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Abstract—Video content is routinely acquired and distributed
in digital compressed format. In many cases, the same video
content is encoded multiple times. This is the typical scenario
that arises when a video, originally encoded directly by the
acquisition device, is then re-encoded, either after an editing
operation, or when uploaded to a sharing website. The analysis
of the bitstream reveals details of the last compression step (i.e.,
the codec adopted and the corresponding encoding parameters),
while masking the previous compression history. Therefore, in
this paper we consider a processing chain of two coding steps,
and we propose a method that exploits coding-based footprints
to identify both the codec and the size of the Group Of Pictures
(GOP) used in the first coding step. This sort of analysis is useful
in video forensics, when the analyst is interested in determining
the characteristics of the originating source device, and in video
quality assessment, since quality is determined by the whole
compression history. The proposed method relies on the fact
that lossy coding is an (almost) idempotent operation. That is,
re-encoding a video sequence with the same codec and coding
parameters produces a sequence that is similar to the former.
As a consequence, if the second codec in the chain does not
significantly alter the sequence, it is possible to analyze this sort
of similarity to identify the first codec and the adopted GOP size.
The method was extensively validated on a very large dataset of
video sequences generated by encoding content with a diversity
of codecs (MPEG-2, MPEG-4, H.264/AVC, DIRAC) and different
encoding parameters. In addition, a proof of concept showing that
the proposed method can be used also on videos downloaded from
YouTube is reported.

Index Terms—Video forensics, video codec, coding-based foot-
prints, GOP identification

I. INTRODUCTION

Due to the increasing availability of inexpensive digital

devices, camcorders are becoming widespread on the market,

being embedded in virtually all smartphones. Moreover, thanks

to the ubiquitous availability of high-speed Internet connection

and the increasing use of video sharing web sites (e.g.,

YouTube, Vimeo, etc.), many users upload video sequences

on the web. At the same time, digital videos might undergo

several editing steps during their lifetime. For example, after

acquiring a sequence, a user might manipulate it to enhance

its quality. Alternatively, after having downloaded a sequence
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from a website, a user might apply different kinds of transfor-

mations, including, e.g., cropping, scaling, color adjustment,

text/logo insertion, etc. After any editing operation, video se-

quences are usually encoded, since uncompressed video would

lead to a huge amount of data to be stored or transmitted.

Therefore, it is very likely that a video sequence available

online has been compressed multiple times.

When a sequence is decoded to the pixel domain and then

re-encoded, any information regarding the previous coding

step is apparently lost, since the previous compression history

cannot be simply obtained by parsing the bitstream of the

last coding step. However, video coding is lossy in most

cases, since it encompasses the use of quantization, which

is a non-invertible operation. Thus, each coding step is bound

to leave characteristic traces, or footprints, on the compressed

video, which can be leveraged as an asset to reconstruct its

compression history. This sort of information is very useful in

video forensics [3], since an analyst might be able to estimate

the characteristics of the previous coding steps (e.g., the codec

adopted and the corresponding encoding parameters, namely,

GOP structure, quantization parameters, coding modes, etc.).

A forensic analyst can successfully exploit the knowledge of

the compression history in many ways: i) it might serve as a

potential clue for source device identification, as it might, or

might not, be compatible with some acquisition device models;

ii) it might be used for video splicing detection, in those cases

in which sequences originally encoded separately, are then

spliced together (and re-encoded) into the same sequence; iii)

it might be adopted to detect removed/inserted frames, since

this might alter the original GOP structure. In addition, there

are other fields besides video forensics in which the knowledge

of the compression history is highly valuable. For example,

in video quality assessment, it is interesting to automatically

estimate the quality of a sequence in a no-reference set-up,

i.e., without the availability of the original sequence. Although

many no-reference video quality metrics do exploit directly the

information contained in the bitstream of the last coding step,

this might not be representative of the actual visual quality,

e.g., when a content is first compressed at low rate, and then

re-compressed at a higher rate [4].

In this paper we address the problem of reconstructing the

compression history of video sequences. We consider the case

of double compressed video sequences, and we focus on the

identification of the coding-based footprints left by the first

encoder. Specifically, we aim at determining the codec adopted

by the first step, namely the coding standard, and the cor-

responding GOP size. Although multiple video compression
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can be encountered in some situations, double compression is

arguably the most common use case, which arises any time

user generated content is acquired (and compressed) by a

device and subsequently uploaded to a video sharing web site.

Unlike double image compression, in which the same codec

(namely JPEG) is typically assumed to be used in both coding

steps, video compression is often performed with codecs

defined by different standards, thus complicating the analysis.

In our study, we considered widely adopted video coding

standards that follow the conventional hybrid DCT/DPCM

architecture, namely MPEG-2 [5], MPEG-4 part 4 (MPEG-

4) [6] and MPEG-4 part 10 - H.264/AVC (AVC) [7]. In

addition, we extended the analysis to include a wavelet-based

codec, DIRAC [8].

The proposed method is based on the idea that quantization

is an idempotent operation. Indeed, re-quantizing a scalar value

with the same quantizer produces exactly the same value.

Somewhat similarly, in the specific case of video coding, re-

encoding a previously compressed video sequence adopting

the same codec and coding parameters produces as output a

sequence that is similar to the former. Therefore, our idea

is that, in principle, it is possible to re-encode the available

(double compressed) video sequence with different codecs,

testing for each of them different encoding parameters, and

looking for the configuration of codecs/parameters which min-

imizes the distortion introduced in the re-encoded sequence.

As a matter of fact, instead of performing a full search of

all coding parameters (i.e., GOP, use of filters, macro-block

structure, etc.), we propose an algorithm that is able to loop

over just two of them (i.e., the codec and the quantization

step). The same method is also used for determine the GOP

size of the first coding step, by looking for those frames which

were originally encoded using intra-frame coding (I-frames).

As the proposed method is based on re-encoding the video

sequence under analysis, the computational time strongly

depends on the size of the search space of the re-encoding pa-

rameters (i.e., number of tested codec and quantization steps).

However, this is not considered to be an issue in most forensic

applications where the amount of videos to analyze is limited

(e.g., even just one suspect video). Anyway, in this manuscript

we also show that it is possible to significantly decrease the

size of the parameters’ search space strongly reducing the

computational complexity of the proposed algorithm without

impairing its accuracy. The possibility of reducing the com-

putational complexity of the proposed algorithm enables it to

be used also for different applications, where efficiency is a

compelling requirement.

Our method was validated on a very large dataset of double

compressed sequences, which was generated with a wide range

of codecs and encoding parameters. The results reveal the

possibility of identifying the coding standard and the GOP size

of the first coding step, depending on the strength of the second

coding step. Specifically, when the distortion introduced by the

second coding step is not significantly stronger than the dis-

tortion introduced by the first codec, both the coding standard

and the GOP size can be reliably estimated. Moreover, in order

to show that the proposed method can be applied in a typical

real-world scenario, we tested it on a set of video sequences

uploaded and downloaded from YouTube. Also in this case the

codec of the first compression step was correctly identified.

