
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 2, FEBRUARY 2007 441

Codebook-Based Bayesian Speech Enhancement
for Nonstationary Environments

Sriram Srinivasan, Member, IEEE, Jonas Samuelsson, and W. Bastiaan Kleijn, Fellow, IEEE

Abstract—In this paper, we propose a Bayesian minimum
mean squared error approach for the joint estimation of the
short-term predictor parameters of speech and noise, from the
noisy observation. We use trained codebooks of speech and noise
linear predictive coefficients to model the a priori information
required by the Bayesian scheme. In contrast to current Bayesian
estimation approaches that consider the excitation variances as
part of the a priori information, in the proposed method they
are computed online for each short-time segment, based on the
observation at hand. Consequently, the method performs well
in nonstationary noise conditions. The resulting estimates of the
speech and noise spectra can be used in a Wiener filter or any
state-of-the-art speech enhancement system. We develop both
memoryless (using information from the current frame alone) and
memory-based (using information from the current and previous
frames) estimators. Estimation of functions of the short-term
predictor parameters is also addressed, in particular one that
leads to the minimum mean squared error estimate of the clean
speech signal. Experiments indicate that the scheme proposed in
this paper performs significantly better than competing methods.

Index Terms—Bayesian, codebooks, linear predictive coding,
noise estimation, speech enhancement, speech processing, Wiener
filtering.

I. INTRODUCTION

ADVANCES in telecommunications over the last few
decades have made communications anywhere a reality.

Technological progress has made communication systems
reliable and affordable, and mobile communication has now
become ubiquitous. The freedom and flexibility provided by
mobile communications introduces new challenges, one of the
most prominent being the suppression of background acoustic
noise. Mobile users communicate in different environments
with varying amounts and types of background noise. Suppres-
sion of the background noise is important not only to improve
the quality and intelligibility of speech but also to obtain a good
performance of speech coding algorithms. Noise suppression
systems also form a crucial front-end for the operation of
speech recognition and speaker verification systems in noisy
environments.
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Noise reduction remains a challenging problem largely due
to the wide variety of background noise types and the diffi-
culty in estimating their statistics. Examples of noise types in-
clude traffic noise in cities, multitalker babble noise in cafete-
rias, noise in subways, etc. Many noise suppression techniques
fall into the category of single-channel algorithms that have only
a single microphone to obtain the input signal, and are thus at-
tractive in mobile applications due to cost and size factors. Ex-
amples of such methods include [1]–[5]. A problem of single-
channel methods is that noise estimates need to be obtained from
the noisy observation. This has proved to be a particularly diffi-
cult task, especially in nonstationary noise conditions.

Conventional approaches to noise estimation have been
based on voice activity detectors (VADs). Traditional energy
based VADs detect regions in the signal where speech is absent
to update the noise statistics. With decreasing signal-to-noise
ratio (SNR), reliable detection of pauses becomes increas-
ingly difficult. Soft-decision VADs facilitate adaptation of the
noise statistics even during speech activity. Examples of such
methods can be found in [6]–[8]. However, the estimates are
based on long-term averaging. Other noise estimation methods
that do not rely on a VAD and adapt even during speech activity
include [9], [10]. They typically employ a buffer of past noisy
spectra from which the estimates are obtained. For example,
the method described in [9] is based on the observation that the
power of the noisy signal frequently decays to that of the noise
signal, and this can be tracked by following the minima in the
buffer. While on the one hand, the buffer needs to be large
enough to ensure that it contains the minima, on the other hand
large buffers make it difficult to deal with time-varying noise,
which is the case in the practical scenarios mentioned earlier.
In the remainder of this paper, to indicate the dependence on
the buffer, we refer to the noise estimates produced by [9] as
long-term estimates. Based on this buffer, the method produces
an estimate for each frame.

In this paper, we present a Bayesian approach to estimate
speech and noise spectra in nonstationary noise conditions. We
obtain minimum mean squared error (MMSE) estimates of the
speech and noise auto-regressive (AR) spectra, which are pa-
rameterized by the respective AR coefficients and the excita-
tion variance (gain). The AR coefficients and the gain are com-
monly referred to as the short-term predictor (STP) parameters.
A priori information about the speech and noise AR coefficients
is modeled using trained codebooks. We perform joint estima-
tion of the speech and noise STP parameters. This is in con-
trast to methods that first obtain a noise estimate, e.g., using
[9], and then obtain the speech parameters in a second step. The
noise estimate is typically obtained using a buffer of past frames,
and this affects the accuracy of the resulting speech estimates
in nonstationary noise environments. The proposed joint esti-
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mation is performed online, on a frame-by-frame basis, based
on the current observation frame unlike conventional noise es-
timation techniques that rely on a buffer of past frames. This
ensures good performance in nonstationary environments, thus
addressing a fundamental limitation of current noise estimation
techniques. A potential problem of frame-by-frame gain com-
putation is that the estimates may posses a high variance. To
solve this problem, we also develop memory-based MMSE es-
timators. This paper is an extension of the work presented in
[11] and includes memory-based estimation and detailed exper-
imental evaluations in both the STP parameter domain and the
speech signal domain.

