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ABSTRACT

The ability to generate natural language sequences from source code snippets has
a variety of applications such as code summarization, documentation, and re-
trieval. Sequence-to-sequence (seq2seq) models, adopted from neural machine
translation (NMT), have achieved state-of-the-art performance on these tasks by
treating source code as a sequence of tokens. We present CODE2SEQ: an al-
ternative approach that leverages the syntactic structure of programming lan-
guages to better encode source code. Our model represents a code snippet as
the set of compositional paths in its abstract syntax tree (AST) and uses at-
tention to select the relevant paths while decoding. We demonstrate the effec-
tiveness of our approach for two tasks, two programming languages, and four
datasets of up to 16M examples. Our model significantly outperforms previ-
ous models that were specifically designed for programming languages, as well
as state-of-the-art NMT models. An online demo of our model is available at
http://code2seq.org. Our code, data and trained models are available at
http://github.com/tech-srl/code2seq.

1 INTRODUCTION

Modeling the relation between source code and natural language can be used for automatic code
summarization (Allamanis et al., 2016), documentation (Iyer et al., 2016), retrieval (Allamanis et al.,
2015b), and even generation (Balog et al., 2017; Rabinovich et al., 2017; Yin and Neubig, 2017;
Devlin et al., 2017; Murali et al., 2017; Brockschmidt et al., 2019). In this work, we consider the
general problem of generating a natural language sequence from a given snippet of source code.

A direct approach is to frame the problem as a machine translation problem, where the source
sentence is the sequence of tokens in the code and the target sentence is a corresponding natural
language sequence. This approach allows one to apply state-of-the-art neural machine translation
(NMT) models from the sequence-to-sequence (seq2seq) paradigm (Sutskever et al., 2014; Cho
et al., 2014; Bahdanau et al., 2014; Luong et al., 2015; Vaswani et al., 2017), yielding state-of-
the-art performance on various code captioning and documentation benchmarks (Iyer et al., 2016;
Allamanis et al., 2016; Loyola et al., 2017) despite having extremely long source sequences.

We present an alternative approach for encoding source code that leverages the syntactic structure
of programming languages: CODE2SEQ. We represent a given code snippet as a set of compositional
paths over its abstract syntax tree (AST), where each path is compressed to a fixed-length vector
using LSTMs (Hochreiter and Schmidhuber, 1997). During decoding, CODE2SEQ attends over a
different weighted average of the path-vectors to produce each output token, much like NMT models
attend over token representations in the source sentence.

We show the effectiveness of our code2seq model on two tasks: (1) code summarization (Figure 1a),
where we predict a Java method’s name given its body, and (2) code captioning (Figure 1b), where
we predict a natural language sentence that describes a given C# snippet.
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Code summarization in Java: Code captioning in C#:

(a) (b)

Figure 1: Example of (a) code summarization of a Java code snippet, and (b) code captioning of a
C# code snippet, along with the predictions produced by our models. The highlighted paths in each
example are the top-attended paths in each decoding step. Because of space limitations we included
only the top-attended path for each decoding step, but hundreds of paths are attended at each step.
Additional examples are presented in Appendix B and Appendix C.

On both tasks, our CODE2SEQ model outperforms models that were explicitly designed for code,
such as the model of Allamanis et al. (2016) and CodeNN (Iyer et al., 2016), as well as TreeLSTMs
(Tai et al., 2015) and state-of-the-art NMT models (Luong et al., 2015; Vaswani et al., 2017). To
examine the importance of each component of the model, we conduct a thorough ablation study. In
particular, we show the importance of structural encoding of code, by showing how our model yields
a significant improvement over an ablation that uses only token-level information without syntactic
paths. To the best of our knowledge, this is the first work to directly use paths in the abstract syntax
tree for end-to-end generation of sequences.

2 REPRESENTING CODE AS AST PATHS

An Abstract Syntax Tree (AST) uniquely represents a source code snippet in a given language and
grammar. The leaves of the tree are called terminals, and usually refer to user-defined values which
represent identifiers and names from the code. The non-leaf nodes are called nonterminals and
represent a restricted set of structures in the language, e.g., loops, expressions, and variable declara-
tions. For example, Figure 2c shows a partial AST for the code snippet of Figure 2a. Names (such
as num) and types (such as int) are represented as values of terminals; syntactic structures such as
variable declaration (VarDec) and a do-while loop (DoStmt) are represented as nonterminals.

Given the AST of a code snippet, we consider all pairwise paths between terminals, and represent
them as sequences of terminal and nonterminal nodes. We then use these paths with their termi-
nals’ values to represent the code snippet itself. For example, consider the two Java methods of
Figure 2. Both of these methods count occurrences of a character in a string. They have exactly the
same functionality, although a different implementation, and therefore different surface forms. If
these snippets are encoded as sequences of tokens, the recurring patterns that suggest the common
method name might be overlooked. However, a structural observation reveals syntactic paths that
are common to both methods, and differ only in a single node of a Do-while statement versus a For
statement. This example shows the effectiveness of a syntactic encoding of code. Such an encoder
can generalize much better to unseen examples because the AST normalizes a lot of the surface form
variance. Since our encoding is compositional, the encoder can generalize even if the paths are not
identical (e.g., a For node in one path and a While in the other).