The rest of this paper is organized as follows. Section II

discusses the related work, focusing on similar ideas recently

applied to the case of still images. Section III introduces the

problem addressed in this paper and Section IV the idea of

exploiting the idempotent property of quantization. Section V

illustrates in details the proposed method to identify both the

coding standard and the GOP size. A thorough experimental

validation is presented in Section VI, and Section VII con-

cludes the paper, providing insights on open problems and

future challenges.

II. RELATED WORK

The study of the compression history has been widely

addressed in the past literature for the case of still im-

ages [9]. The problem of determining whether an image was

compressed with JPEG was originally studied in [10] and

further explored in [11], proposing a method to estimate the

quantization matrix by looking at the periodicities in the

distribution of the DCT coefficients. In the case of forgeries,

the image is often compressed twice, thus stimulating work

aimed at determining whether an image (or part of it) is single

vs. double compressed [12]. The solution to this problem was

recently extended to the challenging case in which the image is

cropped [13], resized [14], or contrast enhanced [15] between

the first and second compression. Although most of the images

are compressed using JPEG, in [16] the authors show how

to discriminate between different block-wise transform image

codecs (e.g., DCT-based, or DWT-based). A theoretical anal-

ysis of the footprint left by transform coding, a key element

in most image coding architectures, was presented in [17] and

later extended in [18] for the case of double compression.

The study of the compression history of video sequences

has been explored only more recently [3]. This has to do with

the intrinsic difficulty in dealing with video sequences rather

than still images. First, in the case of video, there is no single

coding standard that is universally used. Conversely, different

standards are being adopted depending on the scenario, so

that sequences might be encoded with legacy MPEG-2 and

MPEG-4 encoders, as well as with the more recent AVC

and HEVC [19] standards. Second, the number of degrees

of freedom when configuring a video encoder is significantly

larger than in JPEG. These include, for example, the choice

of the GOP structure, the coding mode decision rules, the

motion estimation algorithm, the rate control algorithm, etc.

Third, complex statistical dependencies are created between

the quantized coefficient values in different frames, due to the

adoption of motion-compensated prediction. For these reasons,

early work addressing video compression focused on the

analysis of MPEG-2 encoded sequences, and more specifically

on I-frames, to detect the quantization parameter [20] or

double compression [21], being a straightforward extension

of the methods applicable to still images. Conversely, the

early works addressing the specific challenges posed by the

analysis of compressed video focused on the estimation of the

quantization parameter (QP), which determines the distortion
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introduced in each frame (and, in some standards, in each

coding unit). In [22] and [23], the authors propose a method

to estimate the QP parameter in both I- and P-frames for

the case of, respectively, MPEG-2 and AVC coded video, by

analyzing the histograms computed from DCT coefficients of

prediction residuals. The estimation of the GOP structure (i.e.,

how I- , P- and B-frames alternate in a sequence), or, more

simply, the GOP size (i.e., the distance between consecutive

I-frames) was addressed in [24] for single-compressed video

based on the strength of spatial blocking artifacts. A method

suitable for the case of double-compression was proposed

in [25], by exploiting the footprints left by the skip coding

mode. Anyway, in this manuscript we propose a more general

method that works also with codecs based on different kinds

of transforms (i.e., DCT and DWT) not exploiting macro-

blocks size. A more recent work targeting double-compressed

video is [4], where the authors estimate the bitrate adopted in

the first compression step. In this case, the first and second

codecs are considered to be the same, thus known. Other

works address the analysis of motion vectors. In [26], it is

shown how to reconstruct motion vectors in AVC-encoded

video from decoded pixels, whereas the identification of the

motion estimation strategy is proposed in [27]. In case of

multiple video compression, a method to estimate the number

of compression steps is described in [28], which is based

on the analysis of the distribution of the first digits of DCT

coefficients, thus extending the previous work that covered the

case of JPEG compression [29].

This paper goes beyond the previous literature by addressing

for the first time the problem of estimating the video coding

standard adopted in the first coding step in the case of

double video compression. The proposed method is based

on a recompress-and-observe paradigm, inspired by similar

methods presented in the literature, which exploit the idem-

potency property of quantization in order to, e.g., estimate

the quality factor in JPEG compressed images [30], exposing

forgeries in compressed images [31] and to detect JPEG anti-

forensics [32]. However, to the best of the authors’ knowledge,

it has never been applied to the problem of identifying the

video codec.

With respect to our previous conference publications [1],

[2], several improvements have been made:

• We present an analytical explanation of the idempotency

property of quantizers (i.e., Section IV), which explains

the rationale behind the proposed algorithm.

• We address for the first time the problem of the estima-

tion of the GOP size, which was assumed to be given

in [1], [2]. To this purpose, we also provide a thorough

validation of the proposed GOP estimation algorithm (see

Section VI).

• The codec identification algorithm has been modified to

increase its robustness to the masking introduced by the

second coding step. The new algorithm does not require a

linear behavior between the Quantization Parameter (QP)

(or its logarithm) and Peak Signal to Noise Ratio (PSNR),

which was assumed in [1], [2].

• The dataset used for testing has been widely expanded.

We are now considering more videos (also at different

resolutions) and more codecs (both DCT- and DWT-

based). Moreover we tested the effect of using different

implementations of the same codec (for both MPEG4 and

H.264). Additionally, we tested the proposed methods on

videos downloaded from YouTube to prove the effective-

ness of the new algorithm also in a real-world scenario.

• We investigated the possibility of reducing the computa-

tional complexity of the presented algorithm, demonstrat-

ing the trade-off between accuracy and complexity in our

experimental results.

III. PROBLEM FORMULATION

Conventional video coding is implemented according to

an architecture that can be described with a chain of basic

processing operators, which is illustrated in Figure 1. The

encoder processes a video sequence X frame-by-frame. Each

frame is divided into blocks x, which are then coded according

to two main coding modes (note that in some cases, the frame

includes a single block, which is as large as the whole frame).

In intra-frame coding, each I-frame is considered as a stand-

alone image, and inter-pixel correlation within the same block

is exploited by means of transform coding. To increase the

coding efficiency, in the more recent standards (e.g., AVC and

HEVC) intra prediction can be enabled by using a prediction

algorithm P , which computes a predictor from the pixels

of neighboring blocks and subtracts it to the current block

before applying transform coding. In inter-frame coding, for

each block of a P- or B-frame, a predictor is computed

exploiting the pixels in one (or more) reference frame, by

means of Motion Estimation ME and Motion Compensation

MC. Specifically, ME looks for the best predictor in the

reference frame, which is identified by means of a motion

vector (MV). MC subtracts the predictor to the current block

to obtain the prediction residual, which is then processed with

transform coding.

Regardless of the coding mode, transform coding plays

a central role in any video coding architecture. The input

block, or the corresponding prediction residual, is transformed

(typically using an orthonormal transform) and the transform

coefficients y are quantized with Q to obtain ŷ. The encoded

bitstream is generated by entropy coding the quantized trans-

form coefficients. Since entropy coding is perfectly lossless, it

does not leave any footprint, and therefore it is omitted from

the scheme in Figure 1.

To avoid drift, the encoder embeds the decoder, which

reconstructs video frames in the pixel domain, so that they can

be used as reference in inter-frame coding and intra prediction.

