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Abstract

We present coded focal stack photography as a computa-

tional photography paradigm that combines a focal sweep

and a coded sensor readout with novel computational algo-

rithms. We demonstrate various applications of coded fo-

cal stacks, including photography with programmable non-

planar focal surfaces and multiplexed focal stack acquisi-

tion. By leveraging sparse coding techniques, coded focal

stacks can also be used to recover a full-resolution depth

and all-in-focus (AIF) image from a single photograph.

Coded focal stack photography is a significant step towards

a computational camera architecture that facilitates high-

resolution post-capture refocusing, flexible depth of field,

and 3D imaging.

1. Introduction

Traditional photography requires a user to carefully

choose the camera parameters before taking an image.

Moreover, in almost every commercial camera the focal sur-

face is approximately planar over the sensor’s area. Nowa-

days, some of the most important applications of compu-

tational cameras are post-capture refocusing, flexible con-

trol and extension of depth of field, and synthetic aperture

imaging. For any camera designs supporting these applica-

tions, high-dimensional visual information, such as an all-

in-focus (AIF) image and depth or the light field, has to

be optically encoded in a recorded sensor image and com-

putationally decoded. Currently available consumer prod-

ucts that follow this paradigm include time-of-flight (ToF)

and light field cameras. Unfortunately, ToF cameras require

extensive modification of the sensor circuitry and on-board

processing, while light field cameras currently achieve only

low image resolution.

We define a focal stack as a 3D volume composed of a

sequence of images captured under different focal settings.

With a focal sweep, we refer to a single exposure that cap-

tures a focal stack integrated over its depth.

In this paper, we explore coded focal stack photography–

a family of computational photography techniques that

combines a single-shot focal sweep and a coded sensor pixel

Figure 1: Coded focal stack photography explores the combi-

nation of focal sweep and per-pixel coded sensor readout. We

demonstrate how to create programmable non-planar focal sur-

faces in photographs (top row) and how to multiplex a focal stack

into a single sensor image (center row). Furthermore, we explore

compressive single-shot focal stack acquisition and reconstruction

which allows for full-resolution depth and AIF image to be com-

puted (bottom row).

readout. Previously proposed depth and light field cameras

aim at capturing high-dimensional visual information in a

scene; this facilitates a wide range of post-processing algo-

rithms. In contrast, we propose flexible capture modes that

are tailored to a variety of different applications and allow

for the capture of higher-resolution images or reducing the

requirements on computational resources.

We achieve these benefits by sweeping the focal plane

over a range of depths within the exposure time of a single

photograph while selectively modulating the readout pat-



terns of each pixel. This approach is shown to allow for in-

teresting all-optical effects, such as programmable uncon-

ventional and non-planar focal surfaces (Fig. 1, top row).

Alternatively, the focal stack can be multiplexed into a sen-

sor image and reconstructed using sampling and interpola-

tion techniques inspired by the color de-mosaicing method

(Fig. 1, center row). We also introduce compressive fo-

cal stack photography, where a coded projection of the fo-

cal stack is acquired and used to reconstruct the depth and

all-in-focus image through sparse coding (Fig. 1, bottom

row). An overview of our coded focal stack photography

approach is shown in Fig. 2.

In particular, we make the following contributions:

• We introduce coded focal stack photography as a com-

bination of a focal sweep and a coded sensor readout.

We show how this approach facilitates new applica-

tions, including programmable non-planar focal sur-

face imaging and interleaved focal stack acquisition.

• We propose compressive focal stack photography, an

approach that exploits sparsity in focal stack for re-

covering a full-resolution depth and AIF image from a

single sensor image.

• We evaluate our computational camera architecture in

simulation and build a prototype implementation.

