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Abstract—Emerging digital radar concepts such as orthogonal
frequency-division multiplexing (OFDM) allow flexible signal
generation. This opens up new opportunities in waveform design
in a multiple-input multiple-output (MIMO) system such as
introducing coding for signal multiplexing. In this article, coded
MIMO OFDM waveforms are proposed and investigated that
allow continuous and simultaneous wideband transmission for
all transmitters of a multiple transmit and receive antenna array
for spatial radar environment perception. Challenges for coded
MIMO OFDM radar operation are derived, and three coded
MIMO strategies are introduced and analyzed. Their potential
is validated and compared to the standard subcarrier interleaving
OFDM approach using simulations and measurements of an
experimental 4×4 MIMO OFDM radar at 77 GHz.

Index Terms—OFDM, MIMO, radar, coding, CDM, FDM,
TDM, STC, interleaving, auto-correlation, cross-correlation

I. INTRODUCTION

FUTURE generation radar sensors should not only be able

to accurately and robustly measure range and velocity

of objects but also provide detailed angular information to

allow a more pictorial spatial image of their environment [1].

For spatial imaging, multi-channel systems are required using

multiple antennas at both transmitter and receiver. Multiple-

input multiple-output (MIMO) systems achieve increased an-

gular resolution through a large virtual aperture [2]. However,

the use of several transmitters places new demands on the

transmitted signals, as each transmitter should be clearly

identifiable at the receiver, and self-interference due to channel

cross-talk should be as low as possible or avoided completely.

Typically, this is achieved by employing orthogonal trans-

mission schemes such as time-division multiplexing (TDM),

frequency-division multiplexing (FDM), or code-division mul-

tiplexing (CDM) [3].

In the last years, pushed by developments in CMOS tech-

nologies, novel digitally modulated radar concepts such as

orthogonal frequency-division multiplexing (OFDM) [4]–[6]

and phase-modulated continuous wave (PMCW) [7] have

matured. Digital wideband OFDM modulation allows flexible

signal generation and straightforward signal processing based

on the Fourier transform. MIMO OFDM concepts commonly

utilize an interleaved FDM scheme [8]–[10]. The standard

approach uses linear interleaving [8], where the orthogonal

subcarriers are periodically assigned to the transmit antennas

that then can operate simultaneously and continuously. Yet, the
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periodical assignment of subcarriers to the transmit antennas

results in ambiguities in range dimension and thereby in

a reduced maximum unambiguous range compared to an

equivalent single-output system. This approach will be referred

to as I-OFDM in the following.

Due to the high achievable throughput and efficiency, in

communication systems, parallel transmission within the same

band is often realized via CDM and orthogonal codes. Yet,

in MIMO radar systems, utilizing coding for channel sep-

aration is not prevalent as self-interference due to imper-

fect code cross-correlation properties decreases the detection

performance of the system [11]. For optimal radar perfor-

mance, the transmitted signals should have thumbtack-like

auto-correlation peaks with a low side-lobe level. Ideally, their

auto-correlation function (ACF) is maximum at zero-delay

and zero elsewhere. Additionally, to achieve orthogonality and

thereby perfect isolation between different transmitters, the

cross-correlation function (CCF) of two signals should be zero

for all delays. While FDM and TDM naturally offer perfect

CCF properties by avoiding signal overlap in time-frequency

domain at cost of a reduced coverage in time or frequency and

thus emerging ambiguities, CDM must achieve orthogonality

in the code dimension. Unfortunately, perfectly orthogonal

codes do not exist as the Welch bound shows [12], which

gives a theoretical lower bound on the correlation of two

signals. Therefore, for good coded MIMO radar operation,

waveforms are desired that offer a good trade-off between

radar performance and signal isolation. Since OFDM radar

waveforms allow for flexible digital signal design and, in

addition, phase coding is typically already implemented in

the time-frequency domain, they offer optimal conditions for

coded MIMO operation.

In this paper, three novel strategies to design coded MIMO

OFDM radar waveforms are proposed, compared, and eval-

uated. The approaches pursue completely different coding

strategies, where each of them is adapted for OFDM radar

to take advantage of the muli-carrier scheme and digital

signal design and processing. The first approach simply uses

orthogonal code sets, the second approach aims to eliminate

crosstalk by using time-shifted signals, and finally, the third

approach combines repeated symbols OFDM (RS-OFDM)

with space-time coding (STC). To our best knowledge, these

coded MIMO OFDM approaches are presented here for the

first time. Additionally, it will be shown that these approaches

can achieve a comparable or better performance and thus

constitute an alternative to I-OFDM although – by its very

nature – it achieves a perfect CCF, which is hardly achievable

for coded strategies. It will also be discussed and analyzed at

which costs these improvements are achievable.

The paper is organized as follows. The general generation
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of MIMO OFDM radar signals and processing is introduced in

Section II, and the influence of cross-channel interference on

the range evaluation is derived in Section III. In Section IV,

three coded MIMO OFDM strategies are introduced and

detailed. An evaluation and comparison of these approaches

using simulations and measurements is given in Section V.

Finally, in Section V-E, an approach to overcome the maxi-

mum unambiguous range limitations for the second strategy

is validated using measurements of an approaching vehicle.

II. MIMO OFDM RADAR SIGNALS

A standard OFDM frame consists of N subcarriers with

spacing ∆f and M symbols of duration T=1/∆f . Given K

transmit antennas, the OFDM baseband transmit signal of the

mth OFDM symbol of the kth transmitter is defined by

x(k)m (t) =N−1

∑
n=0

d(k)mne
j2πn∆ft rect( t −mTOFDM

TOFDM

) (1)

where d
(k)
mn is the modulation symbol of the mth symbol on the

nth subcarrier of the kth transmitter, each drawn independently

from a modulation alphabet A, e.g., QPSK. To avoid inter-

symbol interference (ISI) at the receiver due to path delays,

each OFDM symbol is extended by a cyclic prefix (CP) of

duration Tcp that increases the OFDM symbol duration to

TOFDM=T+Tcp. Finally, for transmission, the baseband signals

are converted to the carrier frequency fc.