Decoded blocks x̂ are obtained applying the inverse transform

T−1 to ŷ, and adding back the predictor (if needed). Finally,

pixel values are rounded to unsigned integers. Rounding can

be considered as a second quantization step, applied in the

pixel domain. However, since the distortion introduced in this

case is far less pronounced than the one due to the quantizer Q
applied in the transform domain, it is omitted from the scheme

in Figure 1.

A decoder is able to reconstruct a video sequence in the

pixel domain from the received compressed bitstream. In
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Fig. 1: Simplified block diagram of a conventional video encoder. T
is an orthonormal transform, Q is a quantizer, ME and MC perform,
respectively, motion estimation and compensation, and P computes
the spatial prediction in intra-coded frames.

addition, the decoder can read from the bitstream some of

the configuration parameters adopted by the encoder. In some

cases these parameters can be obtained directly from parsing

the bitstream. This is the case, for example, of the GOP

structure, the quantization parameters, the coding modes, the

motion vectors, etc. Instead, in other cases, the configuration

of the encoder can only be determined in an indirect way. For

example, it might be possible to infer the adopted motion esti-

mation algorithms from the analysis of the motion vectors [27],

or the rate control algorithm from the analysis of the temporal

variation of the quantization parameter [23]. However, when

the decoded video sequence is re-compressed, most of the

information related to the first coding step is seemingly lost,

since the analysis of the bitstream reveals details of the second

coding step only.

In this paper we consider the set-up illustrated in Figure 2,

in which a video sequence X is encoded twice, namely by

codec c1, obtaining X̂1, followed by c2, obtaining X̂2. As

argued in Section I, the first coding step is often performed

at the time the sequence X is acquired. Instead, the second

coding step might be applied after manipulating the sequence

X̂1, or when uploading X̂1 to a video sharing web site. In

this paper, we aim at determining the characteristics of the

first codec, c1, given that we observe only the bitstream at

the output of the second encoder. Specifically, we assume that

c1 belongs to a group of candidate coding architectures, in

which each architecture is the archetypal for a specific video

coding standard. In addition, we are particularly interested in

determining the GOP size, i.e., the number of frames between

two consecutive I-frames, adopted by c1.

In general, c1 and c2 need not to be the same. Indeed:

i) they might belong to two different coding architectures;

ii) they might follow the same architecture, but represent

two different implementations of the same standard; iii) they

might be the very same codec, but configured using different

encoding parameters, e.g., adopt two different GOP structures,

target distortions, etc. In all cases, c2 acts as a sort of noise

source, by masking the footprints left by c1. The amount of

distortion introduced by the second coding step determines to

what extent we are able to reveal the traces of c1. In particular,

when the distortion is strong enough, e.g., when the second

codec operates at low bitrates, the footprints left by c1 might

not be identified. This will be thoroughly discussed in the

experiments presented in Section VI. In the next section, we

present an analysis of the footprint left by quantization, which

provides the basis for the video coding identification algorithm

+ + T T
−1Q

ME

MCP

- 

+ + T T
−1Q

ME

MCP

- 

c1

c2

X

X̂2

X̂1

Fig. 2: Simplified block diagram representing a processing chain with
two codecs, c1 and c2. A video sequence X is encoded and decoded

to X̂1, then re-encoded and decoded to X̂2. Each codec (i.e., c1 and
c2) is represented by a simplified block diagram as in Figure 1.

described in Section V.

IV. ANALYSIS OF QUANTIZATION FOOTPRINTS

The proposed method is based on the analysis of coding

footprints left by c1. To this end, we exploit the idempotency

property of scalar quantization, and show how this can be

somewhat extended to video coding. Scalar quantization is,

by construction, an idempotent operator. This means that it is

possible to re-iterate quantization multiple times on the same

scalar value, and the result will always be the same as the one

obtained by applying quantization only once.

More formally, let us consider a scalar value x ∈ R, which

is quantized to x̂q1 :

x̂q1 = Q∆1
(x) = ∆1

⌊

x

∆1

⌋

, (1)

where ∆1 denotes the quantization step size used, and the

subscript qi denotes a signal quantized i times. If we re-

quantize x̂q1 , we obtain

x̂q2 = Q∆2
(x̂q1) = ∆2









∆1

⌊

x
∆1

⌋

∆2







 . (2)

When we use the same quantizer and the same step size, i.e.,

∆1 = ∆2, then x̂q2 = x̂q1 . Hence, we can re-iterate quantiza-

tion, without affecting the signal after the first quantization.

The idempotent property can be conveniently exploited to

identify the quantizer used to produce a set of observed scalar

values, when one is given a finite set of candidate quantizers,

each one of the form in (1), but characterized by a different

step size ∆ ∈ S . Specifically, let {x1, . . . , xP } denote a set

of (unobserved) scalar values and {x̂1
q1
, . . . , x̂P

q1
} denote a set

of (observed) quantized values according to (1). Then, the

quantization footprints can reveal the quantization step size

∆̂1 = max







argmin
∆∈S

P
∑

j=1

|x̂j
q1

−Q∆(x̂
j
q1
)|







, (3)
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Fig. 3: Block diagram of double DPCM/PCM compression.

where ∆̄ = argmin
∆

f(∆) returns the argument ∆̄ such that

f(∆̄) is the minimum of function f(∆). The max{·} operator

is needed since its argument might contain more than one

quantizer compatible with the observed values. This might

be the case, e.g., when S contains integer multiples or sub-

multiples of ∆1. However, as proved in [17], ∆̂1 = ∆1,

provided that we observe a large enough number of values.

In case of double compression, it is not possible to observe

the output of the first quantizer, {x̂1
q1
, . . . , x̂P

q1
}. However,

when ∆2 < ∆1, it is still possible to reveal the first quantiza-

tion step size. Let us consider a slightly more elaborate model

illustrated in Figure 3, which represents a simplified version of

double video compression. Let X = {x1, x2, . . . , xP }, xj ∈
R, denote a 1-dimensional sequence of samples. Differential

Pulse Code Modulation (DPCM) is an efficient lossy coding

technique that is used to exploit the inter-sample statistical

dependency. Instead of quantizing the samples directly as in

the case of scalar quantization described in (1) (a.k.a. Pulse

Code Modulation (PCM)), the prediction residual is quantized:

êjq1 = Q∆1
(ej) = Q∆1

(xj − P(xj)), (4)

where P(xj) denotes a predictor of the sample xj . In the

simplest case, the previously decoded sample is used as pre-

dictor, i.e., P(xj) = x̂j−1
q1

. The sample is then reconstructed

by adding back the quantized residual to the predictor:

x̂j
q1

= P(xj) + êjq1 . (5)

When using DPCM, it is customary to periodically insert

samples which are PCM coded. Let G1 denote the number

of samples between two consecutive PCM-coded samples and

X̂1 = {x̂1
q1
, . . . , x̂P

q1
} the sequence reconstructed after the first

coding step. X̂1 is then re-encoded with DPCM to obtain X̂2,

with quantization step size ∆2 and a period of G2 between

PCM-coded samples.

