table 3. Case Study 1 Selected Metrics

Metric Definition Purpose

DSC Total number of classes [17] It measures the system scale

LCOM Number of member methods of a class that

accesses the same member data [22].

It measures if a class has all its methods

working together in order to achieve a

single, well-defined purpose.

DIT Max Distance from top It provides for each class a measure of

the inheritance levels from the object

hierarchy top

NOC Number of the immediate descendants of

the class.

It measures the number of the immediate

descendants of the class

WMC Sum of the cyclomatic complexity [33] of

each member method of the class [29].

It provides a measure for predicting class

maintainability and reusability. The more

complex a class is the more difficult is to

maintain and reuse.

DAM Ratio of the number of private and

protected member data to the total number

of member data declared in a class.

It reflects how well the property of

encapsulation is applied to a class [17].

CBO Number of invocations of other classes’

member methods or instance variables.

It represents the number of classes

coupled to a given class.

MOA Number of member data declarations

whose types are user defined classes.

It measures the extent of the part-whole

relationship realized by using attributes

[17].

NOP Number of the member methods that

exhibit polymorphic behaviour.

It is a metric of the overridden (or

virtual) methods of an OO system.

NOM Number of Messages It is a metric of the services that a class

provides.

Table 4. Case Study 1 Assigned Metrics

Source Code Attribute Metric

Volume Number Of Statements

Complexity Weighted Methods Per Class

Abstraction Number Of Children

Encapsulation Data Access Metric

Coupling Coupling Between Objects

Cohesion Lack of Cohesion in Methods

Messaging Number of Messages

Polymorphism Number of Polymorphic Methods

Composition Measure of Aggregation

Inheritance Depth Of Inheritance Tree

4.1.2. Assigning Metrics to Source Code Attributes

According to ISO/IEC-9126 a source code attribute may contribute to one or more

characteristics, and a characteristic consists of specific sub-characteristics [2]. One of the steps

during the development of our quality evaluation methodology is to define an appropriate set of

metrics for the evaluation of the source code attributes. Table 4 summarizes the assignment of

the selected metrics presented in Table 3, to the attributes presented in Table 1.

4.1.3. Weights Assignment

The last step of the methodology for this case study was the assignment of weights to source

code attributes in order to reflect their importance when evaluating ISO/IEC-9126 quality

characteristics. Table 5 shows the weight of each attribute.

Table 5. Source Code Attributes Assigned Weights

Attribute Functionality Efficiency Maintainability Portability

Volume 0.17 0.05 -0.12 -0.06

Complexity 0.10 0.07 -0.12 -0.10

Abstraction 0.05 0.13 0.12 0.16

Encapsulation 0.04 0.13 0.12 0.05

Coupling 0.07 0.08 -0.12 -0.16

Cohesion 0.10 0.06 0.12 0.06

Messaging 0.17 0.09 0.06 0.06

Polymorphism 0.17 0.12 -0.12 0.16

Composition 0.07 0.13 0.04 0.04

Inheritance 0.07 0.13 0.04 0.16

In order to reflect the significance of the individual source code attributes to each quality

characteristic Bansiya and Davis have proposed in their Q.M.O.O.D. model a set of

proportionally weighted attributes [17]. A range from -1 to 1 was selected for the computed

values of the source code attributes. Based on these proposed relationships we applied AHP to

the levels of hierarchy presented in §3.1. In this case study we evaluated the source code

attributes (complexity, coupling, etc) for each ISO/IEC-9126 characteristic. Hence, at first we

constructed a pair wise comparison table for each one of the source code attributes reflecting

how much each attribute influences each characteristic. Then, by applying normalization and

Eigenvalues extraction to each matrix, we find the weight of each attribute by calculating a

score for each characteristic. Finally, a pair wise comparison table is constructed reflecting

expert knowledge of how much each source code attribute influences each ISO/IEC-9126

characteristic; the weights are calculated by normalization and Eigenvalues extraction.

The volume attribute is viewed to be closely related to functionality, maintainability and

portability. It is difficult to migrate and maintain a large system, which in turn is expected to

provide ample functionality. Complexity, on the other hand indicates a system’s maintainability

and portability [7]. The more complex a system is, the harder it is to comprehend it in order to

maintain it or to install it in another platform.

