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Abstract—In millimeter wave (mmWave) systems, antenna ar-
chitecture limitations make it difficult to apply conventional fully
digital precoding techniques but call for low cost analog radio-
frequency (RF) and digital baseband hybrid precoding methods.
This paper investigates joint RF-baseband hybrid precoding for
the downlink of multiuser multi-antenna mmWave systems with
a limited number of RF chains. Two performance measures,
maximizing the spectral efficiency and the energy efficiency
of the system, are considered. We propose a codebook based
RF precoding design and obtain the channel state information
via a beam sweep procedure. Via the codebook based design,
the original system is transformed into a virtual multiuser
downlink system with the RF chain constraint. Consequently,
we are able to simplify the complicated hybrid precoding op-
timization problems to joint codeword selection and precoder
design (JWSPD) problems. Then, we propose efficient methods
to address the JWSPD problems and jointly optimize the RF
and baseband precoders under the two performance measures.
Finally, extensive numerical results are provided to validate the
effectiveness of the proposed hybrid precoders.

Index Terms—Hybrid precoding design, millimeter wave com-
munication, energy efficient communication, successive convex
approximation, power allocation.

I. INTRODUCTION

The proliferation of multimedia infotainment applications

and high-end devices (e.g., smartphones, tablets, wearable

devices, laptops, machine-to-machine communication devices)
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causes an explosive demand for high-rate data services. Future

wireless communication systems face significant challenges in

improving system capacity and guaranteeing users’ quality of

service (QoS) experiences [1]. In the last few years, various

physical layer enhancements, such as massive multiple-input

multiple-output (MIMO) [2], cooperation communication [3],

and network densification [4] have been proposed. Along

with these technologies, there is a common agreement that

exploiting higher frequency bands, such as the millimeter

wave (mmWave) frequency bands, is a promising solution to

increase network capacity for future wireless networks [5]–[7].

MmWave communication spans a wide frequency range

from 30 GHz to 300 GHz and thus enjoys much wider band-

width than today’s cellular systems [8]. However, mmWave

signals experience more severe path loss, penetration loss, and

rain fading compared with signals in sub-6 GHz frequency

bands. For example, the free space path loss (FSPL) at 60 GHz

frequency bands is 35.6 dB higher than that at 1 GHz [9], [10].

Such a large FSPL must be compensated by the transceiver in

mmWave communication systems. Fortunately, the very small

wavelength of mmWave signals enables a large number of

miniaturized antennas to be packed in small dimension, thus

forming a large multi-antenna system potentially providing

very large array gain. In conventional multi-antenna systems,

each active transmit antenna is connected to a separate trans-

mit radio frequency (RF) chain. Although physical antenna

elements are cheap, transmit RF chains are not cheap. A large

number of transmit RF chains not only increase the cost of

RF circuits in terms of size and hardware but also consume

additional energy in wireless communication systems [11].

Therefore, in practice, the number of RF chains is limited and

much less than the number of antennas in mmWave systems.

For ease of implementation, fully analog beamforming was

proposed in [12]–[14], where the phase of the signal sent

by each antenna is manipulated via analog phase shifters.

However, pure analog precoding (with only one RF chain)

cannot provide multiplexing gains for transmitting parallel data

streams. Hence, joint RF-baseband hybrid precoding, aiming

to achieve both diversity and multiplexing gains, has attracted

a great deal of interest in both academia and industry for

mmWave communications [15]–[20]. El Ayach et al in [15]

exploited the inherent sparsity of mmWave channels to design

low-complexity hybrid precoders with perfect channel state

information (CSI) at the receiver and partial CSI at the trans-

mitter (CSIT). Alkhateeb et al further investigated channel es-

timation for multi-path mmWave channels and tried to improve

the performance of hybrid precoding using full CSIT [16].
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An energy-efficient hybrid precoding design was investigated

by using successive interference cancelation (SIC) method for

subconnected architecture [17]. Note that the hybrid precoding

designs in [15]–[17] assume that either perfect or partial CSIT

is available. In practice, while using partial CSIT may degrade

system performance, perfect CSIT is often difficult to obtain in

mmWave communication systems, especially when there are a

large number of antennas. The RF-baseband hybrid precoders

in [15]–[17] were designed to obtain the spatial diversity or

multiplexing gain for point-to-point mmWave communication

systems. It is well known that multiuser communications

can further provide multiuser diversity [18]–[20]. In [19],

the authors proposed a RF precoder for multiuser mmWave

systems by matching the phase of the channel of each user also

under the assumption of perfect CSIT. Later, a low-complexity

codebook based RF-baseband hybrid precoder was proposed

for a downlink multiuser mmWave system [20]. Note that

both [19] and [20] assume that the number of users equals

the number of RF chains. In mmWave multiuser systems, it is

very likely that the number of the served users per subcarrier

will be less than that of RF chains. Therefore, it is necessary

to study more flexible hybrid precoding designs for multiuser

mmWave communication systems.

The existing RF-baseband hybrid precoding designs focus

on improving the spectral efficiency of mmWave communi-

cation systems [15]–[20]. On the other hand, accompanied

by the growing energy demand and increasing energy price,

the system energy efficiency (EE) becomes another critical

performance measure for future wireless systems [21]–[23].

In mmWave communication systems, although reducing the

number of RF chains can save power consumption, the RF-

baseband hybrid architecture requires additional power to

operate the phase shifting network, the splitter, and the mixer

at the transceiver [24]. Therefore, it is also necessary to

investigate the RF-baseband hybrid precoding for improving

the system EE. Recently, following the idea in [15], an

energy efficient hybrid precoding method was developed for

5G wireless communication systems with a large number of

antennas and RF chains [25]. Differently, in this paper, we

propose a codebook based hybrid precoding method that uses

the effective CSIT to design the RF-baseband precoders.

In this paper, we study the RF-baseband hybrid precoding

for the downlink of a multiuser multi-antenna mmWave com-

munication system. The hybrid precoding design takes into

account two hardware limitations: (i) the analog phase shifters

have constant modulus and a finite number of phase choices,

and (ii) the number of transmit RF chains is limited and less

than the number of antennas. The design goal is to maximize

the sum rate (SR) and the EE of the system. We introduce a

codebook based RF precoding design along with a beam sweep

procedure to reduce the complexity of the hybrid precoder and

relieve the difficulty of obtaining CSIT. The contribution of

this paper are summarized as follows.

• We investigate joint optimization of the RF-baseband pre-

coders in multiuser mmWave systems under two common

performance measures, i.e., maximizing the SR and the

EE of the system.

• Considering the practical limitation of phase shifters, we

propose a codebook based RF precoder, whose columns

(i.e., RF beamforming vectors) are specified by RF code-

words, and then transform the original mmWave system

into a virtual multiuser downlink multiple input single

output (MISO) system.

• We propose a beam sweep procedure to obtain effective

CSIT with less signaling feedback by utilizing the beam-

domain sparse property of mmWave channels.

• Based on the codebook based design, we are able to

simplify the original RF-baseband hybrid precoding op-

timization problems into joint codeword selection and

precoding design (JWSPD) problems.

• We propose an efficient method to address the JWSPD

problem for maximizing the system SR.

• We also develop an efficient method to address the more

difficult JWSPD problem for maximizing the system EE.

• Finally, extensive numerical results are provided to verify

the effects of the proposed codebook based hybrid pre-

coding design. It is shown that the proposed method out-

performs the existing methods and achieves a satisfactory

performance close to that of the fully digital precoder.

The remainder of this paper is organized as follows. The

system model and optimization problem formulation are de-

scribed in section II. Section III introduces a codebook based

mmWave RF precoding design with beam sweep. An effective

joint codewords selection and precoder design method is

proposed for SRmax problem in section IV. In section V,

an effective joint codewords selection and precoder design

method is developed for EEmax problem. In section VI,

numerical evaluations of these algorithms are carried out.

Conclusions are finally drawn in section VII.

The following notations are used throughout this paper.

Bold lowercase and uppercase letters represent column vectors

and matrices, respectively. The superscripts (·)T , and (·)H
represent the transpose operator, and the conjugate transpose

operator, respectively. tr (·), ∥ · ∥2, |·|, ∥ · ∥F , ℜ (·) and

ℑ (·) denote the trace, the Euclidean norm, the absolute value

(element-wise absolute if used with a matrix), Frobenius norm,

the real and imaginary operators, respectively. X ≥ Y and

X ≤ Y denote an element-wise inequality. A ≽ 0 denotes

matrix A is a semidefinite positive matrix. 1N×N and 1N

denote respectively N × N matrix with all one entries and

N × 1 all-one vector. A (m,n) represents the (mth, nth)
element of matrix A and diag (A) stands for a column vector

whose elements are the diagonal element of the matrix A. R

and C are the real number field and the complex number field,

respectively. log (·) is the logarithm with base e. The function

floor (x) rounds the elements of x to the nearest integers less

than x. mod (, ) is the modulo operation. υ
(d)
max (A) is the set

of right singular vectors corresponding to the d largest singular

values of matrix A.