Given L receive antennas, the baseband receive signal at the

lth receive antenna is a superposition of the simultaneously

transmitted signals reflected by P targets. As these reflections

are additive in the signal, the number of targets is assumed

to be one and the index p will be neglected. The paths

between all transmit and receive elements are referred to

as channels further on. Moreover, a signal transmitted from

the kth transmitter and received by the lth receiver will be

indicated by the superscript (k, l), whereas the sum of all

impinging signals on the lth receiver is indicated by the

superscript (l). The baseband receive signal at the lth receiver

for the mth symbol then is

y(l)m (t) = K

∑
ξ=1

N−1

∑
n=0

d(ξ)mne
−j2π(n∆f+fc)τ

(ξ,l)

e j2πfdte j2πn∆ft

× rect( t −mTOFDM

TOFDM

) ,
(2)

where τ (ξ,l)=R(ξ,l)/c and fd are the delay and Doppler shift

of the target reflection in the (ξ, l)th channel, respectively,

with target distance R(ξ,l) and c the speed of light. The

attenuation in the channel is assumed as a constant and is

therefore neglected. Assuming point targets in the far field

of the combined transmit and receive aperture and fc≫N∆f

(narrowband assumption), fd is considered constant for all

channels and subcarriers in (2). At the receiver, the baseband

signal (2) is Nyquist-sampled, the CP is discarded, and a

discrete Fourier transform (DFT) is applied along each OFDM

symbol. If the resulting Fourier coefficients of each OFDM

symbol are arranged consecutively in a matrix, the M×N

receive frame matrix Y
(l) with elements

Y (l)mn =

K

∑
ξ=1

d(ξ)mne
−j2π(n∆f+fc)τ

(ξ,l)

e j2πfdmTOFDM (3)

is obtained. It is assumed that fd≪∆f [5], [8] such that the

effect of inter-carrier interference (ICI) is negligible and is

therefore omitted in the signal description. Next the (k, l)th
channel is extracted from (3) by element-wise multiplication

with the inverse of the transmit modulation symbols d
(k)
mn. As-

suming the utilized modulation symbols from A have unitary

amplitudes, e.g., (Q)PSK, this equals the multiplication with

the complex conjugate such that the (k, l)th channel extracted

from (2) is

Y (k,l)mn =

K

∑
ξ=1

d(ξ)mn(d(k)mn)∗e−j2π(n∆f+fc)τ
(ξ,l)

e j2πfdmTOFDM , (4)

where the superscript ∗ denotes the complex conjugate. The

signal may be further split into two additive parts, the desired

part (ξ = k)

Ŷ (k,l)mn = e−j2π(n∆f+fc)τ
(k,l)

e j2πfdmTOFDM (5)

and the additive cross-talk part1(ξ ≠ k)

Ỹ (k,l)mn =

K

∑
ξ=1
ξ≠k

d(ξ)mn(d(k)mn)∗e−j2π(n∆f+fc)τ
(ξ,l)

e j2πfdmTOFDM , (6)

that accounts for the cross-talk due to the activity of other

transmitters on the same subcarrier at the same time. In

this step, the difference between CDM and F/TDM becomes

obvious. For both TDM and FDM only one transmitter is

allowed to be active at a certain time (m) and frequency (n)

slot such that only NM/K modulation symbols d
(k)
mn of the

frame of the (k, l)th channel are non-zero. In the signal

evaluation, this results in

F/TDM: d(ξ)mn(d(k)mn)∗ = ⎧⎪⎪⎨⎪⎪⎩
1, if ξ = k and d

(k)
mn ≠ 0

0, if ξ ≠ k or d
(k)
mn = 0

(7)

since always either d
(ξ)
mn or d

(k)
mn is zero. In contrast, for CDM,

in general, every transmitter is active the whole time such that

CDM: d(ξ)mn(d(k)mn)∗ ≠ 0, ∀k, ξ = 1, . . . ,K . (8)

Consequently, for F/TDM, the additive cross-talk (6) is always

zero but also the desired part (5) becomes zero if the kth

transmitter was inactive at slot (m,n). For CDM, both are

non-zero in general.

To achieve low inter-transmitter cross-talk for CDM and

thereby good channel isolation, the interfering term (6) should

be ideally zero for all slots (m,n). Due to (8), this is not

possible. Therefore, the goal will be to minimize the influence

of (6) on the range-Doppler and range-azimuth evaluation

and thereby the target detection. Range-Doppler evaluation for

OFDM is commonly achieved by a DFT along the OFDM

1In case of non-zero Doppler shifts, (5) contains additional multiplicative
cross-talk from other subcarriers in the form of ICI.
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symbols (Doppler) and an inverse DFT (IDFT) along the

subcarrier dimension (range) of Y
(k,l) with elements (4)

which yields the range-velocity radar image (R-v-image).

For sidelobe suppression, tapering is usually applied in both

dimensions before evaluation.

III. INFLUENCE OF CODED MIMO SIGNALS ON THE

RANGE EVALUATION

Since the IDFT is a linear operation, the resulting range

profiles R
(k,l)
m [ρ] may again be divided into a desired part

R̂
(k,l)
m [ρ] and an interference part R̃

(k,l)
m [ρ], similar to (5)

and (6), where ρ∈Z is the range bin index and [●] denotes

discrete values.

Given the distance of the target to the reference antenna R0,

the time delay in (2) to (6) is composed of

τ (k,l) =
R(k,l)

c
=
1

c
(2R0 +∆R(k) +∆R(l)) (9)

with corresponding transmit and receive path differences,

respectively, of

∆R(k) = a(k) sin θ(k) and ∆R(l) = a(l) sin θ(l) . (10)

Here, a(k) and a(l) are the spacings of the kth and lth antenna

to the reference antenna, and θ(k) and θ(l) are the target angles

observed by the transmit and receive antenna, respectively.

Due to the far field condition, we suppose θ=θ(k)=θ(l). Hence,

the delay (9) becomes

τ (k,l) =
1

c
(2R0 + a

(k,l) sin θ) (11)

with a(k,l)=a(k)+a(l). Inserting (11) into (5) and performing

the range IDFT, the desired range profile yields

R̂
(k,l)
m [ρ]∝ Ng[ρ − ρ0] (12)

with target at range bin ρ0=round[N∆f/c(2R0+a
(k,l) sin θ)]

and g[ρ] the peak shape function depending on the applied

tapering prior to the IDFT. Here, round[●] indicates rounding

to the nearest integer.