2. Related Work

Depth from Focus/Defocus (DFF/DFD). DFF/DFD is a

class of techniques that use defocus cues to infer scene

depth. These methods have been studied extensively over

past decades (e.g, [7]). Usually, DFF determines the lo-

cal depth according to the focus setting of highest sharp-

ness in the focal stack [21]; a large number of defocused

images is required to ensure sufficient reconstruction accu-

racy. DFD infers scene depth from the amount of blur using

a single [19] or multiple [6] defocused images. Accuracy of

depth estimation from a single image is limited due to the

intrinsic ambiguity in depth inference. Hence, most DFD

algorithms require two or more images. In Section 4, we

introduce a mathematical framework to robustly reconstruct

image and depth from the single coded image.

Light Field Imaging. Light field imaging has been ac-

tively investigated for decades [2]. Ng et al. [22], for in-

stance, built a hand-held plenoptic camera by attaching mi-

crolenses to the sensor. Levoy et al. [17] extended that

system to microscopic imaging. Alternatives to microlens-

based cameras include mask-based architectures [25] and

coded apertures [18]. All of these approaches either reduce

image resolution to multiplex the 4D light field onto the 2D

sensor or require multiple images. The main application of

light fields is flexible depth of field control. We demon-

strate that one application of coded focal stack photography

achieves high-resolution, single-shot image refocus, as well

as the direct acquisition of programmable unconventional

focal surfaces.

Image and Depth from a Single Exposure. A variety of

computational photography methods have been proposed to

obtain depth and AIF image with single exposure. Usually,

the point spread function of an optical system is modified to

become depth-independent. This can be achieved using fo-

cal sweep [14], apertures coded with diffusion [5] or chro-

matic lens aberration [4]. In a post-processing step, AIF

image is computed by inverting the depth-independent blur.

Lattice-focal lens [16] and coded apertures [15, 25, 3] have

also been explored for the purpose of recovering a depth

map with an AIF image. With coded focal stack photogra-

phy, we combine focal sweep and coded sensor readout for

novel applications such as programmable unconventional

focal surface imaging, multiplexed focal stack acquisition,

and high-resolution AIF image and depth estimation.

Focal Stack Photography. Focal stack is a common tool

in medical and scientific imaging, such has microscopy.

Usually, the slices of a focal stack are combined to create

a single AIF image. Hasinoff and Kutulakos [11] analyzed

the optimal settings for focus and aperture to minimize the

number of required photographs for a given depth range.

The combination of focal stack capture and varying aper-

ture sizes has also been shown to allow for the reconstruc-

tion of depth information [10]. In this paper, we explore

single-shot coded focal stack approaches that have a variety

of different applications.

Per-pixel Coded Exposure. Per-pixel coded exposure

photography has been utilized in many applications, includ-

ing high dynamic range (HDR) imaging, feature detection,

object recognition [20], high-speed imaging, HDR imag-

ing, and image deblurring [8], as well as for flexible spatio-

temporal resolution tradeoffs [9]. Our application utilizes a

coded per-pixel readout or modulation throughout the expo-

sure time of a single photograph.

Compressive Computational Photography. Exploiting

the intrinsic redundancy of visual information to build next-

generation computational imaging systems is an active area

of research in computational photography. Recently pro-

posed methods include the reconstruction of short video

clips from a single coded image [12, 24, 23, 13] using com-

pressive sensing paradigms. Usually, these include ran-

domly coded image acquisition followed by sparse recon-

struction. In one of our applications, we show that the pix-

els within a focal stack are highly redundant and propose

a novel method to acquire a single coded projection from

which the high-resolution focal stack is reconstructed using

sparse coding.



Figure 2: Overview of coded focal stack photography. We explore optical camera configurations that combine focal sweep and per-pixel

coded sensor readout (top left). We show a variety of applications, including programmable non-planar focal surfaces, interleaved focal

stack acquisition (top right), and compressive focal stack photography for high-resolution image and depth reconstruction (bottom).