II. PROBLEM STATEMENT

A. System Model

Consider the downlink of a mmWave multiuser multiple-

input single-output (MISO) cellular system as shown in Fig. 1,

where the BS is equipped with M transmit antennas and S
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RF chains and serves K ≤ S single-antenna users. Differ-

ent from conventional multi-antenna communication systems,

e.g., [21]–[23], where the numbers of antennas and RF chains

are equal, in mmWave systems the number of antennas could

be very large and it is expensive and impractical to install

an RF chain for each antenna, so in practice we often have

S ≤M .
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Fig. 1: Downlink mmWave system with hybrid RF-baseband

precoding.

To exploit the full potential of mmWave system with a

limited number of RF chains, we consider an RF-baseband

hybrid precoding design, in which the transmitted signal

is precoded in both the (digital) baseband domain and the

(analog) RF domain. Specifically, the system model can be

expressed as

y = HFGs+ n, (1)

where sT = [s1, · · · , sK ] with sk ∼ CN (0, 1) being the trans-

mitted signal intended for the kth user, y = [y1, · · · , yK ]
T

with yk being the received signal of the kth user, HH =
[h1, · · · ,hK ] and hk ∈ CM contains the channel coefficients

between the BS and the kth user, and n ∼ CN
(
0, σ2IK

)

is an additive white gaussian noise (AWGN) vector with

independent identically distributed (i.i.d.) entries of zero mean

and variance σ2. In (1), G ∈ CS×K is a baseband precoder

that maps s to the S RF chains, and F ∈ CM×S is a RF

precoder using analog circuitry, e.g., the analog phase shifting

network. Due to the implementing limitation, the elements

of F are often required to have a constant modulus and

only change their phases [12]. Then, given the RF precoder

F , the baseband precoder G, and the instantaneous CSI

hk, ∀k ∈ K , {1, 2, · · · ,K}, the signal-to-interference-plus-

noise ratio (SINR) of the kth user is

SINRk =

∣∣∣hHk Fg
k

∣∣∣
2

K∑
l=1,l ̸=k

∣∣hHk Fgl
∣∣2 + σ2

, (2)

where g
k

denotes the kth column of G.

B. Channel Model

In this paper, the channel between the BS and each user

is modeled as a narrowband clustered channel based on the

extended Saleh-Valenzuela model that has been widely used in

mmWave communications [26], [27]. The channel coefficient

vector hk is assumed to be a sum of the contributions of Ncl

scattering clusters, each of which includes Nray propagation

paths. Specifically, hk can be written as [15]

hk =

√
M

NclNray

Ncl∑

mp=1

Nray∑

np=1

αmp,np
a
(
ϕmp,np

, θmp,np

)
,

(3)

where αmp,np
is a complex Gaussian random variable with

zero mean and variance σ2
α,mp

for the npth ray in the mpth

scattering cluster, and ϕmp,np

(
θmp,np

)
is its azimuth (ele-

vation) angle of departure (AoD). a
(
ϕmp,np

, θmp,np

)
is the

normalized array response vector at an azimuth (elevation)

angle of ϕmp,np

(
θmp,np

)
and depends on the structure of the

transmit antenna array only. The Nray azimuth and elevation

angles of departure ϕmp,np
and θmp,np

within the cluster mp

follow the Laplacian distributions with a uniformly-random

mean cluster angle of ϕmp
and θmp

, respectively, and a

constant angular spread (standard deviation) of σφ and σθ,

respectively [28].

In particular, for an M -element uniform linear array (ULA),

the array response vector is given by [15], [16]

aULA (ϕ) =

√
1

M

[
1, ej

2π
λs
d sin(φ), · · · , ej(M−1) 2π

λs
d sin(φ)

]T
,

(4)

where λs is the signal wavelength, and d is the inter-element

spacing. For uniform planar array (UPA) in the yz-plane with

M1 and M2 elements on the y and z axes respectively, the

array response vector is given by [15], [16]

aUPA (ϕ, θ) =

√
1

M1M2[
1, · · · , ej 2π

λs
d(mp sin(φ) sin(θ)+np cos(θ)), · · · ,

ej
2π
λs
d((M1−1) sin(φ) sin(θ)+(M2−1) cos(θ))

]T
,

(5)

where the antenna array size is M1M2 and 0 ≤ mp <
M1 (0 ≤ np < M2) is the y (z) indices of an antenna element.

C. Problem Formulation

The goal of this paper is to design proper RF-baseband

hybrid precoders for the mmWave communication system. For

this purpose, we consider two common performance measures:

the system sum rate (SR) and the system energy efficiency

(EE). The problem of maximizing the system SR (SRmax) is

formulated as:

max
F ,G

K∑

k=1

Rk,

s.t.Rk = log (1 + SINRk) ≥ γk, ∀k ∈ K,
F ∈ FRF , ∥FG∥2F ≤ P.

(6)

The problem of maximizing the system EE (EEmax) is for-

mulated as:

max
F ,G

K∑
k=1

Rk

ϵ
K∑
k=1

∥∥∥Fg
k

∥∥∥
2

2
+Qdyn

, (7a)

s.t.Rk = log (1 + SINRk) ≥ γk, ∀k ∈ K, (7b)
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F ∈ FRF , ∥FG∥2F ≤ P. (7c)

In the above two problems, FRF is the set of feasible RF

precoders, i.e., the set of M × S matrices with constant-

modulus entries, γk is the target rate of the kth user, P is the

maximum allowable transmit power, ϵ ≥ 1 is a constant which

accounts for the inefficiency of the power amplifier (PA) [29].

Qdyn is the dynamic power consumption, including the power

radiation of all circuit blocks in each active RF chain and

transmit antenna, given by

Qdyn = ∥g̈∥0 (PRFC +MPPS + PDAC) + Psta, (8)

where g̈ =
[∥∥∥g̃

1

∥∥∥
2
, · · · ,

∥∥∥g̃
S

∥∥∥
2

]T
with g̃

m
denoting the

mth row of G, and the ℓ0-(quasi)norm ∥g̈∥0 is the number

of nonzero entries of g̈, i.e., ∥g̈∥0 =
∣∣∣
{
t :
∥∥∥g̃

t

∥∥∥
2
̸= 0
}∣∣∣.

PRFC , PPS , and PDAC denote the the power consumption

of the RF chain, the phase shifter (PS), and the digital-

to-analog converter (DAC) at the transmitter, respectively.

Psta = M (PPA + Pmixer) + PBB + Pcool, where PPA,

Pmixer, PBB , and Pcool denote the power consumption of the

PA, the mixer, the baseband signal processor, and the cooling

system, respectively1.

The formulated problems (6) and (7) are challenging due

to several difficulties, including the constant-modulus require-

ment of F ∈ FRF , the coupling between G and F , the

nonconvex nature of the user rates and the QoS constraints, and

the fractional form of the objective (in problem (7)). Another

practical difficulty is the CSIT, which requires in general each

user to estimate a large number of channels and feed them

back to the BS. Throughout this paper, we assume that the set

of user target rates is feasible. In the following, we will address

these difficulties and propose efficient precoding designs.

III. CODEBOOK BASED MMWAVE PRECODING DESIGN

WITH BEAM SWEEPING

In the mmWave system, the RF precoder is optimized in

the analog domain and required to have a constant modu-

lus. Unlike the digital baseband signal that can be precisely

controlled, the RF signal is hard to manipulate and a precise

shift for an arbitrary phase is prohibitively expensive in the

analog domain. Therefore, in practice, each element of the RF

precoder F usually takes only several possible phase shifts,

e.g., 8 to 16 choices (3 to 4 bits), while the amplitude change is

usually not possible [12], [13]. To facilitate the low complexity

implementation of the phase shifter, the RF precoder is often

selected from a predefined codebook, which contains a limited

number of phase shifts with a constant amplitude.

An RF codebook can be represented by a matrix, where each

column specifies a transmit pattern or an RF beamforming

vector. In particular, let F ∈ FCB be an M ×N predesigned

codebook matrix, where N is the number of codewords in

the codebook F , and FCB denotes the space of all M × N
constant-modulus RF precoding codewords. There are differ-

ent RF codebooks, such as the general quantized beamforming

codebooks and the beamsteering codebooks.

1The proposed framework in the paper can be readily extended to include
the power consumption at the receivers.