Since a code snippet can contain an arbitrary number of such paths, we sample k paths as the
representation of the code snippet. To avoid bias, k new paths are sampled afresh in every training
iteration. In Section 5 we show that this runtime-sampling provides regularization and improves
results compared to sampling the same k paths for each example in advance.

Formally, we use C to denote a given snippet of code. Every training iteration, k pairs of terminals
are uniformly sampled from within the AST of C. Each pair of terminals

(

vi1, v
i
li

)

implies a single
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int countOccurrences(String str, char ch) {

int num = 0;

int index = -1;

do {

index = str.indexOf(ch, index + 1);

if (index >= 0) {

num++;

}

} while (index >= 0);

return num;

}

(a)

int countOccurrences(String source, char value) {

int count = 0;

for (int i = 0; i < source.length(); i++) {

if (source.charAt(i) == value) {

count++;

}

}

return count;

}

(b)

(c) (d)

Figure 2: An example of two Java methods that have exactly the same functionality. Although these
methods have different sequential (token-based) representations, repeating paths, which might differ
in only a single node (a ForStmt node instead of a Do-while node), will be revealed if we consider
syntactic patterns.

path between them: vi1v
i
2...v

i
li

. Finally, the input code example is represented as a set of these k

random AST paths:
{(

v11v
1
2 ...v

1
l1

)

, ...,
(

vk1v
k
2 ...v

k
lk

)}

, where lj is the length of the jth path.

3 MODEL ARCHITECTURE

Our model follows the standard encoder-decoder architecture for NMT (Section 3.1), with the sig-
nificant difference that the encoder does not read the input as a flat sequence of tokens. Instead,
the encoder creates a vector representation for each AST path separately (Section 3.2). The decoder
then attends over the encoded AST paths (rather than the encoded tokens) while generating the target
sequence. Our model is illustrated in Figure 3.

3.1 ENCODER-DECODER FRAMEWORK

Contemporary NMT models are largely based on an encoder-decoder architecture (Cho et al., 2014;
Sutskever et al., 2014; Luong et al., 2015; Bahdanau et al., 2014), where the encoder maps an input
sequence of tokens x = (x1, ..., xn) to a sequence of continuous representations z = (z1, ..., zn).
Given z, the decoder then generates a sequence of output tokens y = (y1, ..., ym) one token at a
time, hence modeling the conditional probability: p (y1, ..., ym|x1, ..., xn).

At each decoding step, the probability of the next target token depends on the previously generated
token, and can therefore be factorized as:

p (y1, ..., ym|x1, ..., xn) =

m
∏

j=1

p (yj |y<j , z1, ..., zn)

In attention-based models, at each time step t in the decoding phase, a context vector ct is computed
by attending over the elements in z using the decoding state ht, typically computed by an LSTM.
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Figure 3: Our model encodes each AST path with its values as a vector, and uses the average of all
of the k paths as the decoder’s start state. The decoder generates an output sequence while attending
over the k encoded paths.

α
t = softmax (htWaz) ct =

n
∑

i

αt
izi

The context vector ct and the decoding state ht are then combined to predict the current target token
yt. Previous work differs in the way the context vector is computed and in the way it is combined
with the current decoding state. A standard approach (Luong et al., 2015) is to pass ct and ht through
a multi-layer perceptron (MLP) and then predict the probability of the next token using softmax:

p (yt|y<t, z1, ..., zn) = softmax (Wstanh (Wc [ct;ht]))

3.2 AST ENCODER

Given a set of AST paths {x1, ..., xk}, our goal is to create a vector representation zi for each path
xi = vi1v

i
2...v

i
li

. We represent each path separately using a bi-directional LSTM to encode the path,
and sub-token embeddings to capture the compositional nature of the terminals’ values (the tokens).

Path Representation Each AST path is composed of nodes and their child indices from a limited
vocabulary of up to 364 symbols. We represent each node using a learned embedding matrix Enodes

and then encode the entire sequence using the final states of a bi-directional LSTM:

h1, ..., hl = LSTM(Enodes
v1

, ..., Enodes
vl

)

encode path(v1...vl) = [h→l ;h←1 ]

Token Representation The first and last node of an AST path are terminals whose values are
tokens in the code. Following Allamanis et al. (2015a; 2016), we split code tokens into subtokens;
for example, a token with the value ArrayList will be decomposed into Array and List. This
is somewhat analogous to byte-pair encoding in NMT (Sennrich et al., 2016), although in the case
of programming languages, coding conventions such as camel notation provide us with an explicit
partition of each token. We use a learned embedding matrix Esubtokens to represent each subtoken,
and then sum the subtoken vectors to represent the full token:

encode token(w) =
∑

s∈split(w)

Esubtokens
s

The LSTM decoder may also predict subtokens at each step (e.g. when generating method names),
although the decoder’s subtoken embedding matrix will be different.

Combined Representation To represent the path x = v1...vl, we concatenate the path’s represen-
tation with the token representations of each terminal node, and apply a fully-connected layer:

z = tanh (Win [encode path(v1...vl); encode token(value(v1)); encode token(value(vl))])

where value is the mapping of a terminal node to its associated value, and Win is a (2dpath +
2dtoken)× dhidden matrix.
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Decoder Start State To provide the decoder with an initial state, we average the combined repre-
sentations of all the k paths in the given example:

h0 =
1

k

k
∑

i=1

zi

Unlike typical encoder-decoder models, the order of the input random paths is not taken into account.
Each path is encoded separately and the combined representations are aggregated with mean pooling
to initialize the decoder’s state. This represents the given source code as a set of random paths.