3. Coded Focal Stack Acquisition and Recon-

struction using Single Exposure

Let F (y, z) denote the 3D focal stack with y = {y1, y2}
being the 2D spatial coordinates and z being the depth di-

mension of the focal stack. A coded sensor image I(y)
is measured by sweeping a lens over the focal stack depth

within a single exposure time and modulating each pixel

with the attenuation code M(y, z). The recorded sensor

image is then a coded projection of the focal stack:

I(y) =

∫

Ωz

F (y, z)M(y, z)dz, (1)

where Ωz is the range of z. In the following sections, var-

ious specific modulation functions are presented to achieve

different effects, such as programmable non-planar focal

surfaces, and recovery of the focal stack from the single ex-

posure coded image with known modulation function and

camera parameters.

3.1. Programmable Nonplanar Focal Surfaces
Imaging

Achieving programmable non-planar focal surfaces

imaging is an intuitive solution for flexible control of the fo-

cal surface. Actually, our spatio-depth modulation can pro-

vide an equivalent implementation, in which a virtual sen-

sor shape is determined by the modulation function. Eq. (1)

gives that the intensity at position y in the coded image is

determined by the pixels of a focal stack at the same po-

sition with the modulation function being 1. Formally, the

focal shape is represented as ϕ(y) = z, and we define the

modulation function here as

M(y, z) = δ(z − ϕ(y)). (2)

Differently shaped non-planar focal surfaces can be ob-

tained by designing different modulation functions accord-

ing to Eq. 2. Fig. 3 shows two examples of non-planar focal

surface results: Fig. 3(a) shows the result of a parabola-

shaped surface with ϕ(y) = y22 , all of the three toys are

in focus here. Fig. 3(b) is the step-shaped surface imag-

ing result captured by our prototype system with ϕ(y) =
aH(y2), where a is a constant coefficient and H(·) is a

step function, notice that the dinosaur and Christmas tree

are both in focus. We also compare conventional imag-

ing with planar a focal surface and sinusoidal focal surface

ϕ(y) = sin(y2) (Fig. 1, top row); notice how the effect of

complex focal surfaces can be achieved in single exposure.



Figure 3: Programmable non-planar focal surfaces imaging. Dif-

ferent focal surfaces can be achieved by designing different mod-

ulation functions.

3.2. Interleaved Focal Stack Imaging

With interleaved focal stack imaging, a low resolution

focal stack F (yz, z),yz ⊂ y can be obtained by de-

modulating the sensor image I(y): F (yz, z) = I(yz) ·
M(yz, z), with M(y, z) being the modulation function im-

plementing interleave-shaped focal surface. Specifically,

M(y, z) is defined as

M(y, z) = δ(z − h(y)), (3)

where h(y) =
∑

m g(y)⊗ δ(y −m · T ),m ∈ Z is the pe-

riodic function with the cycle being T , the domain of g(y)
is defined in [0, T ], and ⊗ denotes the convolution operator.

Assuming a discretized latent band-limited focal stack

with n depth layers(z = 1, ..., n, T = n), then g(y) can be

defined as

g(y) =
∑n

i=1
ai · rect(y − i), (4)

where rect is the rectangle function, and

{a1, ...ai...aj ..., an} = {1, ..., n}, ai 6= aj , n ∈ ∆y, (5)

with ∆y being a neighbourhood of y representing the local

sensor region contains all the layers we intend to recover.

Fig. 4(a) and (b) illustrate interleaved focal stack imag-

ing at n = 2 and n = 4, and the de-modulation method is

illustrated in Fig. 2(b). In order to compensate for the re-

duced spatial resolution, we adopt bicubic interpolation for

each defocused image to upsample to the full-resolution in

the reconstruction.

3.3. Compressive Focal Stack Sampling

This section uses the random modulation function as the

sensing matrix to get the single coded focal stack and then

recover the full-resolution focal stack by using its intrinsic

sparsity. Fig. 5 shows the sparsity essence of the focal stack.

Figure 4: Interleaved focal stack imaging. We use the interleaved

non-planar focal surface to capture focal stack in single exposure,

different numbers of layers with different interleaved-shapes can

be achieved with different interleaved modulation functions.