A q-bit resolution beam codebook for an M -element ULA

is defined by a codebook matrix F , where each column

corresponds to a phase rotation of the antenna elements and

generates a specific beam. A q-bit resolution codebook that

achieves the uniform maximum gain in all directions with the

optimal beamforming weight vectors is expressed as [14]

F (m,n) =
1√
M
j

4(m−1)(n−1)−2N
2q , ∀m ∈M, ∀n ∈ N , (9)

where j denotes the square root of −1, i.e., j =
√
−1, M =

{1, · · · ,M}, N = {1, · · · , N}.
The codebooks in IEEE 802.15.3c [26] and wireless per-

sonal area networks (WPAN) operating in 60 GHz frequency

band [27] are designed to simplify hardware implementa-

tion. The codebooks are generated with a 90-degree phase

resolution and without amplitude adjustment to reduce the

power consumption. In this case, the (m,n)th element of the

codebook F is given by (10), ∀m ∈M, ∀n ∈ N .

F (m,n) =
1√
M
j
floor

(
4(m−1)(mod((n−1)+N

4
,N))

N

)

. (10)

Note that when M or N is larger than 4, the codebooks

obtained from (10) result in the beam gain loss in some

beam directions, due to the quantized phase shifts per antenna

element with a limited 2-bit codebook resolution.

In practice, discrete Fourier transform (DFT) codebooks are

also widely used as they can achieve higher antenna gains at

the beam directions than the codebooks in IEEE 802.15.3c.

The entries of a DFT codebook are defined as

F (m,n) ,
1√
M
e−

j2π(m−1)(n−1)
M , ∀m ∈M, ∀n ∈ N . (11)

The DFT codebooks generated in (11) do not suffer any beam

gain loss in the given beam directions for any M and N . For

mmWave systems, an efficient DFT codebook based MIMO

beamforming training scheme was proposed in [30] to estimate

the antenna weight vectors (AWVs).

In Fig. 2, we show the polar plots of array factor for two

3-bit resolution codebooks using (6) and (11), and a 2-bit res-

olution codebook using (10). It can be observed that compared

to the 2-bit resolution codebook in IEEE 802.15.3c generated

according to (10), the 3-bit resolution beam codebook gener-

ated according to (6) and the DFT codebook provide a better

resolution and a symmetrical uniform maximum gain pattern

with reduced side lobes.

Fig. 2: Polar plots for array factor of 2-bit and 3-bit

resolution codebooks with 8 patterns, M = 4, N = 8.

Adopting an RF codebook dramatically redeuces the com-

plexity of computing the RF precoder. Indeed, given an RF
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codebook F , the optimization of the RF precoder F in (6)

and (7) is then equivalent to selecting S codewords (columns)

from the RF codebook (matrix) F . Moreover, instead of

obtaining directly the exact CSIT, we can obtain the equivalent

CSIT via a beam-sweep procedure [26], [27]. Specifically,

during the beam-sweep procedure, the BS sends training

packets from each direction defined in the RF codebook F ,

and the users measure the received signal strength and estimate

the effective channel across all directions. Then, each user

provides the beam-sweep feedback to the BS, indicating the

received signal strength and the effective channel of each

direction, i.e., hHk fn, where fn is the nth codeword (column)

of the RF codebook (matrix) F . Such a beam-sweep procedure

is shown in Fig. 3.
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Fig. 3: Beam-sweep Procedure.

Remark 1. Through the beam sweeping, the original system

can be viewed as a virtual multiuser MISO downlink system,

as illustrated in Fig. 4, where the BS is equipped with N
virtual antennas (i.e., codewords) and the channel coefficient

between the BS and the kth user is h
eff
k = FHhk, ∀k ∈ K.

It is well known that a mmWave channel equipped with a

directional array usually admits a sparse property in the beam

domain [15], [16]. That is, the effective channel may be near

zero for most codewords fn in the RF codebook F . As a

result, the effective channel coefficient vector h
eff
k is a sparse

vector, implying that we only need to feedback a few nonzero

effective channel coefficients to the BS. Therefore, by using

a RF codebook along with the beam sweeping, the burden of

obtaining CSIT in the mmWave system can be relieved.
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Fig. 4: Virtual Multiuser MISO Communication System.

Now, the hybrid precoding design becomes the joint op-

timization of the RF codeword selection and the baseband

precoder. We show that this twofold task can be incorporated

into the baseband precoder optimization. Specifically, instead

of using the original S×K baseband precoder G, we introduce

an expanded baseband precoder G ∈ CN×K with size of

N×K. Let g̃m denote the mth row of G. Then, by multiplying

the RF codebook F with G, i.e., FG, the mth codeword

in the RF codebook F is selected if and only if g̃m is

nonzero or equivalently ∥g̃m∥2 ̸= 0. Consequently, the original

RF-baseband hybrid precoding design problem (6) can be

reformulated into the following joint codeword selection and

precoder design (JWSPD) SRmax problem:

max
G

K∑

k=1

Rk, (12a)

s.t. Rk = log (1 + SINRk) ≥ γk, ∀k ∈ K, (12b)

K∑

k=1

∥Fgk∥22 ≤ P, ∥g̈∥0 ≤ S, (12c)

where gk denotes the kth column of G, g̈ =
[∥g̃1∥2 , · · · , ∥g̃N∥2]

T
, the SINR of the kth user is given by

SINRk =

∣∣hHk Fgk
∣∣2

K∑
l=1,l ̸=k

∣∣hHk Fgl
∣∣2 + σ2

. (13)

In (12), the constraint ∥g̈∥0 ≤ S guarantees that the number

of the selected codewords is no larger than the number of

the available RF chains. Problem (12) represents a sparse

formulation of the baseband precoder design as g̈ has up to

S ≤ N nonzero elements. It also implies that the baseband

precoder G is a sparse matrix.

Similarly, problem (7) can be reformulated into the follow-

ing JWSPD EEmax problem:

max
G

K∑
k=1

Rk

ϵ
K∑
k=1

∥Fgk∥22 + Pdyn

(14a)

s.t.Rk = log (1 + SINRk) ≥ γk, ∀k ∈ K, (14b)

K∑

k=1

∥Fgk∥22 ≤ P, ∥g̈∥0 ≤ S, (14c)

where Pdyn = ∥g̈∥0 (PRFC +MPPS + PDAC) + Psta. Let

ml be the row index of the lth nonzero row vector of G

for l = 1, · · · , ∥g̈∥0 with m1 6 · · · 6 m∥g̈∥0
. Without loss

of generality, we can let the lth row vector of the baseband

precoder be the g̃ml
and the lth phase shifter network steer

vector be the mlth codeword in the RF codebook F for the

lth RF chain. Then, the remained S − ∥g̈∥0 RF chains with

the corresponding phase shifter networks can be turned off to

save power.

So far, we have simplified the original RF-baseband hy-

brid precoding design into the JWSPD optimization problem.

However, problems (12) and (14), although there is only one

(matrix) variable G, are still difficult, due to the nonconvex ob-

jective, the nonconvex QoS constraint, and the ℓ0-(quasi)norm

constraint ∥g̈∥0 6 S.

IV. JOINT CODEWORD SELECTION AND PRECODER

OPTIMIZATION FOR SRMAX PROBLEM

In this section, we consider first the JWSPD SRmax prob-

lem (12), which, unfortunately, is NP-hard as a result of
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the nonconvex (sum rate) objective and the ℓ0-(quasi)norm

constraint. Hence, finding its globally optimal solution requires

prohibitive complexity, so in practice an efficient (probably

suboptimal) solution is more preferred. In what follows, we

will provide such an efficient solution.

A. Joint Codeword Selection and Precoder Design for SRmax

problem

To address the joint codeword selection and precoder design

(JWSPD) in (12), we first introduce some auxiliary variables

αk, βk, ∀k ∈ K, τ , κ, and χ. Let log (1 + αk) ≥ βk and

SINRk ≥ αk, ∀k ∈ K. After some basic operations, (12) can

be rewritten into the following equivalent form:

min
{gk,αk,βk}

−
K∑

k=1

βk (15a)

s.t. 1 + αk ≥ eβk , ∀k ∈ K, (15b)

SINRk ≥ αk, SINRk ≥ γk, ∀k ∈ K, (15c)

K∑

k=1

∥Fgk∥22 ≤ P, ∥g̈∥0 ≤ S, (15d)

where γk = eγk − 1. It can be easily proven that the

constraints (15b) and SINRk ≥ αk, ∀k shall be activated at the

optimal solution [31]. The difficulty lies in (15c) and (15d), as

(15c) and ∥g̈∥0 ≤ S are nonconvex constraints. To overcome

these difficulties, we first move the constraint ∥g̈∥0 ≤ S into

the objective as follows:

min
{gk,αk,βk}

−
K∑

k=1

βk + λ∥g̈∥0 (16a)

s.t. 1 + αk ≥ eβk , ∀k ∈ K,
K∑

k=1

∥Fgk∥22 ≤ P (16b)

SINRk ≥ αk, SINRk ≥ γk, ∀k ∈ K, (16c)

where λ is a group-sparsity inducing regularization [32] to

control the sparsity of the solution, i.e., the larger λ is, the

more sparse solution of (16) is. Therefore, one can always

choose a λ large enough such that the constraint ∥g̈∥0 ≤ S is

satisfied.