If G1 is known, it is possible to focus on those samples

which were originally PCM-coded in the first coding step, i.e.,

x̂j
q2

, j ∈ J , J = {mod(j−1, G1) = 0}. In this case, although

the samples produced by the first coding step are not directly

observed, it is still possible to estimate the quantization step

size. Indeed, the decoded samples after the second coding step

can be written as

x̂j
q2

= P(x̂j
q1
) + êjq2 = P(x̂j

q1
) +Q∆2

(x̂j
q1

− P(x̂j
q1
)) (6)

Equation (6) states that x̂j
q2

is obtained by shifting x̂j
q1

by

an amount equal to the predictor P(x̂j
q1
), quantizing the result

according to Q∆2
(·), and shifting back the result by P(x̂j

q1
).

For any possible input x̂j
q1

to the second coding step, the output

x̂j
q2

is equal to the input, plus an offset that depends on the

quantization error introduced on the residual. More formally,

-100 -80 -60 -40 -20 0 20 40 60 80 100

x

P
r x̂

j q 2
(x

)

Fig. 4: Histogram of the samples x̂j
q2

, j ∈ J , when ∆1 = 10 and
∆2 = 4.

by adding and removing the term x̂j
q1
−P(x̂j

q1
) to equation (6),

it simplifies to

x̂j
q2

= P(x̂j
q1
) +Q∆2

(x̂j
q1

− P(x̂j
q1
)) + (x̂j

q1
− P(x̂j

q1
))

−(x̂j
q1

− P(x̂j
q1
))

= x̂j
q1

+Q∆2
(x̂j

q1
− P(x̂j

q1
))− (x̂j

q1
− P(x̂j

q1
))

= x̂j
q1

+ (Q∆2
(ejq1)− ejq1)

= x̂j
q1

+ ηj ,
(7)

where ηj is the quantization error introduced on the residual

ejq1 = x̂j
q1

− P(x̂j
q1
).

It is interesting to determine the statistical distribution of

x̂j
q2

, which depends on both the distribution of x̂j
q1

and ηj .

The form of the probability density function (p.d.f.) of x̂j
q1

,

j ∈ J , is determined by the first quantizer:

Pr
x̂
j
q1

(x) ∝
∑

k

wkδ(x− k∆1), (8)

where δ(x) = 1 if x = 0, and equal to zero otherwise. The

values wk ∈ R depend on the p.d.f. of the original sequence,

and they are not relevant to the present discussion. The residual

is represented as a random variable, whose p.d.f. is Pr
e
j
q1

(x).

If Pr
e
j
q1

(x) is smooth and its spread (e.g., measured by its

standard deviation) is large when compared to ∆2, then the

p.d.f. of the quantization error on the residual is uniform in

the interval [−∆2/2,∆2/2]:

Prηj (x) ∝ rect

(

x

∆2

)

, (9)

where rect(x) = 1 if x ∈ [−1/2,+1/2] and zero otherwise.

Assuming statistical independence between x̂j
q1

and ηj , the

p.d.f. of the output of the second coding step can be written

as

Pr
x̂
j
q2

(x) ∝
∑

k

wkrect

(

x− k∆1

∆2

)

. (10)

As an example, Figure 4 shows the empirical distribution

Pr
x̂
j
q2

(x) obtained by applying double DPCM coding to a 1-

dimensional source and setting ∆1 = 10 and ∆2 = 4.

Similarly to the case of scalar quantization in (3), when

∆2 < ∆1, it is possible to estimate the quantization step size

of the first coding step by re-quantizing the observed samples

by varying ∆, and observing the behavior of the cost function

E(∆,J ) =
∑

j∈J

|x̂j
q2

−Q∆(x̂
j
q2
)|. (11)
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Fig. 5: Behavior of E(∆,Jg1), when ∆1 = 10. When g1 = G1 (a)
strong traces revealing ∆1 = 10 are present, while when g1 6= G1

(b) these traces are not so evident (best seen in colours).

Figure 5a shows the cost function in (11), when varying ∆,

for the case ∆1 = 10. It is possible to clearly observe the

footprints left by the first coding step, as local minima when

∆ = ∆1 and its sub-multiples.

So far, we have assumed that G1 is known. In practice, this

is not the case, since only the output of the second coding

step is observed. However, it is possible to compute E(∆,Jg1)
for different hypotheses of the distance between consecutive

PCM-coded samples, where Jg1 = {mod(j − 1, g1) = 0 ∧
mod(j − 1, G2) 6= 0}, g1 = 2, 3, . . ., and select the smallest

value of g1 for which E(∆,Jg1) exhibits the characteristic

shape shown in Figure 5a. Indeed, when g1 6= G1, the cost

function is of the form shown in Figure 5b.

In the next section we show that similar principles can be

followed to identify both the video codec and the GOP size

used by the first coding step.

V. VIDEO CODEC AND GOP SIZE IDENTIFICATION

The proposed method for the identification of the video

codec and of the GOP size follows a recompress-and-observe

paradigm, i.e., re-encoding the video under analysis so as to

find a coding configuration that matches the one used in the

first coding step. More precisely, let us consider a double-

compression chain such as the one illustrated in Figure 2.

A video sequence X is encoded by c1 and decoded in the

pixel domain to produce X̂1. Then, X̂1 is re-encoded with c2

and decoded to X̂2. In the case of DPCM/PCM coding, we

showed in Section IV that the quantization footprints left by

the first coding step were clearly identifiable when ∆2 < ∆1.

Similarly, in the case of video coding, we assume that c2

is configured to operate in such a way that the distortion

introduced in X̂2 is less than, or equal to, the one introduced

by c1, so as to avoid masking completely the traces left by

c1. This situation commonly arises in real-world scenarios. For

example, this is the case of a video that is edited, and then

recompressed using coding parameters that retain the same

visual quality as the input. For example, when the same codec

is used for both the first and the second compression, the target

bitrate of the latter step is chosen to be at least as large as the

bitrate of the former. This implies the use of a finer quantizer

in the second coding step.

The proposed method receives as input the bitstream after

the second encoder c2, decodes it to X̂2 and re-encodes this
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Fig. 6: Example of matrices Pc3
(q, j) obtained for the sequence

NEWS originally encoded with MPEG-2 (GOP size: 14) and re-
encoded with MPEG-4 (GOP size: 12). (a) c3 = MPEG-2; (b) c3 =
MPEG-4; (c) c3 = AVC.

sequence using a third codec, c3, obtaining X̂3. When c3

matches the same codec and configuration parameters as c1,

we expect that X̂3 ≃ X̂2, i.e., the output of the third coding

step is similar to its input, due to the idempotent property.

In the case of video, the similarity between sequences is

computed by means of the Peak Signal to Noise Ratio (PSNR).

