
Code Scheduling and Register Allocation in Large Basic Blocks

James R. Goodman Wei-Chung Hsu’

Computer Sciences Department Development Building
The University of Wisconsin-Madison Cray Research Inc.

Madison, WI 53706 Chippewa Falls, WI 54729

Ahtract

We discuss the issues about the interdependency between code
scheduling and register allocation. We present two methods as solu-
tions: (1) an integrated code scheduling technique; and (2) a DAG-
driven register allocator. The integrated code scheduling method
combines two scheduling techniques- one to reduce pipeline delays
and the other to minimize register usage- into a single phase. By
keeping track of the number of available registers, the scheduler can
choose the appropriate scheduling technique to schedule a better
code sequence. The DAG-driven register allocator uses a depen-
dency graph to assist in assigning registers; it introduces much less
extra dependency than does an ordinary register allocator. For large
basic blocks, both approaches were shown to generate more efficient
code sequences than conventional techniques in the simulations.

1. Introduction

Pipelining is a common technique used in high-performance
computers [KoggSl]. It increases system performance by overlap-
ping instruction execution. Ideally, more pipelined stages (i.e. a
more finely segmented pipeline) means higher throughput. However,
the presence of branch instructions and inter-instruction data depen-
dencies often restricts the effectiveness of a long pipeline. Hardware
techniques like out-of-order instruction execution [Toma67, Thor701
have been used occationally to alleviate the data dependency prob-
lem. However, they are not used widely because (1) they are expen-
sive; (2) their complexity may slow down the clock rate. On the
other hand, code scheduling, a software technique that rearranges the
code sequence at compile time to reduce possible run-time delays,
has been shown to be effective for improving the performance of
pipelined processors [Herm83, Youn85, Gibb86, Weis871.

Code scheduling normally exploits existing parallelism in
basic blocks. The code scheduler interleaves several independent
instructions so that the latency (both memory latency and function
unit latency) can be largely hidden. However, the observed parallel-
ism in typical basic blocks is often limited to a factor of two to three
[Tjad70]. This limits the effectiveness of a long pipeline. However,
compiler techniques like loop unrolling Pong79, Weis and trace
scheduling p&81, Elli85] can be used to generate large basic
blocks. Large basic blocks are common in scientific applications

* The work described here was done while this author was at University of Wiscmsin--Madison.

Pem&ion to COPY without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,

the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

o 1988 ACM O-8979 l-272- l/88/0007/0442 $1.50

written for supercomputers, and they provide a better opportunity to
exploit parallelism in basic blocks.

While code scheduling is effective in reducing pipeline inter-
locks and hiding memory latency, it creates a problem for register
allocation. Code scheduling increases the time between a write to a
register and the reads after the write. Having longer register lifetimes
increases the number of simultaneously live registers, interfering
with register allocation. Code scheduling may cause the register
allocator to spill some registers. This is a major reason why
researchers choose postpass code scheduling - code scheduling
after the register allocation is done [Herm83, Gibb86] - rather than
prepass scheduling. However, since the register allocator may inad-
vertently introduce dependencies by allocating the same register for
unrelated instructions (so called storage-related dependency), post-
pass code scheduling is more restricted than prepass code schedul-
ing. When basic blocks are small, this restriction makes little differ-
ence. But for large basic blocks and long pipelines, it may make a
significant difference in performance.

We introduce two approaches to attack the interdependency
problem between code scheduling and iregister allocation. Section 3
describes a code scheduling method which combines two code
motion techniques - one to reduce pipeline delays and the other to
minimize register usage- into a single phase. By keeping track of
the number of available registers, the scheduler can choose a more
appropriate scheduling technique. This method also considers spil-
ling as a trade-off with nmtime interlocks because for some heavily
pipelined processors, spilling may not be more expensive than long
interlocks. The other approach is based on a DAG-driven register
allocator which uses a Dependency DAG to assist in assigning regis-
ters; it introduces much less extra dependency than does an ordinary
register allocator. It will be described in section 4.

2. Background

2.1. Code Scheduling Constraints: The Dependency DAG

Code scheduling algorithms generally reorder instructions to
improve program execution time [Henn83, Gibb86]. The ordering
must preserve the original partial order imposed by operational pre-
cedence constraints. DAGs (Directed Acyclic Graphs) are normally
used to represent program precedence constraints [Aho86]. A DAG
defines legal evaluation orders within a basic block; nodes represent
instructions, and edges represent serialization dependencies between,
instructions. An edge leading from instruction A to instruction B
indicates that A must be executed before B in the scheduled code
sequence. An example code sequence and its dependency DAG are
shown in Figure 2.1. This example program will be used repeatedly
in this paper.

2.2. The Use of Low Level Intermediate Languages

The use of intermediate languages (IL) simplifies code genera-
tion and optimizations. The PL.8 compiler [Aus uses a low

442

level IL with an unlimited number of symbolic registers. In the
register allocation phase, the symbolic registers are mapped into a
limited number of physical registers. The IL used in this paper is
similar to the assembly language of a load/store, register-register,
three-address format machine. We will use it to illustrate examples.

source program

1 Load Rl, a
2 Load R2. b
3 Mu1 R3, Rl, R2
4 LoadR4,c
5 LoadRS,d
6 Add R6, R4, R5
7 Load R7. e
8 Add R8,Rl, R7
9 Mu1 R9, R6, R8
10 Add RIO, R3, R9
11 Stor RlO, h 0 1

Dependency DAG
IL program

Figure 2.1 Example Program and its Dependency DAG

2.3. Prepass or Postpass?

Code scheduling can be applied to a program in IL either
before the register allocation pass @repass) or after register alloca-
tion (postpass). The advantage of prepass scheduling is that the fi,~U
parallelism of the program could be exploited. Its drawback is the
possibility of overusing registers which causes excessive register
spilling. The increased instructions for register spilling will slow
down the computation. Postpass scheduling does not increase
spilled code, since register allocation has already been done. How-
ever, the register allocator is likely to assign the same register for
unrelated instructions. The reuse of registers introduces new depen-
dency constraints, making code scheduling more restricted. An
example in Figure 2.2 illustrates the pros and cons of the above two
scheduling policies. In Figure 2.2, the same program as in Figure
2.1 is used, PR means pseudo-registers.