Then, we use the convex ℓ1,∞-norm squared to approximate

the nonconvex ℓ0-(quasi)norm2. In this way, problem (16) is

approximated as:

min
{gk,αk,βk}

−
K∑

k=1

βk + λ∥G∥21,∞ (17a)

s.t. 1 + αk ≥ eβk , ∀k ∈ K,
K∑

k=1

∥Fgk∥22 ≤ P (17b)

SINRk ≥ αk, SINRk ≥ γk, ∀k ∈ K, (17c)

2It is worth pointing out that the RF chain constraint ∥g̈∥0 ≤ S cannot
be simply replaced by ∥g̈∥p ≤ S with p > 1, since it is unknown whether
ℓ0-norm ≥ ℓp-norm or ℓ0-norm < ℓp-norm, which may result in a violation
of the RF chain constraint.

where ∥G∥1,∞ =
N∑
n=1

max
k
|gk (n)| is as the ℓ1,∞-norm of

the matrix G. Note that ∥G∥21,∞ in (17a) can be rewritten as

follows:

∥G∥21,∞ =

(
N∑

n=1

max
k
|gk (n)|

)2

=

N∑

n1=1

N∑

n2=1

((
max
k
|gk (n1)|

)(
max
k
|gk (n2)|

))

=

N∑

n=1

N∑

m=1

max
i,j∈{1,··· ,K}

|Xi,j (n,m)| ,

(18)

where Xi,j = gig
H
j , ∀i, j. Note that Xi,j = gig

H
j , ∀i, j

if and only if Xi,j ≽ 0 and rank (Xi,j) = 1, ∀i, j. Thus,

problem (17) can be relaxed to

min
{Xi,j ,αk,βk}

−
K∑

k=1

βk + λ∥G∥21,∞, (19a)

s.t. 1 + αk ≥ eβk , ∀k ∈ K,
K∑

k=1

tr
(
F̃Xk,k

)
≤ P, (19b)

SINRk ≥ αk, SINRk ≥ γk,Xk,k ≽ 0, ∀k ∈ K, (19c)

rank (Xi,j) = 1, ∀i, j, (19d)

where F̃ = FHF , and

SINRk =
tr (HkXk,k)

K∑
l=1,l ̸=k

tr (HkXl,l) + σ2

where Hk = FHhkh
H
k F , ∀k ∈ K. The relaxed problem (19)

is still difficult as it is still nonconvex. Nevertheless, note that

Xi,j , ∀i ̸= j only appear in the objective (19a), it is easy to

have the following results which can help us simplify (19).

Theorem 1. Let {X̆i,j , ᾰk, β̆k} be the optimal solution

of (19), then the inequalities

∣∣∣X̆i,j

∣∣∣ 6
∣∣∣X̆i,i

∣∣∣ , ∀i ̸= j hold.

For brevity, let Xk = Xk,k, ∀k ∈ K and define Z (n,m) =
max
k∈K
|Xk (n,m)| , ∀m,n. Considering that the rank one con-

straint is nonconvex [32], we obtain a tractable formulation

form of problem (19) by dropping the nonconvex constraints

rank (Xk) = 1, ∀k ∈ K. According to Theorem 1, problem

(19) can be relaxed to:

min
{Xk,αk,βk},Z

−
K∑

k=1

βk + λtr (1N×NZ) (20a)

s.t. 1 + αk ≥ eβk , ∀k ∈ K,
K∑

k=1

tr
(
F̃Xk

)
≤ P, (20b)

SINRk ≥ αk, SINRk ≥ γk, ∀k ∈ K, (20c)

Xk ≽ 0,Z ≥ |Xk| , ∀k ∈ K. (20d)

To address the nonconvex constraints (20c), we transform it

into the following problem (21), at the top of this page, by

introducing auxiliary variables ψk, ϕk, ∀k ∈ K, τ , κ, and χ,

The difficulty of solving (21) lies in (21d), as the constraints
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min
{Xk,αk,βk,ψk,φk},Z

−
K∑

k=1

βk + λtr (1N×NZ) , (21a)

s.t. ψ2
k 6 tr (HkXk) ,Xk ≽ 0, 1 + αk ≥ eβk , ∀k ∈ K (21b)

K∑

l=1,l ̸=k

tr (HkXl) + σ2 6 ϕk, ∀k ∈ K,
K∑

k=1

tr
(
F̃Xk

)
≤ P, (21c)

K∑

l=1,l ̸=k

γktr (HkXl) + γkσ
2 6 tr (HkXk) ,

ψ2
k

ϕk
> αk, ∀k ∈ K, (21d)

[
Z (n,m)−ℜ (Xk (n,m)) ℑ (Xk (n,m))

ℑ (Xk (n,m)) Z (n,m) + ℜ (Xk (n,m))

]
≽ 0, ∀k ∈ K,m, n. (21e)

ψ2
k

φk
> αk, ∀k are nonconvex. To overcome this difficulty, we

exploit the SCA method [34] to approximate the inequality
ψ2

k

φk
> αk, ∀k by its convex low boundary as

ψ2
k

ϕk
≥ Φ

(I)
k (ψk, ϕk) , 2

ψ
(I)
k

ϕ
(I)
k

ψk −
(
ψ
(I)
k

ϕ
(I)
k

)2

ϕk, ∀k ∈ K,
(22)

where the superscript I denotes the Ith iteration of the SCA

method. Note that Φ
(I)
k (ψk, ϕk) is in fact the first order of

ψ2
k

φk

around the point
(
ψ
(I)
k , ϕ

(I)
k

)
. Thus, the approximate convex

problem solved at iteration I + 1 of (21) is given by:

min
{Xk,αk,βk,ψk,φk},Z

−
K∑

k=1

βk + λtr (1N×NZ) , (23a)

s.t. (21b), (21c), (21e), (23b)

Φ
(I)
k (ψk, ϕk) > αk, ∀k ∈ K, (23c)

K∑

l=1,l ̸=k

γktr (HkXl) + γkσ
2 6 tr (HkXk) , ∀k ∈ K, (23d)

which can be solved efficiently via a modern convex solver

such as MOSEK [22]. For conciseness, let Ξ
(I) denote the

set of all variables in problem (23) at the Ith iteration.

Algorithm 1 outlines an iterative procedure for finding a

solution to problem (20) (or equivalently (21)) with a fixed

λ, where τ denotes the objective of problem (20).

Algorithm 1 Joint Codeword Selection and Precoder Opti-

mization with fixed λ

1: Let I = 0, generate initial points Ξ
(I) and compute τ (I).

2: Solve (23) with Ξ
(I), then obtain Ξ

(∗).

3: If
∣∣τ (∗) − τ (I)

∣∣ ≤ ζ, then output Ξ(∗), τ (∗), and stop iter-

ation. Otherwise, I ← I + 1, τ (I) ← τ (∗), Ξ(I) ← Ξ
(∗),

and go to step 2.

Problem (23) consists of a linear objective function,

K
(
M2 + 1

)
positive-semidefinite constraints, 5K linear in-

equality constraints, and one convex constraint. It can be

solved via convex optimization methods, such the interi-

or point method [31]. The interior point method will take

O
(√

KM log (ϵ)
)

iterations, where the parameter ϵ rep-

resents the solution accuracy at the algorithm’s termina-

tion. In each iteration, the complexity of solving (23) is((
M6 + 64

)
K3 + 6K2M2

)
[33]. The optimal solution re-

turned at the Ith iteration is also feasible for the problem

at the (I + 1)th iteration, as a result of the approximation

in (23c). Hence, Algorithm 1 yields a nondecreasing sequence.

Since the objective of problem (20) is bounded under the

limited transmit power, the convergence of Algorithm 1 is

guaranteed [35]. In addition, following the similar arguments

in [34], it can be proved that Algorithm 1 converges to a

Karush-Kunhn-Tuker (KKT) solution of problem (21) [36].

To obtain a good initial point Ξ(0) for Algorithm 1, one can

solve the problem (24) which was extensively studied in [32].

min
{Xk},Z

tr (1N×NZ) s.t.(21e), (23d),Xk ≽ 0, ∀k ∈ K. (24)

Remark 2. Let Ξ
λ denote the optimal solution to prob-

lem (19) with fixed λ. By definition, the nonzero diagonal

entries of Zλ correspond to the selected virtual antennas

(codewords). If an entry of Zλ is zero, then the corresponding

entry in all Xλ
k , ∀k must be zero. Let Lλ be the number of

nonzero diagonal entries of Zλ. Then, the effective channel

of the kth user is an Lλ × 1 vector hk = F̂Hhk where

the columns of F̂ are the Lλ selected codewords from the

RF codebook F . Thus, the analog precoder F is obtained as

F = F̂H .