Abstraction influences functionality, portability and efficiency, as it supports faster and safer

programming [17]. It also favours maintainability as it allows ignoring irrelevant details.

Encapsulation promotes maintainability and portability as it makes it easier to understand

system structure. More specifically, it helps managing code complexity by forbidding looking at

the complexity. Coupling is also related with maintainability and portability. The goal for a

software system is to create classes with small, direct, visible and flexible relations to other

classes, which is known as “loose coupling”. Higher measurements of coupling negatively

influence these two quality characteristics. Cohesion is related to functionality, maintainability

and portability. A high value of cohesion is considered good.

Objects communicate by using messages and therefore this influences their functionality,

efficiency and portability. The greater the number of methods that can be invoked from a class

through messages, the more complex the class is. Polymorphism also influences the same

characteristics, but it also makes it harder to comprehend a class’s design [17]. On the other

hand, composition is closely related to efficiency and portability as a carefully composed

system leads to a more effective design and is much easier to understand and therefore to be

migrated to another platform [17].

Inheritance favours functionality, efficiency and portability as it simplifies programming.

Deeper inheritance trees would seem to promote greater method sharing than broader trees. On

the other hand excessive use of hierarchy trees has the potential to adversely influence

maintainability [17].

4.1.4. System Evaluation

Fig. 5 and 7, present the evolution of the ISO/IEC-9126 quality characteristics for Apache

Geronimo and JBoss AS respectively. In these figures the measurement scale of X-axis is

ordinal with reference to the version of each software system and on the Y-axis are the

normalised values of ISO/IEC-9126 characteristics. Fig. 6 and 8 on the other hand depict the

evolution of the attributes of those systems. On the Y-axis are the normalised values of systems’

attributes, while the ordering on the X-axis is nominal (i.e. reference to model’s source code

attributes).

4.1.4.1. Apache Geronimo Evaluation

According to Fig. 5 the increase in the values of functionality, efficiency and portability

is compatible with the requirements imposed in section 4.2. More specifically efficiency

increases significantly in every version of Apache Geronimo, from 1.0 to 1.1.1.

Interestingly, portability is significantly increasing in version 1.1 and is slightly

increasing in version 1.1.1 in relation to the previous version (i.e. 1.1). According to the

release notes of version 1.1, it introduces several structural changes in order to improve

Geronimo’s portability [34]. This can explain why portability has such an increase in

this version. Functionality is slightly increased in the next version of Apache Geronimo.

However, maintainability does not conform to the hypothesis that it decreases as the

software system takes additional functionality. Both 1.1 and 1.1.1 versions are slightly

more maintainable than the first version. This implies that work has been done in order

to control the evolution of the source code and keep it maintainable.

Figure 5. ISO/IEC-9126 Characteristics Evolution for Apache Geronimo

Figure 6. Apache Geronimo Attribute Evolution

Fig. 6 depicts that complexity, composition, encapsulation and volume have only

slightly changed from one version to the other. The attributes with the most significant

changes are polymorphism, cohesion and messaging and then coupling, inheritance and

abstraction. The vast increase in the portability of the system was expected as it heavily

depends on cohesion, polymorphism, inheritance and messaging, as described in Table

4. These factors see a notable increase from version to version, thus system portability

improves. On the contrary, these factors contribute less towards the three other

characteristics; this is why they only change marginally.

A useful observation can be made about the trends of the whole system at a higher

level:

• While the volume of the system has not changed significantly; many attributes have

been improved, like polymorphism, cohesion, messaging, and inheritance; thus

system functionality has improved due to many changes rather than system

extensions. The release notes of version 1.1 confirm these observations [34].

• Despite this improvement, the other attributes of the system have not improved any

further, thus future system development would have to deal with this. Composition,

complexity and encapsulation have to improve in order for the system as a whole to

improve.

4.1.4.2. JBoss AS Evaluation

As seen in Fig. 7, the increase in the values of efficiency, portability and functionality is

compatible with the requirements imposed in section 4.2. These quality characteristics increase

from version 4.0.0 to 4.0.4 of JBoss AS. This fact can be explained by observing Fig. 8

depicting that, encapsulation, polymorphism, composition, inheritance, cohesion, coupling,

volume and complexity vary significantly from version to version.