In the above example, we assume a stack is used to manage
the register pool: dead registers are returned to the top of the stack
and new registers are allocated from the top of the stack’. The DAG
in Figure 2.1 is used for prepass code scheduling. The original DAG,
which is based on the dependencies of pseudo-registers, preserves
maximal parallelism. After the register allocation, the reuse of regis-
ters forces new dependencies. For example, the reuse of register 4 in
instruction 7 adds a write-after-read (WAR) dependency (or anti-
dependency [Padu86]) from instruction 6 to 7 (Figure 2.3). This
newly introduced dependency prevents instruction 7 from overlap-
ping instruction 4 or 5, in postpass scheduling, introducing artificial
pipeline delays. However, the code sequence of prepass code
scheduling consumes five registers while the code sequence of post-
pass scheduling requires only four. If only four registers are avail-
able, the prepass code needs load and store instructions to spill regis-
ters.

2.4. Two Conflict Scheduling Techniques

Two code rearranging techniques could be applied during the
optimization phases. They arc: (1) code scheduling [Henn83,
Gibb86, Young51 to avoid delays in pipelined machines as we have
discussed before - we call this technique CSP (Code Scheduling
for Pipelined pmcessors) for short, and (2) code reorganization
[Davi86] to minimize the number of registers required - we call it

1 LoadPR1.a
2 Load PR2. b
3 Mu1 PR3, PRl, PR2
4 LoadPR4,c
5 LoadPR5.d
6 Add PR6. PR4. PR5
7 L.oadPR7,e .
8 Add PR8, PRl, PR7
9 Mu1 PR9,PR6,PR8
10 Add PRlO. PR3. PR9
11 Stor PRlO,‘h ’

/\
PREPASS

/
code scheduling

4 Load PR4.c 1 Load Rl,a
5 Load PR5.d 2 Load R2, b
7 Load PR7,e 3 Mu1 R2,Rl.R2
1 Load PR1.a 4 Load R3.c
2 Load PR2, b 5 Load R4,d
6 Add PR6,PR4,PR5 6 Add R3, R3. R4
8 Add PR8.PRl.PR7 7 Load
3 Mu1 PR3; PRl;PRZ

R4,e
8 Add Rl,Rl.R4

9 Mu1 PR9, PR6, PR8 9 Mu1 Rl,Rl.R3
10 Add PRlO. PR3, PRY 10 Add Rl, Rl, R2
11 Stor PRlO, h 11 Stor Rl,h

register allocation

J

\
POSTPASS

register allocation

I
code scheduling

I

1 Load R4; a
2 Load R5,b
6 Add Rl,Rl,R2
8 Add R3,R4,R3
3 Mu1 R4. R4, R5

2 Load R21 b
6 Add R3,R3,R4
3 Mu1 R2,Rl,R2
7 Load R4, e
8 Add Rl,Rl,R4
9 Mu1 Rl.Rl.R3
10Add Rl,Rl,R2
11 Star Rl,h

Figure 2.2 Prepass and Postpass Scheduling

’ Alternate allocation policies are discussed in section 3.

443

solid lines -- original dependencies.

dashed limes -- dependencies added by register allocation

Figure 2.3 New Dependency Edges Added by Register Allocation

CSR (Code Scheduling to minimize Registers usage) for short. CSP
could be applied before and/or after the register allocation phase
while it only makes sense to apPly CSR before register allocation.
The use of CSP has been discussed; we now introduce the use of
CSR in the following example.

As in Figure 2.2, a typical register allocation for the IL program
requires four registers. The rearranged code sequence using CSR (as
in Figure 2.4) needs only three registers.

The rearranging technique that generates the above code
sequence has been used in the code generation phase to determine
better evaluation orders of expression trees or DAGs. The well-
known Sethi-Ullman algorithm [Seth701 generates the optimal
evaluation order (using minimal number of registers) of expression
trees. Heuristic algorithms are also available for DAGs (with com-
mon subexpressions) [Aho77]. Recently, Davidson [Davi861 has
separated this optimization technique from the code generation
phase and implemented it as an independent code reorganization
technique. The key idea of this optimization is to prevent a register
from holding a temporary too long. Hence the number of simultane-
ously live registers could be reduced.

CSP and CSR conflict with each other. CSP tends to increase
the lifetime of each pseudo-register while CSR wants to shorten it.

4 LoadPR4.c LoadRl,c
5 Load PR5, d Load R2, d
6 Add PR6,PR4,PRS Add Rl,Rl,R2
1 LoadPRl,a after Load R2, a
7 Load PR7, e == register ==> Load R3. e
8 Add PR8, PRl, PR7 allocation Add R3, R2, R3
9 Mu1 PR9, PR8, PR6 Mul Rl, R3, Rl
2 LoadPR2,b Load R3, b
3 Mul PR3,PRl,PR2 Mul R3, R2, R3
10 Add PRlO, PR3, PR9 Add RI, R3, Rl
11 Stor PR10, h Stor Rl. h

Figure 2.4 CSR Minimizing the Use of Registers

We attempt to integrate CSP and CSR into a single phase so that
they will cooperate in generating a better code sequence.