Inserting (11) into (6) and applying the IDFT gives the

interference term

R̃
(k,l)
m [ρ]∝ N−1

∑
n=0

K−1

∑
ξ=1
ξ≠k

γ(ξ,l)d(ξ)mn(d(k)mn)∗e j2π n
N
(ρ−ρ0) , (13)

where γ(ξ,l)=exp (−j2πfca(ξ,l) sin θ/c) is a channel dependent

constant. Using the discrete time representation of the base-

band transmit signal (1) yields that

d(ξ)mn =

N−1

∑
µ=0

x(ξ)m [µ]e−j2π nµ

N and (14)

(d(k)mn)∗ = N−1

∑
η=0

(x(k)m [η])∗e j2π nη

N . (15)

After rearranging of terms and sums, (13) becomes

R̃
(k,l)
m [ρ]∝K−1

∑
ξ=1
ξ≠k

γ(ξ,l)
N−1

∑
µ=0

N−1

∑
η=0

x(ξ)m [µ](x(k)m [η])∗

×

N−1

∑
n=0

e j2π
n
N
(ρ−ρ0−µ+η)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
α

.

(16)

Here α is only non-zero (and equals N ) if the phases of the

exponential function become zero, e.g., if µ = [ρ − ρ0 + η]N
where [●]N indicates the modulo N operation. Through this,

(16) finally becomes

R̃
(k,l)
m [ρ]∝ K−1

∑
ξ=1
ξ≠k

γ(ξ,l)
N−1

∑
η=0

x(ξ)m [η+ρ−ρ0]N(x(k)m [η])∗
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

periodic CCF shifted by ρ0

, (17)

where the last sum equals the periodic CCFs of the sampled

time-domain transmit signals with respect to the kth transmit-

ter. Moreover, the CCF is also shifted by the target position

due to the signal delay. Hence, to reduce the influence of the

interfering term, the CCFs of the sampled time-domain signals

must be minimized.

IV. CODED MIMO APPROACHES WITH OPTIMIZED

CHANNEL ISOLATION

According to the Welch bound, it is impossible to obtain

both perfect ACF and CCF and thereby perfect channel

isolation in CDM. The Welch bound is a theoretical limit of

the achievable isolation of two distinct codes of length L that

are taken from a common code set of cardinality M. It is

defined as

w =

√
M − 1

ML − 1
(18)

where for sets with M→∞, the bound is approximated with

w(M→∞)≈√1/L. To illustrate its importance for radar,

suppose a naive CDM MIMO OFDM approach of using

two sequences with N=L=1024 symbols independently drawn

from the QPSK alphabet. The correlation result at the receiver

is then the superposition of the ACF and CCF where the

sidelobe level is defined by the CCF and the main lobe by the

ACF, as shown in Fig. 1. With member sizeM=N4, the Welch

bound only yields wnaive
≈−30dB as achievable isolation. By

doubling or quadrupling the number of interfering transmitters,

the isolation at the receiver is further reduced by 3dB and

6dB, respectively, due to the multiple signal superposition.

Therefore, in radar applications this approach would lead to

high self-interference, which would severely degrade the sys-

tem performance. Moreover, the application of sophisticated

codes such as maximum length sequences (MLS), Gold codes,

or almost perfect auto-correlation sequences (APAS) are also

not advantageous as these codes are designed for good ACF

but suffer from moderate CCF properties in the range of the

Welch bound [13].

Yet, though it seems impossible to achieve perfect isolation

for the complete frame, it is possible to achieve perfect

isolation, e.g., for a limited region. In the following, three
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Fig. 1. Naive CDM MIMO OFDM example. Correlation result of two random
QPSK code sequences of length 1024 and the corresponding Welch bound.

coded MIMO OFDM strategies are presented that achieve

almost optimal channel isolation under some constraints.

A. Zero-Correlation Zone CDM (ZCZ-CDM)

Zero-Correlation Zone (ZCZ) code sets have optimal ACF

and CCF up to a certain delay. In asynchronous or approx-

imately synchronized CDMA communication systems, ZCZ

code sequences are used, e.g., for synchronization purpose or

to reduce the co-channel interference [14], [15]. In radar, ZCZ

codes have also been investigated for phase-coded CW MIMO

radars [16] or PMCW MIMO radars [13]. Commonly, a ZCZ

sequence set C is described by the tuple (L,M,Z), where L is

the length of each sequence in the set,M={C} the cardinality

of the set, and Z the width of the ZCZ. In [15], it is shown

that there is a theoretical upper bound on Z of Zopt=L/M−1
which is derived from the Welch bound.

In order to take advantage of the ZCZ property in coded

MIMO OFDM, the ZCZ code needs to be applied in time-

domain. To this end, it is convenient to take a PMCW-

like point of view of the transmit signal while maintaining

the OFDM processing chain. The following steps are ap-

plied OFDM-symbol-wise. First, K codes {c(k)m [η]}η=0,...,L−1,

k=1, . . . ,K from C are chosen randomly and assigned to the

transmitters. Hence, for unique signals on every transmitter

the cardinalityM must be at least K. Next, the corresponding

frequency domain modulation symbols

d(k)mn =

N−1

∑
η=0

c(k)m [η]e−j2π nη

N (19)

are computed using a DFT of length N . The code length

should therefore be L=N .

As the ZCZ codes are applied in time-domain, i.e.,

x
(k)
m [η]=c(k)m [η], the resulting actually applied modulation

symbols (19) have non-uniform amplitudes and arbitrary

phases such that the unitary amplitudes alphabet constraint

assumed for (4) is violated. Yet, the codes have the peculiarity

that their periodic CCF Ψkξ[ρ]=∑N−1
η=0 x(ξ)[η+ρ]N(x(k)[η])∗

disappears for ρ≤Z [14], [15]. For coded OFDM this cancel-

lation is induced in the range processing in (17) but only if

the multiplication with the complex conjugate is applied in (4)

despite of non-uniform amplitudes. Otherwise, a similarly poor

result as in Fig. 1 will be obtained.

For ZCZ-CDM OFDM radar operation, the ZCZ se-

quence set construction from [14] is adopted in the fol-

lowing. In this case, a QPSK ZCZ sequence set is con-

structed from complex recursively interleaved Hadamard ma-

trices. The resulting sequence sets are given by the tuple

C=(L,M,Z)=(2i+2q,4q,2i−23) where the parameter q≥1 is

the order of the initial Hadamard matrix before the first

recursive interleaving step and i≥0 is the interleaving or

recursion depth required to obtain the desired code length L.