Attention Finally, the decoder generates the output sequence while attending over all of the com-
bined representations z1, ...zk, similarly to the way that seq2seq models attend over the source
symbols. The attention mechanism is used to dynamically select the distribution over these k com-
bined representations while decoding, just as an NMT model would attend over the encoded source
tokens.

4 EXPERIMENTS

We evaluate our model on two code-to-sequence tasks: summarization (Section 4.1), in which we
predict Java methods’ names from their bodies, and captioning (Section 4.2), where we generate
natural language descriptions of C# code snippets. Although out of the focus of this work, in Sec-
tion 4.3 we show that our model also generates Javadocs more accurately than an existing work. We
thus demonstrate that our approach can produce both method names and natural language outputs,
and can encode a code snippet in any language for which an AST can be constructed (i.e., a parser
exists).

Setup The values of all of the parameters are initialized using the initialization heuristic of Glorot
and Bengio (2010). We optimize the cross-entropy loss (Rubinstein, 1999; 2001) with a Nesterov
momentum (Nesterov, 1983) of 0.95 and an initial learning rate of 0.01, decayed by a factor of 0.95
every epoch. For the Code Summarization task, we apply dropout (Srivastava et al., 2014) of 0.25
on the input vectors xj , and 0.7 for the Code Captioning task because of the smaller number of
examples in the C# dataset. We apply a recurrent dropout of 0.5 on the LSTM that encodes the AST
paths. We used dtokens = dnodes = dhidden = dtarget = 128. For the Code Summarization task,
each LSTM that encodes the AST paths had 128 units and the decoder LSTM had 320 units. For
the Code Captioning task, to support the longer target sequences, each encoder LSTM had 256 units
and the decoder was of size 512.

Choice of k We experimented with different values of k, the number of sampled paths from each
example (which we set to 200 in the final models). Lower values than k = 100 showed worse results,
and increasing to k > 300 did not result in consistent improvement. In practice, k = 200 was found
to be a reasonable sweet spot between capturing enough information while keeping training feasible
in the GPU’s memory. Additionally, since the average number of paths in our Java-large training set
is 220 paths per example, a number as high as 200 is beneficial for some large methods.

4.1 CODE SUMMARIZATION

In this task, we predict a Java method’s name given its body. As was previously observed (Allamanis
et al., 2016; Alon et al., 2019), this is a good benchmark because a method name in open-source Java
projects tends to be succinct and precise, and a method body is often a complete logical unit. We
predict the target method name as a sequence of sub-tokens, e.g., setMaxConnectionsPerServer
is predicted as the sequence “set max connections per server”. The target sequence length is about
3 on average. We adopt the measure used by Allamanis et al. (2016) and Alon et al. (2019), who
measured precision, recall, and F1 score over the target sequence, case insensitive.

Data We experiment with this task across three datsets. In these datasets, we always train across
multiple projects and predict on distinct projects:

Java-small – Contains 11 relatively large Java projects, originally used for 11 distinct models for
training and predicting within the scope of the same project (Allamanis et al., 2016). We use the
same data, but train and predict across projects: we took 9 projects for training, 1 project for
validation and 1 project as our test set. This dataset contains about 700K examples.
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Table 1: Our model significantly outperforms previous PL-oriented and NMT models. Another
visualization can be found in Appendix E.

Model
Java-small Java-med Java-large

Prec Rec F1 Prec Rec F1 Prec Rec F1

ConvAttention (Allamanis et al., 2016) 50.25 24.62 33.05 60.82 26.75 37.16 60.71 27.60 37.95

Paths+CRFs (Alon et al., 2018) 8.39 5.63 6.74 32.56 20.37 25.06 32.56 20.37 25.06

code2vec (Alon et al., 2019) 18.51 18.74 18.62 38.12 28.31 32.49 48.15 38.40 42.73

2-layer BiLSTM (no token splitting) 32.40 20.40 25.03 48.37 30.29 37.25 58.02 37.73 45.73

2-layer BiLSTM 42.63 29.97 35.20 55.15 41.75 47.52 63.53 48.77 55.18

TreeLSTM (Tai et al., 2015) 40.02 31.84 35.46 53.07 41.69 46.69 60.34 48.27 53.63

Transformer (Vaswani et al., 2017) 38.13 26.70 31.41 50.11 35.01 41.22 59.13 40.58 48.13

code2seq 50.64 37.40 43.02 61.24 47.07 53.23 64.03 55.02 59.19

Absolute gain over BiLSTM +8.01 +7.43 +7.82 +6.09 +5.32 +5.71 +0.50 +6.25 +4.01

Java-med – A new dataset of the 1000 top-starred Java projects from GitHub. We randomly select
800 projects for training, 100 for validation and 100 for testing. This dataset contains about 4M
examples and we make it publicly available.

Java-large – A new dataset of the 9500 top-starred Java projects from GitHub that were created
since January 2007. We randomly select 9000 projects for training, 250 for validation and 300 for
testing. This dataset contains about 16M examples and we make it publicly available.

More statistics of our datasets can be found in Appendix A.