3. Integrated Prepass Scheduling

The major disadvantage of prepass scheduling is that it may
overuse registers causing register spilling. We propose to integrate
CSP and CSR in prepass code scheduling to control register spilling.
The basic idea is to keep track of the number of availlible registers
during code scheduling. Since each issued instruction may create a
new live register and terminate the lifetime of some registers, we can
keep track of the number of available registers. When there are
enough registers, the scheduler uses CSP to reduce pipeline delays.
When the number of available register is getting low, the scheduler
switches to CSR to control the use of registers. The following
example explains this approach.

Example

Suppose the input program is the same as in Figure 2.1 and
there are fou? registers available for this program. Our new code
scheduler will schedule the program in a sequence like:

4 Load PR4, c
5 Load PRS, d
7 Load PR7, e
1 LoadPRl, a

The scheduler must now choose between issuing instruction 2,
which activates one register, and inst.ruction 6, which frees one net
register. Since the available registers have been used up, CSR takes
charge of scheduling, and issues instruction 6. We then return to
CSP and instruction 2 is issued after instruction 6. The complete
reorganized code sequence is as in Fig;ure 3.1. ,

Notice that this code sequence uses four registers, the same
number as the postpass code sequence used. Compared to the post-
pass code sequence as in Figure 2.2, however, this code sequence
has fewer runtime interlocks.

3.1. Implementation Notes

3.1.1. CSP, CSR and AVLREG

There are two major parts in our approach: CSP and CSR.
The use of CSP in our work is based on the work by Young
[Youn85]. We also take ideas from others [Gibb86, Henn83] to
improve the CSP algorithm. Young [Youn85] assumes the target
machine has multiple functional units whose pipelines vary in

4 Load PR4, c Load Rl, c
5 Load PRS, d Load R2, d
7 Load PR7. e Load R3, e
1 Load PRl, a Load R4, a
6 Add PR6, PR4, PRS aftel Add Rl, Rl, R2
2 LoadPR2,b = = registe:r ==> Load R2, b
8 Add PR8,PRl,PR7 allocation Add R3, R4, R3
3 Mul PR3,PRl. PR2 Mu1 R4, R4, R2
9 Mu1 PR9, PR6, PR8 Mul Rl, Rl, R3
10 Add PRlO, PR3. PR9 Add R4, R4, Rl
11 StorPRlO, h Stor R4, h

Figure 3.1 Code Sequence Using Integrated Scheduling

’ A machine typically has eight or 16 general purpose registers. However, we es-
some that other registers have already been preallocated to frequently used variables
or constentS end thus only four ere left for this basic block.

444

length. Instructions complete whenever they leave their particular
functional unit pipelines. The estimated execution time of each
instruction is used to compute the cumulative cost of each node in
the DAG. This cumulative cost identifies which node is on the criti-
cal path during instruction scheduling. Instructions are scheduled in
a topological sort order of the DAG. Nodes on the current critical
path have higher issue priority. In contrast to [Henn831, hardware
interlocks are assumed rather than using software to enforce inter-
locks.

The CSR used in our approach is different from earlier work
[Seth70, Aho77], which determines the complete evaluation order of
an expression tree or a DAG. In our approach, when CSR is called,
the evaluation order of the DAG has been partially determined
(some nodes have been issued). The goal of CSR at this point is to
find the next instruction which will not increase the number of live
registers, or if possible, decrease that number. Our CSR does not
decide the total evaluation order. The basic approach of our CSR is
to find an instruction that frees more registers than the number of
live registers it creates. When no such instructions exist, the
scheduler looks for instructions on partially evaluated paths, since
once the partially evaluated path is fully evaluated, registers may be
freed.

Switching between CSP and CSR is driven by the number of
available register, AVLREG. CSP is responsible for code schedul-
ing most of the time. When AVLREG drops below a threshold (say,
one) CSR is invoked. After AVLREG is restored to an acceptable
value, CSP resumes scheduling. AVLREG is initially determined by
the total number of registers minus the number of registers live-on-
entry. Global data flow analysis [Ah0861 can supply the information
of registers live-on-entry. Reference counting is used to determine
when pseudo-registers are dead and can be freed. We increase
AVLREG when there are freed registers, and decrease AVLREG
when instructions create live registers.

Renaming techniques [Padu86] have been used to enforce sin-
gle assignments - every pseudo-register is written only once stati-
cally in a basic block - in order to maintain maximal scheduling
flexibility.

3.1.2. Interlock Checking at Scheduling Time

In load/store, register-register architectures, it is easy to
resolve all interlocks at the instruction issue stage [KoggSl.
Cray82]. The code scheduler can use instruction execution time
information to estimate possible runtime interlocks, and schedule
instructions to avoid as many interlocks as possible.

3.1.3. Leader Set and Ready Set

A leader of a DAG is a vertex with no predecessors. An
instruction can not be issued until it becomes a leader. As instruc-
tions are issued, their nodes are removed from the DAG and some
successor nodes become new leaders. All leaders are maintained in
a leader set. Instructions in the leader set lacking interlocks with
previously issued instructions are promoted from the leader set to a
ready set. All the instructions in the ready set am ready to be issued.

3.1.4. Integrated Scheduling Algorithm

(1) Rename pseudo-registers to enforce single assignment.

(2) Input a basic block, create the DAG and calculate the refer-
ence count of each pseudo-register.

(3) Compute the cumulative cost of each node in reverse topologi-
cal sort order.

(4) Issue instructions in topological sort order.