The random modulation function

M(y, z) = rand(y, z), (6)

is used for encoding the focal stack. Specifically, we use a

binary random modulation function rand(y, z) ∈ {0, 1} in

our paper. Then the estimated focal stack F̃ (y, z) can be

recovered by optimizing following objective

F̃ (y, z) = arg min
F (y,z)

(Ed(F (y, z))+αEs
m(F (y, z))). (7)

Here the data term is derived from Eq. (1)

Ed(F (y, z)) = ||

∫

Ωz

M(y, z)F (y, z)dz − I(y)||22, (8)

with α being the weighting factor, Ωz is the range of z.

For the regularization term we enforce sparsity of the focal

stack in the transform domain by minimizing the l1 norm of

coefficients

Es
m(F (y, z)) = ||ΨF (y, z)||1, (9)

where Ψ is the sparsity transform basis. We use the discrete

cosine basis (DCT). As shown in Fig. 5, focal stack rep-

resentation coefficients are very sparse in the DCT basis.

Other bases, such as Wavelets, can be used alternatively.

The performance of focal stack recovery from compres-

sively coded measurement is shown in Fig. 6(a)(using the

“Art” example of Fig. 7). The performance degenerates as

the number of defocused images increases, so in the next

section we show that in order to further exploit the relative

blur constraint in the focal stack with depth and AIF image

estimation, we adopt only two defocused images for com-

pressive modulation.

4. Depth and AIF Image from a Coded Image

Depth and AIF recovery from a focal stack has been pro-

posed in the past [7]. In Sections 4.1–4.3 we briefly review

this formulation and show in Section 4.4 how it can be in-

corporated into a novel iterative feedback loop for compres-

sive focal stack sampling.



Figure 5: Focal stacks are redundant. A synthetic focal stack is

shown on the left, with a horizontal and a vertical slice illustrated

in the center. The image information along the depth-dimension of

the focal stack barely changes, which results in sparsely populated

coefficients in the discrete cosine transform (DCT) domain (right).

4.1. Relative Blur Constraint in the Focal Stack

Let R(y) denote the AIF image, the defocused image

F (y) focusing on a certain depth can be represented as [7]:

F (y) =

∫

x∈N(y)

hσ(y,x)R(x)dx. (10)

Here N(y) is the neighborhood of y and the blur ker-

nel hσ(y,x) can be approximated by Gaussian convolution

model, and σ(y) = κb(y) is the amount of depth-related

blurring, with the calibration parameter κ and the blur ra-

dius b(y) = Dv/2 · |1/F − 1/v − 1/s(y)|. Here D denotes

the aperture diameter, s denotes the depth map, v denote

focus setting and the focal length is F .

Given two registered defocused images F (y, z1),
F (y, z2), where zi denotes the distance from the object

to the lens, with focal setting vz1 , vz2 and keeping the

other camera parameters consistent, the relative blur based

convolution model [6] is defined as:







































F (y, z2) ≈ F∆σ(y, z1)

=

∫

Ωx

h∆σ(y,x)F (x, z1)dx, σ
2
z2
(y) > σ2

z1
(y),

F (y, z1) ≈ F∆σ(y, z2)

=

∫

Ωx

h∆σ(y,x)F (x, z2)dx, σ
2
z2
(y) < σ2

z1
(y),

(11)

where ∆σ(y) =
√

σ2
z2
(y)− σ2

z1
(y) is the depth-related rela-

tive blurring.

So, the relative blur operator Φ between F (y, z1) and

F (y, z2) can be derived by using Eqs. 11 when depth and

camera parameters are provided, and the relative blur con-

straint for optimization in Eq. 7 can be formulated as

Ed
m(F (y)) = ||ΦzF (y, z)||22. (12)

Figure 6: The performance of compressive focal stack imaging

without relative blur constraint and the depth estimation algorithm.

In order to ensure the good initial depth estimation, we modulate

two defocused images to obtain initial defocused images with high

PSNR.

4.2. Depth Estimation from the Relative Blur

Depth can be estimated from two defocused images

F (y, z1) and F (y, z2) by optimizing

s̃ = argmin
s

(Ed(s) + γEm(s)), (13)

where Ed(s) and Em(s) are the data term and regular-

ization term respectively, with γ being a weighting factor.