B. Sparse Parameter for SRmax problem

In the previous subsection, we have introduced a turnable

sparse parameter λ to control the sparsity of the solution of

the JWSPD optimization. In this subsection, we investigate

how to choose a proper λ to satisfy the RF chain constraint

∥g̈∥0 ≤ S. Note that in (20), a larger λ makes the entries of Z

(as well as Xk, ∀k ∈ K) more sparse, implying that less RF

chains are used. On the other side, to maximize the system

SR and guarantee the target rate requirement of each user,

one cannot force all entries of Xk, ∀k ∈ K to be zero. Thus,

the sparse parameter λ has to be properly chosen to balance

maximizing the system SR and minimizing the number of the

selected virtual antennas (codewords).
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It is not difficult to find that the system SR increases with the

number of the RF chains. Therefore, the task of find the mini-

mum λ such that the RF chain constraint ∥g̈∥0 ≤ S is satisfied

can be accomplished by the classical one-dimension search

methods, such as the bisection method [31]. For completeness,

the algorithm used to find the proper sparse parameter λ such

that ∥g̈∥0 ≤ S is summarized in Algorithm 2, where Λ
λ and

τ̃λ denote respectively the set of the solution of (20) and the

value of
∑K
k=1 βk with λ, ΛT and τ̃T denote respectively the

set of the temporary solution of (20) and the temporary value

of
∑K
k=1 βk with λ. Note that the initialization of Algorithm 2

can also be finished by solving (24).

Algorithm 2 SRmax Optimization for Hybrid JWSPD

1: Generate initial points Λ
0 via solving (24), and computer

τ̃T . Let flag = 1.

2: while flag do

3: Let λ = λL+λU

2 .

4: Solve (20) with λ and Algorithm 1, then obtain Λ
λ and

τ̃λ.

5: If Lλ > S, let λL = λ, otherwise, let λU = λ, τ̃λ ←
K∑
k=1

βλk .

6: If
∣∣τ̃λ − τ̃T

∣∣ ≤ ζ and Lλ ≤ S, then let flag = 0 and

output Λλ. Otherwise, ΛT ← Λ
λ, τ̃T ← τ̃λ.

7: end while

C. Refined Solution for SRmax Problem

Recall that in the previous subsections, the ℓ0(quasi)-norm

has been approximated by the mixed ℓ1,∞-norm squared to

obtain a tractable solution. In addition, due to dropping the

nonconvex rank constraint in (19), the solution Xk, ∀k ∈ K
obtained by solving (20) may not be rank one. Thus, the

solution provided by (20) has to be refined to fit the original

problem (15). For this purpose, after obtaining an approximate

solution to (19), we propose to solve a size-reduced SRmax

problem as the last step, omitting the antennas corresponding

to the zero diagonal entries of the approximated sparse solution

Z. The size-reduced SRmax problem is given by:

max
{gk}

K∑

k=1

Rk, (25a)

s.t. SINRk ≥ γk, ∀k ∈ K, (25b)

K∑

k=1

∥∥∥F̂ gk

∥∥∥
2

2
≤ P, (25c)

where Rk = log
(
1 + SINRk

)
, and SINRk is given by

SINRk ,

∥∥∥hHk gk

∥∥∥
2

2
K∑

l=1,l ̸=k

∥∥∥hHk gl

∥∥∥
2

2
+ σ2

. (26)

Similarly, the size-reduced SRmax problem (25) can be equiv-

alently reformulated as:

max
{gk,αk,βk,φk}

K∑

k=1

βk, (27a)

s.t.1 + αk > eβk , ∀k ∈ K,
K∑

k=1

∥∥∥F̂ gk

∥∥∥
2

2
≤ P, (27b)

∥∥∥hHk gk

∥∥∥
2

2

ϕk
≥ γk, ∀

∥∥∥hHk gk

∥∥∥
2

2

ϕk
≥ αk, ∀k ∈ K, (27c)

K∑

l=1,l ̸=k

∥∥∥hHk gl

∥∥∥
2

2
+ σ2 6 ϕk, ∀k ∈ K. (27d)

Similar to the problem (21), (27) is also a nonconvex problem

due to the constraints in (27c). For (27c), we have the

following the convex low boundary:

∥∥∥hHk gk

∥∥∥
2

2

ϕk
≥ Φ

(I)

k

(
gk, ϕk

)
,

2ℜ
((

g
(I)
k

)H
hkh

H

k gk

)

ϕ
(I)

k

−




∥∥∥hHk g
(I)
k

∥∥∥
2

ϕ
(I)

k




2

ϕk, ∀k ∈ K,

(28)

where I denotes the Ith iteration. Thus, the constraints in (27c)

can be approximated as:

Φ
(I)

k

(
gk, ϕk

)
≥ γk,Φ

(I)

k

(
gk, ϕk

)
≥ αk, ∀k ∈ K. (29)

Consequently we can obtain a stationary solution to (27), by

solving the following series of convex problems:

max
{gk,αk,βk,φk}

K∑

k=1

βk, s.t. (27b), (27d), (29). (30)

Such an iterative procedure is outlined in Algorithm 3, where

Ξ
(I)

and τ (I) denote the set of the solution and the objective

value of problem (30) at the Ith iteration, respectively. The

convergence property of Algorithm 3 is similar with that of

Algorithm 1. The computational complexity of Algorithm 3 is

about O
(
M4K4

)
[22].

Algorithm 3 Transmit Beamforming Optimization

1: Let I = 0, generate initial points Ξ
(I)

and compute τ (I).

2: Solve (30) with Ξ
(I)

, then obtain Ξ
(∗)

.

3: If
∣∣τ (∗) − τ (I)

∣∣ ≤ ζ, then output Ξ
(∗)

and stop iteration.

Otherwise, I ← I +1, τ (I) ← τ (∗), Ξ
(I) ← Ξ

(∗)
, and go

to step 2.

In the next, we investigate how to obtain a good initial point

for Algorithm 3. Let gk =
√
qkĝk, ∀k ∈ K3. We propose to

3It is easy to find that (33) is a weighted sum power minimization problem
which can be regarded as an extension of the conventional power minimization
problem.
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use the solution of the following problem as the initial point:

min
{qk,ĝk}

K∑

k=1

qkĝ
H
k F̂H F̂ ĝk s.t. SINRk ≥ γk, ∥ĝk∥22 = 1, ∀k ∈ K.

(31)

We can show that problem (31) is dual to the following virtual

uplink problem [37], [38]:

min
{pk,ĝk}

σ2
K∑

k=1

pk s.t.
←−−−
SINRk ≥ γk, ∥ĝk∥22 = 1, ∀k ∈ K, (32)

where ĝk can be regarded as the combiner of the dual uplink

channel, pk has the interpretation of being the dual uplink

power kth user in the virtual uplink, and
←−−−
SINRk is given by

←−−−
SINRk ,

pk

∥∥∥hHk ĝk

∥∥∥
2

2
K∑

l=1,l ̸=k

pl

∥∥∥hHl ĝk

∥∥∥
2

2
+ ĝHk F̂H F̂ ĝk

. (33)

Furthermore, when the optimal solutions of problems (31) and

(32) are obtained, we have
K∑
k=1

qkĝ
H
k F̂H F̂ ĝk = σ2

K∑
k=1

pk. It

was shown in [38] that the solution {ĝk} of (32) is given by

ĝ∗
k ∝ max. eigenvector







K∑

l=1,l ̸=k

plH l + F̂H F̂




−1

Hk


 .

(34)

Thus, the algorithm used to solve (32) is summarized in

Algorithm 4 with provable convergence [39].

Algorithm 4 Transmit Beamforming Initialization

1: Initialize beamforming vector {ĝk}.
2: Optimize {pk} by first finding the fixed-point p∗k of the

following equation by iterative function evaluation:

p∗k = γk

K∑
l=1,l ̸=k

pl

∥∥∥hHl ĝk

∥∥∥
2

2
+ ĝHk F̂H F̂ ĝk

∥∥∥hHk ĝk

∥∥∥
2

2

3: Find the optimal uplink beamformers based on the optimal

uplink power allocation p∗k with (35).

4: Repeat steps 2 and 3 until convergence.

To find {qk} in terms of {ĝk} that is obtained from the

virtual uplink channel, i.e., (34), we note that the SINR

constraints in (31) must be all actived at the global optimum

point. So

qk =
K∑

l=1,l ̸=k

ql
γk∥∥∥hHk ĝk

∥∥∥
2

2

∥∥∥hHk ĝl

∥∥∥
2

2
+ σ2 γk∥∥∥hHk ĝk

∥∥∥
2

2

, ∀k ∈ K.