Details of step 4:

4.0 Calculate the leader set.

while (leader set or ready set is not empty) do

4.1 Move nodes without interlocks from leader set to ready set.
4.2 if (AVLREG > threshold value) then

if (ready set is not empty) then
select one node from ready set with maximum
cumulative cost.

else
select one node from leader set with maximum
cumulative cost.

endif
else (invoke CSR)

if there are nodes in ready set that can free registers
then

select one node which frees the most registers.
if there are more than one such node then

select one with maximum cumulative cost.
endif

else
if there are nodes in leader set that can free registers

then
select one which frees the most registers.
if there are more than one such node then

select one that has the fewest interlocks.
endif

else
find a partially evaluated path, (for example,

one of its RAW dependency has been lifted)
select one node from the leaders of this path.
if there am no such partially evaluated paths then

select any one node from the ready set
or from the leader set if the ready set is empty.

endlf
endif

endif
endif

4.3 Issue the selected instruction
if the issued instruction creates one live register then

decrement AVLREG by 1.
for each pseudo-register referenced in this instruction do

decrement its reference count by 1
if the reference count drops to 0 then

increment AVLREG by 1.
endif

end for
Remove this instruction from the DAG
Remove all dependencies caused by this instruction
Reserve the destination register in a reservation table.

4.4 Insert new leaders into the leader set

end while

The input program used in this example is the same one as used in
section 2. In addition, we assume the following timing for the
relevant functions.

Function Timing(clock periods)

Load 4
StOR. 1
Add 2
Multiply 3

445

We assume that the initial value of AVLREG is 4. The weighted
DAG is shown in the Figure 3.2 The code sequences generated by
prepass code scheduling, postpass code scheduling, and our algo-
rithm are shown in Figure 3.3. Notice that, since the number of
available registers is 4, prepass code scheduling incurs spilling costs.

3.1.5. A Variation on Profitable Register Spilling

In the above algorithm, we have assumed that register spilling
is mom costly than run-time Interlocks. This assumption may not be
true for highly pipelined machines.

(1) In highly pipelined machines, a pipeline interlock could be
very long compared to the issuance of a couple of spill
instructions. Also, for machines that have a back up register
Iile like the B/r registers in Cray-1 and Cray-XMP, spilling is
not expensive.

(2) Spill code can often be scheduled to run in otherwise wasted

(3) Registers containing loop invatriants can be spilled at a lower
cost.

We have developed a variation of the algorithm to consider
profitable register spilling. The variation operates as follows: when
available registers am running out and the next selected instruction
has a long interlock with a previously issued instruction, the
scheduler checks if there is a live pseudo-register which could be
spilled at a low cost. If them is at least one such register, the
scheduler will revert to CSP scheduling to favor instructions having
no interlocks and/or am on the critical evaluation path. Because of
the uncertainties involved in predicting how inserted load instruc-
tions will interfere with subsequent register usage, we have only
attempted to guess at a good threshold value for determining when
spilling is worthwhile.

3.2. Simulation Studies and Discussion

Weighted DAG

boldface numbers associated with nodes are cumulative costs
italic numbers associated with edges are execution time estimates

Figure 3.2 Weighted DAG Identifying Critical Paths

Prepass Postpass Integrated

1 Load Rl, a
4 Load R2, c
5 Load R3, d
7 Load R4, e
s Stor R4, templ
2 Load R4, b
6 Add R2,R2,R3
s Load R3, templ
8 Add R3,Rl,R3
3 Mul Rl.Rl.R4
9 Mul R2,R2.R3
10 Add Rl, Rl, R2
11 Stor Rl,h

4 LoadR3,c
5 LoadR4.d
1 LoadR1, a
2 LoadR2,b
6 Add R3,R3,R4
3 Mu1 R2, Rl, R2
7 LoadR4, e
8 Add Rl, Rl, R4
9 Mu1 Rl,Rl,R3
1OAdd Rl,Rl.R2
11 StorRl, h

4 LoadR2,c
5 Load R3, d
7 LoadR4.e
1 LoadRl,a
6 Add R2,R2.R3
2 LoadR3,b
8 Add R4.Rl.R4
3 Mul Rl. Rl, R3
9 Mu1 R2. R2, R4
10 Add Rl, Rl, R2
11 StorR1.h

(22 cycles) (20 cycles) (17 cycles)

Figure 3.3 Comparisons of Scheduled Code Sequences

3.2.1. Simulations

In this section, we show some experimental results concerning
the effectiveness of our new approach. An interpreter and a perfor-
mance simulator have been built to evaluate how fast instructions
can be issued for a hypothetical machine. The hypothetical machine
architecture has a load/store, register-oriented, three-address instruc-
tion format. It has a single general purpose register file. Its pipelined
implementation is shown in the Figure 3.4. The number of general
purpose registers and the degree of pipelining of the machine can be
varied by changing the parameters in a profile. We assume the
hypothetical machine has hardware hazard detection and an inter-
lock mechanism.

We use the first twelve Livermore loops [McMa72] for bench-
mark programs. Loop unrolling [Dong79, Weis87] have been used
to obtain large basic blocks. Since unrolled loops may overflow an
instruction buffer, decreasing performance, we unroll loops until
their program size is a little less than some predefined limit. In our
simulation, this limit is 32 instructions. Although 32 is relatively
small compared to the instruction buffer in modem supercomputers
(CRAY-1 has a buffer size of 256 instruction parcels, CRAY-XMP
has a size of 512), it is large enough to study the interdependency
between code scheduling and register allocation. All of the loops

are translated into the IL of the hypothetical machine and optimized
based on standard optimization techniques [Aho86, Aus182]. In

inst
--+ fetch decode inst - -+q- . . .

Figure 3.4 Pipelined Implementation of Our Model Architecture

446

order to simplify the simulation, all floating point operations have
been changed to integer operations.

Different approaches for code scheduling that have been tested
in the simulation are:

(1) Prepass: IL --> cs --> RA

(2) Twopass: IL --> CS --> RA --> CS

code scheduling is performed both before and after register
allocation. The second pass scheduling is primarily for the
inserted load/stores introduced by register spilling.

