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Codebook Driven Short-Term Predictor Parameter
Estimation for Speech Enhancement

Sriram Srinivasan, Student Member, IEEE, Jonas Samuelsson, and W. Bastiaan Kleijn, Fellow, IEEE

Abstract—In this paper, we present a new technique for the
estimation of short-term linear predictive parameters of speech
and noise from noisy data and their subsequent use in waveform
enhancement schemes. The method exploits a priori informa-
tion about speech and noise spectral shapes stored in trained
codebooks, parameterized as linear predictive coefficients. The
method also uses information about noise statistics estimated
from the noisy observation. Maximum-likelihood estimates of the
speech and noise short-term predictor parameters are obtained
by searching for the combination of codebook entries that opti-
mizes the likelihood. The estimation involves the computation of
the excitation variances of the speech and noise auto-regressive
models on a frame-by-frame basis, using the a priori information
and the noisy observation. The high computational complexity
resulting from a full search of the joint speech and noise code-
books is avoided through an iterative optimization procedure. We
introduce a classified noise codebook scheme that uses different
noise codebooks for different noise types. Experimental results
show that the use of a priori information and the calculation
of the instantaneous speech and noise excitation variances on a
frame-by-frame basis result in good performance in both sta-
tionary and nonstationary noise conditions.

Index Terms—Autoregressive models, codebooks, maximum-
likelihood, nonstationary noise, short-term predictor, speech
enhancement.

I. INTRODUCTION

ENHANCEMENT of speech corrupted by additive back-
ground noise is a topic of long standing interest as it has

applications in a wide range of areas. Examples of applications
include mobile communications in hostile environments, hands-
free telephony and speech recognition. Speech enhancement is
also often considered as a useful preprocessing step to improve
the performance of speech coders. We focus on single-channel
speech enhancement systems where the only available input is
the noisy speech. This is in contrast to multiple-channel systems
that have more than one microphone and thus may provide addi-
tional information about the noise statistics. Single-channel sys-
tems are relevant especially in mobile communications where it
is often not feasible to have multiple microphones due to cost
and size factors.

Manuscript received March 11, 2004; revised October 4, 2004. This work
was supported in part by the European Commission under ANITA Project IST-
2001-34327. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Maurizio Omologo.

The authors are with the Sound and Image Processing Laboratory,
Department of Signals, Sensors, and Systems, KTH Royal Institute of Tech-
nology, Stockholm 100 44, Sweden (e-mail: sriram.srinivasan@s3.kth.se;
jonas.samuelsson@s3.kth.se; bastiaan.kleijn@s3.kth.se).

Digital Object Identifier 10.1109/TSA.2005.854113

Numerous single-channel noise suppression techniques such
as Wiener filtering [1], subtractive type methods [2], [3], sub-
space based methods [4]–[6] and Kalman filtering methods [7]
have been developed. A common feature of these systems is
that they require some form of noise estimation to obtain infor-
mation about noise statistics from the noisy observation. These
estimation techniques include voice activity detection, estima-
tion from initial silence segments, and, more recently, methods
based on quantiles [8] and minimum statistics [9]. While the re-
cent noise estimation techniques are designed to perform well
even in nonstationary noise environments, performance still de-
grades with increasing nonstationarity. Methods such as those of
[9] employ a buffer of past samples and the buffer is typically of
the order of a few hundred milliseconds. A long-term estimate of
the noise power spectrum is produced based on this buffer, and
thus, performance in quickly varying noise conditions is limited
by the buffer length. The dependence on the buffer arises due to
the fact that there is no a priori information about the noise. In
this paper, we provide a framework to address this fundamental
limitation by using instantaneous estimates of speech and noise
power spectra, estimated for each segment (typically 20–30 ms
long), using a priori information about both speech and noise.
We focus on the estimation of the short-term predictor (STP)
parameters of speech and noise.

The STP parameters consist of the linear predictive (LP)
coefficients and the excitation variance, which is the variance
of the prediction error. These parameters can be used in dif-
ferent speech enhancement schemes. For example, the Kalman
filtering approach [7] uses the linear predictive coefficients
of speech and noise to form the state-space model. Other
enhancement schemes that use AR spectra include [10]–[12].
The physiology of speech production constrains the speech LP
coefficients to lie within a subset of all possible values, which
can be modeled based on long sequences of training data. Such
a priori information about the LP coefficients of speech has
been exploited successfully in speech coding using trained
codebooks [13]. The usefulness of a priori information about
noise LP coefficients in speech enhancement has been demon-
strated in hidden Markov model (HMM) based applications
[14] and in codebook-based estimation [15], [16]. Such a priori
information can be collected from a wide range of commonly
occurring noise sources. Here we use trained codebooks of
speech and noise LP coefficients for speech enhancement. In
addition to the a priori information, in this paper we also use
the long-term noise power spectral estimates obtained from the
noisy observation to provide a safety-net for noise types that
are not represented by the model.

1558-7916/$20.00 © 2006 IEEE
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Speech enhancement techniques that rely on a priori informa-
tion about the power spectrum include recursive EM [17], code-
book constrained Wiener filtering [10] and HMM based systems
[11], [14]. The method of [17] does not use a priori information
about noise and is unable to handle nonstationary colored noise.
The methods in [10], [11], [14] depend on long-term noise es-
timates (or noise estimates from speech pauses) to obtain the
speech variance or to perform model gain adaptation and hence
perform poorly in nonstationary noise. These methods are con-
sidered in greater detail in Section III.

Estimation of the excitation variances of the speech and noise
AR models on a frame-by-frame basis can play an important
role in improved speech enhancement in nonstationary noise
conditions. This dependence can be avoided if we have a priori
information about speech and noise. A solution based on this
principle was presented in [15]. The method uses two code-
books, one each for speech and noise AR spectral envelopes.
For a given noisy frame of speech, for each pair of speech and
noise entries from the respective codebooks, the excitation vari-
ances and a likelihood score are computed. The score captures
the likelihood that the observed noisy frame is generated by a
given pair of speech and noise spectral shapes, together with
their variances. The pair of codebook entries and the associ-
ated excitation variances that globally maximize the likelihood
score can then be used in an enhancement technique such as
Kalman or Wiener filtering. Since the speech and noise excita-
tion variances are estimated every frame, the method can deal
with quickly varying noise types. A schematic diagram of this
method is shown in Fig. 1. A similar approach was proposed in
[18] in a voice decomposition context using Euclidean spectral
distance to match the observed spectrum to the model spectrum
(provided by the codebooks) and is discussed in more detail in
Section III-B.