The maximum-likelihood (ML) estimation first proposed in
[12] and extended in [13] also uses a priori information about
speech and noise and performs instantaneous gain computation.
It was shown in [13] that the method provides superior per-
formance compared to other methods using prior information
such as [14]–[16]. While the AR coefficients were considered
to be deterministic parameters in the ML scheme, in this paper,
we treat them as random variables and obtain minimum mean
squared error (MMSE) estimates. In terms of speech and noise
codebooks, while in [12] and [13], one pair of speech and noise
LP vectors was selected as the ML estimate, the MMSE esti-
mate of the speech (noise) LP vector is a weighted sum of the
speech (noise) codebook vectors. Similarly, the MMSE estimate
of the speech and noise excitation variances is the weighted sum
of the excitation variances corresponding to each pair of speech
and noise codebook vectors and the noisy observation. Thus, the
MMSE estimation can be seen as a soft-decision procedure that
allows for a proportionate contribution from vectors according
to their probability given the observation. The MMSE estimator
takes into account the a priori probabilities of each of the speech
and noise codebook vectors.

Bayesian MMSE estimation using a priori information has
been addressed before, e.g., the methods based on hidden
Markov models (HMMs) [4], [5], [16], [17]. In [4], the clean
signal is modeled using Gaussian AR HMMs. The MMSE
estimate of clean speech given the noisy speech is obtained
as a weighted sum of MMSE estimators corresponding to
each state of the HMM for the clean signal. However, the
HMM-based systems treat the excitation variance as part of the
a priori information. The MMSE estimate in [18] also treats
the excitation variance as part of the a priori information. To
account for the resulting mismatch in the level of the gain of
the clean speech model during training and testing, the HMM
methods usually include gain adaptation. Similarly, there is
gain adaptation in the noise model too. For the speech model
and models corresponding to stationary noise, an overall gain
adjustment in time is sufficient. However to effectively deal
with nonstationary noise, the gain adjustment needs to be
performed either on a frame-by-frame basis or at a rate not
slower than the rate at which the noise statistics change. Both
forms of gain adaptation depend upon an estimate of the noise
statistics, obtained from the observation. Consequently, the
performance of these methods is limited by the performance
of the underlying noise estimation algorithms in nonstationary
environments.

In the method proposed in this paper, we avoid this problem
by modeling prior information about the spectral shape alone

and jointly computing the speech and noise gain on a frame-by-
frame basis.

The remainder of this paper is organized as follows. In
Section II, we give an overview of the codebook based max-
imum-likelihood estimation, including the joint gain estimation,
which will be used in the proposed method. The Bayesian ap-
proach is introduced in Section III, where we first obtain the
memoryless MMSE estimate of the speech and noise LP coeffi-
cients and their excitation variances in Section III-A, followed
in Section III-B by estimates that incorporate memory. MMSE
estimation of functions of the LP coefficients and excitation
variances is discussed in Section III-C. The relation between
the proposed approach and HMM-based methods is discussed
in III-D. Experiments and results are discussed in Section IV
and finally the conclusion is presented in Section V.

II. CODEBOOK-BASED ML PARAMETER ESTIMATION

In this section, we provide a brief overview of the codebook-
based ML estimation procedure, to establish the necessary back-
ground for the Bayesian estimation. We consider an additive
noise model where speech and noise are independent

(1)

where , and represent the sampled noisy
speech, clean speech, and noise, respectively. We use trained
codebooks of speech and noise power spectral shapes pa-
rameterized as LP coefficients. The codebooks model only
the envelope of the spectrum and not its fine structure. LP
coefficients have been successfully used to encode the spec-
tral envelope in low bit rate speech coding [19]. In the ML
approach, the speech and noise codebook indices and the ex-
citation variances corresponding to the vectors that the indices
represent are obtained according to

(2)

where and are the excitation variances of clean
speech and noise, respectively, and
and are the LP coefficients of clean
speech and noise with and being the respective LP-model
orders. , where is the number
of samples in a frame. Let and denote the spectra
of the th speech codebook and th noise codebook vectors
given by

(3)

We define the modeled noisy spectrum as
. Under Gaussianity assump-

tions, it is well known that maximizing the log-likelihood is
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equivalent to minimizing the Itakura–Saito distortion measure
[20]. The Itakura–Saito measure between two spectra and

is defined as [21]

(4)

Using this fact, for the noisy case, the parameter estimation
problem (2) is solved in [13] by finding the best spectral fit
between the observed noisy power spectrum and the
modeled noisy power spectrum , with respect to the
Itakura–Saito distortion measure. Codebook combinations that
result in negative values for the variances are excluded from
the search for the best fit. More formally, the codebook entries
that are selected can be written as

(5)

For given and , the excitation variances that mini-
mize the Itakura–Saito distortion between and can be ob-
tained under the assumption of small modeling errors by using
a series expansion for up to second-order terms. This as-
sumption can be made valid by using a sufficiently large code-
book and by using the envelope of the noisy signal instead of
the periodogram for . The resulting variances are given by
the solution to the following system of equations [13]:

(6)

where and are given by

(7)

where .

III. BAYESIAN MMSE ESTIMATION

In this section, we describe various aspects of the Bayesian
approach. We first derive the memoryless Bayesian MMSE
estimates of the speech and noise short-term predictor (STP)
parameters in Section III-A. In Section III-B, we derive the
Bayesian estimates using the noisy observation for the current
frame and the MMSE estimates of the STP parameters for the
previous frame. The resulting framework is then used to obtain
the MMSE estimates of a function of the STP parameters in
Section III-C, which is shown to result in the MMSE estimate

of the clean speech signal, given the noisy speech. Finally,
we discuss the relation of the proposed approach to existing
model-based Bayesian approaches in Section III-D.