Note that any such set achieves a ZCZ length of Z≈3/4Zopt.

Next, it will be briefly derived how to optimally choose q

and i given N and K of the OFDM radar. For details on

the code generation procedure, the reader is referred to [14].

For an OFDM system with K transmitters, the number of

sequences in the set has to be M=4q≥K. Given K ′ is the

smallest integer K ′≥K such that (K ′ mod 4)=0, the relation

becomes q=K ′/4. Additionally, the code length should equal

the number of subcarriers which gives N=2i+2q. With the

tuning of q, the expression is solved after variable i which

gives the recursion depth i=log2(N/K ′). Finally, the ZCZ

becomes Z=3N/(4K ′) which supports the claim that K ′

should be as small as possible in order to maximize Z .

B. Auto-Correlation-Based CDM (AC-CDM)

If two distinct transmitters would both emit the same signal,

the desired range term (12) and the interference term (17)

would become equal, and the interference disappears as the

periodic CCF in (17) then becomes a periodic ACF as in (12).

Yet, the signals would not be distinguishable at the receiver

anymore and it seems as if the signal comes from a single

transmitter. In auto-correlation-based CDM (AC-CDM), it is

proposed to transmit identical signals in a seemingly time-

delayed fashion in order to be able to separate them at the

receiver again. This idea is comparable with the time-staggered

MIMO [3], [7]. However, asynchronous transmission on mul-

tiple antennas leads to phase shifts between different channels

at the receiver, which complicates the direction of arrival

(DoA) estimation. Fortunately, for OFDM it is possible to only

virtually delay the signals by rotating them circularly within

one OFDM symbol by the desired delay. Thereby, no offset

between the channels is generated and the OFDM symbols are

synchronous at both transmitter and receiver.

Define the relative mutual (sample) shift s(kξ) between

the ξth and the kth transmitter to be −N/2≤ s(kξ) ≤N/2.

The virtual signal delay becomes s(kξ)δt∈ [−T /2, T /2] with

sample duration δt=T /N . In order to be able to separate

the transmitters at the receiver, the mutual delays must be∣s(kξ)∣>0, ∀k ≠ ξ. The transmit signals with respect to the kth

transmitter are then given by

x(ξ)m (t) = x(k)m ((t − s(kξ)δt)T ), ∀ξ = 1, . . . ,K , (20)

where (●)T denotes the modulo T operation. Conveniently,

these signals may be directly generated digitally within the

standard OFDM processing by simply adjusting the OFDM

frequency modulation symbols d
(k)
mn. In this case, the modu-

lation symbols d
(k)
mn may take any phase. Define any refer-

ence antenna k, whose modulation symbols d
(k)
mn are drawn

randomly from the modulation alphabet. Using the Fourier
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relation x(t −∆t) X(f) exp(−j2π∆tf), the resulting

modulation symbols of antenna ξ are

d(ξ)mn = d
(k)
mne

−j2πs(kξ)δtn∆f , ∀ξ = 1, . . . ,K . (21)

Inserting (20) into (17), the discrete periodic CCF will become

a periodically shifted ACF of x
(k)
m according to

R̃
(k,l)
m [ρ]∝K−1

∑
ξ=1
ξ≠k

γ(ξ,l)
N−1

∑
η=0

x(k)m [η+ρ−ρ0 − s(kξ)]N(x(k)m [η])∗

∝

K−1

∑
ξ=1
ξ≠k

γ(ξ,l)g[ρ − ρ0 − s(kξ)] , (22)

with shift of ρ0+s
(kξ) per transmitter ξ. Just as the ACF in

(12), each of these shifted ACFs will result in a peak in the

radar image of the kth channel such that in total K peaks per

target emerge: One peak through the ACF in (12) at the correct

range bin at ρ0 and K−1 ambiguous peaks at bins ρ0+s
(kξ)

caused by the shifted ACFs of the interfering channels in (22).

Though this seems very unfavorable, by introducing simple

modifications and smart signal processing, the same unam-

biguous range as in the SISO case is achievable despite the

inevitably arising ambiguities.

1) Choice of Mutual Shifts: By obeying the following

constraints, a favorable choice of mutual shifts is obtained:

(I) Each mutual shift s(kξ), ξ ≠ k, should be unique where

the difference between any two mutual shifts should

be at least Nguard. Through this, the peaks from (22)

become separable and unique in the common radar

image of all channels.

(II) Nguard should be at least the minimum distance between

two targets required to be distinguishable in the detec-

tion step. Typically, this depends on the tapering and is

in the range of 3 to 10 bins.

(III) In each channel, the distance between any target’s main

peak and its ambiguous peaks should be maximized.

Through this, the minimum number of bins between the main

and the closest ambiguity peak of one channel is

NAC
ua = ⌊N

K
−
Nguard(K + 1)

2
⌋ (23)

and the mutual shifts are

s(kξ) = (ξ − k)NAC
ua +

ξ(ξ − 1) − k(k − 1)
2

Nguard , (24)

where (k, ξ)∈[1,K]. This guarantees that constraints (I) and

(III) are fulfilled but constraint (II) might be violated for

few mutual shifts as the modulo operation was neglected for

simplicity. Yet, this is tolerable. In Table I, an example design

for the mutual shifts with K=4, N=1024, and Nguard=7 is

given. Note that for Nguard=0, the range profiles become similar

to those of I-OFDM.

2) Resolving Ambiguities: As described in Section III, the

range profile of the (k, l)th channel is composed of the desired

part (12), which gives a target peak at ρ0, and the interference

part (22), which gives further peaks at ρ0+s
(kξ) for AC-CDM.

This sums up to K peaks per target where always one of

TABLE I
AC-CDM MUTUAL SHIFTS s(kξ) EXAMPLE FOR K=4, N=1024, AND

NGUARD=7 USING (24).