More specifically, functionality increases since attributes that mainly affect it, such as volume

and especially polymorphism, also increase throughout. As far as efficiency is concerned, we

see in Table 5 that it is equally affected by abstraction, composition, encapsulation,

polymorphism and inheritance. Therefore, the big increase of the last three attributes mentioned,

contributes to the improvement of the efficiency of JBoss from version 4.0.0 to 4.0.4.

Figure 7. ISO/IEC-9126 Characteristics Evolution for JBoss AS

Figure 8. JBoss AS Source Code Attributes Evolution

In version 4.0.4 there is a significant change on the volume of JBoss and a lot of new features

were added in order to satisfy change requests and to fix reported bugs from previous versions,

according to this version’s release notes [35]. Finally, portability mostly depends on abstraction,

polymorphism and inheritance and it is negatively affected by coupling. Hence, since coupling

slightly increases, while the increase of polymorphism and inheritance is much more significant,

the portability of JBoss throughout versions improves, as expected.

Maintainability on the other hand, confirms the hypothesis that it decreases as the software

system incorporates additional functionality; therefore it becomes more complex. More

specifically it decreases in all versions except from 4.0.5 which is still less maintainable than

4.0.0. Observing Fig. 8 also leads to this conclusion, since maintainability is a linear

combination of almost equally weighted factors, most of which affect negatively its value. In

particular, increasing polymorphism and coupling whilst cohesion decreases leads to a less

maintainable system.

If we compare the evaluation of Geronimo and JBoss we will see that all characteristics make

similar progress except from one (portability in Geronimo and maintainability in JBoss). Also

Geronimo seems to be more stable with regards to the variation of source code attributes, while

the attributes of JBoss have greater perturbation.

4.2. Case Study 2: Maintainability Evaluation, Sip-Stack Selection

In this case study the proposed methodology was employed in order to perform a source code

quality evaluation concerning the maintainability of four Session Initiation Protocol (SIP)

software libraries. This assessment was performed on behalf of a company (for confidentiality

reasons we will refer to this company as CompanyA) that is a supplier of system-on-a chip

solutions for digital cordless telephony (voice and voice/data). Currently, CompanyA wants to

develop a soft-phone for Voice over IP (VoIP) telephony based on SIP. SIP is a signalling

protocol for Internet conferencing, telephony, events notification and instant messaging. SIP

libraries and stacks that implement it, provide telecom software developers an interface to

initiate and control SIP based sessions for their applications. In this study the following libraries

were evaluated:

• A commercial system, which for confidentiality reasons will be called SystemA.

• WengoPhone, an open source SIP stack provided by Wengo [36].

• Libosip, an open source SIP stack.

• Sofia-Sip, an open source project started by Nokia

Table 6 presents the size of the four software systems measured in lines of code.

Table 6. Size of SIP Libraries and Stacks

�ame Version LOC Programming Language

SystemA 2.8.0 18,959 C/C++

WengoPhone 2.1.2 90,645 C/C++

LibOSIP 3.0.3 25,685 C/C++

Sofia-Sip 1.12.7 67,448 C/C++

The engineers of CompanyA selected the four systems as candidates for reuse in order to

develop their own soft-phone. All these systems were providing similar functionalities, thus the

sole criterion for the selection was their maintainability, particularly their ability to accept

modifications. The engineers also needed to identify system parts that require modifications. As

a result we employed our methodology in order to assess the changeability and analysability of

the above systems.

Fig. 9 depicts the steps of the performed evaluation, which consisted of two iterations. At first

the four systems were examined regarding their changeability as the main criterion. The

outcome of this iteration was the selection of two of them for the final round. Here, the two

more changeable libraries were assessed in terms of their analysability.

Figure 9. SIP Libraries Maintainability Evaluation Steps

4.2.1. Steps Followed

The aim of this case study was to assess the SIP libraries’ capability in terms of their:

• Analysabillty, which is defined as the systems’ capability to allow identification for

parts which should be modified [2].

• Changeability, which is systems’ capability to enable a specified modification (in

our case changes to source code), to be implemented [2].

Those two maintainability sub-characteristics are influenced by certain source code attributes,

which in turn are mapped into specific source code metrics. These relationships are depicted in

Fig. 10.

