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Abstract

For computational physics simulations, code verification plays a major role in establishing the credibility
of the results by assessing the correctness of the implementation of the underlying numerical methods. In
computational electromagnetics, surface integral equations, such as the method-of-moments implementation
of the magnetic-field integral equation, are frequently used to solve Maxwell’s equations on the surfaces of
electromagnetic scatterers. These electromagnetic surface integral equations yield many code-verification
challenges due to the various sources of numerical error and their possible interactions. In this paper, we
provide approaches to separately measure the numerical errors arising from these different error sources. We
demonstrate the effectiveness of these approaches for cases with and without coding errors.

Keywords: method of moments, magnetic-field integral equation, code verification, manufactured solutions

1. Introduction

In computational electromagnetics, surface integral equations are frequently used to solve Maxwell’s
equations on the surfaces of electromagnetic scatterers. The electric-field integral equation (EFIE) relates
the surface current to the scattered electric field that arises from an incident electric field, whereas the
magnetic-field integral equation (MFIE) relates the surface current to the scattered magnetic field that
arises from an incident magnetic field.

Through the method-of-moments (MoM) implementation of these surface integral equations, the surface
of the electromagnetic scatterer is discretized using planar or curvilinear mesh elements, and four-dimensional
integrals are evaluated over two-dimensional source and test elements. However, the presence of a Green’s
function in these equations yields singularities when the test and source elements share one or more edges
or vertices, and near-singularities when they are otherwise close. Many approaches have been developed to
address the singularity and near-singularity for the inner, source-element integral [1-10], as well as for the
outer, test-element integral [11-15].

Code verification is an important step towards establishing the credibility of the results of a computational
physics simulation [16-18]. Through code verification, the correctness of the implementation of the numerical
methods is assessed. The discretization of differential, integral, or integro-differential equations incurs some
truncation error, and thus the approximate solutions produced from the discretized equations will incur an
associated discretization error. If the discretization error tends to zero as the discretization is refined, the
consistency of the code is verified [16]. This may be taken a step further by examining not only consistency,
but the rate at which the error decreases as the discretization is refined, thereby verifying the order of
accuracy of the discretization scheme. The correctness of the numerical-method implementation may then
be verified by comparing the expected and observed orders of accuracy obtained from numerous test cases
with known solutions.

Because exact solutions are generally limited and may not sufficiently exercise the capabilities of the code,
manufactured solutions [19] are a popular alternative, permitting the construction of problems of arbitrary
complexity with known solutions. Through the method of manufactured solutions (MMS), a solution is
manufactured and substituted directly into the governing equations to yield a residual term, which is added
as a source term to coerce the solution to the manufactured solution.

Email address: bafreno@sandia.gov (Brian A. Freno)



However, integral equations yield an additional challenge. While analytical differentiation is straight-
forward, analytical integration is not always possible. Therefore, the residual source term arising from the
manufactured solution may not be representable in closed form, and its implementation may be accompanied
by numerical techniques that carry their own numerical errors. Furthermore, in many applications, such as
the MoM implementation of the MFIE, singular integrals appear, which can further complicate the numerical
evaluation of the source term. Therefore, many of the benefits associated with MMS are lost when applied
to integral equations in a straightforward manner.

Code verification has been performed on computational physics codes associated with several physics
disciplines, including aerodynamics [20], fluid dynamics [21-27], solid mechanics [28], fluid—structure interac-
tion [29], heat transfer in fluid—solid interaction [30], multiphase flows [31, 32], radiation hydrodynamics [33],
electrostatics [34], electrodynamics [35], and ablation [36-40]. For surface integral equations in computa-
tional electromagnetics, code-verification activities that employ manufactured solutions have been limited to
the EFIE [41-44].

As with the EFIE, the numerical solution to the MoM implementation of the MFIE incurs numerical
error from three sources:

1. Domain discretization. While planar surfaces can be represented exactly by planar elements, the
approximation of sufficiently smooth curved surfaces with planar elements introduces a second-order
numerical error [45, Chap. 3]. This error can be reduced by employing curved elements [46].