In this paper, we build upon the maximum-likelihood (ML)
approach of [15] and provide a closed-form expression for the
ML estimate of the excitation variances under certain assump-
tions. We present an iterative scheme that eliminates the need
to search through a joint codebook. The method uses both es-
timated noise information and a priori information to reduce
complexity and to achieve better performance. An interpolative
search technique further improves performance by reducing the
errors due to the limited precision of the codebooks. We also
propose a classified noise codebook scheme, where we have
multiple small noise codebooks, each trained for a particular
noise type. For each segment of noisy speech, a classification
is made and a particular noise codebook is selected, which is
then used in the joint search with the speech codebook. We show
that ML estimation of the speech and noise STP parameters is
equivalent to minimizing the Itakura–Saito distortion between
the observed and modeled noisy spectra. We also show experi-
mentally that the ML estimation provides superior performance
compared to the spectral matching using Euclidean spectral dis-
tance [18]. We provide experimental results to show that the
proposed method using instantaneous excitation variance esti-
mation performs better than the methods of [10], [14] that rely
on long-term noise estimates (or estimates obtained from speech
pauses) and the method of [17] that does not use a priori infor-
mation about noise.

Fig. 1. Estimation of excitation variances and spectral shapes: i , j are the
indexes of the selected entries from the speech and noise codebooks and � ,
� are the corresponding excitation variances.

The remainder of this paper is organized as follows. In
Section II, we describe the ML estimation of the speech and
noise short-term predictor parameters. In Section III, we com-
pare the proposed estimation to related methods to highlight
the differences. Implementation aspects are considered in
Section IV where an iterative technique to reduce computa-
tional complexity, a classified noise codebook scheme and an
interpolative search technique are described. Experiments and
results are discussed in Section V and finally, conclusions are
presented in Section VI.

II. MAXIMUM LIKELIHOOD ESTIMATION OF SHORT-TERM

PREDICTOR PARAMETERS

In this section, we consider the problem of estimating both
the speech and noise AR coefficients and the corresponding
excitation variances, using the observed noisy spectrum and
the a priori information contained in the speech and noise
codebooks. A unified ML framework for obtaining the optimal
speech and noise codebook combinations and computing the
corresponding excitation variances is developed. Consider an
additive noise model where speech and noise are independent

(1)

where , and represent the noisy speech,
clean speech and noise respectively and are considered to be
random processes. In the absence of background noise, under
Gaussianity assumptions, the probability density of the speech
samples given the LP parameters can be written as

(2)

where ,
is the vector of the AR coefficients of speech, is the
number of samples in a frame and ,
where is the lower triangular Toeplitz matrix with

as the first column and is the ex-
citation variance of the speech AR model. The codebook index
corresponding to the LP vector that maximizes the likelihood
can be written as , where

is the vector from the speech codebook.
When there is background acoustic noise, then in the absence

of any speech enhancement system, the index is simply chosen
as . If an estimate of the noise LP
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vector is available, then the ML estimate
of the clean speech LP vector given the noisy observation and
the estimated noise LP vector can be written as

(3)

where the dependence on the excitation variances is explicitly
shown. is zero-mean Gaussian with its co-
variance matrix given by , where the noise covariance
matrix is defined analogous to . Generalizing to the case
where we have a noise codebook instead of a single noise esti-
mate, the ML estimate of the speech and noise codebook entries
can be written as

(4)

If we let the frame length approach infinity, the covariance ma-
trices can be described as circulant and are diagonalized by the
Fourier transform. The logarithm of the likelihood in (4) can
then be written as [19]

(5)

where is the spectrum of the vector from the speech
codebook and is the spectrum of the vector from the
noise codebook and are given by

(6)

Combining (4) and (5), we have (7), as shown at the bottom of
the page, where is the Itakura–Saito distor-
tion between and given by [20]

(8)

Let . To com-
plete the estimation, the excitation variances that minimize

need to be determined. Assuming that the

modeling error between and is small, using a
series expansion for up to second order terms, it can be
shown that [20]

(9)

where is the log-spectral distortion be-
tween the observed noisy spectrum and the noisy spectrum
obtained from the model

(10)

Given and , the corresponding optimal excitation
variances can be determined by differentiating (10) with respect
to and , setting the result to zero and solving the resulting
set of simultaneous equations. First we simplify (10) to ensure
that the resulting equations are linear

(11)

where we used the approximation , for small ,
i.e., small modeling errors. This approximation can be made
valid by using the spectral envelope of the observed noisy
speech instead of the periodogram. Partial differentiation with
respect to and yields

where the dependency on has not been shown, to facilitate
notation. The resulting solution can be written as

(12)

(7)
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where and are given by

where .
The estimation procedure can be summarized as follows. For

each pair of speech and noise spectral shapes from the respective
codebooks, the excitation variances are calculated according to
(12) and the distortion is evaluated. Code-
book combinations that result in a negative value for either the
speech or noise excitation variance are discarded since they
are infeasible due to the nonnegativity constraints on the vari-
ances. The speech and noise power spectra globally minimizing
the distortion measure are determined. These power spectra to-
gether with the corresponding excitation variances represent the
ML estimate of the speech and noise short-term predictor pa-
rameters. We note that for each frame of noisy speech, the noise
codebook is augmented with the long-term estimate of the noise
LP vector obtained from the observation, using [9] for example.
One of the trained noise codebook entries is chosen if it pro-
vides a better representation of the underlying noise than the
long-term estimate, which is chosen otherwise. The ML esti-
mation algorithm is described in Table I.

The proposed estimation scheme can handle both quickly
changing noise envelopes and quickly changing energy. The dif-
ferent entries of the noise codebook deal with changing noise
envelopes while the instantaneous estimation of the excitation
variances handles changing noise energy. If the nonstationarity
is only due to changing energy, then a single-entry noise ’code-
book’ consisting only of the long-term noise estimate, together
with the instantaneous energy estimation can provide good per-
formance. In this case, the proposed estimation scheme uses
only the gain-normalized spectral envelope of noise from the
long-term estimate and computes the gain through an indepen-
dent optimization. In general, since the spectral envelope of the
noise can also vary, the use of a noise codebook can be expected
to further improve performance. This is indeed observed in the
experiments. We also note that the method handles inaccuracies
in the speech model during speech pauses by assigning a zero
excitation variance to speech if necessary and concentrating the
energy in the noise model.