Baselines We re-trained all of the baselines on all of the datasets of this task using the original im-
plementations of the authors. We compare CODE2SEQ to the following baselines: Allamanis et al.
(2016), who used a convolutional attention network to predict method names; syntactic paths with
Conditional Random Fields (CRFs) (Alon et al., 2018); code2vec (Alon et al., 2019); and a TreeL-
STM (Tai et al., 2015) encoder with an LSTM decoder and attention on the input sub-trees. Addi-
tionally, we compared to three NMT baselines that read the input source code as a stream of tokens:
2-layer bidirectional encoder-decoder LSTMs (split tokens and full tokens) with global attention
(Luong et al., 2015), and the Transformer (Vaswani et al., 2017), which achieved state-of-the-art
results for translation tasks.

We put significant effort into strengthening the NMT baselines in order to provide a fair comparison:
(1) we split tokens to subtokens, as in our model (e.g., HashSet→ Hash Set) – this was shown to
improve the results by about 10 F1 points (Table 1); (2) we deliberately kept the original casing of
the source tokens since we found it to improve their results; and (3) during inference, we replaced
generated UNK tokens with the source tokens that were given the highest attention. For the 2-
layer BiLSTM we used embeddings of size 512, an encoder and a decoder of 512 units each, and
the default hyperparameters of OpenNMT (Klein et al., 2017). For the Transformer, we used their
original hyperparameters (Vaswani et al., 2017). This resulted in a Transformer model with 169M
parameters and a BiLSTM model with 134M parameters, while our code2seq model had only 37M.1

Performance Table 1 shows the results for the code summarization task. Our model significantly
outperforms the baselines in both precision and recall across all three datasets, demonstrating that
there is added value in leveraging ASTs to encode source code. Our model improves over the best
baselines, BiLSTM with split tokens, by between 4 to 8 F1 points on all benchmarks. BiLSTM
with split tokens consistently scored about 10 F1 points more than BiLSTM with full tokens, and
for this reason we included only the split token Transformer and TreeLSTM baselines. Our model
outperforms ConvAttention (Allamanis et al., 2016), which was designed specifically for this task;
Paths+CRFs (Alon et al., 2018), which used syntactic features; and TreeLSTMs. Although TreeL-
STMs also leverage syntax, we hypothesize that our syntactic paths capture long distance relation-
ships while TreeLSTMs capture mostly local properties. An additional comparison to code2vec on
the code2vec dataset can be found in Appendix A. Examples for predictions made by our model and
each of the baselines can be found in Appendix C and at http://code2seq.org.

1We also trained versions of the NMT baselines in which we down-matched the sizes and number of pa-
rameters to our model. These baselines seemed to benefit from more parameters, so the results reported here
are for the versions that had many more parameters than our model.
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Fernandes et al. (2019) encoded code using Graph Neural Networks (GNN), and reported lower per-
formance than our model on Java-large without specifying the exact F1 score. They report slightly
higher results than us on Java-small only by extending their GNN encoder with a subtoken-LSTM
(BILSTM+GNN→ LSTM); by extending the Transformer with GNN (SELFATT+GNN→SELFATT);
or by extending their LSTM decoder with a pointer network (GNN→LSTM+POINTER). All these
extensions can be incorporated into our model as well.

Data Efficiency ConvAttention (Allamanis et al., 2016) performed even better than the Transformer
on the Java-small dataset, but could not scale and leverage the larger datasets. Paths+CRFs showed
very poor results on the Java-small dataset, which is expected due to the sparse nature of their
paths and the CRF model. When compared to the best among the baselines (BiLSTM with split to-
kens), our model achieves a relative improvement of 7.3% on Java-large, but as the dataset becomes
smaller, the larger the relative difference becomes: 13% on Java-med and 22% on Java-small; when
compared to the Transformer, the relative improvement is 23% on Java-large and 37% on Java-small.
These results show the data efficiency of our architecture: while the data-hungry NMT baselines re-
quire large datasets, our model can leverage both small and large datasets.

Sensitivity to input length We examined how the performance of each model changes as the size
of the test method grows. As shown in Figure 4, our model is superior to all examined baselines
across all code lengths. All models give their best results for short snippets of code, i.e., less than 3
lines. As the size of the input code increases, all examined models show a natural descent, and show
stable results for lengths of 9 and above.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30+
10
15
20
25
30
35
40
45
50
55
60
65
70

Code length (lines)

F1

code2seq (this work)

2-layer BiLSTMs

TreeLSTM (Tai et al., 2015)

Transformer (Vaswani et al., 2017)

code2vec (Alon et al., 2019)

Figure 4: F1 score compared to the length of the input code. This experiment was performed for
the code summarization task on the Java-med test set. All examples having more than 30 lines were
counted as having 30 lines.

4.2 CODE CAPTIONING

For this task we consider predicting a full natural language sentence given a short C# code snippet.
We used the dataset of CodeNN (Iyer et al., 2016), which consists of 66,015 pairs of questions and
answers from StackOverflow. They used a semi-supervised classifier to filter irrelevant examples
and asked human annotators to provide two additional titles for the examples in the test set, making
a total of three reference titles for each code snippet. The target sequence length in this task is
about 10 on average. This dataset is especially challenging as it is orders of magnitude smaller than
the code summarization datasets. Additionally, StackOverflow code snippets are typically short,
incomplete at times, and aim to provide an answer to a very specific question. We evaluated using
BLEU score with smoothing, using the same evaluation scripts as Iyer et al. (2016).

Baselines We present results compared to CodeNN, TreeLSTMs with attention, 2-layer bidirectional
LSTMs with attention, and the Transformer. As before, we provide a fair comparison by splitting
tokens to subtokens, and replacing UNK during inference. We also include numbers from baselines
used by Iyer et al. (2016).