We enumerate different codecs c3 ∈ C, each with different

encoding parameters, and we look for the one that leads to

the highest similarity. Concretely, since the GOP size of the

first coding step is unknown, we configure c3 to operate using

intra-frame coding only (I-frames), and repeat the encoding

using different quantization parameters (QP) q ∈ QP . As

such, we only need to loop over two parameters (i.e., codec

and QP), repeating the encoding |C| × |QP| times and, for

each (c3, q) pair, we compute the PSNR between X̂2 and X̂3

on a frame-by-frame basis. As an example, Figure 6 shows

three matrices containing the values of PSNR obtained when

analyzing a double-compressed video sequence, which was

compressed with MPEG-2 (GOP size 14) and MPEG-4 (GOP

size 12) in the first and second coding step, respectively. Each

matrix corresponds to a different codec, namely MPEG-2,

MPEG-4 and AVC. By inspecting these matrices, we observe

the following:

• I-frames in X̂1 re-encoded as I-frames in X̂3 result in

higher PSNR values with respect to those obtained for

P-frames re-encoded as I-frames. As a consequence, a

periodic pattern arises, whose period is equal to the GOP

size of the first coding step.

• When codec c3 matches codec c1, we can analyze how

the PSNR varies when changing the QP for those frames

which were originally encoded as I-frames in the first

coding step. This is equivalent to looking at the columns

of the matrix for which c3 = c1 corresponding to the

I-frames. This is better illustrated in Figure 7a, in which

it is possible to observe that the PSNR vs. QP curve

exhibits a local maximum corresponding to the QP value



7

10
1

q

35

40

45

P
S
N
R

(a)

10
1

q

35

40

45

P
S
N
R

(b)

5 10 15 20 25 30

q

30

35

40

45

50

P
S
N
R

(c)

Fig. 7: PSNR vs. q curves for different I-frames of the first GOP. (a)
c3 (MPEG-2) matches c1; (b) c3 (MPEG-4) does not match c1; (c)
c3 (AVC) does not match c1. Note that the q scale is logarithmic in
the top and middle figures to take into account the different mapping
between the quantization parameter and the quantization step size in
MPEG-2, MPEG-4 and AVC.

originally used by c1 to encode the frame. Conversely,

when codec c3 does not match codec c1, the PSNR vs.

QP function is smooth, as illustrated in Figure 7b and

Figure 7c.

Starting from the above observations, we propose the follow-

ing identification algorithm in order to detect the codec used

by c1 and its GOP size:

1) Initialization: Select the set of candidate codecs

C and the set of quantization parameters QP =
[QPmin, QPmax]. QPmin is set equal to the minimum

value accepted by the codec that gives the highest

quality, while QPmax is set to a value that is not greater

than the QP value used by c2 (i.e., the maximum QP

value we are able to detect).

2) Recompress: For each c3 ∈ C,

a) Encode X̂2 with c3 using all QP values and intra-

frame coding mode only. Let X̂
q
3, q ∈ QP denote

the output of c3 decoded in the pixel domain.

b) Compute the matrix Pc3
, whose entries are given

by

Pc3
(q, j) = PSNR(X̂2(j), X̂

q
3(j)), (12)

i.e., the PSNR value computed comparing the j-th

frame of X̂2 and of X̂
q
3.

c) Since the bitstream used to decode X̂2 with c2

is assumed to be available, the matrix Pc3
is

processed column-wise to remove the traces left by

c2, for which the quantization parameter is known.

To this end we compute

P′
c3
(q, j) =

{

Pc3
(q−1,j)+Pc3

(q+1,i)

2 q = QPc2

Pc3
(q, j) otherwise,

(13)

In doing so, it is possible to remove potential local

maxima obtained if the quantization parameter of

c3 matches the one of c2 instead of the one of c1.

d) To enhance the local maxima due to matching

parameters between c3 and c1, we compute the

matrix

P′′
c3

= P′
c3

−medfilt(P′
c3
), (14)

where medfilt(·) is a median filter applied row-by-

row to enhance peaks due to I-frames in X̂1. An

example is shown in Figure 8, which illustrates

P′′
c3

and P′
c3

for comparison.

3) Estimate the GOP size: Many methods for estimating

the periodicity of a signal have been proposed in the

literature. These range from historical frequency esti-

mation algorithms [33], [34] to more modern methods

for tempo estimation [35]. However, due to the nature

of the analyzed signals, in the following we propose a

simple yet effective method for periodicity estimation

that enables GOP detection at reduced complexity.

a) For each c3 ∈ C,

i) Compute the absolute value of Fourier trans-

form of each row of P′′
c3

. Then, average the

result along each column to obtain

gc3
=

1

|QP|

∑

q∈QP

|F{P′′
c3
(q, ·)}|, (15)

where F(·) denotes the Fourier transform and

gc3
is a row vector whose number of elements

is equal to the number of frames.

ii) Use a filterbank to evaluate the periodicity of

the peaks in gc3
, which is an estimate of the

GOP size. More specifically we compute the

average energy obtained filtering gc3
with dif-

ferent filters tuned to different candidate GOP

sizes:

Ĝ1,c3
= argmax

G

N
∑

j=1

|(gc3
∗ hG)(i)|

2, (16)

where Ḡ = argmax
G

f(G) returns the argument

Ḡ such that f(Ḡ) is the maximum of function

f(G) and hG is a comb-filter whose distance

between consecutive peaks is equal to G . That

is

hG(j) =
∑

k

δ(j − kG) (17)

iii) Compute as quality metric of gc3
its peakness

value defined as

pc3
=

max(gc3
)

mean(gc3
)
, (18)
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Fig. 8: Effect of median filtering on P
′

c3
realization from Figure 6.

(a) P′

c3
; (b) P′′

c3
.

where max(.) computes the maximum value

and mean(.) computes the average value.

b) Estimate the GOP size Ĝ1 as the Ĝ1,c3
with the

highest associated pc3
. More formally,

Ĝ1 = Ĝ1,c̄3
, (19)

where c̄3 = argmax
c3

(pc3
). Notice that pc̄3

can be

used as a confidence value of the GOP estimation.

Indeed, high pc̄3
values are associated to GOPs

estimated from very peaky (thus reliable and easier

to analyze) gc̄3
. GOP estimation associated to

pc̄3
values below a confidence threshold can be

discarded (as shown in Section VI).

4) Identify the codec:

a) For each c3 ∈ C, compute the cost function

Jc3
=

∑

j∈J

∑

q∈QP

P′′
c3
(q, j), (20)

where J = {j|mod(j−1, Ĝ1) = 0}. Equation (20)

computes the sum of median-filtered PSNR values

for those frames corresponding to the original I-

frames.

b) Identify the codec as follows:

ĉ1 = argmax
c3∈C

Jc3
. (21)

Notice that the knowledge of the bitstream after c2 is used

only to extract the GOP and QP values of X̂2. However, the

knowledge of the bitstream is not such a strict hypothesis,

since videos are usually distributed in compressed format

and not already decoded (especially when dealing with user-

generated content). Nonetheless, if X̂2 is available only in the

pixel domain, it is still possible to apply the algorithm skipping

step 2c with reduced accuracy.

VI. EXPERIMENTAL RESULTS

In order to validate the proposed method, in this Section we

present a set of results obtained using a dataset composed of

a wide set of video sequences encoded with different param-

eters. More specifically we focus on studying the accuracy

of the GOP estimation and the codec detection algorithms

for different sequences (seq), coding standards applied during

TABLE I: List of parameters names and values used to build the
dataset. Number of configurations for each parameter is also provided.