Specifically, the data term can be written as:

Ed(s) =

∫

Ωy

H(∆σ(y)) · |F (y, z2)− F∆σ(y, z1)|
2
2dy

+

∫

Ωy

(1−H(∆σ(y))) · |F (y, z1)− F∆σ(y, z2)|
2
2dy,

(14)

where H denotes the Heaviside function, and regularization

term Em(s) is defined as the total variation to favor piece-

wise smooth scene depth: Em(s) = ||∇s(y)||1.

The performance of depth estimation from relative blur

is shown in Fig. 6(b)(using the “Art” example of Fig. 7).

One can see that the depth estimation error, measured by

the absolute difference [7], increases with the decreasing of

PSNR of the defocused images.

4.3. Allinfocus Image Estimation

According to Eq. 10 and initial depth estimation, we can

calculate two spatially varying blur kernel maps hσz1
, hσz2

corresponding to defocused images F (y, z1), F (y, z2) re-

spectively. Then the optimization of AIF image can be for-

mulated as a spatially varying deblurring:

R̃ = argmin
R

(Ed(R) + λEm(R)), (15)

where λ is the weighting factor. The data term is defined as

Ed(R) = ||

∫

x∈N(y)
hσz1

(y,x)R(x)dx− F (y, z1)||
2
2

+ ||

∫

x∈N(y)
hσz2

(y,x)R(x)dx− F (y, z2)||
2
2,

(16)

and for regularization we incorporate the sparse prior of nat-

ural images: Em(R) = ||∇R(y)||0.8.



Figure 7: Simulated reconstruction of the “Art” dataset. We synthesize two defocused images from ground truth AIF image and depth,

then the coded image can be obtained with defocused images and corresponding two random modulation masks. The recovered two

defocused images and depth with and without relative blur constraint are shown above, with which the AIF image is also recovered and the

refocused images can be synthesized.

4.4. Focal Stack, Depth and AIF Image Recovery

We iteratively estimate depth and defocused images until

convergence, then the AIF image can be obtained by opti-

mization in Eq. 15.

For interleaved focal stack imaging, we can directly per-

form depth estimation using the algorithm in Section 4.2

after obtaining the interpolated focal stack. For compres-

sive sampling of the focal stack, because of the difficulty in

demultiplexing compressively modulated data, we encode

only two defocused images B(y, z1) and B(y, z2) at dif-

ferent focal settings for high PSNR and also propose a feed-

back scheme to increase robustness.

Firstly, to recover the two defocused images, the demod-

ulation algorithm in Section 3.3 utilizes only spatial spar-

sity, so we further improve the performance by using rela-

tive blur constraint in Section 4.1 (illustrated in Fig. 2(c)).

Then, we obtain the initial depth from Eq. 13 using the two

defocused images and then feedback the depth constraint

regularization into optimization Eq. 7 to get a better demod-

ulation:

F̃ (y, z) = arg min
F (y,z)

(Ed(F ) + αEs
m(F ) + βEd

m(F )),

(17)

where α and β are weighting factors, z = {z1, z2}, and

with three terms defined in Eqs. 8, 9 and 12 respectively.

In data capturing, there is a scaling between the de-

focused images when we change the focal plane of the

camera, we approximate it with affine transformation [7]:

y2 = ay1 + b. For calibration, we keep a small aperture

and use four markers in the scene to calibrate the param-

eters a,b. Thus, after we obtain the initial two defocused

images by using the optimization Eq. 7, we apply registra-

tion to them before depth estimation. Correspondingly, we

add an affine transformation operator T to Eq. 17 by chang-

ing relative blur constraint Ed
m(B(y)) into

Ed
m(F (y)) = ||ΦzTzF (y, z)||22. (18)

We use the Alternating Direction Method(ADM) numer-

ical solution [27] to solve both depth estimation and focal

stack recovery. For depth estimation, good initial defocused

images have been provided and numerical solution is ro-

bust to noise. For defocused images recovery, depth errors

usually occur in the textless areas and spatial sparsity con-

straint in transform domain helps correction. Therefore,

the iterative tends to converge in spite lacking theoretical

proof. And for the AIF image estimation, we extend the

Iterative Re-weighted Least Squares process (IRLS) [15]

to deal with spatially varying convolution and incorporate

information from multiple input images.