The estimated STP parameters of speech and noise can be
used in several applications. In this paper, we focus on noise re-
duction for waveform enhancement. If repre-
sent the optimal codebook entries and excitation variances, then
the corresponding STP parameters can be used to construct a
Wiener filter for speech waveform enhancement

(13)

TABLE I
ALGORITHM FOR ML ESTIMATION OF SPEECH AND NOISE STP PARAMETERS

USING A-PRIORI INFORMATION. N , N ARE THE SPEECH AND NOISE

CODEBOOK SIZES, RESPECTIVELY

The STP parameter estimates can also be used in a Kalman filter.
Other applications where the estimated speech parameters can
be used include LP based speech coding and speech recognition.

III. DISCUSSION

In this section, we compare the proposed ML estimation
scheme to other enhancement schemes that employ a priori
information. The codebook constrained Wiener filter (CCWF)
approach of [10] is discussed in Section III-A. The spectral
matching perspective and the method of [18] are discussed
in Section III-B. This is followed by a discussion on the gain
adaptation employed by HMM based methods to highlight the
differences from the proposed instantaneous gain estimation.
We conclude this section with a discussion on the recursive
EM approach described in [17]. The performance of CCWF,
the HMM based method and the recursive EM approach is
compared to that of the proposed method through experiments
in Section V-J. Results using the method of [18] are provided
in Section V-E.

A. Codebook Constrained Wiener Filtering

In codebook constrained Wiener filtering [10], a trained code-
book of speech LP coefficients is used to provide intra-frame
constraints in an iterative Wiener filter framework. At each it-
eration an estimate of the vector of clean speech LP coeffi-
cients is obtained from the current estimate of clean speech
and is replaced by the closest (with respect to a selected dis-
tortion measure) entry from the codebook. The LP vector from
the codebook is used to construct a Wiener filter to obtain the
next estimate of clean speech. The iterations continue until con-
vergence, which is said to occur when the same codebook entry
is selected in consecutive iterations. In [10], the Itakura–Saito
distortion measure was used and it was shown that the method
converges typically within three iterations. However the method
uses long-term noise spectral estimates to obtain the initial es-
timate of clean speech. Also, the excitation variance of clean
speech is obtained in a subtractive manner using the noisy vari-
ance and the estimated noise variance. Consequently, while the
method performs well in stationary noise, performance degrades
with increasing nonstationarity. This is confirmed by the exper-
imental results in Section V-J.
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TABLE II
COMPARISON OF THE DIFFERENT ESTIMATION APPROACHES

B. Spectral Matching Perspective

In Section II, we developed the ML estimator of the speech
and noise short-term predictor parameters. It can be seen from
(7) that obtaining the ML estimate involves minimizing the
Itakura–Saito distortion between the observed noisy spec-
trum and the modeled noisy spectrum for all
codebook combinations. This leads to a spectral matching
perspective, i.e., the short-term predictor parameters can be
obtained by minimizing a spectrally based distortion measure
between the observed and modeled noisy spectra. As an alter-
native to the Itakura–Saito distortion, we can use log-spectral
distortion. The variance estimation remains identical if we
employ the assumption of small errors while the distortion
measure is given by (10). Note that we use the small error
assumption only for evaluating the excitation variances and
not while computing the distortion measure to select the best
codebook combination. The approach of Sugiyama in [18]
minimizes Euclidean spectral distance for voice decompo-
sition using AR VQs as voice models. The minimization is
actually performed in the autocorrelation domain. Both the
correlation distance and LPC cepstral distance were considered
and the former was found to result in better estimates. Since
the Fourier transform is unitary and hence preserves distance,
minimizing the correlation distance is equivalent to minimizing
Euclidean spectral distance. It is shown later in the experiments
in Section V-E that the ML approach (Itakura–Saito distor-
tion) and the log-spectral distortion based estimators exhibit
noticeably superior performance compared to the method
of [18]. The method described in [15] also optimizes the
log-likelihood in the codebook search. The variance estimation
however minimizes a modified Euclidean spectral distance

,
resulting in a mismatch between the criterion used in the
variance estimation and the criterion (log-likelihood) used in
the global search to obtain the speech and noise codebook
entries. By using the small error assumption, the unified ML
approach presented in this paper avoids this mismatch. Table II
compares the different alternatives from the spectral matching
perspective.

C. Comparison to Gain-Adapted HMM Schemes

HMM based speech enhancement methods obtain an estimate
of the clean speech signal using Gaussian AR HMMs for both
the clean signal and the noise. As mentioned earlier, both the
LP coefficients and the excitation variance (gain) are consid-
ered as a priori information [21]. This naturally leads to a mis-
match in the gain term during training and testing. Thus, some

form of gain adaptation is essential. For the MAP estimation de-
scribed in [21], gain-normalized HMMs are trained for the clean
speech signal. Let , where denotes the param-
eter set for the gain-normalized HMM for the clean signal and

denotes the parameter set for the noise HMM. At time in-
stant , gain-adapted MAP signal estimation is then performed
according to

(14)

where is the vector of clean speech samples at time (cor-
responding to a single frame), is the sequence of vectors of
noisy samples up to time , is the gain contour of the speech
model and is the joint pdf of and , given the
gain contour and the complete parameter set . It is impor-
tant to note that is optimized based on the noisy observation
and the parameter set of the noise model. Since the noise model
is obtained either during speech pauses or from long-term esti-
mates [21], [14], this form of gain adaptation still suffers from
poor performance in nonstationary noise. A similar gain adapta-
tion is performed for the MMSE estimator, whose performance
is compared to the proposed instantaneous estimation scheme
in Section V-J.

D. Comparison to Recursive EM

A recursive procedure for estimating channel distortion and
additive noise statistics for speech recognition is described in
[17]. The method is based on the batch EM algorithm described
in [22] and is modified to obtain parameter estimates on a
frame-by-frame basis to operate in nonstationary environments.
The pdf of the clean speech spectral vector is modeled by a
Gaussian mixture model (GMM) with components having
zero mean and diagonal covariance matrices. The clean speech
GMM parameters are obtained using a training database. The
noise parameters consist of the correlation coefficients up to
lag , from which the noise spectrum is obtained. No a priori
information about noise is used. A frequency domain objective
function is formulated and the noise parameters are identified
as those that optimize the objective function. If denotes the
vector of noise correlation coefficients for the frame and

, the recursive update can be written as

(15)

where is the step size, and are esti-
mates of the first and second derivatives of the objective function

, and are obtained recursively using estimates
from the previous and the current frame.
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For white noise, is a scalar (the variance) and only one un-
known parameter needs to be estimated. In this case, the re-
cursive update tracks nonstationarities in the noise level well.
However as the number of unknown parameters increases (for
colored noise), the recursion is unable to track changes on a
frame-by-frame basis. The batch EM algorithm [22] uses the en-
tire data to obtain noise estimates and was shown to track noise
generated by an AR(2) process. In the recursive version where
instantaneous estimates are produced, performance is observed
to be poor for colored noise (cf. Section V-J). The method pro-
posed in this paper overcomes this drawback by using a priori
information about noise. In particular, for nonstationary colored
noise such as the two-tone siren noise and the highway noise
considered in the experiments (Section V-J), the recursive EM
method is unable to track the rapid changes in the spectral shape
of noise. This is a clear example where using a priori informa-
tion about noise provides significant gains in performance.

