
UC Irvine
UC Irvine Previously Published Works

Title
Coded path protection: Efficient conversion of sharing to coding

Permalink
https://escholarship.org/uc/item/7m1960kr

Journal
IEEE Transactions on Communications, 61(10)

ISSN
0090-6778

Authors
Avci, SN
Ayanoglu, E

Publication Date
2013-10-01

DOI
10.1109/TCOMM.2013.093013.120607
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7m1960kr
https://escholarship.org
http://www.cdlib.org/


Coded Path Protection:
Efficient Conversion of Sharing to Coding

Serhat Nazim Avci and Ender Ayanoglu
Center for Pervasive Communications and Computing

Department of Electrical Engineering and Computer Science

University of California, Irvine

Abstract—Link failures in wide area networks are common and
cause significant data losses. Mesh-based protection schemes offer
high capacity efficiency but they are slow and require complex
signaling. Additionally, real-time reconfiguration of a cross-
connect threatens their transmission integrity. On the other hand,
coding-based protection schemes are proactive. Therefore, they
have higher restoration speed, lower signaling complexity, and
higher transmission integrity. This paper introduces a coding-
based protection scheme, named Coded Path Protection (CPP).
In CPP, a backup copy of the primary data is encoded with
other data streams, resulting in capacity savings. This paper
presents an optimal and simple capacity placement and coding
group formation algorithm. The algorithm converts the sharing
structure of any solution of a Shared Path Protection (SPP)
technique into a coding structure with minimum extra capacity.
We conducted quantitative and qualitative comparisons of our
technique with the SPP and, another technique, known as p-
cycle protection. Simulation results confirm that the CPP is
significantly faster than the SPP and p-cycle techniques. CPP
incurs marginal extra capacity on top of SPP. Its capacity
efficiency is lower than the p-cycle technique for dense networks
but can be higher for sparse networks. In addition, unlike p-
cycle protection, CPP is inherently suitable for the wavelength
continuity constraint in optical networks.

I. INTRODUCTION

Studies show that reasons of failure in networks can be
widespread. According to [1], cable cut rate per 1000 sheath
miles per year is 4.39. That means on average a cable-cut
occurs every three days per 30,000 fiber miles. These numbers
are consistent with the FCC data, summarized as 13 cuts per
year for every 1,000 miles of fiber and 3 cuts per year for
every 1,000 miles of fiber for metro and long haul networks
respectively [2]. As stated in [3], 70% percent of the unplanned
network failures affect only single links. For this reason, in this
paper, we focused on single link failure recovery.

1+1 and 1:1 automatic protection switching were early at-
tempts of path-based protection mechanisms but were dropped
due to low capacity efficiency. Mesh-based protection schemes
attracted attention due to their high capacity efficiency but
suffered from low speed. SPP [4] is a widely recognized mesh-
based path protection technique. It specifies two link-disjoint
paths for each connection and reroutes the traffic over the
protection path if the primary path fails.

Reference [5] introduced the concept of a p-cycle in or-
der to achieve both fast restoration and low spare capacity
percentage. Fundamentally, a p-cycle is a mixture of ring-type
protection and link-based protection. Its performance is similar
to SPP in terms of resource utilization and similar to link-based
protection in terms of restoration time. In the case of a failure

in a link protected by the cycle, the affected traffic is rerouted
over the spare capacity in the healthy parts of the p-cycle.

The p-cycle approach achieves higher restoration speed by
simply minimizing the number of optical cross-connect (OXC)
configurations after failure. “Hot-standby” [6] and “pre-cross-
connected trials” (PXT) [7], which are extensions of SPP, are
developed based on the same idea. We offer a novel proactive
protection scheme called Coded Path Protection (CPP). It is
faster and more stable than rerouting based schemes because it
eliminates the real-time OXC configurations after failure. The
capacity placement algorithm of CPP is based on converting
the sharing operation of SPP into coding and decoding opera-
tions with a slight extra cost. Integer linear programming (ILP)
is incorporated to carry out the optimal conversion with mini-
mum total capacity. In the next sections, comparisons between
our schemes and aforementioned conventional techniques are
performed, Simulations over realistic network scenarios using
ILP formulations are carried out.

II. RELATED WORK

The idea of incorporating network coding into link failure
protection dates back to 1990 [8] and 1993 [9], prior to the
first papers on network coding [10]. The technique is called
diversity coding, and in it, N primary links are protected using
a separate N +1st protection link which carries the modulo-2
sum of the data signals in each of the primary links. If all of
the N + 1 links were disjoint or physically diverse, then any
single link failure could be recovered from by applying the
modulo-2 sum over the received links. Assume that data on
the primary links are b1, b2, b3, . . . , bN and the checksum of
the primary data is

c1 = b1 ⊕ b2 ⊕ · · · ⊕ bN =

N⊕

j=1

bj .

In the receiver side of the operation, if a failure is detected,
the decoder applies modulo-2 sum to the rest of the N links
and extract the failed data as

c1 ⊕

N⊕

j=1

j 6=i

bj = bi ⊕

N⊕

j=1

j 6=i

(bj ⊕ bj) = bi

where we assumed bi is the failed link. This operation is fun-
damentally different than rerouting-based protection schemes
since it does not need any feedback signaling.