5. Experimental Results

5.1. Synthetic Data

This experiment tests the effectiveness of the proposed

demultiplexing algorithm from a compressively modulated

focal stack by utilizing the spatial and relative blur redun-

dancy. We use the “Art” data from Middlebury [1] with

its spatial resolution down sampled to 695×555 pixels, as

shown in two top left subfigures of Fig. 7. Empirically, we

assume the depth range to be 2m ∼5m, the focal length be

50mm, the f/# be 8 and the calibration parameter κ = 3e4.



Figure 8: Experiment on synthetic data. The top row displays the result on interleaved focal stack imaging, while the bottom row gives

the results on compressive sampling of the focal stack. The close-up images show that compressive focal stack imaging can provide higher

spatial resolution with more accurate depth and AIF image estimation compared to the interleaved focal stack imaging.

We synthesize two defocused images focusing at 2m and

5m according to Eq. 10, and then use two random masks to

modulate them within a single image, as shown in the 3rd

image of the top row in Fig. 7. Next, we use the method

proposed in Section 3.2 to recover the two defocused im-

ages, whose average PSNR is 37.17dB and the depth map,

as shown the right-most three images in top row of Fig. 7.

In order to get better defocused images, we introduce rela-

tive blur constraint in de-modulation algorithm and the iter-

ative optimization framework (the maximum iteration num-

ber is set to be 5). With an un-optimized MATLAB im-

plementation on a PC with an Intel(R) 3.4GHz Core(TM)

i7-2600K CPU, 8.0GB, RAM 64-bit operating system, the

total processing time is approximately 25 minutes. The re-

constructed defocused images and depth map are largely

improved, as shown in the left-most three images in the

bottom row of Fig. 7, the average PSNR of the defocused

images is 41.53dB. The large improvement can mainly at-

tributed to the relative blur constraint. We also display the

recovered AIF, with PSNR being 33.26dB.

Comparing with the ground truth depth map, as shown in

the second image of top row in Fig. 7, one can see that we

obtain a comparable depth map and this further validate the

proposed coded focal photography. In the last two images

in Fig. 7, we give a synthetic defocused images using the

recovered AIF image and depth map.

The above experiment results in the Fig. 7 show that

the accuracy of both AIF image and depth map improve

greatly after iteration. And compared to the defocused

images demodulated directly from the coded measurement

with higher compression ratio, using the synthetic version

generated from estimated depth and AIF image can result

in higher PSNR.

5.2. Captured Data with Synthetic Modulation

In this section we capture two images at different fo-

cal settings using our Canon EOS REBEL T3 and generate

coded images according to the two above mentioned mod-

ulation functions. The top row in Fig. 8 displays the modu-

lated measurement of two-layer interleaved imaging, the de-

modulated defocused images, estimated depth map and AIF

image. Similarly, the bottom row in Fig. 8 shows the result

of compressive focal stack sampling. The experiments in

Fig. 8 validate the effectiveness of the two proposed recon-

struction algorithms. The PSNR of AIF images are 29.01dB

and 32.21dB for interleaved focal stack imaging and com-

pressive focal stack imaging respectively; and visually, the

depth recovered from interleaved focal stack imaging has

more artifacts than the compressive method because of the

misalignment caused by lower spatial resolution, while has

lower computational complexity.