Figure 10. Case Study 2 Hierarchy

The influence of the attributes on changeability and analysability is as follows:

• Volume: It mainly influences a system’s analysability [20], as a shorter piece of code is

more readable and therefore easier to determine whether it requires a modification or not.

Moreover, a large function or method body often indicates that the code performs many

different and possibly unrelated tasks. In that case a system’s maintainability is deteriorated

[29].

• Complexity: The source code complexity is mainly influencing a system’s changeability

[20] and then its analysability. In a complex module it is not easy to identify the elements to

change or to calculate the extension of the required changes. On the other hand a complex

module is making difficult the task to locate either the causes of a failure or the software

parts that are to be modified.

• Coupling: It mainly influences analysability and then changeability. A highly coupled

module is difficult to understand as its dependencies disrupt reading its source code in order

to locate dependency’s target. Moreover coupling makes difficult for a module to identify to

what extend the implemented changes affect the rest of the system.

Table 7, outlines the selected metrics and their purpose when evaluating software systems’

maintainability according to ISO/IEC-9126. All the proposed metrics are applied on the

methods of the four systems. Table 8 summarizes the assignment of the metrics presented in

Table 7, to the source code attributes selected for applying our methodology.

The final step of the methodology is the assignment of weights to source code attributes in order

to reflect their importance on evaluating the characteristics of ISO/IEC-9126. Table 9 shows the

weight of each source code attribute on evaluating the two ISO/IEC-9126’s maintainability sub-

characteristics, changeability and analysability. Those weights were elicited based on the

feedback and expertise of the software engineers of CompanyA.

Table 7. Case Study 2 Selected Metrics

Metric Definition Purpose

LOC Lines Of Code = The number of a

function’s (method’s) lines of code

It indicates the volume of a system

CC Cyclomatic Complexity = e-n+2p

e: number of sides

n: number of edges

p: number of adjacent components

It measures the level of complexity of the

software design and coding structure [33]

Instability Instability = FO / (FO + FI)

FI=Fan In

FO=Fan Out

It gives a measure of a function’s total

couplings that are efferent (outgoing). It

takes values between 0, indicating a very

stable function and 1, indicating a very

unstable function.

Table 8. Case Study 2 Assigned Metrics

Source Code Attribute Metric

Volume LOC

Complexity Cyclomatic Complexity

Coupling Instability

Table 9. Case Study 2 Source Code Attributes Assigned Weights

Source Code Attribute Changeability Analysability

Volume 0.05 0.50

Complexity 0.80 0.25

Coupling 0.15 0.25

4.2.2. Systems Evaluation

The four SIP libraries were of different size as depicted in Table 6. For this reason, summation

of the methods’ measurement values (for complexity and instability) would not be helpful as it

was strongly correlated to their volume [20]. Therefore in order to compare the four systems we

computed relative volumes for each one by performing an aggregation at the system level. More

specifically, we used two categorisations, one for complexity and the other for instability,

presented in Tables 10 and 11 respectively. Then, we aggregated the complexity and instability

per method, by counting for each level what percentage of lines of code falls within methods

that belong to that level. For instance if, in a 10K LOC system, the high complexity risk units

together amount to 500 LOC, then the computed aggregate number for that risk category is 5%.

The same applied for coupling risk levels too.

Table 10. Complexity Categorisation

Cyclomatic Complexity Complexity Risk Level

0-5 Very low

6-10 Low

11-20 Moderate

21-50 High

>50 Very High

Table 11. Instability Categorisation

Instability Coupling Risk Level

0.00-0.20 Very low

0.20-0.40 Low

0.40-0.60 Moderate

0.60-0.80 High

0.80-1.00 Very High

The first iteration of this case study was the evaluation of systems’ changeability. Fig. 11 shows

that Libosip and Sofia-Sip are the easier systems to change. Those two systems are less complex

and more stable than SystemA and Wengo. This is depicted in Fig. 12 and 13.

Figure 11: System Changeability Results

The second iteration was the evaluation of Libosip and Sofia-Sip in terms of their analysability.

As Fig. 14 shows, Libo-Sip was the one easier to analyse and therefore the chosen library for

reuse in order to build CompanyA’s soft-phone. The main reason for this choice was the volume

of Libo-Sip which is smaller than Sofia-Sip’s. The software engineers of CompanyA were

validated the final results. Their final comments were that the presented methodology was

successfully presented in a quantitative way what was their intuition concerning the levels of the

systems’ maintainability.