This idea was revisited by the authors of this paper in
[11] and a coding structure for an arbitrary network topology



was developed. This scheme may require extra links from
the destination nodes to decoding nodes to be able to decode
signals. It has been shown in [11] that diversity coding can
achieve higher capacity efficiency than the SPP and the p-cycle
techniques.

In [12], a bidirectional protection scheme that uses network
coding over p-cycle topologies on mesh networks was intro-
duced and called as 1+N protection. The idea presented in
[12] is to form circular protection paths in both directions
that traverse over the source and destination nodes of the
group of flows that are to be protected. In [13], a new
tree-based protection scheme was introduced instead of a p-
cycle based scheme and called Generalized 1+N protection
(G1+N). In [13], same data from both end-nodes are sent on
a parity link. Symmetric transmission is broken only for the
connection affected from the failure. The capacity efficiency
of G1+N is basically unknown. However, it clearly lacks
the speed of diversity coding since the distance between the
destination nodes and the decoding node is much longer than
for diversity coding. In [14], a new trail-based protection
scheme is proposed. Failed data is recovered via a linear
coded protection circuit. This structure is a modified version
of the scheme in [12] resulting in higher capacity efficiency
by moving from cyclic to linear protection topology.

III. CODED PATH PROTECTION

In this paper, we propose a novel coding technique, which
we call Coded Path Protection (CPP). We present a simple
strategy to find the optimal coding structure without much
complexity. Coded path protection is faster, has less signaling
complexity, and has higher transmission integrity than any
of the rerouting-based protection techniques. Spare capacity
percentage (SCP) of coded path protection is slightly larger
than the SCP of shared path protection. Our contribution in this
paper consists of two parts, namely a novel coding structure
and a simple but optimal coding group formation algorithm.

The set of operations starting with the input of network
and traffic data until reaching a CPP solution with a valid
coding structure are shown in Fig. 1 in a sequential order.
On the contrary, in this section, we start with explaining
our methodology in converting a typical solution of Shared
Path Protection into a one with sharing replaced by coding,
which we call Coded Path Protection. Then, we show how to
establish a valid coding structure and show that the encoding
and decoding inside the network can be carried out within
this coding structure. In the next section, first, we explain the
design algorithm that finds a Shared Path Protection (SPP)
solution to work on. Second, we present a design algorithm,
which optimally converts the sharing structure into the coding
structure given the solution of SPP.

We benefit from the basic coding structure of [14] while
building a valid coding structure in CPP. When the traffic is
bidirectional, the end-nodes of a connection generate the same
set of protection signals and transmit them over the protection
path to the other end-node of the connection so that the failed
data can be recovered from the protection path shortly after
the failure. This proactive protection mechanism makes 1+N
coding [14] faster than the sharing based protection schemes.
This structure creates a symmetricity over the protection path

of each bidirectional connection. The parity data is formed
by applying XOR operation to the data received from and
the data transmitted over the primary path. Encoding and
decoding of different parity data inside the network can be
done by utilizing the symmetricity over the protection paths
of the connections. Despite its restoration time advantage, 1+N
coding works on a specific limited linear topology, which is
why it falls short in exploring the full connectivity inside
the network. On the other hand, CPP mostly preserves the
topology of an SPP solution with a small compromise on
connectivity without losing the speed advantage that comes
inherent from the coding structure.

Symmetric transmission is key in coding and decoding
operations. This is illustrated in Fig. 2(a) in an example
with two connections. Thick straight lines are primary paths
and dotted lines are protection paths. For the time being,
synchronization and timing are not considered. Assume that
S1 transmits s1 to D1 and D1 transmits d1 to S1 using the
primary path at time t0. After a delay of τ , these signals
are received by the reciprocal nodes at the same time and
both end-nodes form the summation of these two signals,
mathematically c1 = s1 ⊕ d1. At time t0 + τ , the same c1

symbols are sent from the corresponding end-nodes of the
protection path of S1 −D1. It is similar for S2 −D2. As it
is seen at Fig. 2(a), c1 and c2 are coded over the link A−B.
A is the node where c1 and c2 are coded and node B is
responsible for decoding. Node B extracts c1 using c1 ⊕ c2

and c2, and extracts c2 using c1⊕c2 and c1. Therefore coding
and decoding of signals c1 and c2 are successfully completed
and node B transmits them to D1 and D2 over links B−D1

and B−D2 respectively. Fig. 2(b) gives an example of single
link failure on the primary path of S1 −D1. Due to failure,
S1 receives 0 instead of d1 and transmits s1 ⊕ 0 = s1 at
time t0 + τ over the protection path. Similarly, D1 receives 0
instead of s1, so it transmits 0 ⊕ d1 = d1. These signals are
coded with c2 over link A−B and they are decoded at nodes
B and A respectively. At node B, s1 is extracted by summing
s1 ⊕ c2 ⊕ c2 = s1 and forwarded over the link B − D1. At
node A, d1 is acquired by summing d1 ⊕ c2 ⊕ c2 = d1 and
forwarded over the link A−S1. Reciprocity over the protection
path of S2−D2 enables perfect coding and decoding of the
data signals of the failed connection.

“Poison-antidote” analogy [15] is useful in understanding
the general coding structure. When two signals are coded
together they “poison” each other. At the decoding node,
“antidote” data are needed to extract the signals from each
other. For the general two connection case in Fig. 3, same
signals traverse the reverse directions over the protection path.
Straight lines are protection paths of a and b in one direction.
Dotted lines are protection paths of same a and b in the reverse
direction. At node A, straight paths are antidotes of dotted
paths. At node B, dotted paths are antidotes of straight paths.
In the single link failure case, if connections have link-disjoint
primary paths, at most one of them is affected from the failure.
The other connection can preserve reciprocity and the poison-
antidote structure to help recover the affected connection.