5.3. Prototype Results

Fig. 10 shows the prototype we implemented. We hack

the Canon Lens EF 50mm/1.8 as a programmable moving

lens which is controlled by ARDUINO to change the focal

plane of the system, and use a Canon EOS REBEL T3 cam-

era body with a resolution of 4272 ×2848 pixels. For mod-

ulation, we take the EBY701-NP/C/T Touch Screen VGA

LED Monitor apart and insert the LCD between two orthog-

onal polarizers. During capture, we use 209×219 pixels out

of the native resolution 800×400 pixels. The camera fo-

cuses on both the LCD and the scene by using an optical

relay system so that the LCD acts as a per-pixel modulator,

with the focal lengths of the two relay lenses being 380mm

and 900mm respectively. We use a telephoto lens with focal



Figure 9: Experiment on data captured by our prototype. The top row shows results of interleaved focal stack imaging, while the bottom

row shows results of compressive focal stack sampling.

length 300mm to utilize as many camera pixels as possible.

The moving lens, LCD and exposure are synchronized with

software.

We implement both interleaved focal stack imaging and

compressive focal stack sampling using the prototype. For

the experiments in Fig. 9, it takes 0.7 seconds to capture the

interleaved coded image that modulates four defocused im-

ages with our prototype, as shown in the top left of Fig. 9.

The top row of Fig. 9 displays the results of interleaved

coded imaging, including the coded image of images fo-

cused at four settings, the four de-modulated defocused im-

ages after bicubic interpolation and estimated depth map

and AIF image. The bottom row in Fig. 9 shows the re-

sults on compressive sampling of a focal stack, with a simi-

lar arrangement of interleaved imaging. In addition, we also

show two results of flexible depth of field control, refocused

at 0.9m, 1.2m respectively.

The experiments with our prototype system show the

promising results for programmable non-planar focal sur-

faces imaging, single exposure focal stack, as well as depth

and AIF image recovery.

6. Discussion

Whereas our prototype camera requires relay optics and

an LCD modulator, most consumer products already in-

clude varifocal lenses and a partially controllable sensor

readout, such as rolling shutters. Emerging computational

cameras such as [26] can fully control the sensor readout

and [28] can change the focal position at very high-speed.

In the near future, it will be feasible to build portable cam-

eras enhanced with coded focal stack photography.

By combining optically-coded focal stack acquisitions

Figure 10: Our prototype and its light path. We use the moving

lens and LCD panel for focal stack modulation, and the relay lens

and telephoto lens are used to match the field-of-views.

with sparse coding techniques, we robustly recover high-

resolution depth maps and AIF images. However, we also

propose an adaptive, all-optical approach to capturing pho-

tographs with programmable unconventional focal surfaces.

Coded focal stack photography, as explored in this paper,

provides a significant improvement—at least for today’s

hardware—in readout time compared to successively cap-

turing defocused images within a focal stack (e.g. [28]).

Our optical designs pave the road for a new class of compu-

tational photography techniques.

Currently, we are mostly limited by the fact that we do

not have access to the per-pixel sensor readout. Our proto-

type camera uses relay optics combined with a transmissive

spatial light modulator to optically simulate a controlled

per-pixel readout. Unfortunately, the employed LCD has

a low contrast, limited resolution, and a pixel-precise align-

ment with the sensor is also challenging. We also rely on

the lens motor to refocus, which limits the proposed method

to static scenes. Liquid lenses or other high-speed refocus-

able optics may eliminate this limitation. Furthermore, our

reconstructions assume that the photographed scenes are

mostly static during the exposure time, thus we do not con-

sider motion blur.



7. Conclusion and Future Work

In summary, we introduce coded focal stack photog-

raphy and demonstrate various applications such as pro-

grammable unconventional focal surfaces, interleaved focal

stack acquisition, and compressive focal stack imaging for

recovering full-resolution AIF images and depths.

In the future, we would like to extend our computational

camera design to dynamic scenes that include object and

camera motion. We believe that the key challenge for this is

the exploration of advanced sparse focal stack representa-

tions that take their dynamic nature into account. Our pro-

grammable non-planar focal surface design has the poten-

tial to correct the distortion of the employed lenses. Obtain-

ing programmable non-planar focal surface projectors and

programmable non-planar sensor surface cameras without

moving parts are the other two interesting avenues of future

work. Finally, we would like to combine more sophisticated

focal sweeping motions with new kinds of optical codes.
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