2. Solution discretization. Common in the solution to differential, integral, and integro-differential
equations, the approximation of the solution in terms of a finite number of basis functions, or alterna-
tively the approximation of the underlying equation operators in terms of a finite amount of solution
queries, is the most common contributor to the numerical error. For sufficiently smooth solutions, this
error can be reduced by employing higher-order basis functions [46] or stencils.

3. Numerical integration. The analytical evaluation of the integrals in integral equations is usually
not possible. For well-behaved integrals, quadrature rules or other integration methods can be used,
with the expectation that the associated numerical error is at least of the same order as that arising
from the solution-discretization error. A less rigorous expectation is that the error from numerical
integration decreases as the fidelity of the numerical integration algorithm is increased (e.g., increasing
the number of quadrature points). However, for singular or nearly singular integrals, such convergence
is not assured [47].

For the EFIE, Marchand et al. [41, 42] compute the MMS source term using additional quadrature
points. Freno et al. manufacture the Green’s function, permitting the numerical-integration error to be
eliminated and the solution-discretization error to be isolated [43]. They also provide approaches to isolate
the numerical-integration error [44]. Unlike the EFIE, however, the MFIE is used to model only closed
surfaces, introducing additional constraints on the ability to manufacture solutions.

In this paper, we present code-verification techniques for the MoM implementation of the MFIE that
measure these three error sources separately, to the extent possible. As in [43], to eliminate the numerical-
integration error, we manufacture the Green’s function. When the manufactured Green’s function makes the
equations practically singular, we select a unique solution by minimizing the error in two different norms,
each with their own trade-offs. To isolate the numerical-integration error, we present two approaches and
show how the numerical-integration error is related to the discretization error. Finally, to address domains
with curvature, we present code-verification approaches that account for and neglect the curvature.

It is important to note that, by manufacturing the Green’s function, we avoid the challenges associated
with evaluating the aforementioned (nearly) singular integrals. Given the computational expense of comput-
ing accurate reference solutions, assessing these integral evaluations is best accomplished through extensive
unit testing as complementary code verification. Examples for the EFIE are included in [15, 47].

This paper is organized as follows. In Section 2, we describe the MoM implementation of the MFIE. In
Section 3, we describe the challenges of using MMS with the MoM implementation of the MFIE, and we
describe our approach to mitigating them. In Section 4, we demonstrate the effectiveness of our approaches
for cases with and without coding errors and with and without curvature. In Section 5, we summarize this
work.



2. The Method-of-Moments Implementation of the MFIE

In time-harmonic form, the scattered magnetic field H® due to induced surface currents on a scatterer
can be computed by [48]

1
HS(x) =~V x A(x), (1)
1
where the magnetic vector potential A is defined by
A(x) = u/ J(xG(x,x")dS’. (2)

In (1) and (2), the integration domain is the closed surface S of a perfectly conducting scatterer. Additionally,
J is the electric surface current density, and G is the Green’s function
L

G(x,x') = IR

3)

where R = |x — X/|, k = w./p€ is the wavenumber, and p and € are the permeability and permittivity of the
surrounding medium.
The total magnetic field H is the sum of the incident magnetic field HZ and H®. On S,

nxH=J, (4)
where n is the unit vector normal to S. From (1) and (2), and noting that V x [J(x')G(x,x')] = VG(x,x') x
J(x') and VG (x,x) = —V'G(x,x’),
HS(x) = / [J(x') x V'G(x,x")]|ds’

when x is just outside of S. Therefore, at S,

n x H® = lim n x / [J(x') x V'G(x,x")|dS" = %J +n x / [J(x') x V'G(x,x")]dS’, (5)

x—S ’

where the final term is evaluated through principal value integration. From (4) and (5) the MFIE at a point
on the surface of the scatterer is [49, 50]

%J —n x / [J(x') x V'G(x,x')]dS" = n x H . (6)