Figure 12. System Complexity

Figure 13. System Instability

Figure 14. System Analysability Results

5. CO�CLUSIO�S

The aim of this work was to develop of a methodology for source code evaluation. This

methodology uses as a frame of reference the ISO/IEC-9126 international standard for software

quality that has been agreed upon by a majority of the international community. The proposed

methodology enhances the hierarchy of this standard by introducing a layer which reflects the

attributes of a software system’s source code, such as volume, size, complexity, cohesion,

coupling etc., similarly to the work of [20]. These attributes directly influence the characteristics

and sub-characteristics of ISO/IEC-9126. The difference is that our work does not focus only on

maintainability but also on portability, functionality and efficiency. In this way it is similar to

the work of [21], which however does not use this intermediate source code properties layer.

Another characteristic of the proposed methodology is that it employs the AHP for the

assignment of relative weights to metrics and source code attributes in order to reflect their

importance when evaluating ISO/IEC-9126’s characteristics and sub-characteristics. By using

this method of multicriteria decision making, and using certain elements of subjectiveness, such

as expert opinion, our methodology can make recommendations that approach the model’s

entities and relationships with more accuracy.

Our methodology consists of four steps. The first step involves the selection of specific ISO/IEC

9126 quality standard characteristics that depend solely on source code’s internal quality and

static behaviour. For this reason we included only four characteristics (functionality, efficiency,

maintainability, portability) and their respective sub-characteristics.

The second step involves identification of source code attributes that directly influence the

characteristics and sub-characteristics selected during the first step. These attributes should

encompass all the aspects of a software system independently of the paradigm (structured or

object oriented) used for its development.

The next step of our methodology entails the selection of metrics suitable for the evaluation of

structured or object-oriented systems. The final step requires weight assignment to source code

attributes, reflecting their importance when evaluating ISO/IEC-9126 characteristics and sub-

characteristics.

The methodology was evaluated in terms of flexibility, in other words its suitability for

evaluating systems with varying functionality, architecture and development paradigm

(structured or object oriented). We also evaluated its accuracy in terms of its ability to reflect

domain expert opinion and intuition concerning system level quality. For this reason two case

studies were conducted.

In the first case study, two versions of two open source Application Servers, the Apache

Geronimo and JBoss AS, were evaluated. The outcome of this case study was that the proposed

methodology can detect how the quality characteristics of a software system evolve. More

specifically, for the Apache Geronimo, it detected that functionality was improved not by

extending the system, but by performing changes on the existing source code. The release notes

of the version 1.1 confirmed this observation. In addition, for JBoss AS it was observed that

functionality and efficiency values were maximised, while maintainability reached its minimum

in version 4.0.4. According to the release notes of this version there was a significant change on

the volume of JBoss and a lot of new features were added in order to satisfy change requests

and to fix reported bugs from previous versions [35].

The second case study involved the maintainability evaluation and selection of one of four

C/C++ SIP libraries, three open source and one proprietary, in order to be used for the

development of a soft-phone by a semi-conductors vendor. The outcome of this case study was

the selection of one of these libraries, Libo-Sip. This library proved to be the most maintainable

in terms of its ability to accept modifications and to identify parts of it that need to be modified.

The vendor’s software engineers validated the derived results. Their final comments were that

the presented methodology was successfully presented in a quantitative way what was their

intuition concerning the levels of the systems’ maintainability.

The results of these case studies indicate that the proposed methodology has considerable merit

concerning the evaluation of source code quality in terms of the ISO/IEC-9126 standard.

However, there are various alternatives that can be considered for the enhancement of the

proposed methodology. At first more experiments are required in order to further calibrate the

weights that reflect the importance of metrics and source code properties to the ISO/IEC-9126

quality characteristics and sub-characteristics. These weights are subjective, in the sense they

are based on the intuition and opinion of system experts. Thus, different people, with different

needs and backgrounds can give different weights. Furthermore, this subjectivity is an inherent

characteristic of AHP. Another direction then for future work can be research on how other

multi-criteria decision aid techniques or refinements of AHP can be used for the task of weights

assignment.

ACK�OWLEDGEME�TS

This work has been partially supported by the Greek General Secretariat for Research and

Technology and Dynacomp S.A. within the program “P.E.P. of Western Greece Act 3.4”.