Name Value N. conf.

seq
CIF Foreman, Mobile, Paris, News

4CIF Ice, Harbour
6

c1

MPEG-2 (libavcodec1) MPEG-2

MPEG-4 Part 4 (libavcodec) MPEG-4(a)

MPEG-4 Part 4 (Microsoft variant2) MPEG-4(b)

H.264/AVC (libavcodec) w/o deblock AVC(a)

H.264/AVC (libavcodec) with deblock AVC(b)

H.264/AVC 10 (JM3) w/o deblock AVC(c)

DIRAC (libschrodinger4) DIRAC

7

R1

RL RM RH

CIF 30 dB 33 dB 36 dB

4CIF 34 dB 37 dB 40 dB

3

G1 5, 7, 9, 11, 13, 14, 15, 17, 19, 21, 23 11

c2

MPEG-2 (libavcodec) MPEG-2

MPEG-4 Part 4 (libavcodec) MPEG-4(a)

H.264/AVC (libavcodec) AVC(a)
3

QP2

a b c d e f

MPEG-2/4 1 2 4 5 7 10

AVC 10 20 23 36 29 32

6

G2 12 1

the first coding step (c1), bitrates of c1 (R1), GOP sizes of

c1 (G1), coding standards applied during the second coding

step (c2), QPs of c2 (QP2), and GOP sizes of c2 (G2).

Notice that, to test the effect of all these parameters on the

presented algorithm, we need a complete knowledge of the

coding history of each tested sequence. For this reason we

performed this validation step on a controlled set of videos we

encoded on purpose starting from raw material, rather than on

random videos downloaded from the web.

Table I reports all the used parameters values. We started

from six well known uncompressed video sequences of 10
seconds each (i.e., 300 frames approximately), with different

spatial and temporal information: four at CIF spatial resolution

(352 × 288), namely Foreman, Mobile, Paris, News; two at

4CIF spatial resolution (704× 576), namely Ice and Harbour.

For the first coding step we used MPEG-2, MPEG-4 part 4

(MPEG-4), MPEG-4 part 10 H.264/AVC (AVC), and DIRAC.

As it regards MPEG-4, we tested two different implementa-

tions (MPEG-4(a) and MPEG-4(b)), while for AVC we used

two different implementations (AVC(a) and AVC(c)), one of

which was tested with the in-loop filter enabled too (AVC(b)).

For each codec, we selected three different target bitrates by

enabling rate control in order to obtain three sequences at low,

medium and high quality, respectively. The mapping between

bitrates and the obtained PRNUs is reported in Table I. As

for the second coding step, we re-encoded all sequences

with either MPEG-2, MPEG-4 or AVC, using a constant

QP (i.e., a constant quantization step). In order to unify the

notation, the set of possible QP values for c2 is identified

with {a, b, c, d, e, f}, which corresponds to {1, 2, 4, 5, 7, 10}
for MPEG-2/4 codecs and to {10, 20, 23, 26, 29, 32} for AVC

(equalizing the value of quantization steps among the codecs).

Concerning the GOP used for the first and second coding steps,

we used 10 different combinations reported in Table I. Notice

that the algorithm depends on the ratio between the used GOPs

(G1/G2), rather than on the exact GOP value. This justifies

the fact that we fixed G2 while changing G1 only. Concerning

the third coding step (i.e., the analysis one), we used as c3

MPEG-2, MPEG-4(a), AVC(a) and DIRAC.
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TABLE II: a1(QP2, G1/G2) fixing R1 = RM . Bold is used for accuracy values larger than 0.5.
G1/G2

5/12 7/12 9/12 11/12 13/12 15/12 17/12 19/12 21/12 23/12

Q
P
2

a 1.00 1.00 1.00 1.00 1.00 0.89 0.99 0.90 0.78 0.78

b 1.00 1.00 0.99 0.99 0.97 0.78 0.90 0.81 0.71 0.75

c 1.00 0.99 0.94 0.85 0.79 0.64 0.64 0.58 0.57 0.46
d 0.99 0.96 0.78 0.72 0.64 0.47 0.49 0.36 0.42 0.33
e 0.92 0.83 0.51 0.46 0.44 0.29 0.28 0.22 0.21 0.21
f 0.78 0.62 0.25 0.31 0.28 0.21 0.14 0.11 0.12 0.08

GOP Estimation

Let us consider a sequence (seq) double encoded with

the parameters c1, R1, G1,c2, QP2 and G2. We define the

detection function as

d(seq,c1, R1, G1,c2, QP2, G2) =

{

1, if Ĝ1 = G1,

0, otherwise,
(22)

whose value is 1 if the estimated GOP Ĝ1 is correct and 0
otherwise. To analyze the behavior of the GOP estimation

algorithm under different conditions and its robustness to

various coding parameters, we average the detection function

(22) along different dimensions, aggregating results obtained

on a subset of the dataset.

To highlight the effect of the distortion introduced by c2

quantization (QP2) and different GOP ratios (G1/G2) on GOP

estimation, we define the accuracy as

a1(QP2, G1/G2) = average
seq,c1,R1,c2

[d(seq,c1, R1, G1,c2, QP2, G2)] ,

(23)

where average
x

[d(x)] computes the average value of d

along the x direction and a1 ∈ [0, 1] (0 for GOP never

correctly detected, 1 for GOP always correctly detected).

Table II shows the behavior of a1(QP2, G1/G2) fixing

the average quality of c1 (R1 = RM ) with c1 ∈
{MPEG-2,MPEG-4(a), AVC(a), DIRAC}, c2 ∈ {MPEG-2,
MPEG-4(a),AVC(a)} and G2 ∈ {5, 7, 9, 11, 13, 15, 17, 19, 21,
23} (i.e., 6× 4× 1× 10× 3× 6× 1 = 4320 sequences). As

expected, when QP2 is low, the quantization noise introduced

by c2 does not mask the artifacts introduced by c1, thus

allowing an accurate GOP estimation. The same trend can

be observed for low values of G1/G2. Indeed, since all the

sequences share the same number of frames, a low G1 values

determines more peaks in gc3
(see (15)), thus making easier

to detect the periodicity of the peaks (i.e., G1). If the quality

of c1 is decreased (R1 = RL) or increased (R1 = RH ), the

artifacts introduced by c1 become stronger or weaker, respec-

tively. This effect determines an average accuracy increase of

5.8% for R1 = RL and an average accuracy decrease of 13.6%
for R1 = RH with respect to the case R1 = RM shown in

Table II.