(3) Postpass: IL --> RA --> CS

(4) Postpass with round-robin register allocation (PostRR for short):

The regular register allocation uses a stack to manage regis-
ter muse. Some papers [HeM83, Yom1851 suggest using
round-robin allocation, which cycling through registers, to
reduce the inadvertent dependencies introduced by register
reuses. Hence we implemented PostRR as a variation of
general Postpass. The code scheduling algorithm for
approaches (1) through (4) is essentially the CSP part as dis-
cussed in previous section.

(5) GoodWayO (GWO): As described in the previous section.

This algorithm does prepass code scheduling with appropti-
ate control of register usages.

(6) GoodWayl (GWl): A variation of GWO.

This version considers spilling a register as an alternative
when the next issuing instruction has long interlocks with
previously issued instructions.

All the above approaches used the same register allocator, which
uses a replacement-based algorithm [Hsu87].

In Figure 3.5, we present the relative performance of six dif-
ferent approaches. The performance measure is the number of clock
cycles needed to issue and execute a program. The number of avail-
able registers is varied from 4 to 30. The machine is assumed to be
heavily pipelined (HP for short), similar to the CRAY-1 [Cray82].
We assume 11 clock periods (CP) for a load, 3 CPs for an integer
add, 6 CPs for an integer multiply, and so on. Figure 3.6 is similar
to Figure 3.5 except that the machine has a slower clock rate. In this
machine, we assume a load takes 6 CPs, an add takes 2 CPs, an mul-
tiply takes 3 CPs, and so on.

Figures 3.5 and 3.7 base on the same machine assumptions, as
do Figures 3.6 and 3.8. In Figures 3.7 and 3.8, the measure is the
number of instructions. Since prepass code scheduling often results
in register spilling, the sizes of its resulting programs are usually
larger than programs of postpass scheduling and our scheduling
scheme.

3.2.2. Discussion

Using Figures 3.5 through 3.8, we make the following obser-
vations.

(1) In Figures 3.5 and 3.6, prepass code scheduling usually has
better performance than postpass scheduling unless the
number of available registers is very low. This is because
pmpass scheduling has much better flexibility to schedule
code, especially when more parallelism exists. However, we
should not conclude that prepass scheduling is better than
postpass scheduling. In Figures 3.7 and 3.8, the prepass

260 -

x !46-

I
140 -

; 134- 128-
0 122-

) 116-
llO-

104

98 $
92

86 j -
801,,,,,,,,,,,,,,,,,,,,,,,,,,,,

2 3 4 5 6 7 8 9101112131415161718192021222324252627~S2930

Number of Available Registers (AVLREG)

Figure 3.5 Comparisons of Speed (Highly Pipelined Model)

153

150

147

144

141

13s

N 135

; 132

b 129

e 126

r 123

120

; 117

114

c III

P 108

105

i 102

99

I 96
0 93
0 90

7 87

84

81

78

75

72

69 r-

t
Pe

‘i

/ I 4 / I I I I I

2 3 4 5 6 7 8 910t11213141.5161718192021222324252627282930

Number of Available Registers (AVLREG)

Figure 3.6 Comparisons of Speed (Medium Pipelined Model)

447

50

49

48 I 1

N 47 -1 I

; ; 46-. 46-.

; ; 45- 45-

T T 44- 44-

; 43-

I
42 -

n 41-
s

t 40-
r

u 39, 4

; 43-

I
42 -

n 41-
s

t 40-
r

u 39-
c c

t t 38- 38-

:, :, 37- 37-
n n
s s 36- 36-

35 - 35 -

34 - 34- P P

331

2 3 4 5 6 7 8 9101112131415161718192021222324252627282930
Number of Available Registers (AVLREG)

Figure 3.7 Comparisons of Code Size (Highly Pipelined Model)

It / r 40-

u 39-
C

t 38-
I i

;o 37-
! n
;s 36-

/ 35-

: 34-

a~,,,,,,,,,,,,,,,,,,,,,,,,,,,,
I
I

2 3 4 5 6 7 8 910111213141516I718192021222324252627282930
Number of Available Registers (AVL.REG)

Figure 3.8 Comparisorls of Code Size (Medium Pipelined Model)

scheduled programs have significantly larger size than the pro-
grams of postpass scheduling.. Larger programs may execute
more slowly, since larger loops are more likely to overflow the
instruction buffer, and inserted load/store instructions increase
the mnnber of memory fetches and stores. Additional
load/stores will slow the computation seriously if memory
bandwidth is the performance! bottleneck (this is likely in a
multiprocessor system).

Our approach GWO outperforms both prepass scheduling and
postpass scheduling as shown in Figure 3.5 and 3.6 while the
additional load/store instructions of GWO are only slightly
(less than 3%) more than postpass scheduling, as shown in
Figure 3.7 and 3.8.

(2) In theory, if there are an infinite number of registers. all the
different approaches have the same performance. As shown in
in Figures 3.5 and 3.6, all the curves level off to the same
point when the number of available registers becomes large.
However, minimizing the number of registers is critical for
designing high-performance computers; for register access to
be fast, the size of the register file should be small [Henn84].
Hence, the more important question is how to use limited
register efficiently. As shown in Figures 3.5 and 3.6, the
curve of our approach levels off more quickly than others,
implying that better scheduling can use a (relatively) sm&ll
number of registers efficiently.

A register file can be used to hold temporaries and frequently
used variables. An efficient algorithm uses fewer registers for
temporaries, leaving more registers for frequently used con-
stants and variables. The number of registers is well-defined in
an architecture. Yet the architecture can have quite different
implementations. A highly pipelined implementation requifes
more registers for temporaries so that interlocks can be
reduced. When a highly pipelined implementation is used, the
approach of using better algorithms to make effective use of
the register file is more favorable than the approach of
redesigning the architecture with more registers.