Projecting (6) onto an appropriate space V containing vector fields that are tangent to S yields the
variational form: find J € V, such that

1
5 / v-JdS — / v(x) - (n(x) X / [J(x') x V’G(X,)U)]dS’) ds = / v (nx H?)dS (7)
s s ’ s
for all v € V, where the bar notation denotes complex conjugation. We can write (7) more succinctly as
a(J,v) = b(H,v), (8)
where the sesquilinear forms are defined by

1



To solve the variational problem (8), we discretize S with a mesh composed of triangular elements and
approximate J with Jj in terms of the Rao-Wilton-Glisson (RWG) basis functions A;(x) [3]:

Tn) = > A (). (1)

where n,, is the total number of basis functions. There are other suitable basis function choices for the MFIE
such as curl-conforming basis functions [51, 52]; however, given that the MFIE is often combined with the
EFIE to obtain the combined-field integral equation, we restrict the scope of this work to the RWG basis
functions. The RWG basis functions are second-order accurate [45, pp. 155-156], and are defined for a
triangle pair by

b+ +
2A+pj’ for x € T
J
A- = é — —
i(x) 2/;7pj, for x € T}
J
0, otherwise

where /; is the length of the edge shared by the triangle pair, and Aj' and Aj_ are the areas of the triangles
Tj+ and T associated with basis function j. p;f denotes the vector from the vertex of Tj+ opposite the

shared edge to x, and p; denotes the vector to the vertex of T, opposite the shared edge from x.

These basis functions ensure that Jj; is tangent to the mesh when using planar triangular elements.
Additionally, along the shared edge of the triangle pair, the component of A;(x) normal to that edge is
unity. Therefore, for a triangle edge shared by only two triangles, the component of J; normal to that edge
is J;. The solution is considered most accurate at the midpoint of the edge [45, pp. 155-156]; therefore, we
measure the solution at the midpoints.

Defining V};, to be the span of RWG basis functions associated with the mesh on S, the Galerkin approx-
imation of (8) is now: find J;, € Vp, such that

a(Jn, A;) = b(H, A;) (12)
fori=1,...,mp. Letting J* denote the vector of coefficients used to construct J; (11), (12) can be written
in matrix form as ZJ" =V, where J]h =J;, Vi = b(HZ,AZ—)7 and Z; ; = a(Aj, Ay).

3. Manufactured Solutions
We define the residual functional for each test basis function as
ri(u) = a(u, A;) — b(H?, A;). (13)
We can write the variational form (8) in terms of (13) as
ri(J) = a(J, A;) — b(H", A;) = 0. (14)
Similarly, we can write the discretized problem (12) in terms of (13) as
ri(In) = a(In, A;) — b(H", A;) = 0. (15)
The method of manufactured solutions modifies (15) to be
7i(Jn) = ri(Jus), (16)

where Jyg is the manufactured solution, and r;(Jyms) is computed exactly.
Inserting (14) and (15) into (16) yields

a(In, A;) = a(Jus, Ai). (17)



However, instead of solving (17), we can equivalently solve (12) by setting
b(H, A;) = a(Jus, Ay). (18)

Equation (18) is satisfied by

1
nx HY = Jus -~ x / [Tus(x) x V/G(x,x)]dS". (19)

Noting that Jps — (Jus -n)n = n x (Jys x n) and that Jyg must be tangential to the surface (Jyg-n = 0),
Jums =n x (Jus x n) can be inserted into (19), and factoring out the cross product with n yields

1
HI = iJMS Xn— / [JMS(X,) X V/G(X, x')]dS’, (20)

which we can use to solve (12).