In order to study the behavior of the GOP estimation

algorithm for each video sequence, we average the detection

function along c1, R1, c2, G1 and G2 defining the accuracy

as

a2(QP2, seq) = average
c1,R1,G1,c2,G2

[d(seq,c1, R1, G1,c2, QP2, G2)] ,

(24)

1https://libav.org/
2http://ffmpeg.org/∼michael/msmpeg4.txt
3http://iphome.hhi.de/suehring/tml
4http://diracvideo.org/

TABLE III: a2(QP2, seq). We use bold and italics for best and worst
results for each QP2, respectively.

seq
Foreman Mobile Paris News Ice Harbour

Q
P
2

a 0.95 1.00 0.89 0.93 0.96 0.87

b 0.92 0.97 0.88 0.86 0.96 0.87
c 0.77 0.88 0.81 0.69 0.96 0.75
d 0.62 0.75 0.68 0.55 0.78 0.31

e 0.42 0.63 0.47 0.39 0.53 0.18

f 0.27 0.54 0.32 0.27 0.31 0.04

TABLE IV: a3(c1,c2) values. Bold and italics are used values over
0.8 and under 0.6, respectively.

c2

MPEG-2 MPEG-4(a) AVC(a)

c
1

MPEG-2 0.70 0.66 0.88

MPEG-4(a) 0.72 0.61 0.81

AVC(a) 0.56 0.51 0.66
DIRAC 0.54 0.53 0.66

whose values still ranges between 0 and 1. Table III reports

a2(QP2, seq) values obtained on the same 4320 sequences

dataset of the previous experiment. These results confirm that,

despite the accuracy values slightly differ for each sequence,

the general trend remains the same, i.e., the accuracy decreases

for increasing QP2 values as expected. It is worth noting that

the sequence providing the best results is Mobile. This is due

to the presence of complex textures with constant motion that

are prone to emphasize visual artifacts left by c1, thus making

GOP footprints stronger and easier to detect. On the other

hand, Harbour gives overall the worst results. This is due to

the lack of motion of textured blocks.

Another interesting aspect to investigate is the effect of

different codecs at the first and second coding steps (i.e., c1

and c2). To this purpose we define the accuracy as

a3(c1,c2) = average
seq,R1,G1,QP2,G2

[d(seq,c1, R1, G1,c2, QP2, G2)] .

(25)

Table IV reports a3(c1,c2) values computed on the same

dataset of the previous experiments, highlighting the highest

and lowest values using bold and italics, respectively. Notice

that, on average, the highest accuracy (over 80%) is obtained

for c1 ∈ {MPEG-2,MPEG-4(a)} and c2 = AVC(a), while the

lowest accuracy (under 60%) is for c1 ∈ {AVC(a),DIRAC}
and c2 ∈ {MPEG-2,MPEG-4(a)}. This is an expected behav-

ior, as MPEG-2 and MPEG-4 are older standards than AVC

and DIRAC. Hence, MPEG-2 and MPEG-4 leave stronger

coding artifacts that, on one hand, enable to easily detect their

presence, and, on the other hand, increase the masking power

over previous coding steps.

Finally, in order to understand whether it is possible to

discriminate between correct and wrong GOP estimations,

we studied the relationship between GOP estimation and the
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TABLE V: Confusion matrix for c1 identification with different masking c2. Bold is used to denote the elements on the diagonal, i.e.,
elements that should be equal to one in the best scenario.

ĉ1

MPEG-2 MPEG-4 AVC DIRAC

c
1

MPEG-2 0.94 0.96 0.96 0.05 0.04 0.03 0 0 0.01 0.01 0 0
MPEG-4 (a) 0 0 0.04 0.93 0.92 0.76 0.02 0.02 0.2 0.06 0.06 0
MPEG-4 (b) 0.02 0.02 0.06 0.87 0.87 0.69 0.06 0.05 0.25 0.06 0.06 0

AVC (a) 0.01 0 0 0.14 0.24 0.06 0.79 0.68 0.94 0.06 0.08 0
AVC (b) 0 0.01 0 0.13 0.2 0.05 0.81 0.69 0.94 0.06 0.09 0.01
AVC (c) 0.06 0.06 0.15 0 0.03 0 0.92 0.87 0.81 0.02 0.05 0.04
DIRAC 0 0.02 0 0.09 0.12 0.01 0.13 0.12 0.21 0.78 0.74 0.78

MPEG-2 MPEG-4 AVC MPEG-2 MPEG-4 AVC MPEG-2 MPEG-4 AVC MPEG-2 MPEG-4 AVC
c2
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Fig. 9: GOP detection ROC curves for different values of G1.

peakness value associated to an estimated GOP (18). In other

words, we computed the Receiver Operating Characteristic

(ROC) curve by thresholding peakness values associated to

estimated GOPs. We evaluate as True Positives (TP) the

correctly estimated GOPs whose associated peakness is above

the threshold, and False Positives (FP) the wrongly estimated

GOPs whose associated peakness is above the threshold.

Figure 9 shows the ROC curves computed on the same

dataset used for the previous experiments, analyzing separately

sequences with different G1 values. Also this experiment

confirms that the lower the G1 value, the easiest is to correctly

detect the GOP, as already shown in Table II. Moreover this

proves that we can detect with a given probability whether the

GOP estimate is to be considered valid or not.

Codec Identification

To analyze the performance of the codec identification

algorithm, we consider all the combinations of parameters

reported in Table I, fixing the GOP size G1 = 14. The dataset

is then composed by 2268 sequences (i.e., six sequences, seven

c1, three R1, one G1, three c2, six QP2 and one G2). Since

we focus on codec identification, we assume G1 to be known.

Table V shows the codec identification confusion matrix as

a function of the masking codec c2. The identification method

is operated at sequence level by aggregating the observations

extracted from all detected intra-coded frames as explained in

(21). These results are averaged across all tested sequences.

It is interesting to notice that, as highlighted also in the GOP

identification procedure, AVC and DIRAC are well masked

by MPEG-2 and MPEG-4. Instead, when the masking (c2)

and the masked (c1) codecs share the same architecture,

identification accuracy is increased.

TABLE VI: Codec identification accuracy for different sequences, c2

and QP2. Bold is used for values larger than 0.8

(a) c2 = MPEG-2

QP2

a b c d e f

se
q

Foreman 1.00 0.95 0.90 0.90 0.81 0.67
Mobile 1.00 1.00 0.81 0.71 0.57 0.62
News 1.00 1.00 0.90 0.90 0.86 0.76
Paris 1.00 1.00 1.00 0.90 0.86 0.76
Ice 0.90 0.90 0.90 0.90 0.86 0.67
Harbour 0.90 0.86 0.90 0.86 0.81 0.67

(b) c2 = MPEG-4

QP2

a b c d e f
se

q

Foreman 0.95 0.90 0.90 0.90 0.81 0.52
Mobile 1.00 0.90 0.62 0.57 0.71 0.62
News 1.00 0.95 0.90 0.86 0.76 0.62
Paris 1.00 1.00 0.95 0.90 0.90 0.71
Ice 0.90 0.90 0.86 0.81 0.76 0.52
Harbour 0.90 0.81 0.90 0.86 0.71 0.52

(c) c2 = AVC

QP2

a b c d e f

se
q

Foreman 1.00 1.00 1.00 0.95 0.90 0.81

Mobile 1.00 1.00 0.95 0.76 0.62 0.57
News 1.00 0.95 0.90 0.90 0.81 0.86

Paris 1.00 1.00 1.00 0.90 0.90 0.81

Ice 0.90 0.86 0.76 0.67 0.62 0.67
Harbour 0.90 0.86 0.86 0.67 0.48 0.43

In order to analyze the masking effect further, Table VI

shows the codec identification accuracy obtained for different

c2 and QP2 values. In nearly lossless conditions (low QP2)

the proposed method successfully identifies the first codec in

almost all cases. Notice that the influence of lossy compression

on the effectiveness of the proposed identification algorithm

is content-dependent. Indeed, for Foreman, News or Paris,

accuracy is large also for high QP2 values, whereas for

Harbour the method is prone to fail when QP2 is moderately

increased.