ξ

k
1 2 3 4

1 0 −245 −497 268

2 245 0 −252 −511

3 497 252 0 −259

4 −268 511 259 0

R
(4,l)
m

R
(3,l)
m

R
(2,l)
m

N
o
rm

.
p
o
w

er
(d

B
)

ρ0

R
(1,l)
m

Range bin

Fig. 2. Illustration of an exemplarily ambiguities distribution in AC-CDM
across the channels of a single receiver l for a system with four transmitters
and a single target at ρ0.

these peaks is at the correct range bin ρ0 and the remaining

are ambiguous and are not distinguishable from the correct

one given a single channel only. However, through the design

rule (24), which creates pairwise different shifts between the

transmitters ξ and k, the ambiguous target at ρ0+s
(kξ) in the(ξ, l)th channel becomes unique among all channels of the lth

receiver as s(kξ) is unique. This is illustrated in the example

shown in Table I and Fig. 2 where the figure shows the range

profiles of the K channels of any receiver l for a scene with a

single target at range bin ρ0. As the mutual shifts between any

two channels is unique, only the target at its correct position

ρ0 is common in all channels, while its ambiguities are unique

across all channels. Therefore, correct target peaks can be

recognized by the fact that they are present in the same range

bin in each channel, whereas ambiguous peaks are unique

across all channels. AC-CDM with ambiguity detection will

be indicated with AC+-CDM in the following.

C. Modified Repeated Symbols MIMO (MRS-CDM)

In modified repeated symbol CDM (MRS-CDM), repeated

symbol (RS) OFDM [17] is combined with space-time coding

(STC) [11]. RS-OFDM uses the same modulation symbol on

each subcarrier for the complete radar frame. Similar to [11],

the idea in MRS is to cancel the CCF by accumulating consec-

utive, properly coded, OFDM symbols. The accumulation is

already included in the OFDM evaluation within the Doppler

evaluation and thus does not represent a modification of the

usual processing. MRS is related to Hadamard coding MIMO

waveform in [3] or short-time CDM [18] for FMCW radars

and outer coding MIMO PMCW [7]. As in [11], STC will be

implemented using a Hadamard matrix HK of order K where

H2 = [1 1

1 −1
] , and HK = [HK/2 HK/2

HK/2 −HK/2
] . (25)
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Hadamard matrices have the property that the Euclidean norm

of each row or column is K and the inner product of distinct

rows or columns is zero. In the proposed approach, the first

property yields an ideal ACF where the second property

eliminates the cross-talk.

The coding is done blockwise for each subcarrier, where a

block involves all K transmitters (space, rows of (25)) and

K consecutive symbols (time, columns of (25)). These blocks

are repeated until M symbols are obtained. To this end, K

modulation symbols sk are randomly chosen from A. Then

the STC via (25) is applied where in the assignment also

permutations are allowed. E.g., for K=2, four conceivable

designs are

S1 =

m m+1

[ ]s1 s1 TX 1

s2 −s2 TX 2
, S2 =

m m+1

[ ]s1 s2 TX 1

s2 −s1 TX 2

S3 =

m m+1

[ ]s1 −s1 TX 1

s2 s2 TX 2
, S4 =

m m+1

[ ]s1 s1 TX 1

−s2 s2 TX 2

(26)

where S1 constitutes the straightforward design. Beyond this,

it is possible to permute the order of the columns or rows

of the Hadamard matrix (S4/S3) or to permute the assignment

of sk over the transmitters of a single symbol (S2). The chosen

design has to be maintained for this subcarrier until the end

of the signal frame, i.e. for M OFDM symbols. However, it is

possible to use different assignments for different subcarriers,

which introduces more flexibility to the signal design. Note

that the utilized block structure (26) is different than for outer-

coding MIMO PMCW [7] and by the independent subcarrier

design it is not necessarily given that the signal can be trans-

lated into an outer-code. For simplicity, in the following, as-

signment S1 will be utilized for each subcarrier. The sequences

of modulation symbols D
(k)
n =[d(k)0n , d

(k)
1n , . . . , d

(k)

(M−1)n
] of the

nth subcarrier then become (K=2)

D
(1)
n = [s1, s1, . . . , s1], D

(2)
n = [s2,−s2, . . . , s2,−s2] . (27)

Thereby, the sequences D
(k)
n become block-periodic with

period K. Each block contains the repetition of the symbol

sk=d
(k)
0n with alternating sign according to the kth row of S.

The remaining signal generation is identical to the conven-

tional approach. Note that other than in RS-OFDM, where the

CP can be omitted, a CP is required in MRS-CDM due to the

introduced phase shifts.

For evaluation, the common processing chain as described in

Sections II and III is applied. The velocity DFT is of particular

importance for MRS-CDM: it is only through this step that the

transmitters finally become orthogonal as the summation in the

DFT eliminates the cross-talk. Similar to the range evaluation,

the resulting Doppler profile V
(k,l)
n [ν] of the nth subcarrier

of the (k, l)th channel may be divided into a desired part

V̂
(k,l)
n [ν] and an interference part Ṽ

(k,l)
n [ν].

The Doppler DFT of (5) gives the desired part

V̂
(k,l)
n [ν]∝Mg[ν − ν0] , (28)

TABLE II
OFDM SIGNAL PROPERTIES.

Parameter Symbol Value

Subcarriers N 1024

Symbols/frame M 2048

Subcarrier spacing ∆f 400 kHz

OFDM symbol duration T 2.5 µs

Bandwidth B 409.6 MHz

Carrier frequency fc 77 GHz

Cyclic prefix duration Tcp 0.4 µs

Range resolution ∆r 36.6 cm

Velocity resolution ∆v 0.3 m/s

that yields a target peak at ν0=round[fdMTOFDM]. The DFT

of (6) yields, after inserting (27) and applying further simpli-

fications,

Ṽ
(k,l)
n [ν]∝M

K
g[ν − ν0]M

K

K−1

∑
ξ=1
ξ≠k

Γ(ξ,l)d
(ξ)
0n (d(k)0n )∗

×

K

∑
u=1

hξuhkue
j2π u−1

M
(ν0−ν)

(29)

where Γ(ξ,l)=exp{j2πn∆fτ (k,l)} assuming that the range

IDFT was not yet applied and hku being the element of the

kth row and uth column of (26). It shows that the interference

part exhibits peaks at ν=ν0 + κM/K, κ=1, . . . , (K−1) with

periodicity M/K. Note that the target at ν=ν0 is missing as in

this case the last sum equals the inner product of two columns

of the Hadamard matrix which is zero.

It should be noted that MRS should not be applied in the

range dimension, i.e. along the subcarriers. The reason is that

in this case the signal would become a so-called uncoded

OFDM, as every subcarrier of an OFDM symbol would be

coded with the same phase. However, this leads to a pulse-like

time-domain signal with high amplitude fluctuations which is

unfavorable for amplification using linear power amplifiers.