A. Memoryless MMSE Estimation of STP Parameters

Let and denote the random variables corresponding to
the speech and noise LP coefficients, respectively. Let and

denote the random variables corresponding to the speech
and noise excitation variances, respectively. We wish to jointly
estimate the speech and noise LP coefficients and the excita-
tion variances such that the mean squared error is minimized.
Let . The desired MMSE estimate can be
written as [22, p. 113]

(8)

We rewrite (8) as

(9)

where is the observed vector
of noisy samples for the current frame, is the frame length,

is the conditional probablity density function (pdf)
of given and . We model
as a zero-mean Gaussian with variance . We have

, where is the lower triangular
Toeplitz matrix with as the first
column, where is the frame length. is defined analo-
gously. The integral is over the space ,
where represent the support-space of the vectors of
speech and noise LP coefficients, and represent the
support-space for the speech and noise excitation variances.
From the independence assumption in (1), we have

(10)

For simplicity, we assume that the spectral shapes and gains
are independent so that and likewise
for the noise. This is a simplifying approximation made for
tractability.

Given and the noisy speech , it is shown in the
Appendix that the likelihood decays rapidly from its
maximum value as a function of the deviation from the true ex-
citation variances, which we approximate by the ML estimates

and obtained using (6) and (7). This behavior can
be expressed mathematically by approximating with

. Thus, we can approximate
(9), as shown by (11) at the bottom of the next page, where
is the Dirac-delta function, . Note
that we now have an integral only over the support-space of two
sets of LP coefficients. The Dirac assumption on the conditional
pdf and the ML estimation of the variances is an assumption
made for tractability and computational efficiency. The analysis
in the Appendix and the experimental results justify the validity
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of this assumption. serves as a normalization term and can
be obtained as

(12)

In practice, the integrals in (11) and (12) are evaluated using
numerical integration, as shown by (13) at the bottom of the
page, where and are the
th speech codebook and th noise codebook entries, respec-

tively, are the maximum- likelihood estimates of
the speech and noise excitation variances that depend on
and , and are the speech and noise codebook sizes. To
obtain (13) from (11), we discretized only the shapes and
(represented by the codebooks) and not the excitation variances.
Here, we assume that the codebooks model the probability den-
sity of the AR data. This is a valid assumption for codebooks
with high dimensionality trained using the squared error dis-
tortion measure [23, ch. 5]. Since the excitation variances are
completely determined given and , we assume a non-
informative prior for the excitation variances, i.e., we assume
that they are uniformly distributed in the interval . The
exact value of is irrelevant since, for a uniform distribu-
tion, the terms cancel out in the numerator and denominator of
(13). As in [13], codebook combinations that result in nega-
tive values for the excitation variances are excluded. Using the
equivalence of the log-likelihood and the Itakura–Saito distor-
tion, we can compute

(14)

which allows an efficient computation in the frequency domain.1

The term , which is a constant with respect to the speech and

1To avoid problems with numerical precision, prior to taking the exponential,
the maximum of the log-likelihood over all codebook entries can be subtracted
from the log-likelihood corresponding to each codebook combination (i; j).
The resulting probabilities are then normalized so that they add up to one.

noise STP parameters, also appears in the expression for ,
and thus cancels out in the numerator and denominator of (13).
The estimate can be used to construct a Wiener filter to obtain
the enhanced speech

(15)

where are the spectra corresponding to ,
respectively.

Since interpolation of LP coefficients can result in unstable
filters, alternate representations are often used [19]. Represen-
tations that are guaranteed to result in stable synthesis filters
include line spectral frequencies (LSFs), autocorrelation coeffi-
cients, reflection coefficients, and log-area ratios. Among these,
it has been shown that LSFs result in the best performance and
interpolation is often performed in this domain [19]. Thus, we
perform the MMSE estimation in the LSF domain.

B. Memory-Based MMSE Estimation of STP Parameters

In this section, we exploit information from both the current
and previous frames to derive the MMSE estimates of the STP
parameters for the current frame. The motivation for doing so
is that, in reality, parameters such as the speech and noise ex-
citation variances are highly correlated across adjacent frames.
Exploiting such correlation can result in estimates that have a
reduced variance compared to the memoryless case. Since the
memory is restricted to a small number of frames (in practice
one 30-ms frame), the method retains its advantages of superior
performance in nonstationary noise environments.

To incorporate memory, we would ideally like to derive a re-
cursive estimator of the form where

is the vector of samples in frame . However we did not
find a mathematically tractable estimator that retains the instan-
taneous gain computation. Instead, we incorporate memory in
the form of previous parameter estimates

(16)

(11)

(13)
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where and are the estimates of the STP parameter for
frames and , respectively. is the MMSE estimate given
the observables and [22, p. 114]. In (16) and in the rest
of the discussion, we drop the subscript in , and refers to
the current frame. Based on the theory developed in the previous
section, we can rewrite (16) as

(17)

Given the noisy observation and the parameters for the cur-
rent frame, we have

. This follows from the fact that
given the STP parameters for the current frame, which com-
pletely characterize the Gaussian pdf, the parameters from
the previous frame do not affect the pdf. The probability that

are the correct parameters is embodied
in the term . Thus, the memory in the system is
modeled by the term in (17). We have

(18)

where we used the assumption that the speech and noise pa-
rameters are independent. We note that while the independence
assumption may not be strictly satisfied for the estimated
parameters from the previous frame, we impose this restric-
tion for simplicity and tractability. As before, we assume
that the spectral shapes and the gains are independent so that

and likewise for the noise. We can now rewrite (17) as

(19)

In practice, we evaluate the integral in (19) using numerical
integration

(20)

where

(21)

As in the memoryless case, we assume that the codebooks model
the probability density of the AR data and that the marginal pdf
of the speech and noise excitation variances is uniform.