Advances in silicon technologies may make it relatively easy
to have a large number of registers on-chip in the near future.
However, for GaAs technology., which is much faster than sili-
con technology, the amount of on-chip memory allowed is
very limited [Milu86]. In a memory hierarchy, the space in
the top level is always limited, and efficient algorithms are
necessary to make effective use of the scarce space.

(3) Some compilers designed for pipelined processors use round-
robin register allocation, which cycles through the registers
available for use. Intuitively, this allocation policy seems to
avoid the situation of having a l.ong evaluation path due to the
intensive reuse of certain registers. In Figure 3.6, postpass
scheduling with round-robin allocation does outperform stack
allocation most of the time. It is also true in Figure 3.5 except
when the number of available register is low. Since every
reuse of a register will add a storage-related dependencies to
the DAG, may combine two parallel evaluation paths into a
sequential one, without having the detailed information of the
DAG, no allocation policy will be uniformly superior to others
in balancing the length of merged evaluation paths, One alter-
native to the current approach is to provide DAG information
to the register allocator. With the DAG information. the regis-
ter allocator may be able to reuse registers in a way such that
the depth of the new DAG can be minimized. Such an
approach wilI be described in the next section.

448

96 -

43 -

90 -

87 v
” @I-

t 81-

e 78-

r 75-

0 72-

f 69-

; 66-

63 -

h 60-

57 -

; 54-

1 51-

’ 48-

45 -

42 -

39 -

2 3 4 5 6 7 8 9101112131415161718192021222324252627282930

Number of Available Registers (AVLREG)

Figure 3.9 Anomalies (from Loop 3)

Some anomalies exist in Twopass and Postpass scheduling
experiments. Since they can not be observed from Figure 3.5 and
3.6 which are figures averaged over all loops, Figure 3.9 is used to
present the curves of a single loop. The following discussions are
based on Figure 3.9.

(1) The Post curve in Figure 3.9 exhibits a deterioration in perfor-
mance when the number of registers is increased from five to
six. The PostRR curve exhibits a similar anomaly for the tran-
sition from six to seven and nine to ten registers. These
anomaiies result from variations in induced dependencies, as
illustrated in Figure 3.10. The DAG on the left hand side has
five available registers while the DAG on the right hand side
has only four. Round-robin register allocation was used.
Notice that after register allocation, the left DAG is more res-
Meted than the right DAG. Because the right tree in the left
DAG can not be interleaved with the left tree any more,
instructions are forced to be executed in a sequential order.

Figure 3.9 also showed that sometimes Post (stack register
allocation) outperforms PostRR (round-robin register alloca-
tion) and vise versa. This supports our previous assertion that
no allocation policy will be superior to others without detailed
DAG information.

(2) Two-pass scheduling is used to improve the performance of
prepass scheduling. The second scheduling pass is used to
schedule the inserted load/store instructions. In Figures 3.9,
the anoimly of tie Twopass curve occurs when the number of
registers is eight, nine and ten. Not only is the performance
poorer than the single pass scheduling but the curve also exhi-
bits a deterioration in performance when the number of regis-
ters is increased. When there are enough registers, no inserted
load/stores are required for spilling. When there are no
inserted load and store instructions, a second pass scheduling
is useless. The performance deterioration anomaly is created
by the effect of register allocation,

solid lines -- original dependencies.

dashed lines -- dependencies added by register allocation

Figure 3.10 One Explanation of the Anomaly in Postpass Scheduling

4. DAG-Driven Register Allocation

The previous SeCtiOn suggests solving the interdependency
problem with an integrated prepass scheduling method. This section
discusses an approach which is for the postpass scheduling. We use
the dependency DAG to direct register allocation so that very little
storage-related dependency are introduced. Two advantages to use
postpass scheduling: (1) a postpass scheduler can be applied both to
code output from a compiler and to hand-written assembly-language
code; (2) unlike prepass scheduling, postpass scheduling will never
introduce additional spill code. If minimizing load/stoEs is the

major concern, then postpass scheduling should be favored.

4.1. Balancing DAG Reconstruction

In order to introduce the concept of the DAG-driven register
allocation, we define two terms: width and height of a DAG. The
width of a DAG is defined as the maximal number of mutually
independent nodes which need a destination register (a store instruc-

tion, for example, does not need a destination register), and tbe
height of a DAG is the length of its longest path. Since we use the
single assignment rule in naming temporaries, the dependency DAG
will have a greatest width exposing maximum parallelism. If the
number of real registers is larger than the width of the DAG, the
shape of the DAG can remain unchanged during register allocation.
Otherwise, the register allocator will reduce the width of the DAG to
be smaller than or equal to the number of real registers by reusing
registers. While the width is reduced, the height is increased since
each reuse of registers may merge two evaluation paths into one.
The greater the height, the longer the critical path The longer the
critical path, the less efficient the code scheduling. Therefor% our
DAG-driven register allocator is trying to minimize the height of the
reconstructed DAG. Two strategies to control the growth of the
height are: exploiting free WAR dependencies and balancing the
growth of the DAG.

4.1.1. Free WAR Dependencies

The reuse of a register creates new dependencies, primarily
write-after-read (WAR) dependencies. We have explained that the
added WAR dependencies reduce available parallelism and result in
less effective code scheduling in section 2. We assumed a pipeline
structure in which the operand registers are read at the time an
instruction ia issued (see Figure 3.4). So long as instructions issue in

order (at run time), WAR hazards at register level will never occur.
Therefore, the WAR dependency edges are essentially used to
enforce the logical order of instructions. We assign WAR depen-
dency a cost of 1, the lowest cost of all dependencies.