As with other methods that incorporate the variances into the
trained model, a drawback with the recursive EM technique is
the need for gain adaptation to compensate for the mismatch in
the gain during training and testing. We emphasize again that
gain adaptation is required regardless of whether the noise is
stationary or not. Even for stationary noise, gain adaption is re-
quired to match the gain in the trained speech model to the test
case. In the HMM based methods, it was possible to adapt the
speech model gain based on the noise estimate and the noisy
observation. In the recursive estimation approach of [17], such
a scheme is not possible since no independent noise estimates
are available. By separating the gain term from the codebooks,
we avoid the need for such adaptation in our method.

IV. IMPLEMENTATION ASPECTS

In this section, we discuss modifications to the codebook-
based ML estimation scheme that aim to reduce computational
complexity and improve performance. We first present an itera-
tive parameter estimation scheme in Section IV-A that addresses
the high computational complexity of the joint speech-noise
codebook search. This is followed by a description of a clas-
sified noise codebook scheme in Section IV-B. Finally, an in-
terpolation scheme that addresses the limited precision of the
speech codebook is presented in Section IV-C.

A. Iterative Parameter Estimation

In the first step, the long-term estimate of the spectral shape
of noise is obtained for example using the minimum statistics
approach [9]. This estimate is used to search through the speech
codebook to obtain the ML estimate of the speech spectral
shape. The search involves calculating the excitation variances
according to (12) and evaluating (8) for each speech codebook
entry. The optimal speech spectral shape that results from this
search is now used to find the best noise spectral shape from
the noise codebook.

The iterative procedure of alternately finding the optimal
speech and noise codebook entries and the associated variances
continues until convergence. Convergence is said to occur
when there is no improvement in the distortion measure used
in the search. It may happen at the first step of the iteration

TABLE III
ITERATIVE SEARCH ALGORITHM

that the long-term estimate obtained from the observation is
better than all entries in the noise codebook. In this case, the
iterative procedure is terminated immediately. Each iteration
does not increase the value of the chosen distortion measure.
This, together with the fact that the codebooks are of finite size,
guarantees convergence. The complete algorithm is presented
in Table III.

A large reduction in complexity results from not having a
joint search through both codebooks. Consequently, it is pos-
sible to increase the size of the codebooks to provide better
signal representation. We note that the iterative scheme may
converge to a local optimum. This can be overcome to some
extent by selecting at each stage the best entries from the
speech (noise) codebooks instead of just one. We refer to these

best entries as a subset.
It is possible that the iterative procedure continues until the

search complexity (number of codebook combinations consid-
ered) is equivalent to that of a full search of the joint code-
book. However, in practice, convergence was found to occur
quite early in the iterative procedure. Often, convergence oc-
curred within a single iteration. This is discussed in more detail
in Section V-F. To see the reduction in complexity due to the it-
erative method, let , denote the number of entries in the
speech and noise codebooks respectively, let , be the
cardinality of the speech and noise subsets, and let denote
the number of iterations. The noniterative technique requires
searching through combinations of codebook entries.
The number of searches for the iterative method is

since the speech codebook is generally
larger than the noise codebook. Thus, the new method provides
a reduction in complexity by a factor .

B. Classified Noise Codebooks

The use of a noise codebook and instantaneous estimation
of speech and noise excitation variances provides good perfor-
mance in highly nonstationary noise conditions [16]. Choosing
an appropriate noise codebook size is critical. If the noise code-
book is too small, it may not result in an accurate description
of the observed noise. On the other hand, with increasing noise
codebook size and multiple noise sources, we obtain a very gen-
eral description of the noise parameter space, which nullifies
the advantage of a restricted parameter space provided by the
a priori information. A similar behavior has also been observed
in the HMM based method described in [14], where the authors
observe that training a single large noise HMM with various
noise types not only increases computational complexity but
also degrades performance by introducing more sources of error.



SRINIVASAN et al.: CODEBOOK DRIVEN SHORT-TERM PREDICTOR PARAMETER ESTIMATION 169

In our context, for a sufficiently large noise codebook trained on
various noise sources, it is possible that several pairs of vectors
from the speech and noise codebooks provide a good fit to the
observed noisy spectrum resulting in ambiguity. In such a situ-
ation, the speech and noise codebook entries that maximize the
likelihood score may no longer be the speech and noise code-
book entries that represent the underlying speech and noise data.
This is related to the uniqueness of the solution [15].

To address these issues, we propose a classified noise code-
book scheme, where we have multiple small noise codebooks,
each trained for a particular noise type. We first obtain a
long-term estimate of the noise spectrum using the minimum
statistics approach [9], which corresponds to an estimate ob-
tained from multiple past frames. We denote this long-term
estimate as . For each segment of noisy speech, a classi-
fication is made using this long-term estimate and a particular
noise codebook is chosen. The selected noise codebook is
then used in the subsequent ML search. Thus, the parameter
estimation can be viewed as a two-step process. In the first
step, a single noise codebook is selected from a set of noise
codebooks. The long-term estimate is used to select a
particular codebook. The speech codebook does not figure in
this step. The second step corresponds to the regular codebook
search outlined in Section II using the speech codebook and
the selected noise codebook. We note that the selected noise
codebook is augmented with the long-term estimate
obtained from the noisy observation using [9] to provide ro-
bustness to noise sources not adequately represented in the
pre-trained codebooks.

To perform the classification, we consider each noise code-
book as a Gaussian mixture model, with equal weights for all the
mixture components. The mixture (codebook) that results in the
highest likelihood for the current observation frame is chosen as
the codebook for the current segment. The resulting ML classi-
fier can be written as

(16)

where is the vector of noise samples, is the vector
in the noise codebook, is the size of the codebook
and is the number of noise codebooks. To obtain , we
use the equivalence of the log-likelihood and the Itakura–Saito
measure so that (16) can be equivalently written as

(17)

where is the Itakura–Saito measure and is the
spectrum corresponding to .