V. COMPARISON AND EVALUATION USING

SIMULATIONS AND MEASUREMENTS

Different properties and the performance of the proposed

coded MIMO OFDM strategies are now analyzed and com-

pared. We restrict ourselves to the quantities for which signif-

icant differences were expected and observed in simulations

and measurements. These are the achievable maximum unam-

biguous regions, the Doppler sensitivity, and the achievable

peak-to-noise ratio (PNR). At the end of this section, the

findings of all evaluations are summarized and application

examples are given.

A. Signal Properties and Measurement Setup

For both simulations and measurements, the same signal

properties are applied. The general OFDM parameters are

listed in Table II. The number of transmitters is K=4 and the

number of receivers is L=4 yielding a 4×4 MIMO setup. For

each approach the transmit time-domain signals are generated

according to Section IV with the following specifications:
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● The ZCZ code set is C
(4)
ZCZ=(1024,4,192).

● For AC-CDM the number of guard bins is Nguard=7.

Using (24) gives the set of mutual shifts in Table I.

● For MRS-CDM, Hadamard matrices of order 4 are used.

As comparison, an I-OFDM signal with four times interleaving

is used. The experimental radar used for the presented mea-

surements has an antenna array with four transmit and four

receive channels. Its virtual array is a uniform linear array

(ULA) of spacing λ/2 with 16 elements total. To generate

the baseband transmit signal and store the baseband receive

signals, a Xilinx RFSoC [19] is used. The signal evaluation is

performed offline in MATLAB. For tapering in the 2D-(I)DFT

range-Doppler evaluation, Hann-windows are applied in both

dimensions.

B. Maximum Unambiguous Regions

The maximum unambiguous range Rua achievable for an

OFDM radar signal is generally defined by

Rua = Nperiod∆r ≤ Rmax
ua = cT /2 , (30)

where Nperiod≤N is the periodicity of the finite IDFT or of

the input signal for the range evaluation and ∆r=c/(2N∆f)
is the range resolution. The maximum periodicity is N which

yields the upper bound Rmax
ua .

The maximum unambiguous velocity vua of an OFDM frame

is generally defined by

∣vua∣ = Mperiod

2
∆v ≤ ∣vmax

ua ∣ = c∆f

4fc(1 + Tcp/T ) , (31)

where Mperiod≤M is the periodicity of the velocity DFT

or its input signal and ∆v=c/(2fcTOFDMM) is the velocity

resolution. The maximum periodicity of an OFDM frame is

M which yields the upper bound ∣vmax
ua ∣.

1) Ambiguity Functions: In Fig. 3, the respective charac-

teristic correlation results of the investigated MIMO OFDM

signals are shown by means of either the range or velocity

ambiguity function. The simulation results are obtained as

follows. First all time domain transmit signals (K=4) are

summed up to obtain a receive signal corresponding to an

ideal single target at R=0 m and v=0 m/s. Next, one channel

is extracted as in (4). Finally, the range-Doppler 2D-(I)DFT

yields the ambiguity function comprising a superposition of

the ACF and K−1 CCFs. For I-OFDM, ZCZ-, and AC-CDM,

the range profiles at v=0 m/s and for MRS the velocity profile

at R=0 m are given. Additionally, the highlighted regions show

the theoretical maximum unambiguous range and velocity

regions. Ideal isolation is achieved within these unambigu-

ous regions and sharp ambiguity peaks emerge beyond that

limit for I-OFDM, AC-, and MRS-CDM. For ZCZ-CDM, an

interval of high correlation emerges instead.

2) I-OFDM: The periodicity of the range IDFT is reduced

by K due to the interleaving, which resembles a subsampling

across the subcarriers such that only every Kth subcarrier is

non-zero. Therefore, the unambiguous range reduces to

RI-OFDM
ua =

N

K
∆r . (32)

In Doppler, no additional ambiguities emerge.

TABLE III
COMPARISON OF MAXIMUM UNAMBIGUOUS RANGES.

I-OFDM ZCZ-CDM AC-CDM* MRS-CDM

Rua/∆r N
K

3N
4K

⌊N
K
−

Nguard(K+1)

2
⌋ N

vua/∆v M M M M
K

* without ambiguity detection

3) ZCZ-CDM: As visualized in Fig. 3b, beyond the ZCZ,

intervals of high amplitude emerge. As those ridges in range

will not cause distinct targets, they are not considered as

ambiguities, however, they should be kept out of the radar’s

operational range to avoid disturbance. The maximum unam-

biguous range is therefore limited to the ZCZ. This gives

RZCZ
ua = Z∆r =

3

4
Zopt∆r =

3N

4K
∆r , (33)

which is 1/K less than for I-OFDM. Though, no false targets

are generated. In Doppler, no additional ambiguities emerge.

4) AC-CDM: As shifted versions of the same signal are

transmitted, ambiguities emerge. Their locations in the indi-

vidual channels depend on the mutual shifts s(kξ) of every

transmit signal ξ compared to the signal k. According to the

proposed constraint signal generation in Section IV-B, the

minimum range between the target main peak and its closest

ambiguity is proportional to Nua (23) such that

RAC
ua = Nua∆r = ⌊N

K
−
Nguard(K + 1)

2
⌋∆r , (34)

which is Nguard(K +1)∆r/2 less than for I-OFDM. Note that

for AC+-CDM the achievable range is up to RAC+
ua =R

max
ua . In

Doppler, no additional ambiguities emerge.

5) MRS-CDM: No ambiguities emerge in range such that

RMRS
ua =R

max
ua . However, unlike the other approaches, ambigui-

ties emerge in Doppler due to the Hadamard matrix coding.

The Doppler evaluation yields the superposition of (28) and

(29) that together exhibit a periodicity of M/K as derived

in Section IV-C. Consequently, the ambiguity-free region is

reduced to

∣vMRS
ua ∣ = M

2K
∆v ⇔ ∣fMRS

d,ua ∣ = ∆f

4K(1 + Tcp/T ) (35)

for the relative velocity and Doppler frequency, respectively.

In order to limit the impact of ICI, a generous excess in

Doppler is typically included in the OFDM signal design, but

is not used. To this end, a maximum expected Doppler shift

fd,max is defined in the design and the subcarrier spacing of

∆f=βfd,max is deduced where β is typically about 10 [5], [20].