We approximate the joint distributions of the excitation vari-
ances and as bivariate Gaussians
whose mean and covariance can be estimated from training data.
The training data is in the form of pairs of excitation variances
(obtained from clean speech or noise), corresponding to adja-
cent frames. The mean and the covariance depend on the level
of the signal, which can differ during training and testing. This
difference can be offset by scaling the mean and the covariance
by a factor based on the long-term estimate of the excitation
variance.

For the AR coefficients, we impose the Gaussian random
walk (GRW) model [24, ch. 10] for the conditional prior pdfs.
In the LSF domain, we have , i.e.,
we model the conditional pdf as a multivariate Gaussian with
mean and variance , which is a diagonal matrix.
The th diagonal entry of determines how much the

th noise LSF component of the current frame can differ from
the th noise LSF component of the previous frame, i.e., the de-
gree of smoothness is controlled by . A small value for
corresponds to a smooth evolution of the parameters over time.
The conditional pdfs corresponding to the speech parameters
are defined analogously. The parameters and are ob-
tained from training data (clean speech and noise, respectively)
through a maximum-likelihood estimation.

C. MMSE Estimation of Functions of

The estimation framework represented by (11) and (17) can
be used to obtain MMSE estimates of different parametric repre-
sentations based on the LP coefficients. For simplicity, we con-
sider the memoryless case here. Generalization to the memory-
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based case is straightforward. For notational convenience, we
define the function

(22)

The MMSE estimate of any function can be obtained as

(23)

For example, let be the Wiener filter defined
as

, where are the spectra
of the speech and noise LP coefficients . The MMSE
estimate of the Wiener filter is obtained as

(24)

We note that the enhanced speech obtained by filtering with
the filter is the MMSE estimate of the clean signal,

, where is the random variable corresponding to
clean speech. This can be seen if we write

(25)

For Gaussian AR models,
can be equivalently evaluated in the frequency domain as

, where is the Fourier transform of .

D. Relation to Existing Bayesian Approaches

In this section, we discuss similarities and differences to ex-
isting Bayesian speech enhancement approaches, specifically,
the HMM-based approach discussed in [5]. Both the HMM used
in [5] and codebook used here model the distribution of the AR
parameters of the speech signal. The theoretical analysis in the
estimation and use of such a model requires that the signal is
stationary. In practice, both methods address the nonstation-
arity of the speech signal by performing the processing on a
frame-by-frame basis, as speech can be described as a stationary
process within a short frame of 20–30 ms.

The first difference between the HMM and codebook ap-
proaches lies in the manner in which they handle the nonsta-
tionarity of the noise signal, which in turn is related to the mod-
elling and computation of the excitation variances. Since the
HMM method models both the LP coefficients and the excita-
tion variance as prior information, a gain adaptation is required
to compensate for differences in the level of the excitation vari-
ance between training and operation. The gain adaptation factor
is computed using the observed noisy gain and an estimate of

the noise statistics obtained using, e.g., the minimum statis-
tics approach [9]. Conventional noise estimation techniques are
buffer-based techniques, where an estimate is obtained based
on a buffer of several past frames, of the order of a few hun-
dred milliseconds. Thus, such a scheme cannot react quickly
to nonstationary noise. In the proposed approach, the codebook
models only the LP coefficients, and the speech and noise exci-
tation variances are optimally computed in a joint fashion on a
frame-by-frame basis, using the current noisy observation. This
enables the method to react quickly to nonstationary noise.

The second difference is that the HMM-based method obtains
MMSE estimates of the clean speech signal as opposed to the
codebook approach that obtains MMSE estimates of the speech
and noise STP parameters. Let denote the random variable
corresponding to the clean speech signal. Given the noisy obser-
vations, the HMM method obtains the expected value of and
its functions such as the spectral magnitude and the log-spec-
tral magnitude. The proposed codebook method obtains the ex-
pected value of given the noisy observations for the current
and previous frames. The framework developed here also al-
lows the MMSE estimation of arbitrary functions of the STP
parameters as discussed in Section III-C, where the MMSE es-
timate of one such function is shown to result in the expected
value of given the noisy observations. We also note that the
proposed technique of instantaneous frame-by-frame gain com-
putation can be incorporated into the HMM-based scheme. This
is, however, beyond the scope of this paper.

IV. EXPERIMENTS

In this section, we describe the experiments performed to
evaluate the performance of the MMSE estimation scheme. We
first describe the experimental setup and the objective quality
measures used in the evaluation. This is followed by an anal-
ysis of the memoryless and memory-based estimators. Next, we
evaluate the performance of the proposed estimation scheme in
the short-term predictor parameter domain. This includes a com-
parison to the estimates obtained using the long-term noise es-
timates [9]. Then, we compare the performance of the proposed
MMSE method to the HMM-based estimation scheme [16] and
the Ephraim–Malah system [25] in the speech signal domain.
This is followed by a discussion on computational complexity.
The section concludes with a description of the listening tests
performed to evaluate perceptual quality.