However, as described in the introduction, integrals containing the Green’s function (3) or its derivatives,
such as those appearing in (20), cannot be computed analytically. Additionally, the singularity when R — 0
complicates their accurate approximation, potentially contaminating convergence studies. Therefore, as is
done in [43], we manufacture the Green’s function, using the form

R*\*
!/
Gus(x,x') = <1 - Rg) ) (21)
m
where R,, = maxx xcs R is the maximum possible distance between two points on S, and d € N. The
form of (21) is chosen for two reasons: 1) the even powers of R permit the integrals in (12) and (20) to be
computed analytically for many choices of Jyg, avoiding contamination from additional error, and 2) Gys
increases when R decreases, as with the actual Green’s function (3).
We update (12) to account for the modifications arising from Jys and Gys:

a(Jn, A;) = b(Hig, Ay), (22)

where

’

1
Hfjs = LJus x 1 - / [Tais () X V' Gaas (%, )] S,
and, for notational simplicity, a(-,-) uses Gmg (21) in (9), instead of G (3).

3.1. Solution-Discretization Error

In (22), if the integrals in a(-,-) are evaluated exactly, the only contribution to the discretization error is
the solution-discretization error. Solving for J” enables us to compute the discretization error

ey=J"-1J,, (23)

where J,,; denotes the component of Jyg flowing from T;r to 7;". The norm of (23) has the property
lles]] < CyhP3, where Cjy is a function of the solution derivatives, h is representative of the mesh size, and
py is the order of accuracy. By performing a mesh-convergence study of the norm of the discretization error,
we can ensure the expected order of accuracy is obtained. For the RWG basis functions, the expectation is
second-order accuracy (py = 2).

3.1.1. Solution Uniqueness

For the EFIE, the manufactured Green’s function Gy (21) yields a matrix that is practically singular,
admitting infinite solutions J". For the MFIE, the matrix arising from the first term of (9), which does
not contain a Green’s function, is nonsingular. Additionally, the matrix arising from the first and second
terms is nonsingular when Gygs is used. However, the matrix arising from only the second term is practically
singular.



In [43, 53], a mitigation approach is presented to select J*, by solving the optimization problem

minimize lleslls

subject to a(Jp, A;) = b(H%/IS7AZ-).
The solution to (24) is
I" =3+ Qu(u—-Qf'Jn),

where Rfu = PTV and Q;, Ry, and P arise from the pivoted QR factorization of Z.

In formulating the optimization problem (24), we selected |es||, as the cost function because it has the
benefit of a closed form solution. However, in order to assess the rate of convergence, we must select a
second norm that is used to report the error. |zl is often preferred for error reporting in code verification
because it is more sensitive and therefore more rigorous. However, the mismatch between the minimized
norm (L?) and the reported norm (L°°) may require finer meshes to enter the asymptotic region. Therefore,
as a trade-off, in this paper, we additionally solve the optimization problem

minimize llesll

25
subject to a(In, A;) = b(HEg, Ay). .

The L*°-norm of the error arising from the solution to (25) reaches the asymptotic region faster than that
arising from (24) but requires the solution to a linear programming problem, which is more expensive.

3.2. Numerical-Integration Error

In practice, the integrals in a(-,-) (9) and b(-,-) (10) are evaluated numerically, yielding the approxima-
tions al(-,-) and b4(-,-). al(-,-) and b4(-,-) are obtained by integrating over each triangular element using
quadrature, and generally incur a numerical-integration error. Therefore, it is important to measure the
numerical-integration error without contamination from the solution-discretization error. To do this, we
build upon the solution-discretization error cancellation and elimination approaches of [44] by defining the
error functionals

ea(u)

al(u,u) — a(u,u), (26)
ep(u) = b?

(H%/IS7 u) - b(H%/Isv u)» (27)

which have the properties |e,| < CyhPe and |ep| < CphPr, where C, and Cy are functions of the integrand
derivatives, and p, and p, depend on the quadrature accuracy.

In Section 3.2.1, we describe our approach to canceling the solution-discretization error, and in Sec-
tion 3.2.2, we describe our approach to eliminating the solution-discretization error.