To avoid ambiguities to occur within the expected Doppler

range, it must apply fMRS
d,ua ≥fd,max. Thus β≥2K(1 + Tcp/T )

and with 0≤Tcp≤T , it yields that 2K≤β≤4K depending on

Tcp. Consequently, for 2 and 4 transmitters, the typical signal

design is sufficient and possible ambiguities are of minor

matter. For more transmitters, the subcarrier spacing should

be adjusted according to the desired β.
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Fig. 3. Correlation results respectively range profiles for (a) I-OFDM, (b) ZCZ-CDM, and (c) AC-CDM, as well as the velocity profile for (d) MRS-CDM. For

ZCZ-CDM, the used code sequence set is C
(4)
ZCZ
=(1024,4,192). For AC-CDM, a guard interval of Nguard=7 is used. Unambiguous regions are highlighted.
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Fig. 4. Comparison of the maximum unambiguous ranges (Table III) for
I-OFDM and CDM for different K with N=1024 and Nguard=7.

TABLE IV
NUMERICAL EXAMPLES FOR RUA AND vUA GIVEN THE OFDM

PARAMETERS IN TABLE II FOR K={2,4,8,16} TRANSMITTERS.

K I-OFDM ZCZ AC AC+ MRS

Rua

2 187.4 m 140.5 m 183.3 m

374.7 m
4 93.7 m 70.3 m 87.1 m

8 46.8 m 35.1 m 35.1 m

16 23.4 m 17.6 m 1.5 m

vua

2

335.6 m/s

167.8 m/s

4 83.9 m/s

8 42.0 m/s

16 21.0 m/s

6) Discussion: The achievable maximum unambiguous

ranges are summarized in Table III. In Fig. 4, the behavior

of Rua for different K is shown. In Table IV, actual values

for Rua and vua given the OFDM parameters in Table II

are summarized. In short, it shows that ZCZ-CDM has the

lowest operational range though no sharp ambiguous targets

are generated. I-OFDM and AC-CDM have similar limitations

where the small difference between them will only become

obvious for large K. In MRS-CDM Rua is independent of the
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o
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*without ACDC
processing

Fig. 5. Doppler sensitivity of I-OFDM, naive CDM, and the proposed CDM
MIMO approaches.

number of transmitters. The same is achievable for AC+-CDM.

In velocity, ambiguities only emerge for MRS due to the

Hadamard code structure. Yet, for up to 4 transmitters, the typ-

ical safety margin introduced in subcarrier spacing to diminish

loss of subcarrier orthogonality allows generous reductions in

Doppler ambiguity before the maximum unambiguous region

reaches this limit.

C. Doppler and Frequency Offset Sensitivity

OFDM is known to be sensitive to Doppler shifts or

frequency offsets [8], [20]. Their presence in the receive signal

typically leads to a violation of the subcarrier orthogonality

(isolation), which results in reduced target peak power and

induced ICI. Both are functions of fd, where the additional

interference constitutes the more prominent degradation.

In Fig. 5, the theoretical isolation in presence of a Doppler

shift fd/∆f is shown for I-OFDM and the proposed CDM

approaches. I-OFDM and AC-CDM show the same behavior,

which also resembles the typical ICI loss for standard OFDM.

In naive CDM, the self-induced interference is higher than
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the typical Doppler loss (I-OFDM curve) such that ICI loss

is not discernible. MRS- and ZCZ-CDM show a significant

higher sensitivity to Doppler shifts and ICI than AC-CDM.

For ZCZ- and MRS-CDM, the elimination of the cross-talk

due to the code dissolves with increasing code compression

through the Doppler. In this case, the cross-interference of

the other transmit signals will not be completely eliminated.

The reduced performance is typical for RS signals or OFDM

signals with linearly dependent OFDM symbols. Yet, in [21], it

is shown that this circumstance can be exploited to completely

reverse the Doppler induced ICI through all-cell Doppler-

correction (ACDC) processing. By applying a slightly mod-

ified processing scheme, the Doppler shift is compensated be-

fore transforming the time domain receive signal to frequency

domain2. MRS as well as ZCZ-CDM signals are composed of

linearly dependent OFDM symbol sequences and are therefore

suitable for ACDC processing. After ACDC processing, the

same isolation as in Figs. 3b and 3d are obtained for ZCZ and

MRS, respectively, independent of the present Doppler shift

or number of targets.

D. Achievable Peak-To-Noise Ratio in Measurements

The achievable PNR in the R-v-image is validated using

MIMO measurements of a static scenario in an anechoic

chamber. The measured static scene is composed of three

targets as shown in Fig. 6a. The targets are placed at ranges

and angles (R;φ) of (2.2 m; 26°), (3.7 m; −3°), and (5.7 m;

−19.5°) with respect to the reference antenna.

For each measurement a common R-v-image is computed

by non-coherent integration of the R-v-images of all 16

channels. Then the achieved PNR is obtained by the ratio

of the peak power of the strongest target (R=3.7 m) and the

noise level. In Fig. 7, the obtained range profiles (v=0 m/s)

of all approaches are shown including the first ambiguity

region. Concerning shape and amplitude of the three targets,

no difference between the approaches is observable and all

peaks are clearly visible and distinguishable. Investigating the

noise level starting from R=10 m, for I-OFDM, AC-, and ZCZ-

CDM, hardly any differences are observable. However, MRS-

CDM shows a slightly reduced PNR.

In Fig. 8, the actually achieved PNRs in dB for the sta-

tionary image (range-profile only) and the overall image are

compared. Additionally, the ratio of the strongest target to the

highest sidelobe, the peak-sidelobe-level (PSLL), is shown.

The proposed CDM schemes achieve at least the same PNR

as I-OFDM, where ZCZ even achieves an improvement of

about 2.5 dB. Concerning the PNR across the range profiles

of the targets and the PSLL, the performance of AC is

comparable to that of I-OFDM, whereas ZCZ shows both an

improvement of the PNR and a decreased PSLL. As already

indicated in Fig. 7, MRS shows slightly worse results for both

values as it is sensitive to amplitude scaling differences over

time or between OFDM symbols, which is likely in the used

measurement system. In this case, the CCF interference is not

2ACDC processing does not constitute an increased effort in processing
compared to the standard procedure and is also target scene independent.

perfectly eliminated and largely concentrates in a ridge along

the zero-velocity cut, which is typical for RS-OFDM.