In (16), can be interpreted as the
mean of the likelihoods corresponding to each codevector in the

noise codebook. If a noise codebook contains codevectors
that are very different from each other, as is the case with a
two-tone siren noise for instance, the likelihood of the individual
codebook vectors may vary strongly. Thus, the mean codebook
likelihood may be low even when a single codevector results in
a high likelihood. As a result, the classifier given by (17) may
fail. Motivated by the above theory, an alternate classification

Fig. 2. Classified noise codebook scheme. Using noise information estimated
from the noisy observation, a single noise codebook is chosen, which is used in
the subsequent ML search. i , j are the indexes of the selected entries from
the speech and noise codebooks and � , � are the corresponding excitation
variances.

technique is to consider the maximum of the likelihood of the
codevectors instead of the mean. The corresponding classifier is
given by

(18)
We use the classifier given by (18) in the experiments. Fig. 2 pro-
vides a schematic diagram of the classified scheme. We note that
though the classification is performed using long-term noise es-
timates, the different entries in the codebook permit variations in
the spectral shape. What the classified scheme cannot handle in-
stantaneously is when the distribution (pdf) of the noise (consid-
ering only the spectral shape) varies rapidly since the long-term
estimate cannot adapt immediately. However, in most practical
situations, the noise distribution does not change rapidly.

Since we have one codebook for each noise type, good de-
scriptions of the noise sources can be obtained while the ambi-
guity mentioned earlier is avoided. A similar classified scheme
is used in [14] in the context of HMM based enhancement using
multiple noise HMMs. In [14], a single noise HMM is selected
during periods of nonspeech activity. The selected noise HMM
is used until the next occurrence of nonspeech activity when
a new selection is made. In the classified scheme proposed in
this paper, we perform a classification for each frame of noisy
speech using the long-term estimate of the noise obtained from
the observation. As mentioned earlier, another important differ-
ence is that in the method proposed here, the excitation vari-
ances are computed for each frame. In [14], the noise excita-
tion variance of the different components of the selected noise
HMM, which is part of the a priori information, is scaled by a
gain factor only when a new selection is made during nonspeech
activity.

C. Interpolation Scheme

An important feature of the proposed method using a priori
information is that the estimated clean speech LP vector is pro-
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TABLE IV
INTERPOLATIVE SEARCH

duced from a codebook trained with speech data and is hence
guaranteed to posses speech-like properties. For a given code-
book size, performance can be improved if, while retaining the
advantage due to a priori information, we can reduce the er-
rors resulting from the limited precision of the codebooks. Per-
forming an interpolative search is a natural way to achieve im-
proved performance. Given two centroids from the codebook,
we generate a set of points between the centroids and search for
the point in the set that maximizes the likelihood. The starting
point is the centroid that was selected as the ML estimate. Per-
forming an interpolation along the lines between the ML cen-
troid and each of its neighbors ensures that we reach a point
that results in a likelihood not smaller than the codebook-based
ML value. We define the nearest neighbor of a centroid as the
codebook entry with the smallest Itakura–Saito distortion to the
centroid. The set of interpolation points is referred to as the in-
terpolation codebook.

In higher dimensions, the number of neighbors becomes very
large and this is the case with a codebook of speech LP coeffi-
cients. As an approximation, the search can be performed using

nearest neighbors of the codebook-based ML estimate where
is related to the intrinsic dimensionality of the speech data

and can be determined empirically. For a given speech code-
book, the nearest neighbors of each centroid are pre-com-
puted and stored in a table. The search is described in Table IV.

Since the interpolation is always between two vectors from
the speech codebook, the interpolation codebook consists of
LP vectors that are speech-like. The interpolation scheme pre-
sented here is different from the one discussed in [23], which
is an MMSE estimation of the STP parameters from a fixed
set of trained (including the excitation variance) STP parame-
ters. Here, we dynamically generate the interpolation codebook
based on the vector selected from the fixed codebook and per-
form instantaneous variance estimation.

V. EXPERIMENTS AND RESULTS

We begin this section with a description of the objective mea-
sures of speech quality that we use and the experimental setup.
This is followed by a description of a number of experiments
to evaluate the performance of various aspects of the code-
book-based enhancement system. Experiments were conducted
to compare the performance of the ML (Itakura–Saito based)
parameter estimator, log-spectral distortion and Euclidean
spectral distance based estimators. Other experiments include
determination of the noise codebook size and evaluation of

the iterative search, the classified noise codebook scheme and
the interpolation method. We also compare the performance of
the proposed system to the HMM based system described in
[14], the codebook constrained Wiener filtering described in
[10] and the recursive EM method of [17]. Finally, the param-
eters obtained from the codebook-based parameter estimation
scheme presented here are used in the noise suppression system
of the enhanced variable rate codec (EVRC-NS) [24] and the
resulting enhanced speech is compared to the output of the
regular EVRC-NS through listening tests.

A. Objective Quality Measures

The objective measures of speech quality used were signal-to-
noise ratio (SNR), segmental signal-to-noise ratio (SSNR) and
mean log-spectral distortion (SD). The SNR (in decibels) for an
utterance was computed as

(19)

where is the modified (noisy or enhanced) speech and
is the number of samples in the utterance. The SSNR was com-
puted as the average of the SNR for each frame (20 ms) in the
utterance. For the frame, the instantaneous SD between the
clean speech AR envelope and the AR envelope of the
processed signal was computed as

The SD for an utterance was computed as the average of the in-
stantaneous SD for the individual frames. A tenth order LP anal-
ysis was performed to obtain the AR envelopes. Frames whose
average energy was 40 dB below the long-term average energy
of the utterance were excluded in the computation of SSNR
and SD [25]. We also used the Perceptual Evaluation of Speech
Quality (PESQ) [26], an ITU recommendation that has been re-
ported to have a high correlation to subjective quality.

B. Experimental Setup

A 10-bit speech codebook of linear predictive coefficients of
dimension 10 was trained using the generalized Lloyd algo-
rithm (GLA) [27] with 10 minutes of speech from the TIMIT
database [28] using the Itakura–Saito measure. The sampling
frequency was 8000 Hz. A frame length of 240 samples with
50% overlap was used. The frames were windowed using a
Hanning window. The test set consisted of ten speech utterances,
five male and five female, not included in the training. Exper-
iments were conducted for noisy speech at 10 dB input SNR
for highway noise (obtained by recording noise on a freeway as
perceived by a pedestrian standing at a fixed point), siren noise
(a two-tone siren recorded inside an emergency vehicle), speech
babble noise (from Noisex-92) and white Gaussian noise. The
highway noise captures the sound of vehicles approaching the
listener and moving away and is thus nonstationary. The siren
noise is nonstationary since it switches periodically between
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Fig. 3. Segmental SNR values for varying number of noise codebook entries. The zero-entry codebook corresponds to using noise information estimated from
the observation only (no a priori information). (a) Highway. (b) White. (c) Babble. (d) Siren.