A. Experimental Setup

The test set consisted of ten speech utterances, five male and
five female, from the TIMIT database, resampled at 8 kHz.
A ten-bit speech codebook of dimension ten was trained with
10 min of speech from the TIMIT database using the gener-
alized Lloyd algorithm (GLA)[26]. The training data did not
include the test utterances. A frame length of 240 samples was
used with 50% overlap between adjacent frames. The frames
were windowed using a Hanning window. The noise types
considered were highway noise (obtained by recording noise
on a freeway as perceived by a pedestrian standing at a fixed
point), siren noise (a two-tone siren recorded inside a stationary
emergency vehicle), speech babble noise (from Noisex-92), and
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white Gaussian noise. An artificial nonstationary white noise
(White-NS) was also used and was generated by alternating
the variance of white Gaussian noise every 500 ms between
and , where the actual value of depends on the desired
SNR. The noise codebooks were trained using the GLA with
two minutes of training data. The noise samples used in the
training and testing were different. For highway and white
noise, the noise LP order was 6. For babble noise, the LP
order was 10. For siren noise, which typically exhibits strong
harmonics, the LP order was 16. The codebook for White-NS
was the same as that for white noise. The number of vectors
in the noise codebooks were empirically chosen to be 4, 8, 16,
and 2 for highway, white, babble, and the two-tone siren noise,
respectively [13]. For each frame, the classified noise codebook
scheme discussed in [13] was used to select a noise codebook
using an ML criterion based on the noisy observation. As in
[13], to provide robustness towards unknown noise types, in
addition to the trained entries, the noise codebook had one ad-
ditional entry that was replaced each frame with the long-term
estimate provided by [9].

B. Objective Quality Measures

The objective measures of quality used in this section are
SNR, segmental SNR (SSNR), log-spectral distortion (SD), and
perceptual evaluation of speech quality (PESQ). The SNR (in
decibels) for an utterance was computed as

(26)

where is the modified (noisy or enhanced) speech, and
is the number of samples in the utterance. The SSNR was com-
puted as the average of the SNR for each frame in the utterance.
For the th Hanning windowed frame, the instantaneous SD be-
tween the clean speech AR envelope and the AR enve-
lope of the processed signal was computed as

The SD for an utterance was computed as the average of the
instantaneous SD for the individual frames. While computing
SSNR and SD, frames corresponding to silent segments were
excluded [27]. PESQ scores were computed according to [28].

C. Memoryless Versus Memory-Based MMSE Estimation

From the experiments, it was observed that memory corre-
sponding to the speech spectral shape and the speech excitation
variance had little or no influence on the results. Using memory
corresponding to the noise parameters was seen to result in a sig-
nificant reduction of outliers in the noise excitation variances, as
seen in Fig. 1. The figure plots the excitation variances for two
noise types, highway and white, with and without memory. The
true excitation variances are also plotted for reference. It can be
seen that incorporating memory results in smoother estimates.

Table I quantifies the reduction in the variance of the esti-
mates of the noise excitation variances. The table shows the
mean and the variance of the normalized squared error between

Fig. 1. Plot of the true and estimated noise excitation variances with and
without memory. (a) Highway noise. (b) White noise. In each figure, the top
plot corresponds to the true values of the excitation variances, the middle plot
to memory-based estimates and the bottom plot to memoryless estimates.

TABLE I
MEAN AND VARIANCE OF THE NORMALIZED SQUARED ERROR BETWEEN

THE TRUE AND ESTIMATED NOISE EXCITATION VARIANCES,
WITH AND WITHOUT MEMORY. RESULTS ARE AVERAGED

OVER TEN UTTERANCES AT 10-dB INPUT SNR

the true and the estimated noise excitation variances. The nor-
malized squared error for frame is defined as

(27)

where and are the true and estimated noise excitation
variances for the th frame, and the normalizing factor is
computed as the mean of the true excitation variances over all
the frames.

We note that, in general, it is not meaningful to consider the
excitation variances independently of the AR spectra. Accurate
estimates of the speech excitation variance result in poor perfor-
mance when combined with poor estimates of the gain normal-
ized AR coefficients. For the noise estimates, the mean squared
error values of the LSF coefficients obtained with and without
memory, were not very different (less than 0.2-dB difference).
Thus, in this case, it is meaningful to look at the excitation vari-
ances independently. Estimates of the excitation variances that
track the nonstationarities well and yet exhibit low variance pro-
vide good perceptual performance. As seen in Table I, incorpo-
rating memory achieves a significant reduction in the variance
of the error at the same or a lower mean.

To analyze the effect of memory in the speech signal domain,
we compare the mean and the variance of the squared error be-
tween the clean speech and the enhanced speech obtained with
and without memory in Table II. Enhanced speech was obtained
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TABLE II
MEAN AND VARIANCE OF THE SQUARED ERROR BETWEEN THE CLEAN AND

ENHANCED SPEECH WAVEFORMS WITH AND WITHOUT MEMORY. RESULTS

ARE AVERAGED OVER TEN UTTERANCES AT 10-dB INPUT SNR

TABLE III
MEAN SQUARED ERROR IN LSF DOMAIN AVERAGED OVER TEN UTTERANCES

AT 10-dB INPUT SNR FOR LSF COEFFICIENTS CORRESPONDING TO NOISY

SPEECH, THE PROPOSED BAYESIAN ESTIMATE, AND THOSE OBTAINED

USING LONG-TERM NOISE ESTIMATES (LT)

using the memoryless and the memory-based version of the
Wiener filter defined in (24). Again, it can be seen that the
memory-based estimator achieves a significant reduction in the
variance of the error at the same or a lower mean. In the re-
mainder of this section, we consider only the memory based
estimator.