E. Resolving Ambiguities in AC-CDM

As already suggested and illustrated in Section IV-B, it is

possible to separate ambiguous from correct targets up to

Rmax
ua . In the following, the performance of this procedure

is investigated using a more challenging outdoor non-static

measurement scenario comprising an approaching vehicle. The

radar is placed at about 20 cm above ground and observes

the scene from a slanted angle as shown in the photo in

Fig. 6b which is taken from the observation angle during

measurements. The vehicle is approaching the radar with about

v≈30 km/h.

With K=4 transmitter and Nguard=7, the maximum un-

ambiguous range in (34) without post-processing yields

RAC
ua ≈87 m. In the evaluation, the signals of all channels (4)

are first extracted and their R-v-image via 2D-(I)DFT pro-

cessing are computed. The non-coherent integration of all

channel images yields the combined radar image as shown

in Fig. 9a. Using an ordered-statistic constant false-alarm rate

(OS-CFAR) detector, targets are estimated for both the overall

image as well as of each channel individually. In Fig. 9a and

10a, the CFAR detections are marked as crosses. Four groups

of targets are recognizable. It is noticeable that the targets

within these groups are not arranged in the same way, as

it would be the case in I-OFDM, where the groups would

be exact copies of each other shifted by integer multiples of

N/K range bins. Comparing the locations of the targets in

the combined image with those of the 16 individual channels,

similar to the example in Fig. 2, the targets are now divided

into three disjoint sets:

(A) matching in every channel

(B) matching in almost (≫50%) every channel

(C) remaining other

In Fig. 10a, targets of group (A) and (B) are marked and will

be considered correct targets. Remaining targets are classified

as ambiguities and will be ignored. In Fig. 10b, the encircled

region of Fig. 10a is magnified for better visualization. It

shows that, with one exception, all targets within the range

observable by the sensor are emerging in (almost) every

channel. In comparison, all but one target of the remaining

targets in Fig. 10a are correctly identified as ambiguities.

For each correct target, additionally, the direction of arrival

is estimated via an FFT along the virtual channels. This yields

the x-y image shown in Fig. 9b. Here, the typical L-shape of

the vehicle is clearly discernible. Additionally, reflections of

stationary objects are also observable and assignable to the

objects in the scene except of a single clutter target.

F. Discussion

The evaluation findings concerning maximum unambiguous

range and velocity, Doppler sensitivity, PNR, and PSLL are

summarized in Table V. I-OFDM serves as the reference and

is therefore rated with neutral (◯) in each category. The other

approaches are rated relatively to this where the ratings “−”,
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Fig. 6. Measurement setups. (a) In the anechoic chamber using three static targets and (b) outdoor of an approaching vehicle.
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TABLE V
COMPARISON OVERVIEW OF THE APPROACHES.

I-OFDM ZCZ AC+ MRS

Rua ◯ − + +

vua ◯ ◯ ◯ −

Doppler sensitivity ◯ +
1

◯ +
1

PNR ◯ + ◯ −

PSLL ◯ − ◯ −

1 with ACDC processing

“◯”, and “+” resemble worse, similar, and better performance

than I-OFDM, respectively.

In summary, each approach is able to deliver better results

than I-OFDM in at least one property. For ZCZ- and MRS-

CDM, this comes at cost of degraded performance of other

properties, whereas for AC+-CDM additional steps in target

detection are required. Therefore, these approaches should be

applied depending on the desired application or scenario. ZCZ-

CDM obtains a higher PNR and is less sensitive to Doppler

shifts but achieves only 3/4RI-OFDM
ua for the same K. Hence,

ZCZ-CDM is an alternative for scenarios with high Doppler

but moderate ranges. AC-CDM and I-OFDM, although us-

ing quite different signal designs, obtain comparable results

regarding performance and limitations. As the number of

transmitters increases, resolving ambiguities in AC+ (Nguard≠0)

becomes more challenging and the risk of missing targets

increases. Therefore, AC+ is better suited for long range

scenarios with a small number of transmitters. With MRS-

CDM Rmax
ua is obtainable since the range restriction is shifted to

the Doppler domain, where this degradation is tolerable up to

K≤4. Hence, MRS is also suited for long range scenarios with

a small number of transmitters. In measurements it showed

that MRS is sensitive to amplitude scaling, which has to be

considered in system design. In general, the CDM approaches

allow a higher throughput as all subcarriers are available to

all transmitters at all times. This allows more flexibility in

signal design and more robustness. Additionally, some of the

schemes may be combined in case of large arrays where a

single approach would be too restrictive. For instance, consider

the combination or MRS and I-OFDM or AC+-CDM for the

given signal parameters in Table II and unambiguous ranges

in Table IV. Assume a system that should be able to measure

targets with velocities up to 55 m/s and with maximum range

150 m. For both MRS, AC+, and I-OFDM, in maximum K=4

is reasonable. However, combining I-OFDM with MRS would

allow four transmitters to be interleaved and, applying MRS,

additionally four transmitters per subcarrier which sums up to

16 transmitters. Similarly, AC may be combined with MRS

where AC is applied across the subcarriers and MRS across

the OFDM symbols.
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Fig. 9. Measurement of an approaching vehicle using AC-CDM: (a) range-velocity image and (b) range-azimuth image with CFAR detection results ( ).
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Fig. 10. Detected targets in the overall radar image (a) up to Rmax
ua and (b) of the area actually observed by the sensor (=area where targets are expected).

VI. CONCLUSION

In this paper, the opportunity of utilizing the coding within

OFDM symbols for MIMO is suggested and examined. It

shows that the simple naive coding approach suffers from

low PNR due to the high cross-correlation of the waveforms.

Therefore, three novel strategies are proposed that aim at

reducing or eliminating the cross-correlation of interfering

transmitters. As perfect orthogonal coded waveforms do not

exist, a trade-off has to be made between good isolation

between the channels and ambiguities in the radar evaluation.

Despite these constraints, it is shown that the approaches

constitute competitive alternatives to the common I-OFDM.

Moreover, the suggested approaches offer different alternatives

where the inevitable constraints occur. For instance, in AC-

CDM, ambiguities in range emerge where their locations

may be controlled in the signal design, whereas for MRS

ambiguities emerge in Doppler instead of in range. This

introduces a much wider variety of possible waveforms with

different and more diverse characteristics. It is therefore also

suggested that the approaches may be combined, especially

for larger arrays as in this case, the constraints can be divided

into several dimensions, thus avoiding severe limitations in a

single dimension.
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