We can generalize this coding structure to an arbitrary
number of connections, arbitrary number of links, and to an
arbitrary topology by the use of reciprocity. However, first



��������

	
����	���

�	����

����

	��������

����

�������


��
������
�

	��������

����

���������

�����������

������

�����
	���
�

���������

����

���������

	��	�����

����
���
��

��� ��

����
��

!��	��������

�������
�	
��	�

����
�����������

Fig. 1. Steps in creating a CPP solution.

��

�� ��

��

� �
1

s

1
d

2
s

2
d

1
c

2
c

21
cc ⊕

1
c

2
c

�����

1
c

1
c

21
cc ⊕

2
c

2
c

(a)

��

�� ��

��

� �
1

s

1
d

2
s

2
d

1
s

2
c

21
cs ⊕

1
d

2
c

�����

1
s

�������

1
d

21
cd ⊕

(b)

Fig. 2. Coding and decoding operations for coded path protection, (a) In
normal state, (b) Reaction to single link failure

�

a

b
ba ⊕

a

b

ba ⊕

a

b

a

b

� �

Fig. 3. Coding at an arbitrary link and decoding at an arbitrary node.

we should define the concept of a coding group. Assume that
S1−D1 and S2−D2 are coded over some link E. Then, they
are considered to be in the same coding group. This group gets
bigger if either S1−D1 or S2−D2 is coded with some other
connection. For example, if S3−D3 is coded with S2−D2, it
is also considered in the same coding group with both S2−D2

and S1−D1. In a coding group, coding structure can recover
from a single link failure on one of the primary paths if the
reciprocity property is preserved for the other connections. To
guarantee this property, two protection paths can be coded
together as long as

1) Their primary paths are link-disjoint,
2) Their primary paths are also link-disjoint with the pri-

mary and protection paths of the connections in the same
coding group.

These are sufficient link-disjointness rules to satisfy the
decodability on arbitrary CPP topologies. In III-D, these rules
can be relaxed to some extent to utilize network connectivity
more. These rules can also be interpreted as the criteria of
two connections to be in the same coding group. In addition
to these rules, the primary and protection paths of the same
connections are inherently link-disjoint as a cardinal rule in
path-based link failure recovery.

The scheme in [14] is similar to CPP with two differences.
First, its capacity efficiency is not known. Second, there does
not exist a simple and optimal algorithm to implement it for
an arbitrary topology. However, CPP is suitable to convert a
typical solution of SPP with low complexity because a typical
solution of SPP must obey the first rule above. The rest of
the work to convert an SPP solution to CPP is to form coding
groups that satisfy the second rule.

We assume that for a given topology and a given set of
connections, there is a pre-calculated solution of SPP. Given
the solution, primary and protection paths of the connections,
wavelength assignments, and maximum required spare ca-
pacity on each link will be known. Referring to Fig. 4(a),
thick straight lines represent the primary paths of end-to end
connections, whereas protection paths are stated by dotted
lines. In Fig. 4(a), numbers associated with edges are index
values of edges. Some of the protection capacity is shared
by multiple protection paths. There is a limited freedom in
terms of choosing the group of connections which will share
the same capacity over the same link. For example, S3−D3

can share the one unit spare capacity at link 5 either with
connection S1 −D1 or with connection S4 −D4. However,
S1 − D1 and S4 − D4 cannot share that capacity since
their primary paths are not link-disjoint. This freedom can be
utilized in converting sharing groups to valid coding groups
with zero or unappreciable additional capacity.

In the given solution of SPP, protection paths are coupled
under the provision of the first rule. However, while building
the CPP solution, protection paths are coupled and coding
groups are formed in a way such that both rules are satisfied.
The sharing structure in Fig. 4(a) is converted to the coding
structure in Fig. 4(b) in this manner. It should be noted that



�

�

�

�

�

�

�

��

��

��

��
��

��

��

�

�

�

�

	
�

�


��

�



�

��

��

�	

��
	
���

	
���

	
���

�

�

��

��

��

��

�
��

��

(a)

�

�

�

�

�

�
�

��

��

��

��
��

��

��

�

�

�

�

	
�

�


��

�



�

��

��

�	

��
	
��� 	
���

	
���

����������

�

�

��

��

��

��

�
��

��

����������

(b)

Fig. 4. Possible coding and sharing scenarios over a network, (a) Sharing
of protection capacities, (b) Coding of protection paths

at link 5 S1−D1 and S3−D3 are coupled to share the one
unit capacity in the SPP solution. However, in CPP solution
S3−D3 is coded with S4−D4, not with S1−D1. If that is
not done, then S1−D1, S2−D2, S3−D3 and S4−D4 would
be in the same coding group because they would be indirectly
related. Then the second rule about link-disjointness would not
be satisfied. After this modification, we can divide this coding
group into two, one group consists of S1−D1 and S2−D2

and the other consists of S3 −D3 and S4 −D4. Then both
of the rules are satisfied. In this example, no extra capacity
is required to convert a SPP solution to a CPP solution with
the aid of limited freedom in the SPP solution. However, that
is not the case in general. Therefore, we developed an ILP
formulation to conduct the conversion with minimum extra
capacity.