A further test that we performed was to study the codec

estimation accuracy for different values of R. To this pur-

pose, Table VII shows the accuracy for different c2 and R,

averaging results over the other parameters. Unlike in the

GOP estimation case, codec estimation accuracy increases

when the original sequence is encoded at medium quality (i.e.,

R = RM ). This is due to the fact that, at medium quality, traces

left by c1 are stronger than for R = RH and the sequence



11

TABLE VII: Codec identification accuracy for different c2 and R
values. Bold is used for best result for each c2.

R
RL RM RH

c
2

MPEG-2 0.86 0.90 0.82
MPEG-4 0.83 0.85 0.78
AVC 0.83 0.88 0.82
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Fig. 10: Detection ROC for each codec c2. Results are averaged on
the other parameters.

suffers less from other noise factor that can be introduced at

R = RL.

Finally, we tested the performance of the identification

algorithm using a threshold, instead of comparing results

between different c3. To this respect, we show the ROC curves

obtained at different values of QP2 for the second coding

step. Let τ denote a threshold value. The proposed method

labels a sequence as encoded with c1 whenever Jc1
> τ .

The TP rate is the fraction of sequences originally encoded

with c1 for which Jc1
> τ . Conversely, the FP rate is the

fraction of sequences not encoded with c1 for which Jc1
> τ .

ROC curves are traced by varying the value of τ . Figure 10

shows the ROC curves for each masking codec c2, averaging

results across all the other parameters. This allows us to study

the impact of the masking codec in terms of identification

accuracy. These results highlight that it is possible to detect

the codec based on a threshold value on Jc1
, thus enabling

the algorithm to work also in an open-group scenario.

In order to study the dependency on the video content,

Figure 11 shows individual ROC curves for each sequence,

always averaging results over all the other parameters. These

charts confirm that codec identification is content-dependent,

as already observed analyzing the results in Table VI and for

the GOP.

A test in a partially uncontrolled scenario

Up to now, we only presented results obtained on synthetic

datasets. This is of paramount importance as this is the only

feasible solution to study the behavior of our algorithm under

many different testing conditions. However, in order to verify

that it is possible to apply the proposed method also in a less-

controlled scenario, we performed an additional experiment

using a media sharing platform as masking codec. More

specifically, this proof of concept has been carried out using 9

sequences uploaded to YouTube. The sequences were created

by encoding Foreman at low, medium, and high quality, with

either MPEG-2, MPEG-4, and AVC. YouTube re-encoded

all the sequences when uploaded, acting as c2. We then

downloaded the sequences, and tested our method on them,

using as c3 either MPEG-2, MPEG-4, AVC, and DIRAC.
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Fig. 11: Detection ROC for each sequence. As shown in Table VI,
codec identification is sequence-dependent, although good results can
be achieved for low QP values of c2 since the masking effect is less
influential.

Notice that in this case we only exploited the knowledge of

G2 and not the overall bitstream downloaded from YouTube.

This means that we did not remove peaks due to QP2, skipping

step 2c of the algorithm, still achieving good results. More

specifically, we were able to always estimate the correct GOP

for sequences at low and medium quality. Conversely, GOP

traces were completely lost on sequences at high quality, thus

making GOP detection not possible. Concerning the codec

identification, assuming G1 as known, we always achieved

the correct result.

Computational Complexity

As explained in Section V, the proposed algorithm works

by re-encoding each sequence under analysis |C|×|QP| times,

which may be time consuming. As a matter of fact, the time

spent to analyze a 10 second CIF sequence with our simple

implementation using a commercially available laptop (i.e.,

equipped with 8GB of RAM and a 2.2 GHz Intel Core i7

processor) is approximately 100 seconds.

Even though in many forensic applications accuracy is more

valuable than time (e.g., where the number of videos to be

analyzed is limited), reducing the computational complexity

just slightly decreasing the algorithm accuracy may be inter-

esting in some specific use cases. For this reason, we studied

the possibility of reducing the computational complexity of

our algorithm by decreasing: i) the size of the search space

QP , and; ii) the length of the sequence under analysis. More

specifically, we tested the effect of sub-sampling the set QP
to a smaller set with cardinality |QP|/ωQP. Concerning time,

we selected a portion of the sequence whose length is 1/ωT of

the total length. The total computational time is then decreased

by a factor ωQP × ωT.

Concerning GOP estimation, we restricted the analysis to

the cases in which GOP estimation is sufficiently reliable (i.e.,

values of QP2 and G1/G2 such that a1(QP2, G1/G2) > 0.5
in Table II). Figure 12 shows the average accuracy obtained in
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Fig. 12: Effect of reducing computational complexity on GOP esti-
mation.
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Fig. 13: Effect of reducing computational complexity on codec
estimation.

estimating the GOP in this scenario for different values of ωQP

and ωT. Notice that reducing the number of tested QP does not

affect accuracy. Conversely, reducing the video length highly

reduce the algorithm accuracy. This is due to the fact that, the

shortest the sequence, the smaller the number of GOPs in it.

Nonetheless, it is possible to reduce the computational time

by a factor 10 (i.e., ωQP = 10 and ωT = 1).

Considering the codec estimation, Figure 13 shows the

average accuracy on the whole dataset by changing ωQP and

ωT. Notice that in this case it is still possible to have a reliable

codec estimation also reducing the temporal resolution (i.e.,

increasing ωT). As an example it is possible to reduce the

computational complexity by a factor 15 by using ωQP = 3
and ωT = 5, decreasing the average accuracy by only 4%.

This preliminary analysis shows the actual possibility of

scaling the computational complexity of the algorithm still

achieving a high detection accuracy. As a matter of fact, it is

possible to reduce the analysis time for a sequence of more

than an order of magnitude, thus making the analysis time

comparable with the sequence length (at CIF resolution).

VII. DISCUSSION

In this paper we presented an algorithm to estimate the

codec and GOP size used in the first coding step applied to a

double encoded sequence. The algorithm exploits the idempo-

tency property that video codecs inherit from quantizers and it

is based on a recompress-and-observe scheme, building upon

our previous work presented in [1].

A set of tests on an extended video dataset proves the

validity of the proposed method highlighting its working

conditions in terms of coding parameters used during the first

and second coding steps. More specifically, we showed that

it is possible to correctly identify the GOP size and codec

(also considering different implementations) no matters which

masking codec is used, as long as its quality is sufficiently high

to preserve traces left by the first compression. Results using

a threshold (i.e., ROC curves) also show that it is possible to

discriminate, with a certain probability, which estimates should

be considered as valid and which ones should be discarded.

An additional proof of concept of our algorithm in a real world

scenario (i.e., sequences uploaded on YouTube) highlights

the possibility of using it in real applications. Moreover, a

preliminary analysis also shows the possibility of reducing

the algorithms’ computational complexity by only slightly

decreasing its accuracy. This possibility will be the topic for

our future research.
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