D. Evaluation in the STP Parameter Domain

In this section, we compare the performance of the codebook-
based Bayesian estimator (with memory) in the short-term pre-
dictor parameter domain. We first look at the mean squared error
(mse) per dimension between the true and estimated speech
LSF coefficients, averaged over ten utterances. For comparison,
we present the mse values between the clean and the noisy
LSF coefficients, and those corresponding to the LSF coeffi-
cients estimated from speech obtained in a subtractive manner
from the long-term noise estimate of [9].2 While computing
the mse, frames corresponding to silence were excluded [27].
These results are shown in Table III. It can be seen that the
proposed MMSE estimator results in significantly lower mse
values compared to those obtained with the noisy speech, and
with the long-term noise estimates. In some cases, LT results
in worse values than the noisy case. This is explained by the
fact that while the subtractive approach improves the SNR, it
is not necessarily optimal for the mse for the LSF coefficients.
In Table IV, we show the corresponding log-spectral distortion
values, without the inclusion of the excitation variances. Values
with the excitation variance included are presented in Table V.

2An estimate of the power spectrum of clean speech was obtained in
a subtractive fashion using the long-term noise estimate according to
P̂ = max(P � P̂ ; 0), where P̂ is the long-term noise estimate. The
autocorrelation was obtained through an inverse Fourier operation, from which
the LSFs were computed.

TABLE IV
SD (IN DECIBELS) OF SPEECH SPECTRAL SHAPES, WITHOUT INCLUDING

THE EXCITATION VARIANCE, AVERAGED OVER TEN UTTERANCES AT 10-dB
INPUT SNR FOR NOISY SPEECH, THE PROPOSED BAYESIAN ESTIMATE,

AND USING LONG-TERM NOISE ESTIMATES (LT)

TABLE V
SD (IN DECIBELS) OF SPEECH SPECTRA INCLUDING THE EXCITATION

VARIANCE, AVERAGED OVER TEN UTTERANCES AT 10-dB INPUT

SNR FOR NOISY SPEECH, THE PROPOSED BAYESIAN ESTIMATE,
AND USING LONG-TERM NOISE ESTIMATES (LT)

E. Comparison With Related Enhancement Systems

Thus far, we have evaluated the performance of the proposed
system in the short-term predictor parameter domain. In this
section, we evaluate3 the enhanced speech signal in terms of
SNR, SSNR, SD, and PESQ. SSNR is reported to have a better
correlation to subjective quality than SNR. Nevertheless, SNR,
which evaluates the squared error, is interesting in the study of
an MMSE estimator.

Based on the method presented in this paper, the enhanced
signal can be obtained in two different ways. The first cor-
responds to filtering the noisy speech with defined in
(15). This filter is constructed using the MMSE estimates of
the short-term predictor parameters. The second approach to
obtain the enhanced signal is to use the filter defined by
(24). As discussed in Section III-C, using results in the
optimal MMSE estimate of the clean speech signal given the
noisy speech. In our experiments too, resulted in slightly
better results in terms of the objective measures. Hence, we
present results for the enhanced speech obtained using ,
with memory.

We also provide comparisons with a Wiener filter
(WF) scheme using long-term noise estimates [9], the
Ephraim–Malah (EM) short-time spectral amplitude estimator
[25] using long-term noise estimates, and the HMM-based
MMSE approach as described in [16]. For the EM method,
computaion of the a priori SNR was performed using the de-
cision directed approach with a smoothing factor of
[25]. For the HMM-based system, as suggested in [16], the
speech model had five states with five mixture components in

3To be consistent with the evaluation in Section IV-D, SD was computed
using LP coefficients extracted from segments that were Hanning windowed.
In [11], a rectangular window was used.
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TABLE VI
SNR VALUES (IN DECIBELS) AVERAGED OVER TEN UTTERANCES AT 10-dB

INPUT SNR FOR ENHANCED SPEECH OBTAINED USING THE PROPOSED

SCHEME, THE HMM METHOD, THE EPHRAIM–MALAH METHOD (EM), AND

THE WIENER FILTER USING LONG-TERM NOISE ESTIMATES (WF)

TABLE VII
SSNR VALUES (IN DECIBELS) AVERAGED OVER TEN UTTERANCES AT 10-dB
INPUT SNR, FOR THE NOISY SPEECH, AND FOR ENHANCED SPEECH OBTAINED

USING THE PROPOSED SCHEME, THE HMM METHOD, THE EPHRAIM–MALAH

METHOD (EM), AND THE WIENER FILTER USING LONG-TERM

NOISE ESTIMATES (WF)

each state. For each of the noise types considered here, separate
noise HMMs were trained. The noise HMMs had three states
with three mixture components in each state as in [16]. The
LP orders in the noise HMMs were the same as the LP orders
in the noise codebooks. For the two-tone siren noise, a special
HMM was trained, with two states and one mixture component
in each state. The training data used to train the codebooks was
used to train the HMMs as well. Model gain adaptation and
noise HMM selection was performed in [16] using data from
segments detected as noise-only regions. In our implementa-
tion, this was modified to use the more accurate noise estimates
provided by [9] on a frame-by-frame basis. The HMM method
with this modification provided better results (in terms of SNR
and SSNR) than the original HMM approach (results with the
original approach for this data set are reported in [13]).