A. Cycle Elimination

The outputs of the conversion algorithm are the coding
group combinations and the protection topologies of each
coding group. Even the conversion algorithm is optimal,
there can occur some cyclic structures inside some of these
topologies, which cause suboptimality. In [13], by Proposition
1, it is shown that “under the assumption of undirected edges

in the network graph G, the minimal cost protection circuit,

Pi, where the cost is in terms of the number of network edges,

is a tree.” The suboptimality inside the CPP topologies occurs
due to two reasons. First, the design algorithm of SPP may
not be optimal due to high complexity. Second, the groupings
under the sharing configuration is rearranged by the conversion
algorithm, which may lead to some cyclic structures in some
of the coding group topologies. We eliminate these cyclic

�

�

�

�

Fig. 5. Removal of a cyclic structure

structures to transform the coding group topologies into tree
structures, which is critical in building the coding structure of
CPP. The elimination of the cyclic structures is shown in Fig. 5
and they lead to further capacity savings. The signals in the
longest link of the cyclic structure is coded with the signals
on the rest of the cycle, shown with dashed links. Therefore,
the capacity of the longest link is saved. The link-disjointness
rules ensure that the rest of the cycle does not share any link
with the primary paths of the connections on interest.

B. CPP Coding Structure

We need to prove that simple linear coding structure of
1+N coding can be extended to any arbitrary tree structure
in order to implement this idea over arbitrary CPP protection
topologies, which are tree-like. Before demonstrating how to
build general coding structure of CPP, we need to show the
extensions that can be done over the simple linear coding
structure of 1+N coding. The basic structure of 1+N coding
protection circuit (trail) for 3 connections is shown in Fig. 6.
The link-disjoint primary paths between end-nodes are not
shown for clarity.

1) Lemma 1: In the linear topology of 1+N coding, a
node can serve as the end-nodes of multiple connections.
In this case, these end-node can be represented by separate
hypothetical adjacent end-nodes on the linear coding graph
(trail). The links between these end-nodes are assumed to
have zero length. In other words, multiple end-nodes over the
linear coding structure may refer to same physical node if
the links between them has zero length. Each end-node can
be separated from each other since they are connected to the
physical node via independent ports as shown in Fig. 7(a).
The parallel horizontal links represent the coding trail passing
through the nodes of interest. Let E be the set of end-nodes
which share the same physical node F . Since the information
regarding each end-node is independent from each other, they
can be separately depicted with the hypothetical end-nodes in
Fig. 7(b).

2) Lemma 2: The classical 1+N coding requires each end-
node to be traversed by the common protection path. However,
the same coding structure can be applied even if an end-node
is connected to the linear topology through a direct path which
deviates from the common trail. In Fig. 8(a), the end-node Ti

is connected to the linear coding topology via an arbitrary on-
trail node D through a bidirectional link. In terms of coding
operation at node D, there is no change if the node D and
node Ti are assumed to be the same node. This transformation
is depicted in Fig. 8(b), where the dashed box combines these
two nodes into a single one in terms of coding operations



1
S

3
S

2
T

2
S

1
T

3
T

11
ûd ⊕

11
ˆ ud ⊕

33
ûd ⊕

22
ˆ ud ⊕ 22

ûd ⊕
11

ˆ ud ⊕ 33
ˆ ud ⊕

33
ˆ ud ⊕ 22

ûd ⊕
22

ˆ ud ⊕ 11
ûd ⊕ 33

ûd ⊕

33
ˆ ud ⊕

33
ûd ⊕

11

33

ˆ

ˆ

ud

ud

⊕

⊕⊕

22

11

33

ˆ

ˆ

ˆ

ud

ud

ud

⊕

⊕⊕

⊕⊕

11

33

ˆ

ˆ

ud

ud

⊕

⊕⊕11
ˆ ud ⊕

11
ûd ⊕

33

11

ˆ

ˆ

ud

ud

⊕

⊕⊕

22

33

11

ˆ

ˆ

ˆ

ud

ud

ud

⊕

⊕⊕

⊕⊕

33

11

ˆ

ˆ

ud

ud

⊕

⊕⊕

Fig. 6. Coding at 1+N protection [14] circuit for 3 connections.

{}1E

F

{ }2E

�������

{ }NE

(a)

{}1E′ { }2E′

�������

{ }NE′

(b)

Fig. 7. Proof of Lemma 1 (a) Multiple end-nodes share the same node, (b)
Each end-node can be shown as a separate entity over the protection trail

over the linear topology. In Fig. 8(c), Fig. 8(b) can simplified

and node Ti can represented on the linear coding trail via a

hypothetical node T ′

i . We can generalize this operation to any

arbitrary number of end-nodes as long as they are connected

to common trail via link-disjoint paths.

3) Lemma 3: As an extension to the second Lemma, if N

number of end-nodes are connected to a node on the trail via

a common link, these end-nodes can be still represented over

the trail by a different notation. This is useful if the separate

signals of these end-nodes are not the interest. In Fig. 9(a),

end-nodes Si and Tj are combined at an arbitrary node C and

C is connected to an arbitrary node D over the linear coding

trail. In this case, the the end-nodes cannot be represented

independently because there is no mechanism to decode the

signals in node C. However, from the network point of view,

these two end-nodes can be merged into a single end-node as

Si ⊕Tj since the coding operations in the rest of the network

is not affected. Note that Si ⊕ Tj is only a notation because

the end-nodes cannot summed but their parity signals are

summed. The new hypothetical node is depicted in Fig. 9(b).