3.2.1. Solution-Discretization Error Cancellation
In this paper, we cancel the solution-discretization error and measure the numerical-integration error
from

ea(‘]th) = aq(']th’ Jth) - a(']tha']th)v (28)
€y (Jth) = ! (H%/[Sﬂ Jth) —b (H%/I& Jth)ﬂ (29)

where Jp,, is the basis-function representation of Jyg, obtained from (11) by setting the coefficients J; equal
to the normal component of Jyg at the midpoint of each edge associated with A;(x). Due to the presence
of the basis functions in the minuend and subtrahend of (28) and (29), we have canceled the solution-
discretization error. This approach is more advantageous than the solution-discretization error cancellation
approach of [44], as it does not require solving a potentially inconsistent system of equations.

To relate e, (Jp,,q) to the discretization error ey (23), we can solve the optimization problem

minimize lleslls

subject to a?(Jn, Ihyis) = (T nygs> Thnss )-



Similarly, to relate e,(Jp,,s) to ez, we can solve the optimization problem

minimize llesls

31

subject to b1 (Hig, Jn) = b(HLig, Tns) - (3D
In (30) and (31), |les||,, could be minimized instead; however, in this paper, minimizing ||ejz||, is sufficient
to reach the asymptotic region for the meshes considered.

3.2.2. Solution-Discretization Error Elimination

Canceling the solution-discretization error enables us to assess how the numerical integration performs
for the integrands arising from the approximated solution. The polynomial degrees of these integrands are
finite, depending on those of the basis functions and the manufactured Green’s function. Therefore, the
ability to perform convergence studies on quadrature rules capable of integrating higher polynomial degrees
is limited. Alternatively, we can assess the performance of the numerical integration without polynomial
degree limits by removing the basis-function restriction.

In this paper, we eliminate the solution-discretization error and measure the numerical-integration error
from

ea(Jms) = a?(Ius , Jus) — a(Jus , Jus), (32)
ep (Jus) = b7 (Hig, Jus) — b (Hygg, Jus)- (33)

By eliminating the presence of the basis functions in (32) and (33), we have eliminated the solution-
discretization error.

3.3. Domain-Discretization Error

For domains with curvature, the discretization of S with planar triangular elements yields the faceted
approximation Sp,. To address domain-discretization error, we consider two code-verification approaches:
accounting for the curvature by using curved triangular elements and neglecting the curvature by using
planar triangular elements.

3.8.1. Accounting for Curvature

We restrict the scope of the basis functions in this paper to planar RWG basis functions. Therefore,
because they rely on basis functions, isolating the solution-discretization error in Section 3.1 and isolating
the numerical-integration error by canceling the solution-discretization error in Section 3.2.1 will not account
for curvature since the faceted approximation to the geometry S}, is used.

For the solution-discretization error elimination approach of Section 3.2.2, instead of integrating over
a planar triangle, we can integrate over a curved triangle that conforms to S. Through this approach,
we modify the planar triangular integrals to include the determinant of the transformation between the
planar and curved triangles. By doing so, we can assess the curvature implementation by measuring the
numerical-integration error.

3.83.2. Neglecting Curvature
To neglect curvature, the solution-discretization error cancellation approach of Section 3.2.1 enables us
to isolate and measure the numerical-integration error by computing the integrals on Sy, instead of S.

4. Numerical Examples

In this section, we demonstrate the effectiveness of the approaches described in Section 3. In Section 4.1,
we consider domains without curvature, thereby avoiding domain-discretization error, and we isolate and
measure the solution-discretization error (Section 3.1) and the numerical-integration error (Section 3.2). In
Section 4.2, we consider a domain with curvature. To address the domain-discretization error, we (1) account
for the curvature, which modifies the integrands, such that we measure the numerical-integration error
(Section 3.3.1), and (2) neglect the curvature, such that we isolate and measure the numerical-integration
error (Section 3.3.2).
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Figure 1: Meshes for the cube (left) and the rhombic prism (right), with n, = 1200.