Figure 4.1 shows the DAG of the following program segment.
Assume there are 5 registers. As the register allocator reads the

449

1 LoadPRl, a
2 Load PR2, b
3 Add PR3, PRI, PR2
4 Load PR4, c
5 Sub PR5PR4,PRl
6 Addi PR6, PR5, #4
7 Mu1 PR7, PR5, PRl

4 R4

P

The key idea in minimizing the height of the DAG is to bal-
ance the growth of the DAG. The allocator tries not to connect two
nodes such that one has a large EIT and the other has a large EFT. If
the current instruction has a high EFT, then the allocator would
select a dead register such that all the nodes the current instruction
will connect to have a small EIT. But how does the allocator know
if the EFT of the current instruction is relatively large or small?
This suggests that the allocator should look at all the unallocated
instructions, especially the leader nodes, to determine where the
current instruction stands.

Statically computed EIT cannot be used directly in allocating
registers since each register replace:ment may change the EIT of
some nodes. The details of implementation can be found elsewhere
[Hsu87].

Figure 4.1 Free WAR Dependencies

program, it allocates register Rl through R5 for the destination
registers of instruction 1 to instruction 5. At instruction 6, since the
available registers have been used up, the register allocator tries to
find a dead register to replace. Two registers, register 2 and register
4, are dead before instruction 4. As in Figure 4.1, the reuse of regis-
ter 4 at instruction 6 introduces a WAR dependency which is
represented as a dashed line from instruction node 5 to 4. This
dependency is redundant since the logical order of instructions 4, 5
and 6 can be enforced by already existing dependency edges. But if
register 2 is allocated rather than register 4 to instruction 6, the
added dependency (from node 3 to node 6) is not redundant. Redun-
dant dependencies are free dependencies. since they will not increase
the height of the DAG.

To minimize the increase in height of the DAG, the register
allocator will first select a dead register to replace such that only
redundant dependencies are introduced. In other words, the uses of
the dead register are on the dependent path of the current instruction.
For example, in Figure 4.1, when the register allocator allocates
register 4 for instruction 6, the last use of register 4 is instruction 5,
which is on the dependent path of instruction 4. Therefore. this allo-
cation introduces no additional dependencies.

4.1.2. Balancing the Growth of the DAG

All register replacements which add new dependencies may
increase the height of the DAG. When there am no free dependen-
cies, we allocate registers based on earliest issue time and earliest
jnish time. The earliest issue time (EIT for short) of a node is the
maximal path cost from the beginning of the DAG to the node. The
earliest finish time (EFT for short) of a node is the maximal path
cost from the node to the end of the DAG. As the names suggest,
the EIT of a node indicates the earliest possible issue time of that
instruction from the beginning of the execution of the DAG. The
EFT of a node indicates the earliest possible linish time from the
issue of that instruction to the end of the execution of the DAG. Fig-
ure 4.2 shows the EIT and EFT attributes of each node in a DAG. If
the register allocator assigns two independent paths to sham a regis-
ter, then a new WAR dependency connects the two paths into one
long path. For example, in Figure 4.1, if the register allocator
assigns register 2 to instruction 6, then instruction node 6 is con-
nected with instruction node 3 by a WAR dependency edge. The
maximal cost of this new path is apparently (EIT, + EFI, + I),
where 1 is the cost of the WAR dependency edge.

numbers in parenthesis are (EIT, EFT:)

assuming each imt~ction takes 2 clock periods
the double circle is a pseudo node which
indicates the end of the. DAG

Figure 4.2 Computa:ious of EIT and Em

4.1.3. DAG-Driven Allocation Algorithm

(1) Rename pseudo-registers to enforce single assignment

(2) Use CSR to reduce the number of simultaneously live regis-
ters

(3) Read in the basic block, build the DAG and set up a hash table
of register reference histories

(4) Compute the EFT of each node, set up the adjacency matrix
representing the dependency relation

(5) Register allocation:

while there are instructions to be allocated do

foreach pseudo-register in the instruction, in the order of
first operand, second operand, destination do

450

24s

242

236

230

while there are instructions to be allocated do

foreach pseudo-register in the instruction, in the order of
first operand, second operand, destination do

if (pseudo-register Miss) then

if (Write Miss) then

if (there are dead registers on the dependent path)
then

select one and replace:
go to 2;

endif
endif
if (there are dead registers) then

sort them in ascending order on the EIT field,
count how many remaining leaders have a higher EFT

than the current instruction into a variable P,
if (P+l is greater than the number of dead registers)
then

select the dead register with highest EIT to replace;
else

select the P+lst dead register to replace;
endif

else
normal replacements;

endif
endif

endfor

1: update dependent relation incrementally;

2: update EIT of real registers;

endwhile

4.2. The Performance of DAG-driven Register Allocation

Our test results, based on the same test environment described
in section 3, show DAG-driven register allocation significantly
improves the performance of postpass code scheduliigs (cf. Figures
4.3 and 4.4). We also compared DAG-driven register allocation to
the integrated prepass scheduling, For the highly pipelined model
(Figure 4.3). the integrated prepass scheduling approach that consid-
ers profitable spilling slightly outperforms the DAG-driven register
allocation approach. However, in the medium pipelined model (Fig-
ure 4.4), DAG-driven allocation approach outperforms all the others.
We explain our results as follows: for the highly pipelined model,
where an interlock could be relatively expensive, spilling may be
profitable. The integrated prepass scheduling can easily accommo-
date profitable spilling, this flexibility creates an opportunity for a
better performance than the DAG-driven allocation approach. The
DAG-driven allocation approach has the advantage that it does not
increase the code size at all. Therefore, it is favored by machines
which discourage code spilling.