In Fig. 9(c), the node S′

i⊕T ′

j is hypothetically placed over the

trail using second Lemma. The number of combined end-nodes

can be set an arbitrary number N and the hypothetical end-

node will be represented as the summation of all the combined

end-nodes.

4) Lemma 4: If we merge any arbitrary number of adjacent

end-nodes over the linear coding trail, the coding operations

in the rest of the trail is unaffected. Let P be the set of

adjacent end-nodes which are supposed to be merged into

a single end-node over the trail. In Fig. 10(a), the coding

and decoding operations inside these end-nodes are shown.

This structure can be converted to the structure in Fig. 10(b),

in case the individual signals of the end-nodes in P are not

necessarily extractable. Then, the combination of these end-

nodes is represented with a single hypothetical end-node as

shown in Fig. 10(c).

5) Lemma 5: If the extensions to the linear coding trail does

not create a cyclic structure inside the topology, it is possible to

separate the topology into systems. In Fig. 11(a), the coding

topology can be divided into 2 subsystems with the dashed

link. These subsystems are highlighted in Fig. 11(b). One

of them is the hypothetical end-node, defined by Lemma 4,

represented by the summations of multiple end-nodes, which

are spanned by a common link from the linear coding trail. The

other subsystem is the rest of the coding topology, which is

the rest of the tree. Regarding the input and output relationship

between these two subsystems at that specific branch point D,

it is seen that these subsystems are the complementary of each

other. The complementary hypothetical end-node is formulated

in Fig. 11(b).

6) Example 1: In order to visualize how these lemmas

are useful in transforming a tree topology into a linear trail

topology, an example is provided below. Assume that, there are

6 bidirectional connections such that Si is communicating with

Ti for i = 1, 2, 3, 4, 5, 6. There exist a bidirectional primary

path between each end-node pairs which is link-disjoint to

the other primary paths and to the common protection trail.

In Fig. 12(a), the end-nodes of the connections are shown

on the network. For clarity, link-disjoint primary paths are

not depicted. The dashed link is the linear coding trail which

has the coding structure of 1+N coding. The protection paths

has a tree-like topology. Using the Lemmas 1 to 3 defined

previously, we can convert this tree-like topology into a trail

coding topology. The hypothetical nodes are highlighted with

a prime sign. They are no different than regular end-nodes



D

iT ii du ˆ+ii du +ˆ

ii du +ˆ
ii du ˆ+

⊕

⊕

⊕

(a)

D

iT

′
iT

ii du +ˆ

ii du +ˆ

ii du ˆ+

ii du ˆ+

⊕

⊕

⊕

(b)

′
iT

ii du +ˆ ii du ˆ+

⊕

⊕

⊕

(c)

Fig. 8. Proof of Lemma 2 (a) An end-node is connected to the coding trail via a direct path, (b) From trail point of view, they are seen as a single node,
(c) The end-node hypothetically is over the trail

D

⊕

jTiS

C

ii du ˆ+
jj du +ˆ

jjii dudu +++ ˆˆ
jjii dudu ˆˆ +++

⊕

⊕

⊕

(a)

D

⊕

jTiS

C

ii du ˆ+
jj du +ˆ

jjii dudu +++ ˆˆ
jjii dudu ˆˆ +++

⊕

ji TS ′⊕′

⊕

⊕

(b)

jjii dudu +++ ˆˆ
jjii dudu ˆˆ +++

⊕

ji TS ′⊕′

⊕

⊕

(c)

Fig. 9. Proof of Lemma 3 (a) Two different end-nodes are connected to the trail via the same link, (b) They can be merged into a single node, (c) How
they are seen from the rest of the trail

{}1P { }2P

�������

{ }NP

⊕

⊕

⊕

⊕

⊕

⊕

⊕ ⊕ ⊕

(a)

�������

⊕

⊕

⊕

⊕

{}1P { }2P { }NP

∑ ∑

∑∑

∈ ∈

∈∈

+

++

PTk PTk

kk

PSk

k

PSk

k

k k

kk

du

ud

, ,

,,

ˆ

ˆ

∑ ∑

∑∑

∈ ∈

∈∈

+

++

PTk PTk

kk

PSk

k

PSk

k

k k

kk

du

ud

, ,

,,

ˆ

ˆ

(b)

⊕

⊕

⊕

∑ ∑

∑∑

∈ ∈

∈∈

+

++

PTk PTk

kk

PSk

k

PSk

k

k k

kk

du

ud

, ,

,,

ˆ

ˆ

∑ ∑

∑∑

∈ ∈

∈∈

+

++

PTk PTk

kk

PSk

k

PSk

k

k k

kk

du

ud

, ,

,,

ˆ

ˆ

∑ ∑
∈ ∈

′+′
PSi PTj

ji

i j

TS
, ,

(c)

Fig. 10. Proof of Lemma 4 (a) Multiple adjacent end-nodes over the trail are depicted, (b) These end-nodes can be merged into a single one, (c) How they
are seen from the rest of the trail.

in terms of coding operations over the trail. The converted

structure is given in Fig. 12(b). The end-nodes, which are

shown as single entities over the trail, can successfully extract

their parity data from the trail. In case of a failure in their

primary paths, they can recover the failed data from the trail

as shown in [12].