(35)

Thus, we obtain a set of K linear equations with K unknowns

{qk}, which can be solved as

q = ΨGq + σ2
Ψ1K , (36)

where q = [q1, · · · , qK ]
T

, Ψ =

diag

{
γ1∥∥∥hH

1 ĝ1

∥∥∥
2

2

, · · · , γK∥∥∥hH

K ĝK

∥∥∥
2

2

}
, G (k, k) = 0 and

G (k, l) =
∥∥∥hHk ĝl

∥∥∥
2

2
for k ̸= l. Defining an extended

power vector q̃ =
[
qT , 1

]T
and an extended coupling matrix

Q =

[
ΨG Ψ1K

1
Pmax

aTΨG 1
Pmax

aTΨ1K

]
. (37)

where Pmax = σ2
K∑
k=1

pk, aT = [a1, · · · , aK ], ak =

ĝHk F̂H F̂ ĝk, ∀k. According to the conclusions in [37], we

can easily obtain the optimal power vector q as the first

K components of the dominant eigenvector of Q, which

can be scaled such that its last component equals one. The

solution for {qk}, combined with that for {ĝk}, gives an

explicit solution of the beamforming vector {gk} via an

virtual uplink channel. Once the beamforming vector {gk}
is obtained, the baseband beamforming vector g

k
is obtained,

as g
k
=
[
{gk}T ,0T(S−Lλ),1

]T
. In fact, the remaining S−Lλ

RF chains with the corresponding phase shifter networks can

be turned off to improve the system EE.

V. JOINT CODEWORD SELECTION AND PRECODER

OPTIMIZATION FOR EEMAX PROBLEM

In this section, we consider the EEmax problem (14), which

is more difficult than the SRmax problem. Indeed the objective

in (14) is given by a more complex fractional form, and the

ℓ0-(quasi)norm appears not only in the constraint but also

in the denominator of the objective. To find the globally

optimal solution to (14) requires an exhaustive search over all
S∑

l=LMin

(
N
l

)
possible sparse patterns of g̈, where LMin 6 S

is the minimum number of the selected RF chains that can

achieve the target rate requirement of each user under the

power constraint. Unfortunately, for each pattern of g̈, (14) is

an NP-hard problem. Thus, we seek a practical and efficient

method to address the EEmax problem (14).

A. Joint Codeword Selection and Precoder Design for EEmax

problem

Similarly, we first use the convex squared ℓ1,∞-norm to

approximate the nonconvex ℓ0-(quasi)norm in the power con-

sumption term Pdyn. Then, we also introduce a turnable sparse

parameter λ ≥ 0 as a group-sparsity inducing regularization

to control the sparsity of the solution so that the RF chain

constraint (14c) can be temporarily omitted for fixed λ. By

doing so, problem (14) can be relaxed as:

max
{Xi,j}

K∑
k=1

Rk

ϵ
K∑
k=1

tr
(
F̃Xk,k

)
+ Pdyn (λ)

, (38a)

s.t. SINRk ≥ γk, ∀k,
K∑

k=1

tr
(
F̃Xk,k

)
≤ P, (38b)
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Xk,k ≽ 0, ∀k ∈ K, (38c)

where the nonconvex rank (Xi,j) = 1, ∀i, j constraints are

dropped, and the dynamic power consumption is given by

Pdyn (λ) = f (λ)
N∑

n=1

N∑

m=1

max
i,j∈{1,··· ,K}

|Xi,j (n,m)|+ Psta,

(39)

where f (λ) = PRFC +MPPS + PDAC + λ. Note that Xi,j ,

∀i ̸= j, only appear in the power consumption item Pdyn (λ).
Therefore, similar to Theorem 1, we have the following result.

Theorem 2. Let X̆i,j , ∀i, j ∈ K be the optimal solution

of (38), then X̆i,i, ∀i ∈ K with Xi,j = 0, ∀i ̸= j, i, j ∈ K is

also the optimal solution of (38).

Proof: First, we prove that the inequalities

∣∣∣X̆i,j

∣∣∣ 6∣∣∣X̆i,i

∣∣∣ , ∀i ̸= j hold. Suppose that there is one pair of indices

(i0, j0) , i0 ̸= j0 and (n0,m0) such that

∣∣∣X̆i,j (n,m)
∣∣∣ 6∣∣∣X̆i,i (n,m)

∣∣∣ , ∀i ̸= j, n,m except for

∣∣∣X̆i0,j0 (n0,m0)
∣∣∣ ≥∣∣∣X̆i,i (n0,m0)

∣∣∣ , ∀k. Let Xi,j , ∀i, j ∈ K be another solution

obtained by letting Xi,j (n,m) = X̆i,j (n,m) , ∀i, j, n,m
except for Xi0,j0 (n0,m0) = 0. Note that Xi,j , ∀i ̸= j
only appear in the constraints (38b). Thus, Xi,j , ∀i, j ∈ K
is a feasible solution to problem (38) and satisfies the fol-

lowing inequality (40), at the bottom of this page. Note

that X̆i,j and Xi,j , ∀i, j ∈ K achieve the same user rate.

Combining the objective of problem (38) and (40), we can

obtain a better objective by using Xi,j , ∀i, j ∈ K than using

X̆i,j , ∀i, j ∈ K, which is a contradiction. Therefore, we have∣∣∣X̆i,j

∣∣∣ 6
∣∣∣X̆i,i

∣∣∣ , ∀i ̸= j.

Note that Xi,j , ∀i ̸= j, only appear in the power con-

sumption item Pdyn (λ). Combining

∣∣∣X̆i,j

∣∣∣ 6
∣∣∣X̆i,i

∣∣∣ , ∀i ̸= j

with (39), one can easily see that the power consumption

item Pdyn (λ) dose not change by setting Xi,j = 0, ∀i ̸= j.
Consequently, X̆i,i, ∀i ∈ K with Xi,j = 0, ∀i ̸= j are still

optimal.

Theorem 2 also indicates that we can simplify problem (38)

by setting Xi,j = 0, ∀i ̸= j without any loss of optimality.

Hence, similar to the transformation between (19) and (20),

(38) is equivalent to

max
{Xk},Z

K∑
k=1

Rk

ϵ
K∑
k=1

tr
(
F̃Xk

)
+ Pdyn (Z, λ)

, (41a)

s.t. SINRk ≥ γk, ∀k ∈ K,
K∑

k=1

tr
(
F̃Xk

)
≤ P, (41b)

Xk ≽ 0,Z ≥ |Xk| , ∀k ∈ K, (41c)

where Pdyn (Z, λ) = f (λ) tr (1N×NZ) + Psta. Introducing

auxiliary variables αk, βk, ψk, ϕk, ∀k ∈ K, τ , κ, and χ, (41)

can be equivalently rewritten as

max
{Xk,αk,βk,ψk,φk},Z,τ,κ,χ

χ, (42a)

s.t.
τ2

κ
> χ,

ψ2
k

ϕk
> αk, ∀k ∈ K (42b)

K∑

k=1

βk > τ2, (21b), (21c), (21e) (42c)

ϵ
K∑

k=1

tr
(
F̃Xk

)
+ Pdyn (Z, λ) 6 κ (42d)

K∑

l=1,l ̸=k

γktr (HkXl) + γkσ
2 6 tr (HkXk) , ∀k ∈ K (42e)

Similarly, the difficulty of solving (42) lies in (42b), as the

two constraints in (42b) are nonconvex. Thus, we exploit

the SCA method [34] to approximate the two inequalities

in (42b) by two convex constraints. By replacing (42b) with

the convex lower bounds at the Ith iteration, problem (42) can

be approximated by the following convex program:

max
{Xk,αk,βk,ψk,φk,µk},Z,τ,κ,χ

χ, (43a)

s.t. (42c), (42d), (42e), (43b)

Ψ(I) (τ, κ) > χ,Φ
(I)
k (ψk, ϕk) > αk, ∀k ∈ K, (43c)

where Ψ(I) (τ, κ) , 2 τ
(I)

κ(I) τ −
(
τ (I)

κ(I)

)2
κ. Thus, problem (43)

can be solved via the similar procedure as described in

Algorithm 1.

B. Sparse Parameter for EEmax problem

Similarly, a larger λ leads to a more sparse solution to the

(approximated) EEmax problem (38), which corresponds to

less RF chains used. On the other side, λ cannot be infinite,

which would lead to a zero solution and contradict the task of

maximizing the system EE. Hence, λ has to be properly cho-

sen. However, unlike to the SRmax problem (20) or the total

power minimization problem with RF chain constraints [32],

the system EE is not monotonic with respect to the number of

RF chains or the sparse parameter λ. Indeed, the system EE

P̆dyn (λ) = f (λ)




∣∣∣X̆i0,j0 (n0,m0)
∣∣∣+

N∑

n=1

N∑

m=1︸ ︷︷ ︸
(n,m) ̸=(n0,m0)

max
i

∣∣∣X̆i,i (n,m)
∣∣∣




+ Psta

> P dyn (λ) = f (λ)
N∑

n=1

N∑

m=1

max
i

∣∣Xi,i (n,m)
∣∣+ Psta.