Fig. 4. Estimation of noise excitation variances for White-NS at 10 dB input
SNR: true values (solid), ML estimate (dotted) and long-term estimate (dashed).

two tones that have distinct spectral shapes. An artificial
nonstationary white noise (White-NS) was also used and was
generated by alternating the variance of white Gaussian noise
every 500 ms between and (see Fig. 4). The noise
codebooks were trained using the GLA algorithm with two
minutes of training data. The noise samples used in the training
and testing were different. The objective quality measures for
the noisy input at 10 dB SNR are provided in Table V.

Enhanced speech was obtained by applying the Wiener filter
(13) to the noisy speech, without any perceptual tuning. Evalua-
tion of the objective quality measures on the resulting enhanced
speech provides a framework to study the performance of each
feature of the proposed parameter estimation scheme. We note
that the output of the Wiener filter is not free from residual noise,

TABLE V
SSNR, SD (BOTH IN dB) AND PESQ (MOS SCORE) VALUES AVERAGED OVER

TEN UTTERANCES AT 10 dB INPUT SNR FOR THE NOISY INPUT

which can be reduced through careful tuning. In a later section
we provide subjective results when using our parameter esti-
mates in the noise suppression system of the enhanced variable
rate codec [24], which is a well-tuned system.

C. Envelope Versus Periodogram

To evaluate the excitation variances of speech and noise using
(12), we require the observed noisy power spectrum. The model
spectrum based on the speech and noise codebooks provides the
spectral envelope. Trying to fit the DFT-based periodogram to
the model-based smooth envelope violates the assumption of
small errors, resulting in incorrect excitation variances. So we
use the envelope of the observed noisy speech instead of the
DFT-based periodogram. One way to obtain the envelope is to
use the AR-spectrum given by

(20)

where are the order- AR-coefficients of the noisy signal
and is the corresponding excitation variance.



172 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 1, JANUARY 2006

TABLE VI
SSNR, SD (BOTH IN dB) AND PESQ (MOS SCORE) VALUES AVERAGED OVER TEN UTTERANCES AT 10 dB INPUT SNR FOR THE LS AND

ML BASED ESTIMATORS, THE LOG-LIKELIHOOD (LL) APPROACH OF [15], THE SQUARED EUCLIDEAN SPECTRAL DISTANCE (ES) BASED

ESTIMATOR [18] AND WIENER FILTERING BASED ON LONG-TERM NOISE ESTIMATES (LT)

D. Noise Codebook Size

For the highway, white, babble and siren noise considered
here, experiments were conducted to choose the best noise code-
book size. For each noise type, the codebook-based parameter
estimation was performed using noise codebooks of varying
sizes. We present the results for the ML estimator. To focus on
the effect of the noise codebook size alone, a full search of the
speech and noise codebook was performed, instead of the it-
erative search. Also, for each noise type, the appropriate noise
codebook was used, i.e., we assumed ideal classification. For
highway and white noise, the noise LP order was 6. For babble
noise, which is speech like, the LP order was 10. For siren noise,
which typically exhibits strong harmonics, the LP order was 16.
It was observed that objective measures such as the segmental
SNR values of the enhanced speech increased up to a certain
noise codebook size, after which they began to decrease. The
initial increase in segmental SNR with codebook size is intu-
itive since small codebooks do not adequately describe the noise
spectral shapes. The decrease can be attributed to the fact that
with increasing size the ambiguity discussed in Section IV-B
begins to play a role.

Fig. 3 shows the segmental SNR values for the different noise
types, as a function of the number of noise codebook entries.
The speech codebook size was fixed at 10 bits. For each frame,
the noise codebooks were augmented with the long-term noise
information estimated from the noisy observation using [9].
Also shown in the figure is the result for the case where the noise
codebook consists of only the long-term noise information.
This is denoted in the figure by a codebook with 0 entries. It
can be seen that for all noise types, using a priori information is
better than just using the long-term noise information estimated
from the observation. This is consistent with the observations
made in Section II. As expected, there is a large gain due to
the a priori information for siren noise, which is nonstationary.
A similar trend was observed with the other objective quality
measures. Based on these results, codebook sizes of 4, 8, 16,
and 2 entries were found to be optimal for highway, white,
babble, and siren noise respectively. The real-world siren noise
considered here consists of two tones, and thus two codebook
entries were sufficient. These codebook sizes are used in the rest
of the experiments. For these codebook sizes, the percentage
of frames for which a noise codebook entry was preferred over
the long-term noise estimate was 71%, 95%, 94%, and 98% for
highway, white, babble and siren noise, respectively.

E. Performance of the Different Estimators

In this section, we compare the performance of the four dif-
ferent estimators listed in Table II. The noise codebook sizes
were those of Section V-D. For each noise type, we used the
appropriate noise codebook, i.e., we assumed an ideal classifier.
Results with the classified scheme are presented in Section V-G.
We used a full search of the speech and noise codebooks instead
of the iterative search. This allows us to focus on the perfor-
mance of the estimators. The estimated parameters were used
in the Wiener filter (13). Table VI shows the SSNR, the SD and
the PESQ scores for the different estimators. Also shown are the
values obtained using a Wiener filter (implemented according
to [1]) with long-term (LT) estimates of the noise spectrum ob-
tained from [9] only. It can be seen that the ML estimator (using
Itakura–Saito distortion) results in better performance than all
the other estimators. The LS, ML and LL estimators all per-
form better than the ES estimator suggesting that spectral mea-
sures in the log domain are better. They also perform better than
Wiener filtering with long-term noise estimates. For stationary
white noise, using long-term estimates performs as well as the
ML estimator, which is expected since there is no added ad-
vantage due to the frame-by-frame variance calculation in sta-
tionary noise environments. For the nonstationary noise types
such as highway noise, siren noise and white-NS, the estima-
tors proposed in this paper have a significant advantage. Fig. 4
provides a plot of the ML estimate and the long-term estimate
of the noise excitation variance for white-NS. It can be seen that
the ML estimator tracks the nonstationarity instantaneously. We
use the ML based estimator in the experiments that follow.