In the next step, some of the adjacent end-nodes are merged.

In Fig. 12(c), the end-node pairs S2 − T4 and T3 − S5 are

merged into single hypothetical nodes using Lemma 4. In

Fig. 12(d), at the specific branch point D over the trail, the

coding topology is divided into two subsystems. The under-

lying topologies are shown inside the boxes. The notations

outside the boxes are the images of the subsystems as they

are seen from the opposite subsystem.

C. CPP Coding Structure

Assume that one of the coding groups in CPP solution has

N connections and the end-nodes are given in the set P =

{Si, Ti : 1 ≤ i ≤ N} meaning that each connection consists

of the end-nodes with the same indices. As stated before, the

protection topology of this coding group is link-disjoint to the

primary paths in the same coding group and it is a tree. The

end-nodes of the connections are scattered over this tree. A

valid encoding and decoding structure is established using the



1
S 3

T
5

S
24

, TS

6
S

1
T

3
S

4
T

2
S

6
T

5
T

(a)

1
S 3

T
5

S
4

S ′
6

S ′
1

T ′

563
TTS ′⊕′⊕′

4
T

2
S

2
T ′

(b)

1
S

5
S

4
S ′

36
TS ′⊕′

1
T ′

563
TTS ′⊕′⊕′

2
T ′

42
TS ′⊕′D′

(c)

1
S

5
S

4
S ′

36
TS ′⊕′

1
T ′

563
TTS ′⊕′⊕′

2
T ′

42
TS ′⊕′

563
SST ′⊕′⊕′

3
S

6
T

5
T

556633
ˆˆˆ duduud ⊕⊕⊕⊕⊕

556633
ˆˆˆ ududdu ⊕⊕⊕⊕⊕

D′

(d)

563
SST ′⊕′⊕′

3
S

76
ST ⊕′

7
T ′

5
T

E′D′

(e)

76
TS ′⊕′

6
T

7
S

E′

(f)

Fig. 12. Conversion from a tree to a linear coding trail (a) The tree-like topology of the protection paths, (b) The end-nodes are represented over the trail,
(c) D is the branch trail and some end-nodes are merged (d) The tree can be divided into two separate subsystems, (e) the branch trail originating from node
D and S7−D7 is introduced, (f) The sub-branch trail originating from node E of the branch trail

⊕

⊕

⊕

∑ ∑∑∑
∈ ∈∈∈

+++
PTk PTk

kk

PSk

k

PSk

k

k kkk

duud
, ,,,

ˆˆ

∑ ∑∑∑
∈ ∈∈∈

+++
PTk PTk

kk

PSk

k

PSk

k

k kkk

duud
, ,,,

ˆˆ

∑ ∑
∈ ∈

′+′
PSi PTj

ji

i j

TS
, ,

D

(a)

∑ ∑∑∑
∈ ∈∈∈

+++
PTk PTk

kk

PSk

k

PSk

k

k kkk

duud
, ,,,

ˆˆ

∑ ∑∑∑
∈ ∈∈∈

+++
PTk PTk

kk

PSk

k

PSk

k

k kkk

duud
, ,,,

ˆˆ

∑ ∑
∈ ∈

′+′
PSi PTj

ji

i j

TS
, ,

∑ ∑
∈ ∈

′+′
PSi PTj

ji

i j

ST
, ,

(b)

Fig. 11. Proof of Lemma 5 (a) Input-output relationships between the end-
node and the rest of the coding trail, (b) The rest of the trail is treated as the
combination of some of the end-nodes

following steps.

1) Select one of the links inside the tree and call it the
truck trail.

2) Extend this truck trail from both ends as long as the
extended links reach to the edges of the tree. When there
are multiple links to extend, one of is randomly selected.

3) When the truck trail reaches its limits, using Lemmas 1

to 3, place the end-nodes over the trail. There are three
types of end-nodes. The end-nodes which are physically
over the trail are shown as separate entities over the trail
with the help of Lemma 1. The second type of end-nodes
are not physically over the trail but directly connected
to the trail via a dedicated path. They are depicted over
the trail with the help of Lemma 2. The third type of
end-nodes are connected to the trail via a common link

or common links. These end-nodes are placed over the
trail as a combination of multiple end-nodes with the
help of Lemma 3. We call the hypothetical nodes which
represent the combination of multiple end-nodes as the
branch points on the trail. There can be multiple branch
points over a single trail.

4) Assume R is the set of combination of multiple end-
nodes as R = {R1, R2, ..., Rk}, where k is the total
number of branch points over the truck trail. Each Ri

keeps the end-nodes that are spanned by the branch point
i. If the same pair of end-nodes belong to the same set
Ri, 1 ≤ i ≤ k, omit them from the truck trail. They will
be taken into account later.

5) Then, code the signals whose end-nodes are over this
truck trail as it is explained in [12] under 1+N protection
coding operations. The truck trail is the protection circuit
of 1+N coding. The end-nodes which are shown as
single entities will be able to receive their parity data
from the trail. In case of failure, these nodes are able to
extract the failed data from the linear 1+N coding trail.

6) The remaining end-nodes are the ones who are depicted
as the combination of multiple end-nodes. There are k

combinations and each combination has a branch point.
Originating from these branch points, new branch trails
will be initiated using the links that spans the end-nodes
in sets Ri, 1 ≤ i ≤ k.