It can be seen from Tables VI–IX that, in general, the pro-
posed scheme performs better than the HMM-based method,
the Ephraim–Malah method (EM) and Wiener filtering using
long-term noise estimates, especially for the nonstationary
noise types. The performance gain is significant in terms of
SSNR, SD, and PESQ. For the stationary noise types, e.g.,
white noise, the methods exhibit similar performance to the
reference methods as expected, since long-term noise estimates
are accurate in this case.

The performance of the HMM method in siren and highway
noise conditions provides a useful insight into its operation.
The two-tone siren noise considered here was generated by a
nonmoving source and recorded by a stationary listener. Thus,
once the nonstationarity of the siren is captured by the two-state
HMM during training, it can accurately model the noise. On the

TABLE VIII
SD VALUES (IN DECIBELS) AVERAGED OVER TEN UTTERANCES AT 10-dB

INPUT SNR FOR THE NOISY SPEECH, AND FOR ENHANCED SPEECH OBTAINED

USING THE PROPOSED SCHEME, THE HMM METHOD, THE EPHRAIM–MALAH

METHOD (EM), AND THE WIENER FILTER USING LONG-TERM

NOISE ESTIMATES (WF)

TABLE IX
PESQ VALUES AVERAGED OVER TEN UTTERANCES AT 10-dB INPUT SNR
FOR THE NOISY SPEECH, AND FOR ENHANCED SPEECH OBTAINED USING

THE PROPOSED SCHEME, THE HMM METHOD, THE EPHRAIM–MALAH

METHOD (EM), AND THE WIENER FILTER USING LONG-TERM

NOISE ESTIMATES (WF)

TABLE X
SNR, SSNR, SD (ALL IN DECIBELS), AND PESQ SCORES CORRESPONDING

TO THE MODULATED SIREN NOISE AT 10-dB INPUT SNR

other hand, for changing noise types such as highway noise, as
discussed in Section I, the HMM method is unable to perform
well since its gain adaptation is based on long-term noise es-
timates. To verify this behavior, the experiment was repeated
(using the same siren codebook and HMM) with siren noise
modulated by a 0.1-Hz sine wave, to simulate a siren (for e.g.,
in a vehicle) approaching and leaving the listener. The results
are shown in Table X. It can be seen that the proposed method
is able to handle the nonstationarity, and performs significantly
better than the HMM scheme.

Also interesting is the poor performance of the HMM method
for White-NS. The reason for this is that there was no noise
HMM trained on White-NS, just as there was no noise codebook
trained on White-NS. The white noise codebook was expected
to handle this case as well. This was done to show the advantage
of treating the spectral shape and the gain independently. With
the proposed scheme, it is sufficient to model only the spectral
shape of the noise.



450 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 2, FEBRUARY 2007

F. Computational Complexity

In comparison to methods such as the Ephraim–Malah
scheme and the Wiener filter based on long-term noise esti-
mates, model-based schemes such as the proposed approach
and the HMM-based methods suffer from an increase in com-
putational complexity. This is the price to be paid for the
improved performance in nonstationary noise environments.
The complexity is directly related to the model size, e.g., the
number of codebook vectors, or the number of states and mix-
ture components in the HMM. In [13], an iterative scheme to
reduce computational complexity resulting from an exhaustive
search of the speech and noise codebooks is proposed and
can be adopted in the method proposed in this paper as well.
It is also relevant to mention that the HMM and codebook
approaches lend themselves in a straightforward fashion to par-
allel processing, which can result in a significant speedup. For
example, in principle, one processor can be assigned to com-
pute the likelihood corresponding
to each combination of speech and noise codebook vectors.
The amount of time required for the resulting computations is
then independent of the model size. A final step of weighted
summation then produces the MMSE estimate. While this is an
extreme case, in general, a speedup can be obtained with the
use of more than one processor, and the resulting computational
complexity is determined by the model size and the number of
processors.

G. Evaluation of Perceptual Quality

To evaluate the perceptual quality, we compare the proposed
scheme to the noise suppression system of the selectable
mode vocoder (SMV) [29]. The SMV includes a noise sup-
pression module that operates on the input signal prior to
the encoding/decoding process. The SMV noise suppression
system (SMV-NS) requires estimates of the background noise
and contains mechanisms to update the background noise
estimates based on the observed noisy input. It is a frequency
domain technique and frequency bins in the noisy spectrum are
grouped together to obtain 16 channels. An attenuation factor is
determined for each of the 16 channels, which is applied to all
the frequency bins in that channel. Details regarding the exact
implementation are described in [29].

The SMV-NS system is a perceptually well tuned stan-
dardized system, which in informal listening tests clearly
outperformed the reference systems considered in the previous
section. To make a fair comparison, a well-tuned reference
system, not tuned by the authors is best suited. Hence, the
choice of SMV-NS for the subjective evaluation. Moreover,
since the SMV-NS is perceptually optimized and not optimized
for objective measures such as SNR or SD, it gives poor objec-
tive results and objective comparisons with the SMV is not fair.
Thus, we use the SMV-NS only for subjective tests.