REFERE�CES

[1] Tian, J. (2004) “Quality-Evaluation Models and Measurements”. IEEE Software, 21: 84-91.

[2] ISO/IEC 9126-1, (2003) Software Engineering – Product Quality Int’l Standard Quality Model.

[3] ISO/IEC 9126-2, (2003) Software Engineering – Product Quality Int’l Standard External Metrics.

[4] ISO/IEC 9126-3, (2003) Software Engineering – Product Quality Int’l Standard Internal Metrics.

[5] ISO/IEC 9126-4, (2003) Software Engineering – Product Quality Int’l Std Quality in Use Metrics.

[6] Jung, H.W., Kim, S. and Chung, C. (2004) “Measuring Software Product Quality: A Survey of

ISO/IEC 9126”. IEEE Software, 21: 88-92.

[7] Saaty, T. (1990) Multicriteria Decision Making: The Analytic Hierarchy Process, RWS Publications.

[8] Kan, S.H. (2003) Metrics and Models in Software Quality Engineering, Boston: Addison-Wesley.

[9] Munson, J.C. (2002) Software Engineering Measurement, Florida: CRC Press Inc.

[10] Juran, J.M.(1992) Juran on Quality by Design: The new steps for Planning Quality into Goods and

Services, New York: Free Press.

[11] IEEE Std 1219-1998, (1998) IEEE Standard for Software Maintenance, IEEE.

[12] Chidamber, S.R. and Kemerer C.F. (1994) “A Metrics Suite for Object Oriented Design”, IEEE

Transactions on Software Engineering, 20: 476-493.

[13] Wakil, M.E., Bastawissi, A.E., Boshra, M. and Fahmy, A. (2004) “Object Oriented Design Quality

Models – A Survey and Comparison”. 2
nd
 Int’l Conf. on Informatics and Systems.

[14] Martin, R.A. and Shaffer, L. (1996) Providing a framework for effective software quality assessment,

Bedford, MITRE Corporation.

[15] Hyatt, L.E. and Rosenberg, L.H. (1997) “Software Metrics Program for Risk Assessment”, Elsevier

Acta Astronautica, 40: 223-233.

[16] Abreu, F.B and Carapuca, R. (1994) “Object-Oriented Software Engineering: Measuring and

Controlling the Development Process”, 4
th
 Int’l Conf. on Software Quality.

[17] Bansiya, J. and Davis, C.G. (2002) “A Hierarchical Model for Object-Oriented Design Quality

Assessment”, IEEE Transactions on Software Engineering, 28: 4-19.

[18] Cote, M.A, Syryn, W., Martin, A.R. and Laport, Y.C. (2004) ”Evolving a Corporate Software

Quality Assessment Exercise: A Migration Path to ISO/IEC-9126”, SQP, 6: 4-17.

[19] Al Kilidar, H., Cox, K. and Kitchenham B. (2005) “The use and usefulness of the ISO/IEC 9126

quality standard.” IEEE 2005 Int’l Symposium on Empirical Software Engineering (ISESE 2005), pp:

126-132.

[20] Heitlager I., Kuipers T., and Visser J. (2007) “A Practical Model for Measuring Maintainability”,

proc. 6th Int’l Conf. on the Quality of Information and Communications Technology (QUATIC

2007), IEEE Computer Society Press.

[21] Plösch R., Gruber H., Hentschel A., Körner C., Pomberger G., Schiffer S., Saft M., Storck S., (2007)

“The EMISQ Method - Expert Based Evaluation of Internal Software Quality”, Proc. 3rd IEEE

Systems and Software Week, IEEE Computer Society Press.

[22] Pressman, S.R. (2005) Software Engineering, A Practitioner’s Approach”, McGraw - Hill, Int’l

Edition.

[23] Whitmire S.A. (1997) Object – Oriented Design Measurement, New York: John Wiley & Sons Inc.

[24] Ambler, S.W. (2004) The Object Primer: Agile Model-Driven Development with UML 2.0, New

York: Cambridge University Press.

[25] Lehman, M.M. (1980) “Programs, Life Cycles, and Laws of Software Evolution”, Proc. IEEE, 68:9,

1060-1076.