7) Consider the set of R1 and the branch point of this set.
Include the end-nodes that are omitted from this set at
step 4. We initiate a branch trail originating form the
branch point of this set. The link that connects the end-
nodes in R1 is the first link of this branch trail. Extend
this branch trail to the opposite direction of the branch
point as long as trail reaches to the edge of the branch.
When there are multiple options, randomly pick one of
the links to extend the branch trail.

8) Using Lemma 5, we can define the branch point as
the starting point of this trail. This point behaves like
the complementary of the end-nodes combined at this



branch point. For example, if the combined end-nodes
are Si ⊕ Tj , then the branch point would be seen as
Ti ⊕ Sj over the branch trail.

9) Place the end-nodes over this trail using Lemmas 1 to 4

as in step 3.
10) Repeat step 4 and 5. R1 = {R1,1, R1,2, ..., R1,k1

},
where k1 is the number branch points over the first
branch trail.

11) Return the step 6 iteratively as long as the all of the
subbranches of the first branch is explored and each end-
node is placed over a branch trail as a single entity. That
will make sure that every end-node spanned by the first
point is able to receive their parity data form the tree.

12) Pass to the next branch over the truck trail and return to
step 7.

At the end, all of the end-nodes in CPP tree topology will be
shown as a single entity in one of the linear 1+N coding trails,
which makes them protected against single link failures. To
clarify the steps shown above, an example is provided below.

1) Example 2: In the Example 1, a tree structure is partially
converted to a linear 1+N coding trail. We proceed from the
Example 1. At Fig. 12(b), it is shown that all of the end-
nodes except S′

3
, T ′

6
, T ′

5
are placed over the linear 1+N coding

trail, which enables them to code and encode their parity data
over this trail. However, in order to protect the rest of the end-
nodes, we need a branch trail originating from the branch point
D. As shown in Fig. 12(d), the branch point is considered as
T ′

3
⊕S′

6
⊕S′

5
replacing the rest of the trail. According to Lemma

5, these three end-nodes can be shown as separate end-nodes
as T ′

3
, S′

6
, S′

5
over the branch trail. In addition, we include a

new connection between S7− T7 that is bounded inside this
branch trail. The branch trail is extended as defined in step 2
in the previous section. The end-nodes that are spanned by this
branch are placed over a new linear coding trail. This trail is
depicted in Fig. 12(e). The introduction of a new connection
does not affect the coding operations in the rest of the networks
since the input and output signals at the branch point are the
same. The end-nodes that are shown as single entities are
protected by this coding trail. As in the truck trail, there is
a branch point E′ that combines multiple end-nodes over the
branch trail. It is required to go one more level down and
generate a sub-branch trail to cover these end-nodes as well.
This sub-branch trail is shown in Fig. 12(f). The operation is
stopped when all of the end-nodes are place over a linear 1+N
coding trail.

D. Extensions on the Coding Group Selections

The link-disjointness rules in forming coding groups given
in the previous section are sufficient to satisfy the encoding and
decoding inside the network. There is still room to improve in
terms of capacity efficiency without impairing the decodability
of the coding structure. The first rule of link-disjointness is
a necessary condition for decodability. However, the second
rule can be modified to allow sharing of a common link by
the primary path of a connection and the protection paths of
other connections in the same coding group. The second rule
will be

• Their primary paths are also link-disjoint with the primary
paths of the connections in the same coding group.

�������

�

	



�

�

	


 �

Fig. 13. Overlap of the primary and protection paths in cycle removal
procedure

In this mode of operation, if the common link shared by one
primary path and one or more protection paths fails, then the
end-nodes of the failed protection paths can derive the failure
over their protection paths by comparing the data from the
primary paths with the data from the protection paths. After
that the transmission over the failed protection paths will be
temporarily terminated via the end-nodes of these protection
paths. Otherwise, symmetricity is broken for more than one
connection on the protection topology and decoding structure
breaks down. In other words, the failed protection paths need
to stop poisoning other protection paths because there are no
antidotes.

Cycle elimination procedure for this mode of operation is
not straightforward as it is in the previous case. Previously, the
data over the longest link of a cycle is coded with the data over
the rest of the cycle and that link is released from the coding
topology. However, that may not be possible when the primary
paths and protection paths of different connections share a
common link. In that case, the protection path of a connection
can overlap with its own primary path if it is rerouted over the
rest of the cycle. It is depicted in Fig. 13. The straight lines
are a portion of the protection topology. The direct dashed
link between A−B is a portion of the protection path of an
arbitrary connection. The direct dashed link between C−D is
a portion of the primary path of the same arbitrary connection.
Previously, the primary paths and the protection topology were
link-disjoint. However, in this mode they can share some links.
If the protection data over link A − B is rerouted and coded
with the data over the rest of the cycle then the primary and
protection paths share a common link, which makes recovery
impossible against that link failure.

To preserve the link-disjointness criterion between the pri-
mary and protection paths of the same connection, a new cycle
elimination procedure is proposed.

1) Select the longest link on the cycle. Remove this link and
code the data on it with the data over the rest of the cy-
cle. Check if breaks down the link-disjointness between
the primary and protection paths of each connection.