218

N 212

; 206

h 200

e 194.

r 188-

182 -

; 176-

170 -

c 164-

P 158-

152 -

(

x

146-.

140-

1 134.

0 128-

0 122-

0 116-

) 110-

104 -

98 -

92 _

86 -
on

2 3 4 5 6 7 8 9101112131415161718192021222324252627’5’930

Number of Available Registers (AVLREG)

Figure 4.3 Performance of DAG-Driven Allocation (Highly Pipelined)

; 135

~ 132

b 129

e 126

2 3 4 5 6 7 8 9101112131415161718192021222324252627282930

Number of Available Registers (AVLREG)

Figure 4.4 Perfomnnce of DAG-Driven Allocation (Medium Pipelined)

451

5. Conclusion

The problems of register allocation and instruction scheduling
are often treated independently, although they are closely related.
We attempt to look at the two problems at the same time by investi-
gating two approaches: register allocation driven code scheduling
and dependence graph driven register allocation. Both the integrated
prepass scheduling and the DAG-driven register allocation
approaches have been shown to be effective in solving the problem
of the interdependency between code scheduling and register alloca-
tion.

Conceptually, the DAG-driven register allocation approach is
simpler. It attempts to minimize the storage-related dependencies by
carefully allocating a limited number of registers available to a basic
block. The integrated prepass scheduling is more flexible and more
aggresive than the DAG-driven allocation. When long interlocks
encounted during code scheduling, our integrated prepass scheduling
will force spilling. This is useful in a case where many values in the
outer loop are carried through registers, leaving insufficient registers
for the inner loop to have a decent scheduling. Our prepass scheduler
will force the inner loop to spill (spill code will be moved to the
outer loop), creating sufficient registers for code scheduling.

REFERENCES

[Ah0771 Aho, A. V., S. C. Johnson, and J. D. Ullman. “Code Gen-
eration for expressions with common subexpmssion,s,”
JACM, 24:1, 146-160, 1977

[Ah0861 Aho. A. V., J. D. Ullman, and R. Sethi, “Compilers Princi-
pies, Techniques, and Tools,” Addison-Wesley, Reading,
MA, 1986.

[A~~1821 Auslander, M. and M. Hopkins, ‘ ‘An Overview of the PL.8
compiler,” Proceedings of the SIGPLAN ‘82 Symposium on
Compiler Construction, June, 1982.

lCray821 Cmy Research Inc., Gray-I Computer System S Series
Mainframe Reference Manual (HR-0029), 1982.

[Davi86] Davidson, J. W., “A Retargetable Instruction Reorgan-
izer,” Proceedings of the SIGPLAN ‘86 Symposium on
Compiler Construction. June, 1986

[Dong79] Dongarra, J. J. and A. R. Jmds, “Unrolling Loops in For-
wan,” Software Practice and Experience 9, 3, pp. 219-226,
Mar., 1979

[Elli85] Ellis, J. R., “Bulldog: A Compiler for VLIW Architec-
tures,” PhD. Thesis, YaleU/DCS/RR-364, Yale University,
Feb., 1985

[Fish811 Fisher, J.. “Trace Scheduling: A Technique for Global
Microcode Compaction,” IEEE Transactions on Comput-
ers, Vol. C-30, No. 7, July 1981.

[Gibbs61 Gibbons P. B., and S. S. Muchnick, “Efficient Instruction
Scheduling for a Pipelined Architecture,” Proceedings of
the SIGPLAN ‘86 Symposium on Compiler Construction,
Jun., 1986

[Henn83] Hermessy, J. L., and Thomas Gross, “Postpass Code
Optimization of Pipeline Constraints,” ACM Transactions
on Programming Languages and Systems 5, 3, pp. 422-448,
July 1983

[Henn84] Hennessy, J. L., “VLSI Processor Architecture,” IEEE
Transactions on Computers, Vol. c-33 No. 12, Dec., 1984.

[Hsu87] Hsu, Wei-Chung. “Register Allocation aud Code Schedul-
ing for Load/Store Architectures” UW Computer Science
Technique Report #722, Oct., 1987

[Kogggl] Kogge, P. M., “The Architecture of Pipelined Comput-
ers,” McGraw-Hill, New Yolk, 1981

[McMa72] McMahon, F. H. ‘ ‘FORTRAN CPU Performance
Analysis”, Lawrence Livennore Laboratories, 1972

[Milu86] Milutinovic, Veliko, ‘ ‘GaAs Microprocessor Technology”
Computer, Vol. 19, No. 10, Oct. 1986

[Padu86] Padua, D. and M, J. Wolfe,, “Advanced Compiler dptimi-
zations for Supercomputers,” Communication of the ACM,
Dec. 1986

[Seth701 Sethi, R. and 1. D. Ullman, “The Generation of Optimal
Code for Arithmetic Expressions,” JACM 17, 6, 1970, pp.
715728

[Thor701 Thornton, J. E., “Design of a Computer, The Control Data
6600,” Scott, Foresman and Co., Glenview, IL, 1970.

[Tjad70] Tjaden, G. S. and M. J. Flynn, “Detection and Parallel
Execution of Independent Iswtructions,” IEEE Transactions
on Computers 19(10):889-89.5, Oct., 1970

[Toma67] Tomasulo, R. M.. “An Efficient Algorithm for Exploiting
Multiple Arithmetic Units,” IBM Journal of Research and
Development V Il. pp. 25-33, Jan., 1967.

[Weis87] Weiss, S. and J. E. Smith, “A Study of Scalar Compilation
Techniques for Pipelined Supercomputers” Second Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems,” Oct. 1987.

[Youn85] Young, H., “Evaluation of a Decoupled Computer Atchi-
tecture and the Design of A Vector Extension,” Computer
Sciences Technical Report #603, July, 1985

452