Results Table 2 summarizes the results for the code captioning task. Our model achieves a BLEU
score of 23.04, which improves by 2.51 points (12.2% relative) over CodeNN, whose authors in-
troduced this dataset, and over all the other baselines, including BiLSTMs, TreeLSTMs and the
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Table 2: Our model outperforms previous work in the code captioning task. †Results previously
reported by Iyer et al. (2016), and verified by us. Another visualization can be found in Appendix D.

Model BLEU

MOSES† (Koehn et al., 2007) 11.57

IR† 13.66

SUM-NN† (Rush et al., 2015) 19.31
2-layer BiLSTM 19.78
Transformer (Vaswani et al., 2017) 19.68
TreeLSTM (Tai et al., 2015) 20.11

CodeNN† (Iyer et al., 2016) 20.53

code2seq 23.04

Table 3: Variations on the code2seq model, performed on the validation set of Java-med.

Model Precision Recall F1 ∆F1

code2seq (original model) 60.67 47.41 53.23

No AST nodes (only tokens) 55.51 43.11 48.53 -4.70
No decoder 47.99 28.96 36.12 -17.11
No token splitting 48.53 34.80 40.53 -12.70
No tokens (only AST nodes) 33.78 21.23 26.07 -27.16
No attention 57.00 41.89 48.29 -4.94
No random (sample k paths in advance) 59.08 44.07 50.49 -2.74

Transformer, which achieved slightly lower results than CodeNN. Examples for predictions made
by our model and each of the baselines can be found in Appendix F. These results show that when
the training examples are short and contain incomplete code snippets, our model generalizes better
to unseen examples than a shallow textual token-level approach, thanks to its syntactic representa-
tion of the data. Although TreeLSTMs also represent the data syntactically, the TreeLSTM baseline
achieved lower scores.

4.3 CODE DOCUMENTATION

Although the task of generating code documentation is outside the focus of this work, we performed
an additional comparison to Hu et al. (2018). They trained a standard seq2seq model by using
the linearized AST as the source sequence and a Javadoc natural language sentence as the target
sequence. While they originally report a BLEU score of 38.17, we computed their BLEU score
using prediction logs provided us by the authors and obtained a BLEU score of 8.97, which we find
more realistic. Training our model on the same dataset as Hu et al., matching LSTM sizes, and using
the same script on our predictions yields a BLEU score of 14.53, which is a 62% relative gain over
the model of Hu et al. (2018). This shows that our structural approach represents code better than
linearizing the AST and learning it as a sequence.

5 ABLATION STUDY

To better understand the importance of the different components of our model, we conducted an
extensive ablation study. We varied our model in different ways and measured the change in perfor-
mance. These experiments were performed for the code summarization task, on the validation set of
the Java-med dataset. We examined several alternative designs:

1. No AST nodes – instead of encoding an AST path using an LSTM, take only the first and
last terminal values to construct an input vector

2. No decoder – no sequential decoding; instead, predict the target sequence as a single sym-
bol using a single softmax layer.

3. No token splitting – no subtoken encoding; instead, embed the full token.

4. No tokens – use only the AST nodes without using the values associated with the terminals.
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5. No attention – decode the target sequence given the initial decoder state, without attention.

6. No random – no re-sampling of k paths in each iteration; instead, sample in advance and
use the same k paths for each example throughout the training process.

Table 3 shows the results of these alternatives. As seen, not encoding AST nodes resulted in a
degradation especially in the precision: a decrease of 5.16 compared to 4.30 for the recall. It is quite
surprising that this ablation was still better than the baselines (Table 1): for example, the Transformer
can implicitly capture pairs of tokens using its self-attention mechanism. However, not all tokens
are AST leaves. By focusing on AST leaves, we increase the focus on named tokens, and effectively
ignore functional tokens like brackets, parentheses, semicolons, etc. Transformers can (in theory)
capture the same signal, but perhaps they require significantly more layers or a different optimization
to actually learn to focus on those particular elements. The AST gives us this information for free
without having to spend more transformer layers just to learn it. Additionally, for practical reasons
we limited the length of the paths to 9 . This leads to pairs of leaves that are close in the AST, but
not necessarily close in the sequence. In contrast, the Transformer’s attention is effectively skewed
towards sequential proximity because of the positional embeddings.

Using a single prediction with no decoder reduces recall by more than one-third. This shows that the
method name prediction task should be addressed as a sequential prediction, despite the methods’
relatively short names. Using no token splitting or no tokens at all drastically reduces the score,
showing the significance of encoding both subtokens and syntactic paths. Despite the poor results
of no tokens, it is still surprising that the model can achieve around half the score of the full model,
as using no tokens is equivalent to reasoning about code which has no identifier names, types, APIs,
and constant values, which can be very difficult even for a human. The no attention experiment
shows the contribution of attention in our model, which is very close in its relative value to the
contribution of attention in seq2seq models (Luong et al., 2015; Bahdanau et al., 2014). The no
random experiment shows the positive contribution of sampling k different paths afresh on every
training iteration, instead of using the same sample of paths from each example during the entire
training. This approach provides data-level regularization that further improves an already powerful
model. Another visualization can be found in Appendix D.