When measuring a norm of the discretization error |lez|| (23), we nondimensionalize by the constant
g0 = 1 A/m. When measuring the numerical-integration error e,(-) (26) or ey(-) (27), we nondimensionalize
by the constant eg = 1 A2,

4.1. Without Curvature

We consider two domains without curvature: a cube and a rhombic prism, each with all edges of length
1 m, as shown in Figures 1 and 2 with the total number of triangles n, = 1200. The acute angle of the
rhombic prism is 45°. We manufacture the surface current density Jys(x) = Je(§,n)ee, where

sin (7r§> sin® <7T77>7 forn-e, =0
Jf(§7’r]) = JO 2L0 LO ) (34)
0, forn-e, #0

Jo=1A/m, and Lo = 1 m. £ € [0, 4 m is perpendicular to n = y € [0, 1] m, wrapping around the surfaces
for which n - e, = 0, beginning at * = 0 m and z = 1 m for the cube and z = z = v/2/2 m for the rhombic
prism, as depicted in Figure 2, which shows the nets of these domains. Equation (34) is of class C2. Figures 3
and 4 show plots of (34).

4.1.1. Solution-Discretization Error

To isolate and measure the solution-discretization error, we proceed with the assessment described in
Section 3.1. With Gug (21), we are able to compute the integral in (20) analytically, which yields a finite-
degree polynomial integrand for b(HI, Ai) (12). Because the integrands of a(Jp, A;) and b(HI, Al-) in (12)
are finite-degree polynomials, they can be integrated exactly with the appropriate amount of polynomial
quadrature points. For Gys, we consider d = {1, 2, 3}. We account for potential disparities in the magni-
tudes of the contributions to (9) from the first (Term 1) and second (Term 2) terms by considering them
together and separately.

Figure 5 shows the L> norm of the discretization error ||ez||,, (23) arising from only the solution-
discretization error for both geometries and for Term 1 with and without Term 2. The convergence rates are
all O(h?) as expected.

Figure 6 shows norms of the discretization error with only Term 2. As stated in Section 3.1.1, the
arising matrix is singular. Therefore, to compute a unique solution we minimize |les|| ., (25) (6a and 6c)
and |les[|, (24) (6b and 6d), and we measure |les| ., (6a and 6b) and |les|, (6¢c and 6d). To minimize
lles|| ., we use HIGHS [54]. Table 1 shows the convergence rates computed between adjacent mesh pairs
for these four combinations for the cube (C) and rhombic prism (RP). Unlike the other three combinations,
measuring ||eg||, and minimizing [e;|, yields a convergence rate that is not as clearly O(h?) for the meshes
considered. On the other hand, by minimizing ||es||__, the convergence rate is clearly O(h?) without requiring
finer meshes.
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Figure 2: Meshes for the cube (top) and the rhombic prism (bottom), with n; = 1200.
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Figure 3: Manufactured surface current density Jyg for the cube (left) and the rhombic prism (right).
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€ = llesll e = llesll

ming. ||eg]| o, ming. ||egl|, mings ||eg|| . mingx ||eg]|,

Mesh C RP C RP C RP C RP
1-2 2.0800 2.0663 2.0811 1.2935 2.0447 2.0229 2.0454 2.0763
2-3 2.0141 2.0529 2.1055 1.4193 1.9948 2.0323 2.0359 2.0499
3-4 20303 2.0193 19159 1.5150 2.0141 1.9999 2.0283 2.0372
4-5 2.0196 2.0163 1.6421 1.5847 2.0064 2.0093 2.0229 2.0297
5—6 2.0061 2.0242 1.6677 1.6372 2.0060 2.0102 2.0190 2.0246
6-7  2.0133 2.0158 1.5800 1.6779 2.0057 2.0097 2.0162 2.0211
78 2.0113 2.0167 1.6282 1.7104 2.0057 2.0122 2.0140 2.0184
89 20037 2.0122 1.6664 1.7369 1.9965 2.0076 2.0123 2.0163
9-10 2.0086 2.0117 1.6974 1.7589 2.0039 2.0067 2.0110 2.0146
10-11 2.0053 2.0118 1.7231 1.7776 2.0039 2.0094 2.0099 2.0133

Table 1: Solution-discretization error: convergence rates computed between adjacent mesh pairs for d = 3

in Figure 6.
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Figure 7: Solution-discretization error: ¢ = |ley|| for different metric and minimization norms in the presence

of coding error for d = 3.
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(a) Maximum polynomial degree: 4 (b) Maximum polynomial degree: 3

Figure 8: 6-point quadrature rules.