Noisy speech at 10-dB input SNR was processed by the stan-
dard SMV and the signal at the output of the decoder was used as
the first signal in the evaluation. To generate the second signal,
the output of the proposed enhancement system was pro-
cessed by the SMV, with its noise suppression module disabled.
Thus, the encoding/decoding operation is identical in both sys-
tems; they differ only in the noise suppression module.

TABLE XI
SCALE USED TO RATE THE QUALITY OF THE SECOND UTTERANCE

RELATIVE TO THAT OF THE FIRST

TABLE XII
RESULTS FROM THE LISTENING TEST WITH 95% CONFIDENCE INTERVALS.
TEN LISTENERS PARTICIPATED IN THE TEST. POSITIVE VALUES INDICATE A

PREFERENCE FOR THE PROPOSED METHOD (SEE TABLE XI)

To perform a more precise evaluation than an AB preference
test, a test similar to the comparison category rating (CCR) [30]
was conducted. Listeners were presented with a pair of utter-
ances (one processed by the reference system and the other pro-
cessed by the proposed system) in each trial. The order of pre-
sentation was random. To eliminate any biasing due to the order
of the algorithms within a pair, each pair of enhanced utterances
was presented twice, with the order switched. Listeners were
asked to rate the quality of the second utterance relative to that
of the first according to the scale in Table XI.

Ten listeners participated in the test. For each noise type, ten
utterances were used. The results from the listening test, to-
gether with the 95% confidence intervals are shown in Table XII.
It can be seen that for the strongly nonstationary noise types
such as siren noise and White-NS, there is a clear preference
for the proposed approach. There is also a preference for the
white noise case. For highway and babble noise, both systems
perform about the same. We note here that the SMV noise sup-
pression system is a perceptually well-tuned system. The pro-
posed MMSE scheme could also benefit from similar percep-
tual tuning in which case it could be expected to outperform the
SMV system for all the noise types.

V. CONCLUSION

In this paper, Bayesian MMSE estimators of the speech
and noise short-term predictor parameters were developed
using codebooks of linear predictive coefficients to model the
prior information. It was shown that the proposed scheme
provides superior performance compared to methods that rely
on long-term noise estimates, in both stationary and nonsta-
tionary environments. Memory-based estimation was seen to
significantly reduce both the mean and the variance of the
squared error. Memory was found to be useful only for the
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noise parameters. Estimation of functions of the short-term
predictor parameters was also addressed. From the experi-
ments, it was seen that the proposed MMSE scheme performed
significantly better than the HMM-based MMSE scheme, the
Ephraim–Malah scheme, and the Wiener filter using long-term
noise estimates, in terms of SNR, SSNR, SD, and PESQ. In
terms of subjective quality, the proposed scheme was seen
to perform better than the standard SMV noise suppression
scheme for white noise, siren noise, and nonstationary white
noise, while the two systems performed about the same for the
other noise types. The use of codebooks results in an increase
in computational complexity compared to the Ephraim–Malah
scheme or the Wiener filter, which is the price to be paid for the
improved performance.

The framework developed in this paper is general and is nei-
ther limited to linear predictive coefficients, nor to the codebook
structure. Alternate parametric models may be employed, while
retaining the proposed estimation framework with instantaneous
gain computation. Future work could focus on incorporating the
instantaneous gain estimation into methods based on Gaussian
mixture models, HMMs, and particle-filter schemes.

APPENDIX

For given and the noisy speech , we investigate the
behavior of as a function of the excitation variances
and . In particular, we are interested in the behavior of the
likelihood as a function of the deviation of the excitation vari-
ances from their true values, which we approximate by their
maximum-likelihood estimates and obtained using (6)
and (7). We first consider the case where noise is not present.
In the absence of background noise, under Gaussianity assump-
tions, the probability density of the speech samples given the LP
parameters can be written as

(28)

where
and , where is the N N lower tri-
angular Toeplitz matrix with as
the first column. Since the frame length ( sam-
ples) is large compared to the LP order , the
covariance matrix can be described as circulant and is
hence diagonalized by the discrete Fourier transform [31].
We have , where denotes the
discrete Fourier transform matrix whose th entry is
given by , the super-
script denotes complex conjugate transpose and is a
diagonal matrix containing the eigenvalues of .
The diagonal entries of , the eigenvalue matrix of ,
correspond to the spectral components of . The th di-
agonal entry of is given by

, where
and for .

We wish to study the effect of a deviation in the excitation
variance on as and (and thus ) remain
unchanged. Let . We have

(29)

where are the discrete Fourier transform coeffi-
cients of and are the diagonal entries of . We note that

can take values in the range . For positive values of
, as increases, the denominator grows and the exponential

in term B converges to one. Thus, the behavior of the likeli-
hood is dominated by . Since is typically
large, this indicates a rapid decay as the deviation grows. For
negative values of , the exponential term B dominates and an
exponential decay of the likelihood occurs.

Considering the case where noise is present, assuming large
frames, we can write the covariance matrix of the noisy speech
as

(30)

where is a diagonal matrix containing the eigenvalues of
. Let .

We have

(31)

where are the discrete Fourier transform coef-
ficients of and are defined analogously to , re-
spectively. In the case when both and are positive or both

and are negative, the behavior of the likelihood is similar
to the speech-only case. For positive values of and negative
values of (or vice versa), we rely on the assumption that the
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speech and noise spectral shapes are sufficiently different, i.e.,
the vectors and are linearly in-
dependent so that a positive cannot compensate a negative

at all frequency indices simultaneously. Thus, the errors add
up resulting in a decay of the likelihood.
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