6 RELATED WORK

The growing availability of open source repositories creates new opportunities for using machine
learning to process source code en masse. Several papers model code as a sequence of tokens (Iyer
et al., 2016; Allamanis et al., 2016; Loyola et al., 2017), characters (Bielik et al., 2017), and API
calls (Raychev et al., 2014). While sometimes obtaining satisfying results, these models treat code
as a sequence rather than a tree. This necessitates implicit relearning of the (predefined) syntax of
the programming language, wasting resources and reducing accuracy.

Code representation models that use syntactic information have usually been evaluated on relatively
easier tasks, which mainly focus on “filling the blanks” in a given program (Alon et al., 2018;
Bielik et al., 2016; Raychev et al., 2016; 2015; Allamanis et al., 2018) or semantic classification
of code snippets (Alon et al., 2019). Moreover, none of the models that use syntactic relations are
compositional, and therefore the number of possible syntactic relations is fixed either before or after
training, a process which results in a large RAM and GPU memory consumption. The syntactic
paths of Alon et al. (2018; 2019) are represented monolithically, and are therefore limited to only
a subset of the paths that were observed enough times during training. As a result, they cannot
represent unseen relations. In contrast, by representing AST paths node-by-node using LSTMs, our
model can represent and use any syntactic path in any unseen example. Further, our model decodes
the output sequence step-by-step while attending over the input paths, and can thus generate unseen
sequences, compared to code2vec (Alon et al., 2019), which has a closed vocabulary.

Oda et al. (2015) were the first to generate sequences by leveraging the syntax of code. They
performed a line-by-line statistical machine translation (SMT) to translate Python code to pseudo-
code. Our tasks are different, and we cannot assume an alignment between elements in the input
and the output; our tasks take a whole code snippet as their input, and produce a much shorter
sequence as output. Additionally, a conceptual advantage of our model over line-by-line translation
is its ability to capture multiline patterns in the source code. These multiline patterns are often very
useful for the model and get the most attention (Figure 1a). A recent work (Hu et al., 2018) generates
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comments from code. There is a conceptual difference between our approaches: Hu et al. (2018)
linearize the AST, and then pass it on to a standard seq2seq model. We present a new model, in
which the encoder already assumes that the input is tree-structured. When training our model on
their dataset, we improve over their BLEU score by 62% (Section 4.3).

Allamanis et al. (2018) represent code with Gated Graph Neural Networks. Nodes in the graph
represent identifiers, and edges represent syntactic and semantic relations in the code such as “Com-
putedFrom” and “LastWrite”. The edges are designed for the semantics of a specific programming
language, for a specific task, and require an expert to devise and implement. In contrast, our model
has minimal assumptions on the input language and is general enough not to require either expert se-
mantic knowledge or the manual design of features. Our model can therefore be easily implemented
for various input languages. Bastings et al. (2017) used graph-convolutional networks for machine
translation of natural languages. Piech et al. (2015) encoded code using Tree-RNNs to propagate
feedback on student code; and Chen et al. (2018) used Tree-RNNs for a tree-to-tree translation of
code into another programming language.

7 CONCLUSION

We presented a novel code-to-sequence model which considers the unique syntactic structure of
source code with a sequential modeling of natural language. The core idea is to sample paths in the
Abstract Syntax Tree of a code snippet, encode these paths with an LSTM, and attend to them while
generating the target sequence.

We demonstrate our approach by using it to predict method names across three datasets of vary-
ing sizes, predict natural language captions given partial and short code snippets, and to generate
method documentation, in two programming languages. Our model performs significantly better
than previous programming-language-oriented works and state-of-the-art NMT models applied in
our settings.

We believe that the principles presented in this paper can serve as a basis for a wide range of tasks
which involve source code and natural language, and can be extended to other kinds of generated
outputs. To this end, we make all our code, datasets, and trained models publicly available.
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Table 4: Our model significantly outperforms code2vec on the code2vec dataset.

Model
Our Java-large dataset (same as in Table 1) code2vec dataset (Alon et al., 2019)

Prec Rec F1 Prec Rec F1

code2vec (Alon et al., 2019) 48.2 38.4 42.7 63.1 54.4 58.4

code2seq (this work) 64.0 55.02 59.2 70.2 63.3 66.6

Table 5: Statistics of our datasets.

Java-small Java-med Java-large C# (Iyer et al., 2016)

#projects - training 10 800 8999 -

#projects - validation 1 100 250 -

#projects - test 1 96 307 -

#examples - training 665,115 3,004,536 15,344,512 52,812

#examples - validation 23,505 410,699 320,866 6,601

#examples - test 56,165 411,751 417,003 6,602

Avg. number of paths (training) 171 187 220 207

Avg. code length - lines (training) 6.0 6.3 6.6 8.3

Avg. code length - tokens (training) 60 63 65 38

Avg. code length - subtokenized (training) 75 78 80 67

Avg. target length (training) 3 3 3 10

A ADDITIONAL EVALUATION

Comparison to code2vec on their dataset We perform an additional comparison to code2vec
(Alon et al., 2019) on their proposed dataset. As shown in Table 4, code2vec achieves a high F1
score on that dataset. However, our model achieves an even higher F1 score. The poorer perfor-
mance of code2vec on our dataset is probably due to its always being split to train/validation/test by
project, whereas the dataset of code2vec is split by file. In the code2vec dataset, a file can be in the
training set, while another file from the same project can be in the test set. This makes their dataset
significantly easier, because method names “leak” to other files in the same project, and there are
often duplicates in different files of the same project. This is consistent with Allamanis et al. (2018),
who found that splitting by file makes the dataset easier than by project. We decided to take the
stricter approach, and not to use their dataset (even though our model achieves better results on it),
in order to make all of our comparisons on split-by-project datasets.