Number of points 1 3 4 6 7 12 13
Maximum integrand degree 1 2 3 4 5 6 7
Convergence rate O(h%)  O(h*Y) O(h*Y) O(h%) O O O(hd)

Table 2: Polynomial triangle quadrature properties.

Figure 7 shows the four metric and minimization combinations shown in Figure 6 for Term 2 and d = 3 in
the presence of a coding error in which the magnitudes of the diagonal elements of the matrix are increased
by 1%. None of the cases with the coding errors have convergence rates that are O(h?); therefore, each of
these combinations detects the coding error.

4.1.2. Numerical-Integration Error

To isolate and measure the numerical-integration error, we continue by performing the assessments de-
scribed in Section 3.2. The numerical integration is performed using polynomial quadrature rules for trian-
gles. For multiple quadrature point amounts, Table 2 lists the maximum polynomial degree of the integrand
the points can integrate exactly [55, 56], as well as the convergence rates of the errors for inexact integra-
tions of nonsingular integrands. These properties correspond to the optimal point locations and weights.
For nonsingular integrands, the slowest expected quadrature convergence rate is O(h?). Figure 8a shows the
optimal 6-point quadrature rule, which can exactly integrate polynomials up to degree 4, whereas Figure 8b
shows a suboptimal 6-point quadrature rule [57], which can exactly integrate polynomials up to degree 3.

Figure 9 shows the numerical-integration error e, (Jp,) (28) when the solution-discretization error is
canceled for d = {1, 2, 3} in (21), both geometries, and both terms. In the legend entries, the first number
is the amount of quadrature points used to compute the integral over S, whereas the second is the amount
used to compute the integral over S’. Each of the solutions converges at the expected rate listed in Table 2.

Figure 10 shows the numerical-integration error e,(Jp,,s) (29) when the solution-discretization error is
canceled. In the legend entries, the number is the amount of quadrature points used to compute the integral.
Each of the solutions converges at the expected rate. For the finest meshes considered, the round-off error
arising from the double-precision calculations exceeds the numerical-integration error.

To relate the e,(Jnys) (28) and ep(Jpy,s) (29) to the discretization error ey (23), we can solve the
optimization problems (30) and (31). These discretization errors are respectively shown in Figures 11 and 12
and converge at the same rates as those in Figures 9 and 10, until the round-off error exceeds the discretization
error.

Figures 13 and 14 show the numerical-integration errors e, (Jmg) (32) and ep(Jums) (33) when the solution-
discretization error is eliminated for d = {1, 2, 3} in (21), both geometries, and both terms. Each of the
solutions converges at the expected rate listed in Table 2, except for d = 1 in Figures 13a and 13b, where
the convergence rates for the 1 x 1 quadrature combination are O(h*) instead of O(h?). Once more, for the
finer meshes, the round-off error exceeds the discretization error.
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Figure 13: Numerical-integration error: € = |e,(Jyms)| (32) for different amounts of quadrature points.
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Figure 16: Meshes for the regular icosahedron (left), the faceted sphere (center), and the smooth sphere
(right), with n; = 500.

Jo/Jo

0.8

0.6

0.4

02

0.0

-0.2

—0.4

-0.6

z z 0.8

v Y&x
-1.0
x Yy

Figure 17: Manufactured surface current density Jyg for the sphere.

To test the ability to detect a coding error, we replace the optimal 6-point quadrature rule that can
exactly integrate polynomials up to degree 4 (Figure 8a) with a suboptimal rule (Figure 8b) that can
integrate polynomials up to degree 3. With this coding error, for d = 3, Figures 15a—15f respectively show
the approaches presented in Figures 9-14. The convergence rates are O(h*) for the cases with the coding
errors, compared to the expected O(h®) rates without. Therefore, each of these methods detects the coding
error.