(40)
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χλ
key

L+1 =

(
τλ

key

L+1

)2

κλ
key

L+1

=

(
τλ

key

L+1

)2

ϵ
K∑
k=1

tr

(
F̃X

λ
key

L+1

k

)
+ f

(
λkeyL+1

)
tr
(
1N×NZλ

key

L+1

)
+ Psta

< χλ =

(
τλ
)2

κλ
=

(
τλ
)2

ϵ
K∑
k=1

tr
(
F̃Xλ

k

)
+ f (λ) tr (1N×NZλ) + Psta

<

(
τλ
)2

ϵ
K∑
k=1

tr
(
F̃Xλ

k

)
+ f

(
λkeyL+1

)
tr (1N×NZλ) + Psts

,

(44)

is a piecewise function with respect to the sparse parameter λ,

as illustrated in Fig. 7 and Table I. Consequently, the bisection

method cannot be used to optimize λ [31].

To address the above issue, we devise a dynamic interval

compression method to search a suitable λ. Specifically, let

AMin be the set of the indices of the LMin selected virtual

antennas (codewords). Let LMax be the number of the virtual

antennas (codewords) achieving the maximum EE by ignoring

the available RF chain constraint, which correspondes to λ =
0, and AMax be the set of the indices of the LMax selected

virtual antennas (codewords) in this case. Considering that the

allowable number of RF chains is a discrete value but the

sparse parameter λ is continuous, we introduce the following

definition.

Definition 1. For any small positive number ϵ and ∀L ∈
{LMin, · · · , LMax − 1}, λkeyL is called a breaking point if

the optimal solutions Zλ
key

L
−ε and Zλ

key

L of (41) have L+ 1
and L nonzero diagonal entries, respectively.

Theorem 3. Let Ξ
λ be the solution of (41) with ∀λ ∈[

λkeyL+1, λ
key
L

)
and L, L+1 ∈ {LMin, LMin + 1, · · · , LMax}.

Then, Zλ has also L + 1 nonzero diagonal entries and the

inequality χλ 6 χλ
key

L+1 holds.

Proof: Following the definition of the breaking point

λkeyL+1, it is easy to see that Zλ has also L + 1 nonzero

diagonal entries. If χλ > χλ
key

L+1 , recalling λkeyL+1 6 λ, then

we have (44), at the top of this page, which contradicts the

fact that Ξλ
key

L+1 is the optimal solution to problem (43) with

fixed λkeyL+1. Thus, the conclusions given in Theorem 3 are

proven.

According the definition of the breaking point and the non-

monotonic property of the system EE with respect to λ, one

shall find the values of all breaking points. Let Zλi be the

solution of problem (41) with fixed λi, i = 1, 2. Let Zλ be

the solution of problem (41) for ∀λ ∈ [λ1, λ2]. Theorem 3

implies that if Zλ1 and Zλ2 have the same number of the

nonzero diagonal entries, Zλ1 , Zλ2 , and Zλ have the same

number of the nonzero diagonal entries. Based on this result,

we propose a one-dimension dynamic interval compression

method, which is summarized in Algorithm 5, to find a suitable

sparse parameter λ and obtain the corresponding codewords.

Note that in Algorithm 5, Aλ denotes the set of the indices

of the selected virtual antennas (codewords) with fixed λ and

ϱλ is calculated as

K∑
k=1

log


1 + tr(HkXk)

K∑
l=1,l ̸=k

tr(HkXl)+σ2
k




ξ
K∑
k=1

tr (Xk) + Lλ (PRCF +MPPS + PDAC) + Psta

.

The initialization of Algorithm 5 can also be obtained by

solving (24) and letting other constraints to be activated. In

addition, λU should be large enough such that the number of

the active RF chains equals to LMin. According to Theorem 3,

if two intervals in the intervals set I have an intersection in the

intervals set I, they shall be combined into one interval, for

example [100, 150] and [150, 200] are combined to [100, 200].

Algorithm 5 RF Chain Set Generation: Part I

1: Initialize Lλ = ∅, A = ∅, Lc = 0, L0 = S, L1 = LMin,

Flag = 1.

2: Solve (43) with λL = 0, obtain Ξ
λL , LλL , and ϱ(L).

3: Let λU be a larger positive number, solve (43) with λU ,

obtain Ξ
λU , LλU , and ϱ(U).

4: Let λTemp = 0, LTemp = LλL , and I = ∅ be a set of

intervals.

5: If LλL 6 S, then L = L ∪
{(
LλL , λL

)}
, Lc = Lc +

1, L0 = LλL . Let AλL be the set of the indices of the

selected codewords, A = A ∪
{{
AλL , ϱλL

}}
.

6: If LλU 6 S, then L = L ∪
{(
LλU , λU

)}
, Lc = Lc + 1,

L1 = LλU . Let AλU be the set of the indices of the

selected codewords indices, A = A ∪
{{
AλU , ϱλU

}}
.

7: If L0 == L1 || Lc == L0 − L1 + 1, then let Flag = 0.

8: while Flag do

9: Running RF Chain Set Generation: Part II.

10: end while

C. Refined Solution for EEmax problem

Due to the introduction of the mixed ℓ1,∞-norm squared

for the selection of the RF chains in the previous subsections,

the energy efficient beamforming vector cannot be directly

extracted from the solution of (43), i.e., {Xk}. Therefore,

we need to construct the reduced-size channel hk = F̂Hhk
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Algorithm 5 RF Chains Set Generation: Part II

1: if LλL − LλU > 1 then

2: for l = 1, · · · , LλL − LλU − 1 do

3: λ = λL + λU−λL

LλL−LλU
l.

4: if λ is not in any interval of I then

5: Solve (15) with Algorithm 1 and λ, obtain Ξ
λ, Lλ,

and ϱλ.

6: if Lλ > L0 then

7: λTemp = λ, LTemp = Lλ.

8: else

9: if Lλ /∈ L then

10: L = L ∪
{(
Lλ, λ

)}
, Lc = Lc + 1.

11: Let ALλ be the set of the selected codewords

indices obtained by Ξ
λ, A = A ∪ {ALλ}.

12: else

13: Sort the entries of L in ascending order with

respect to λ.

14: Find the set of the indices T such that T ={
ι : L (ι) (1, 1) = Lλ

}
.

15: if |T | == 1 then

16: I = I ∪
{[

min(L(T (1))(1,2),λ),
max(L(T (1))(1,2),λ)

]}
,

L = L ∪
{(
Lλ, λ

)}
.

17: else if |T | == 2 then

18: I = I \
{[

L(T (1))(1,2),
L(T (2))(1,2)

]}
.

19: a = min (L (T (1)) (1, 2) , λ),
b = max (L (T (2)) (1, 2) , λ).

20: I = I ∪ {[a, b]}, L (T (1)) (1, 2) = a,

L (T (2)) (1, 2) = b.

21: end if

22: end if

23: end if

24: end if

25: end for

26: end if

27: if Lc == L0 − L1 + 1 then

28: Flag = 0
29: else

30: Sort L in ascending order with respect to λ.

31: if L0 > L (1) (1, 1) then

32: λL = λTemp, LλL = LTemp,

33: λU = L (1) (1, 2), LλU = L (1) (1, 1),
34: else

35: Index = 1, flag = 1;

36: while Index 6 |L| − 1& flag do

37: if L (Index) (1, 1) − L (Index+ 1) (1, 1) > 2
then

38: λL = L (Index) (1, 2),
LλL = L (Index) (1, 1).

39: λU = L (Index+ 1) (1, 2).
40: LλU = L (Index+ 1) (1, 1), flag = 0.

41: else

42: Index = Index+ 1,

43: end if

44: end while

45: end if

46: end if

according to the codewords selected by Algorithm 5. Thus,

the reduce-sized EEmax problem is given by

max
{gk}

K∑
k=1

Rk

ϵ
K∑
k=1

∥∥∥F̂ gk

∥∥∥
2

2
+ P ∗

dyn

, (45a)

s.t. SINRk ≥ γk, ∀k ∈ K,
K∑

k=1

∥∥∥F̂ gk

∥∥∥
2

2
≤ P, (45b)

where P
λ
key

L

dyn = Lλ
key

L (PRFC +MPPS + PDAC) + Psta.

Problem (45) can be formulated as:

max
{gk,αk,βk,φk},τ ,χ,κ

χ, (46a)

s.t.
K∑

k=1

βk > τ2,
τ2

κ
> χ, (46b)

ϵ
K∑

k=1

∥∥∥F̂ gk

∥∥∥
2

2
+ P ∗

dyn 6 κ, (46c)

(27b), (27c), (27d). (46d)

Similarly, instead of directly solving (46), we resort to solving

the following convex approximated problem

max
{gk,αk,βk,φk},τ ,χ,κ

χ, (47a)

s.t.
K∑

k=1

βk > τ2,Ψ
(I)

(τ , κ) > χ, (46c), (46d), (47b)

where I denotes the Ith iteration, and Ψ
(I)

(τ , κ) is given by

Ψ
(I)

(τ , κ) , 2
τ (I)

κ(I)
τ −

(
τ (I)

κ(I)

)2

κ (48)

Thus, problem (47) can be solved in a similar manner as

described in Algorithm 3.