[26] Kanellopoulos Y. and Tjortjis C., (2004) “Data Mining Source Code to Facilitate Program

Comprehension: Experiments on Clustering Data Retrieved from C++ Programs”, Proc. IEEE 12th

Int’l Workshop Program Comprehension (IWPC 2004), IEEE Comp. Soc. Press, pp. 214-223.

[27] Antonellis P., Antoniou D., Kanellopoulos Y., Makris C., Theodoridis E., Tjortjis C., Tsirakis N.,

(2009) “Code4Thought Project: Employing the ISO/IEC-9126 standard for Software Engineering -

Product Quality Assessment”, Proc. IEEE 13th European Conf. Software Maintenance and

Reengineering (CSMR 2009), IEEE Comp. Soc. Press, pp. 297-300.

[28] Tjortjis C., Sinos L. and Layzell P.J., (2003) “Facilitating Program Comprehension by Mining

Association Rules from Source Code”, Proc. IEEE 11
th
 Int’l Workshop Program Comprehension

(IWPC 03), IEEE Comp. Soc. Press, pp. 125-132.

[29] Spinellis, D. (2006) Code Quality: The Open Source Perspective, Addison-Wesley.

[30] Lehman, M.M. and Belady, L.A. (1985) Program Evolution – Processes of Software Change,

London: Acad. Press.

[31] Geronimo, 2010, http://geronimo.apache.org/

[32] JBoss, 2009, http://www.jboss.com/downloads/

[33] McCabe, T.J. (1976) “A Complexity Measure”, IEEE Transactions on Software Engineering, 2: 308-

320.

[34] Apache, 2010, http://cwiki.apache.org/GMOxDOC11/release-notes-11txt.html

[35] JBoss, 2010,

https://jira.jboss.org/secure/ReleaseNote.jspa?version=12310655&styleName=Html&projectId=1003

0&Create=Create

[36] Wengo, 2009, http://www.openwengo.org/, http://www.qutecom.org/

Authors

Short Biography

Yiannis Kanellopoulos is a senior consultant at SIG, based in the Netherlands.

He is responsible for carrying out software quality and risk assessments for

corporate and public clients. He holds an MSc in Information Systems

Engineering and a PhD from University of Manchester, School of Computer

Science. His PhD Thesis was related to the application of data mining

techniques for supporting software systems maintenance. He has ample

experience in managing software implementation projects.

Panagiotis Antonellis is a Computer Engineer and a PhD student at the

Department of Computer Engineering and Informatics, School of Engineering,

University of Patras.

Dimitris Antoniou is a Computer Engineer and Researcher in the Dept. of

Computer Engineering and Informatics at the University of Patras. He has

obtained his diploma from the Department in 2004 and his MSc in 2006. Since

2006, he has been a Ph.D. student at the same Department. His research

interests focus on Data Structures, Information Retrieval, String algorithmics,

and bioinformatics, Software Quality Assessment, Web Technologies and

finally GIS. He has scientific work published in int’l journals and conferences.

Christos Makris was born in Greece, in 1971. He graduated from the Dept. of

Computer Engineering and Informatics, University of Patras, in December

1993. He received his Ph.D. degree from the Dept. of Computer Engineering

and Informatics, in 1997. He is now an Assistant Professor in the same

Department. His research interests include Data Structures, Web Algorithmics,

Computational Geometry, Data Bases and Information Retrieval. He has

published over 60 papers in various scientific journals and refereed

conferences.

Vangelis Theodoridis is a Computer Engineer and a PhD student at the

Department of Computer Engineering and Informatics, School of Engineering,

University of Patras.

Christos Tjortjis is an adjunct Senior Lecturer at the University of Ioannina,

Dept. of Computer Science and the University of W. Macedonia, Dept. of

Engineering Informatics and Telecommunications. He is also an hon. Lecturer

at the University of Manchester, School of Computer Science. He holds an

MEng in Computer Engineering and Informatics from Patras, a BA in Law

from Thrace, an MPhil in Computation from UMIST and a PhD in Informatics

from Manchester. His research interests are in data mining, software

comprehension and maintenance. He has published over 35 papers in int’l

refereed conferences and journals.

Nikos Tsirakis is a Computer Engineer and a PhD student at the Department of

Computer Engineering and Informatics, School of Engineering, University of

Patras.