4.2. With Curvature

To account for curvature in the domain, we consider a spherical domain with a radius of 1 m. The
mesh for the sphere is obtained by generating a regular icosahedron inscribed in the sphere, subdividing the
twenty triangular faces, and projecting the nodes radially onto the sphere. To account for the curvature
of the sphere, instead of discretizing it with planar triangles, we can discretize it with spherical triangles.
These three phases — the icosahedron, the faceted sphere, and the smooth sphere — are depicted in Figure 16
with the total number of triangles n; = 500. The icosahedron is oriented in a manner such it has vertices at
z==1m.

We manufacture the surface current density Jys(x) = Jy (6, ¢)es, where

J4(0,0) = Jysin? O sin ¢, (35)
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and x = rsinfcos¢, y = rsinfsing, z = rcosf, and r = /22 + y? + 22. Equation (35) is of class C°.
Figure 17 shows plots of (35).

4.2.1. Domain-Discretization Error

To address the domain-discretization error, we perform the assessments described in Section 3.3. For
d={1, 2, 3} in (21), Figure 18 shows e,(Jms) (32), as described in Section 3.3.1. For the left column (18a,
18¢, 18e¢), a?(Jms, Jus) in (32) is computed on meshes composed of spherical triangles. For the right column
(18b, 18d, 18f), a?(Ims, Jms) is approximated by aj (Jms, Jums) and computed on meshes composed of planar
triangles. By accounting for the curvature, e,(Jys) converges at the expected rates listed in Table 2 (until
the round-off error exceeds the domain-discretization error) for a?(Jys, Jms), whereas its rate is limited to
O(hz) for aZ(JMs,JMs).

Figure 19 shows e,(Jus) (33) for d = {1, 2, 3}. For the left column (19a, 19¢, 19e), b (H{ g, Jus) in (33)
is computed on meshes composed of spherical triangles. For the right column (19b, 19d, 19f), b? (H%/IS7 J Ms)
is approximated by b} (HﬁS,J Ms) and computed on meshes composed of planar triangles. By accounting
for the curvature, e, (Jyg) converges at the expected rates listed in Table 2 (until the round-off error exceeds
the domain-discretization error) for b4(HE g, Jums), whereas its rate is limited to O(h?) for b (HEg, Jus)-

Finally, we can neglect curvature as described in Section 3.3.2. Figure 20 shows eq(Jp,,.) (28) in the left
column (20a, 20c, 20e), and ey (23) arising from (30) in the right column (20b, 20d, 20f). This assessment
isolates the numerical-integration error, which converges at the expected rates listed in Table 2.

5. Conclusions

In this paper, we presented code-verification approaches for the MoM implementation of the magnetic-
field integral equation that account for the three sources of numerical error: domain discretization, solution
discretization, and numerical integration.

We isolated and measured the solution-discretization error by integrating exactly over the domain. To
integrate exactly, we manufactured the Green’s function, and presented optimization approaches to select a
unique solution when the manufactured Green’s function makes the matrix practically singular.

We isolated and measured the numerical-integration error by canceling and eliminating the solution-
discretization error. Canceling the solution-discretization error uses the basis functions, whereas eliminating
does not.

To address the domain-discretization error, we accounted for curvature and we neglected the curvature.
We accounted for curvature by modifying the integrand to effectively integrate over curved triangular ele-
ments, such that we could measure the numerical-integration error. We neglected the curvature by using
planar triangular elements to isolate and measure the numerical-integration error.

We considered cases with and without coding errors to demonstrate the efficacy of these approaches.

To account for the actual Green’s function, this work can be complemented with unit tests that assess
the evaluation of the (nearly) singular integrals that arise from the actual Green’s function.
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Figure 19: Domain-Discretization Error: € = |ep(Jys)| for different amounts of quadrature points.
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Figure 20: Domain-Discretization Error: ¢ for different amounts of quadrature points.
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