F. Evaluation of the Iterative Scheme

To see that the iterative scheme does not result in loss of per-
formance compared to a full search of the speech and noise
codebooks, experiments were conducted with and without the
iterative scheme. For each noise type, we used the appropriate
noise codebook, i.e., we assumed an ideal classifier. Siren noise
and highway noise were excluded from this test as their noise
codebook contain only two and four entries respectively. The
speech and noise subset sizes were fixed at 2 entries. It was ob-
served that the iterative scheme converged within two iterations
in most cases as shown in Table VII. Table VIII compares the
performance of the iterative scheme to the full search. It can be
seen that there is no significant loss in performance due to the it-
erative scheme. For nonstationary noise sources such as babble
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TABLE VII
PERCENTAGE OF FRAMES WITH CONVERGENCE OCCURRING AFTER 1, 2 AND 3

ITERATIONS FOR A SUBSET SIZE OF 2 FOR BOTH SPEECH AND NOISE

TABLE VIII
SSNR, SD (BOTH IN dB) AND PESQ (MOS SCORE) VALUES AVERAGED

OVER TEN UTTERANCES AT 10 dB INPUT SNR FOR THE ITERATIVE

(ITER) AND FULL SEARCH (FS) SETUPS

noise which require a codebook with several entries, the itera-
tive scheme results in a significant reduction in computational
complexity.

G. Evaluation of the Classified Scheme

To evaluate the advantage due to the classified scheme, noisy
speech at 10 dB input SNR was processed by the codebook
based enhancement system with and without classified noise
codebooks. We used a full search of the speech and noise code-
books instead of the iterative search. This allows us to focus on
the performance of the classified scheme. Four different noise
types were considered: highway, white, babble and siren noise.
In the classified scheme, four separate noise codebooks, one for
each noise type, were used together with the classifier (18). The
same codebook was used for both the stationary and nonsta-
tionary white noise types. The noise LP order was 6 for highway
and white noise, 10 for babble noise, and 16 for siren noise. In
the unclassified setup, a single noise codebook was formed by
concatenating the individual noise codebooks. Enhanced speech
was obtained by applying the Wiener filter to the noisy speech.
The classifier given by (18) performed better than the classifier
in (16) and was used in the experiments.

It can be seen from Table IX that the classified scheme results
in improved performance compared to a single noise codebook.
In the unclassified scheme, it was found that sometimes entries
from the concatenated noise codebook that did not correspond
to the actual noise type were selected. We note that along with
the improvement in performance, there is also a reduction in
computational complexity due to the small size of the individual
noise codebooks. The experiments to evaluate the ML-based es-
timator in Section V-E and the experiments with the classified
codebooks in this section use the same noise codebook sizes.
The slight difference in performance is explained by the fact
that in Section V-E we assumed an ideal classifier whereas we
perform the actual classification here. It is also possible that
for some noise types (such as babble noise here), the classified
scheme results in slightly improved performance compared to
using an ideal classifier since there is a greater choice of code-
books and thus it is possible in certain frames that a different
codebook contains a better representation of the noise.

TABLE IX
SSNR, SD (BOTH IN dB) AND PESQ (MOS SCORE) VALUES AVERAGED

OVER TEN UTTERANCES AT 10 dB INPUT SNR FOR THE CLASSIFIED

(C) AND NON-CLASSIFIED (NC) SETUPS

TABLE X
SSNR, SD (BOTH IN dB) AND PESQ (MOS SCORE) VALUES AVERAGED OVER

TEN UTTERANCES AT 10 dB INPUT SNR FOR THE CASES WITH ALL NOISE

CODEBOOKS (CB), WITHOUT THE CODEBOOK FOR THE NOISE TYPE IN

QUESTION (NCB) AND A SINGLE CODEBOOK OF SIZE 0 (CB-0)

TABLE XI
SSNR, SD (BOTH IN dB) AND PESQ (MOS SCORE) VALUES AVERAGED OVER

TEN UTTERANCES AT 10 dB INPUT SNR WITH (I) AND WITHOUT (NI)
INTERPOLATION AND USING A 11-BIT SPEECH CODEBOOK (CB-11)

H. Robustness to Noise Types

Experiments were performed to evaluate the robustness of the
estimation scheme to noise types not represented in the code-
books. For each of the noise types considered here, the noise
codebook trained on that type was excluded in the experiment,
for e.g., for highway noise, the classified scheme was run using
codebooks for babble, white and siren noise. Results are pre-
sented in Table X in the column NCB. We also provide the re-
sults for the case (column CB-0) where for each frame the noise
codebook consists of only the long-term noise estimate for that
frame (codebook of size 0 in Section V-D). This represents the
case where the method does not get ‘confused’ with the wrong
noise types.

Several conclusions can be drawn from Table Section V-D.
First, the importance of using noise codebooks (column CB
in the table) is reiterated. Second, for the nonstationary noise
types, NCB performs better than LT in Table VI suggesting
that the proposed ML estimation of the STP parameters fol-
lowed by Wiener filtering is better than simple Wiener filtering
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TABLE XII
SSNR, SD (BOTH IN dB) AND PESQ (MOS SCORE) VALUES AVERAGED OVER TEN UTTERANCES AT 10 dB INPUT SNR FOR THE

PROPOSED SYSTEM WITH CLASSIFICATION AND INTERPOLATION (CI), THE HMM BASED SYSTEM, THE CODEBOOK-CONSTRAINED

WIENER FILTER APPROACH (CCWF) AND THE RECURSIVE EM METHOD (REM)

* These results were obtained by using the update equations tailored for the white noise case, i.e., where the only
unknown parameter to be estimated was the variance. Using the general form with higher AR model orders resulted
in worse values.

using the long-term noise estimate even when the noise is not
adequately represented in the codebooks. Third, there is some
loss in performance due to ambiguity between the long-term
noise estimate and entries in the noise codebooks (comparing
NCB to CB-0). The above mentioned ambiguity and the de-
pendence on long-term estimates for robustness to new noise
types is the price we pay for the improved performance in non-
stationary noise environments, attained by using a priori noise
information.

I. Evaluation of the Interpolation Scheme

Experiments were performed with and without interpolation
using a 10-bit speech codebook to evaluate the performance gain
due to the interpolation scheme. The size of the interpolation
codebook was 100 entries. We perform the interpolation in the
line spectral frequency (LSF) domain. To focus on the gain due
to interpolation alone, we use a full search of the speech and
noise codebooks and assume an ideal classifier, i.e., we use the
appropriate noise codebook for each noise type. Experiments
were also conducted using a 11-bit speech codebook without
interpolation to study the advantage due to interpolation in a
10-bit codebook. As expected, it can be seen from Table XI that
interpolation results in an improvement in SD values, due to the
increased precision in the representation of the speech LP coeffi-
cients compared to not using interpolation. An interesting obser-
vation is that interpolation results in SD values that are similar
or better than those obtained using a 11-bit speech codebook.
Thus, interpolation provides good performance while reducing
computational complexity.