Data statistics Table 5 shows some statistics of our used datasets.

B CODE CAPTIONING EXAMPLES

Figure 6 contains examples from our test set for the code captioning task in C#, along with the
prediction of our model and each of the baselines.

Figure 5 shows a timestep-by-timestep example, with the symbol decoded at each timestep and the
top-attended path at that step. The width of the path is proportional to the attention it was given by
the model (because of space limitations we included only the top-attended path for each decoding
step, but hundreds of paths are attended at each step).

C CODE SUMMARIZATION EXAMPLES

Figure 8 contains examples from our test set for the code summarization task in C#, along with the
prediction of our model and each of the baselines. The presented predictions are made by models
that were trained on the same Java-large dataset.

D CODE CAPTIONING RESULTS

Figure 9 shows a bar chart of the BLEU score of our model and the baselines, in the code captioning
task (predicting natural language descriptions for C# code snippets). The numbers are the same as
in Table 2.
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E CODE SUMMARIZATION RESULTS

Figure 10 shows a bar chart of the F1 score of our model and the baselines, in the code summarization
task (predicting method names in Java). The numbers are the F1 columns from Table 1.

F ABLATION STUDY RESULTS

Figure 11 shows a bar chart of the relative decrease in precision and recall for each of the ablations
described in Section 5 and presented in Table 3.
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add a

child node

to a

treeview in

c #

add a child node to a treeview in c #

Figure 5: Example of code captioning for a C# code snippet from our test set. The text boxes at
the bottom of each figure are the predictions produced by our model at each decoding step. The
highlighted paths in each figure are the top-attended paths in each decoding step, and their widths
are proportional to their attention weight (because of space limitations we included only the top-
attended path for each decoding step, but hundreds of paths are attended at each step).
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TreeView myTreeView = new TreeView();

myTreeView.Nodes.Clear();

foreach (string parentText in xml.parent)

{

TreeNode parent = new TreeNode();

parent.Text = parentText;

myTreeView.Nodes.Add(treeNodeDivisions);

foreach (string childText in xml.child)

{

TreeNode child = new TreeNode();

child.Text = childText;

parent.Nodes.Add(child);

}

}

Model Prediction

MOSES† (Koehn et al., 2007)

How can TreeView TreeView a TreeView
nodes from XML parentText string to a
treeview node from a TreeView parentText
of a tree treeNodeDivisions from to
child childText XML node of MDI child
childText created in a tree nodes in

IR† How to set the name of a tabPage progragmatically

SUM-NN† (Rush et al., 2015) how to get data from xml file in c#

2-layer BiLSTM how to add child nodes to treeview

Transformer (Vaswani et al., 2017) how to add child node in treeview in c #

TreeLSTM (Tai et al., 2015) how to get the value of a node in xml

CodeNN† (Iyer et al., 2016) How to get all child nodes in TreeView ?

code2seq (this work) add a child node to a treeview in c #

var excel = new ExcelQueryFactory("excelFileName");

var firstRow = excel.Worksheet().First();

var companyName = firstRow["CompanyName"];

Model Prediction

MOSES† (Koehn et al., 2007)
How into string based on an firstRow
a companyName firstRow ? How to

IR† Facebook C# SDK Get Current User

SUM-NN† (Rush et al., 2015) how can i get the value of a string?

2-layer BiLSTM how to get the value of a cell in excel using c #

Transformer (Vaswani et al., 2017) getting the first row in excel

TreeLSTM (Tai et al., 2015) how to get the value of a cell in excel using c #

CodeNN† (Iyer et al., 2016) how do I get the value of an xml file in c # ?

code2seq (this work) get the value of a column in excel using c #
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static void Main(string[] args)

{

// Create an instance of Bytescout.PDFRenderer.

// RasterRenderer object and register it.

RasterRenderer renderer = new RasterRenderer();

renderer.RegistrationName = "demo";

renderer.RegistrationKey = "demo";

// Load PDF document.

renderer.LoadDocumentFromFile("multipage.pdf");

for (int i = 0; i < renderer.GetPageCount(); i++)

{

// Render first page of the document to BMP image file.

renderer.RenderPageToFile(i, RasterOutputFormat.BMP,

"image" + i + ".bmp");

}

// Open the first output file in default image viewer.

System.Diagnostics.Process.Start("image0.bmp");

}

Model Prediction

MOSES† (Koehn et al., 2007)

How to add RasterRenderer renderer
RasterRenderer renderer in a string
in RegistrationName renderer Registration
Key renderer LoadDocumentFromFile in C #
How to a renderer Is a RenderPageToFile
renderer in a string to BMP RasterOutputFormat
each in C #

IR†
Select TOP 5 * from SomeTable,
using Dataview.RowFilter?

SUM-NN† (Rush et al., 2015) how do i create a text file in c#

2-layer BiLSTM how do i create a pdf file in c # ?

Transformer (Vaswani et al., 2017) how to merge two pdf files ?