VI. NUMERICAL RESULTS

In this section, we present numerical results to demonstrate

the performance of our developed RF-baseband hybrid precod-

ing design. A uniform linear array with antenna spacing equal

to a half wavelength is adopted, and the RF phase shifters

use quantized phases. The predesigned codebook F is the

DFT codebook. The propagation environment is modeled as

Ncl = 6 with Nray = 8 for each cluster with Laplacian

distributed angles of departure. For simplicity, we assume that

all clusters are of equal power, i.e., σ2
α,mp

= σ2
α, ∀mp [15].

The mean cluster angle of ϕmp
is uniformly distributed over

[−π, π), and the constant angular spread of AoD σφ is 7.5o.
PRFC = 43 mW, PPA = 20 mW, PDAC = 200 mW,

PPS = 30 mW, Pmixer = 19 mW, PBB = 300 mW, and

Pcool = 200 mW [40]. The noise power spectrum density

is σ2 = 1. For fairness, all simulated precoding designs use

the same total power constraint and the signal-to-noise ratio

is defined as SNR = 10 log10
(

P
σ2

)
. The inefficiency factor

of power amplifier ϵ is set to unit and the stop threshold is



13

ζ = 10−3. In all simulation figures, the simulated EE of the

system is given by

K∑
k=1

log2


1 +

∥hH
k F̂ gk∥22

K∑
l=1,l̸=k

∥hH
k
F̂ gl∥22+σ2




ϵ
K∑
k=1

∥∥∥F̂ gk

∥∥∥
2

2
+ P ∗

dyn

. (49)

We compare the performance of the proposed strategy to the

optimal fully digital precoder with one RF chain per antenna,

whose EE is calculated as

K∑
k=1

log2


1 +

∥hH
k gk∥22

K∑
l=1,l ̸=k

∥hH
k
gl∥22+σ2




ϵ
K∑
k=1

∥gk∥22 +M (PRFC + PDAC + PPA) + PBB + Pcool

.

(50)

In our simulation scenario, fully digital precoding denotes

using Algorithm 3 to solve the SRmax problem, where each

antenna connects with an independent RF channel at the BS.

Fully analog beamforming is achieved by selecting the best

codeword from the codebook via beam training and setting the

baseband precoder as an identity matrix with uniform power

allocation between users. OMP SRmax Hybrid Precoding uses

the orthogonal matching pursuit method [15] to obtain the RF-

baseband precoders based on the solution of the fully digital

SRmax problem.

Fig. 5 and Fig. 6 show the SR performance of various hybrid

precoding designs as well as the fully digital precoder. The

results are obtained by averaging over 1000 random channel

realizations. The target rate of the kth user is set to be zero.

Numerical results show that the proposed hybrid precoding

design achieves the highest SR among several hybrid RF-

baseband precoders. This is because the proposed hybrid

RF-baseband precoding design provides a more flexible way

to achieve the beam diversity gain. One can see that the

fully analog beamforming method results in the worst SR

performance, indicating that the inter-user interference cannot

be effectively suppressed.

Fig. 5: Sum rate comparison of various hybrid precoders and

fully digital precoder, M = N = 16, S = 4, K = 4.

Fig. 7 illustrates the change of the objective χ of (39)

versus an increasing λ for two random channel realizations.

The target rate of the kth user is set to be the rate achieved

by randomly selecting S analog codeword from codebook F

(a) M = N = 16, S = 4, K = 2

(b) M = N = 32, S = 4, K = 2

Fig. 6: Sum rate comparison of various hybrid precoders and

fully digital precoder.

and using the baseband precoder as G = P
K
υ
(K)
max (HF ).

Simulation results show that there exist indeed breaking points

of λ, i.e., the number of selected RF chains keep unchanged

within a range of λ but suddenly changes at some points. One

can observe that the number of selected RF chains decreases

with an increasing value of λ. Within a certain interval of

λ, the number of selected RF chains keep the same but the

objective χ of (39) decreases when λ increases. Table I lists

the set of the indices of the selected RF chains corresponding

to the channel realization used in Fig. 7. One can observe that

the same set of the RF chains (or codewords) are selected for

any λ ∈
[
λkeyL+1, λ

key
L

)
. This observation is consistent with the

result in Theorem 3, which has been used in Algorithm 5.

Fig. 8 and Fig. 9 illustrates the SR and EE of various

mmWave precoding designs and the fully digital precoding

design, respectively. The results are obtained by averaging

over 1000 random channel realizations. The target rate of kth

user is set to be the rate achieved by selecting randomly S
analog codeword from codebook F and defining the base-

band precoder as G = P
K
υ
(K)
max (HF ). It is observed that

using the DFT codebook in the proposed EEmax precoder

is better than using the 802.15.3c codebook in terms of the

EE performance, while the two codebooks lead to the similar

SR performance. Compared to the fully digital precoder, the

proposed SRmax/EEmax hybrid precoders have certain system

SR performance loss as the RF-baseband hybrid architecture

may not fully exploit the multi-path diversity gain. The circuit

power consumption of the hybrid architecture increases with

the number of phase shifter and the number of mixers, which

are determined by the number of transmit antennas and the

number of RF chains. Therefore, the system EE performance

of the hybrid precoding is also determined by the number

of transmit antennas and the number of RF chains. One can
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TABLE I: Examples of λ, AL, and L with M = N = 16, S = 8, K = 4, SNR = 15dB.

λ AL L EE (bits/Hz/Joule) λ AL L EE (bits/Hz/Joule)

0 3, 4, 5, 6, 7, 8, 16 7 0.8460 2.45 4, 5, 6, 8, 16 5 0.9087

0.2 3, 4, 5, 6, 7, 8, 16 7 0.8460 16.35 4, 5, 6, 8, 16 5 0.9087

.25 4, 5, 6, 7, 8, 16 6 0.8803 16.4 4, 5, 6, 16 4 0.8841

2.4 4, 5, 6, 7, 8, 16 6 0.8803 20 4, 5, 6, 16 4 0.8841

λ AL L EE (bits/Hz/Joule) λ AL L EE (bits/Hz/Joule)

0 1, 2, 3, 9, 10, 14, 15, 16 8 2.1931 1.56 1, 2, 3, 10, 15, 16 6 2.4861

0.4 1, 2, 3, 9, 10, 14, 15, 16 8 2.1931 1.58 1, 2, 3, 10, 15 5 2.6415

0.78 1, 2, 3, 9, 10, 14, 15, 16 8 2.1931 5.9 1, 2, 3, 10, 15 5 2.6415

0.8 1, 2, 3, 10, 14, 15, 16 7 2.3299 7.75 1, 2, 3, 10, 15 5 2.6415

0.9 1, 2, 3, 10, 14, 15, 16 7 2.3299 7.8 1, 3, 10, 15 4 2.7720

0.98 1, 2, 3, 10, 14, 15, 16 7 2.3299 8.8 1, 3, 10, 15 4 2.7720

1 1, 2, 3, 10, 15, 16 6 2.4861 9.8 1, 3, 10, 15 4 2.7720

1.3 1, 2, 3, 10, 15, 16 6 2.4861 − − − −

(a) Channel Realization I

(b) Channel Realization II

Fig. 7: χ versus value of λ, M = N = 16, S = 8, K = 4,

SNR = 15dB.

see that different configuration of the number of antennas, RF

chains, and users leads to different system EE performance.

For example, for the configuration of M = N = 32, S = 4,

and K = 2, the EE performance of the hybrid precoders

is better than that of the fully digital precoder. Besides, the

fully digital precoder leads to a much higher hardware cost

(M = 32 RF chains versus S = 8 RF chains), which is critical

for mmWave communication systems using GHz bandwidth

and even higher sampling rates.

VII. CONCLUSIONS

In this paper, we considered the design of the hybrid

RF-baseband precoding for the downlink of multiuser multi-

antenna systems with the aim to maximize the system SR and

the system EE. We developed a codebook based RF precoding

method and obtained the channel state information via a
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Fig. 8: EE/SR comparison of the hybrid precoders and fully

digital precoder, M = N = 32, S = 4, K = 2.

beam sweep procedure. Exploiting the codebook based design,

we simplified the complicated hybrid precoders optimization

problems to JWSPD problems. Then, efficient methods were

developed to address the JWSPD problems for maximizing

the SR and EE of the system. Finally, extensive numerical

simulation results are provided to validate the effectiveness of

the proposed hybrid precoding design.
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