J. Comparison to Related Systems

The codebook-constrained Wiener filter (CCWF) method
[10], the HMM based enhancement system presented in [14]
and the recursive EM method (REM) [17] were implemented
for comparison. The minimum statistics approach [9] was used
for obtaining the long-term noise spectral estimates for use in
CCWF. We use the 10-bit speech codebook from the previous
experiments. For the HMM based system, as suggested in [14],
the speech model had five states with five mixture components
in each state. For each of the noise types considered here,
separate noise HMMs were trained. The noise HMMs had three
states with three mixture components in each state as in [14].

The training data used to train the speech codebook was used
to train the HMM as well. During periods of speech inactivity,
the Viterbi algorithm was performed on the noise data, and the
noise HMM resulting in the highest likelihood was selected.
The model gain adaptation was performed as described in [14].
We compare the CCWF method, the HMM system and the
REM technique to the proposed system with classified noise
codebooks and interpolation.

It can be seen from Table XII that the proposed method per-
forms better than the HMM based system for the nonstationary
noise types. As mentioned earlier, the instantaneous variance
calculation on a frame-by-frame basis plays an important role
in improving performance. The HMM based methods cannot be
modified in a straight-forward manner to include instantaneous
variance calculation. For stationary white Gaussian noise, in-
stantaneous variance calculation does not result in any added
advantage and the HMM based method performs well.

The proposed method also outperforms CCWF for the non-
stationary noise types. CCWF has a higher SSNR for babble
noise and white noise. The higher SSNR can be attributed to an
overall stronger attenuation by CCWF. However this was ob-
served to have an adverse effect on low energy speech segments.
SD and PESQ values are worse for CCWF for all noise types.

The proposed method clearly outperforms REM for the non-
stationary colored noise types. As discussed before, estimation
accuracy of REM drops with an increase in the number of un-
known parameters. The method was found to perform well when
tracking only the variance of white noise. The general colored
noise version of REM (with higher AR order) resulted in poor
estimates when applied to white noise. By using a priori infor-
mation about the spectral shape of noise, the proposed method
is able to provide good performance in both white and colored
noise.

We note that the objective measures of the proposed method
with classification and interpolation differ only slightly from
those presented in Section V-I where the system included in-
terpolation but assumed an ideal classifier.

K. Evaluation of Perceptual Quality

The parameter estimation described in this paper can be
incorporated in several state of the art speech enhancement
systems. In this work, we use the parameter estimates in the
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TABLE XIII
PREFERENCE FOR PROPOSED METHOD AVERAGED OVER ALL LISTENERS.

TEN UTTERANCES HAVING AN INPUT SNR OF 10 dB
WERE USED FOR EACH NOISE TYPE

noise suppression system of the enhanced variable rate codec
(EVRC-NS) [24]. We use the proposed system with classified
noise codebooks and interpolation. The EVRC-NS requires
estimates of the background noise and contains mechanisms to
update the background noise estimates based on the observed
noisy input. Here, we use the noise estimates obtained from
the classified noise codebook scheme. The EVRC-NS is a
frequency domain technique and frequency bins in the noisy
spectrum are grouped together to obtain 16 channels. A fre-
quency dependent gain factor is applied to each bin to obtain the
enhanced spectrum. In our implementation, since we work with
AR-spectra that do not contain the fine structure, this grouping
is not necessary and we retain the individual frequency bins.
For computing the frequency dependent gain factor, instead of
the noisy power spectrum, we use the modeled noisy power
spectrum obtained from the classified noise codebook scheme.
For the estimate of the background noise spectrum for each
frame, we use , where is the
noise spectrum corresponding to the noise codebook entry
selected for that frame and is the corresponding excitation
variance.

For consistency with our parameter estimation technique, we
use a frame length of 240 samples with 50% overlap. The frames
were windowed using a Hann window. The rest of the pro-
cessing is the same as in [24]. The observed noisy spectrum is
modified by the frequency dependent gain factor and is trans-
formed back to the time domain to obtain the enhanced speech.
The regular EVRC-NS used in the comparison was run without
any modifications as described in [24]. We focus only on the en-
hancement system and do not perform the encoding/decoding
operation.

AB listening tests were conducted to evaluate the perfor-
mance of the proposed method. The number of listeners was
10. Enhanced speech obtained using the regular EVRC-NS
was compared to the enhanced speech obtained using the
EVRC-NS with the codebook-based parameter estimates. The
noisy speech had a 10 dB input SNR. The methods were eval-
uated in pairwise comparisons on each of the noisy utterances.
To eliminate any biasing due to the order of the algorithms
within a pair, each pair of enhanced utterances was presented
twice, with the order switched. It can be seen from Table XIII
that there is a strong preference for the proposed method for
the highway, babble, siren and nonstationary white noise. As
expected, there is only a slight advantage for white noise which
is stationary, and thus its parameters can be well estimated
using conventional noise estimation techniques.

VI. CONCLUSIONS

We have presented a new technique to estimate the AR spectra
of speech and noise for use in speech enhancement. We use

a priori information about both speech and noise parameter-
ized as LP coefficients. We derived ML estimates of the speech
and noise codebook entries and their excitation variances. A key
feature of the proposed method is that the excitation variances
of the AR models are computed for each observation frame,
thus enabling the method to work well in nonstationary noise.
It was seen that the ML estimation can be viewed from a spec-
tral matching perspective that allows us to compute the short-
term predictor parameters by minimizing a distortion measure
(Itakura–Saito for the ML case) between the observed noisy
spectrum and the a priori information based model spectrum.
It was shown that using the Itakura–Saito measure resulted in
better performance compared to using other spectral measures,
in particular the Euclidean spectral distance as in [18]. In addi-
tion to a priori noise information, the proposed method also uses
long-term noise information estimated from the noisy observa-
tion, which serves as a safety-net for noise types not represented
in the codebooks. The iterative search technique addresses the
computational complexity arising due to the joint search of the
speech and noise codebooks. The use of a classified noise code-
book scheme results in a scalable system, reduces computational
complexity and improves performance by reducing ambiguity.
The scalability lies in the fact that in order to incorporate a priori
information about a new noise source, we only need to add the
appropriate codebook. Such a priori information can be col-
lected from a wide range of commonly occurring noise sources.
Experiments show that the proposed method performs well re-
sulting in significant noise suppression. The estimates of the
speech and noise spectra obtained from the method can be used
in several state-of-the-art speech enhancement systems. In this
work, we used these estimates in the noise suppression system
of the enhanced variable rate codec [24]. Results from AB lis-
tening tests confirm the superior performance of the proposed
method. Future work will focus on obtaining codebook-based
maximum a-posteriori and minimum mean-squared error esti-
mates with instantaneous excitation variance estimation.
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