TreeLSTM (Tai et al., 2015) how to make a process in c #

CodeNN† (Iyer et al., 2016) How to get the value of an array in C # ?

code2seq (this work) get the image from a pdf file in c #

void Main() {

string text = File.ReadAllText(@"T:\File1.txt");

int num = 0;

text = (Regex.Replace(text, "map", delegate(Match m) {

return "map" + num++;

}));

File.WriteAllText(@"T:\File1.txt", text);

}

Model Prediction

MOSES† (Koehn et al., 2007)
How to File then How to HTML ? C # How to
Write to

IR† C# remove extra carriage returns from Stream

SUM-NN† (Rush et al., 2015) how do i create a text file in c#

2-layer BiLSTM how to read a text file from a text file

Transformer (Vaswani et al., 2017) how to write a . txt file in c #

TreeLSTM (Tai et al., 2015) how to get the text from a text file in c #

CodeNN† (Iyer et al., 2016) how to read a text file in c # ?

code2seq (this work) replace a string in a text file

Figure 6: C# examples from our test set for the code captioning task, along with the prediction of
our model and each of the baselines.

18



Published as a conference paper at ICLR 2019

void ______(Counter childCounter, String request, String requestId,

long duration, boolean systemError, int responseSize) {

// si je suis le counter fils du counter du contexte parent

// comme sql pour http alors on ajoute la requête fille

if (parentContext != null && parentCounter.getName()

.equals(parentContext.getParentCounter().getChildCounterName())) {

childHits++;

childDurationsSum += (int) duration;

}

// pour drill-down on conserve pour chaque requête mère, les requêtes

// filles appelées et le nombre d'exécutions pour chacune

if (parentContext == null) {

addChildRequestForDrillDown(requestId);

} else {

parentContext.addChildRequestForDrillDown(requestId);

}

}

Model Prediction

ConvAttention (Allamanis et al., 2016) add

Paths+CRFs (Alon et al., 2018) call

code2vec (Alon et al., 2019) log response

2-layer BiLSTM (no token splitting) handle request

2-layer BiLSTM report child request

Transformer add child

TreeLSTM (Tai et al., 2015) add child

Gold: add child request

code2seq (this work) add child request

public static int ______(int value) {

return value <= 0 ? 1 :

value >= 0x40000000 ? 0x40000000 :

1 << (32 - Integer.numberOfLeadingZeros(value - 1));

}

Model Prediction

ConvAttention (Allamanis et al., 2016) get

Paths+CRFs (Alon et al., 2018) test bit inolz

code2vec (Alon et al., 2019) multiply

2-layer BiLSTM (no token splitting) next power of two

2-layer BiLSTM { (replaced UNK)

Transformer get bit length

TreeLSTM (Tai et al., 2015) get

Gold: find next positive power of two

code2seq (this work) get power of two
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BigInteger ______(int bitlength, BigInteger e, BigInteger sqrdBound)

{

for (int i = 0; i != 5 * bitlength; i++)

{

BigInteger p = new BigInteger(bitlength, 1, param.getRandom());

if (p.mod(e).equals(ONE))

{

continue;

}

if (p.multiply(p).compareTo(sqrdBound) < 0)

{

continue;

}

if (!isProbablePrime(p))

{

continue;

}

if (!e.gcd(p.subtract(ONE)).equals(ONE))

{

continue;

}

return p;

}

throw new IllegalStateException("unable to generate prime number..

...for RSA key");

}

Model Prediction

ConvAttention (Allamanis et al., 2016) test

Paths+CRFs (Alon et al., 2018) i

code2vec (Alon et al., 2019) to big integer

2-layer BiLSTM (no token splitting) generate prime

2-layer BiLSTM generate prime number

Transformer generate

TreeLSTM (Tai et al., 2015) probable prime

Gold: choose random prime

code2seq (this work) generate prime number

public boolean ______(Set<String> set, String value) {

for (String entry : set) {

if (entry.equalsIgnoreCase(value)) {

return true;

}

}

return false;

}

Model Prediction

ConvAttention (Allamanis et al., 2016) is

Paths+CRFs (Alon et al., 2018) equals

code2vec (Alon et al., 2019) contains ignore case

2-layer BiLSTM (no token splitting) contains ignore case

2-layer BiLSTM contains

Transformer contains

TreeLSTM (Tai et al., 2015) contains ignore case

Gold: contains ignore case

code2seq (this work) contains ignore case

Figure 8: Java examples from our test set for the code summarization task, along with the prediction
of our model and each of the baselines.
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StackOverflow dataset
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MOSES† (Koehn et al., 2007)

IR†

SUM-NN† (Rush et al., 2015)

2-layer BiLSTM

Transformer (Vaswani et al., 2017)

TreeLSTM (Tai et al., 2015)

CodeNN† (Iyer et al., 2016)

code2seq (this work)

Figure 9: Visualization of the BLEU score of our model compared to the baselines, for the code
captioning task. The values are the same as in Table 2. Our model achieves significantly higher
results than the baselines.
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Paths+CRFs (Alon et al., 2018)

code2vec (Alon et al., 2019)

2-layer BiLSTM (no token splitting)

2-layer BiLSTM

TreeLSTM (Tai et al., 2015)

Transformer (Vaswani et al., 2017)

code2seq (this work)

Figure 10: Visualization of the F1 score of our model compared to the baselines, for the code
summarization task, across datasets. The values are the F1 columns from Table 1. Our model
achieves significantly higher results than the baselines.
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Figure 11: The relative decrease in precision and recall in each of the ablations, compared to the full
model.
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