2) If so, select the next longest link until you find a
link whose removal does not affect the link-disjointness
criterion

3) If there is no such a link, look for a separation point
on the cycle. A separation point on the cycle is a node
whose incident (on-cycle) links carry no mutual data. In
other words, this node is the end-node of the data on
both of its incident links. If there is such a separation
point, this cyclic structure can be considered as a tree



structure and preserves the coding structure.
4) If there is no separation point on the cycle, then recal-

culate the route the portions of the protection paths that
causes the conflict between link-disjointness and cyclic
property.

5) If no solution is found then remove the connections
which cause the conflict from the coding group. Protect
these connections by 1+1 APS.

IV. THE ILP FORMULATION

We developed an ILP formulation to find the optimal SPP
solution for a given set of traffic scenarios and networks. We
also developed an ILP formulation to convert this SPP solution
into a viable CPP solution. The ILP formulation is varied
to include both the wavelength continuity constraint and its
absence in order to cover different types of optical networks.

As stated in [16], the problem of joint path routing and
wavelength assignment is a very complex problem. Therefore
we developed a suboptimal ILP formulation for the SPP
algorithm. However, the ILP formulation of conversion from
the SPP to the CPP algorithm is optimal. We input a set
of possible paths for the connections and run the optimal
wavelength assignment and sharing algorithm. Due to space
limitations, the ILP formulation of SPP is not discussed here.

The ILP formulation of CPP has the following set of input
parameters (When it is stated “equals 1 if A is true,” it
simultaneously means “equals 0 if A is not true”)

• G(V,E): The network graph
• N : Enumerated list of bidirectional connections
• ce: Cost of each link
• de(i): Equals 1 if the protection path of connection i

traverses over link e, is acquired from the solution of
SPP

• m(i, j): Equals 1 if the primary paths of connection i
and connection j are link-disjoint, is acquired from the
solution of SPP.

In addition to the input parameters, there are a number of
binary variables

• n(i, j): Equals 1 if connection i and connection j are in
the same coding group

• re(i, j): Equals 1 if connection i and connection j are
coded together over link e

• se(i): Equals 1 if protection capacity of connection i over
link e can be saved with coding

Both n(i, j) and m(i, j) are defined in a way that i ≤ j. The
objective function is

min
∑

e∈E

∑

i∈N

ce × (de(i)− se(i)) (1)

subject to the following constraints

re(i, j) ≤ n(i, j), ∀i, j ∈ N, i < j, ∀e ∈ E, (2)

re(i, j) ≤ de(i), ∀i, j ∈ N, i < j, ∀e ∈ E, (3)

re(i, j) ≤ de(j), ∀i, j ∈ N, i < j, ∀e ∈ E, (4)

n(i, j) ≤ m(i, j), ∀i, j ∈ N, i < j. (5)

Inequality (2) ensures that if two connections are coded over a
link, then they must be in the same coding group. Inequalities
(3) and (4) ensure that if two connections are coded over a link

their protection paths must traverse over that link. Inequality
(5) makes sure only link-disjoint connections can be in the
same coding group. In addition,

n(i, j) ≥ n(i, k) + n(k, i) + n(j, k) + n(k, j)− 1 (6)

∀i, j, k ∈ N , i < j. Inequality (6) ensures that if connection
k is in the same coding group with connection i and j, then
connection i and j are also in the same coding group. The
inequality

se(i) ≤
∑

1≤k<i

re(k, i), ∀i, k ∈ N, k < i, ∀e ∈ E (7)

calculates the savings due to the coding operation. When
multiple protection paths are coded over the same link, only
the one with the smallest index is accounted for the used
capacity. Others save capacity by coding over the smallest
indexed path.

ILP formulation for the p-cycle approach is adapted from
[17]. Simulations are based on cycle exclusion-based ILP for
spare capacity placement [17].

V. RESTORATION TIME AND SIGNALING

In this section, we conduct a qualitative and a quantitative
analysis in terms of restoration time of the SPP, CPP, and
the p-cycle approaches. The analysis is extended to cover
both opaque and transparent optical networks [18]. The de-
velopments in the optical XOR operations [19] allow coded
shared protection to be applicable in all-optical networks
[18]. Wavelength assignment of CPP is trivial after converting
the wavelength assignment solution of SPP because CPP is
inherently suited to the wavelength continuity constraint. With
this constraint, protection paths in the same coding group
make use of the same wavelength throughout the network. SPP
[4] is proposed for all-optical networks but some shared path
protection techniques, such as [7], and the p-cycle techniques
make use of “optical-electrical-optical”(o-e-o) conversion at
intermediate nodes.

Protection in CPP is a proactive mechanism because the sec-
ond (protection) copy of any data is generated and transmitted
by the source node to the destination node after a fixed time
delay. An advantage of proactive protection mechanism is the
continuous operation over protection paths which means there
is no need to configure and test an OXC after any failure. OXC
configuration and testing is the main source of delay in routing
based protection mechanisms [20]. In addition, this proactive
mechanism eliminates the need of complex signaling and
assures transmission integrity because the operations are all
automatic. As stated in [20], transmission integrity can be the
main problem in configuring protection paths and routing data
over these paths in optical networks. This claim is supported
by the stability concerns cited in [6].

Despite the fact that CPP is a proactive mechanism, it can
utilize the signaling capabilities of opaque optical networks to
fasten the recovery process. In some cases, a synchronization
mechanism with different data streams can neutralize the time
savings of CPP. For that purpose, we propose a two-tier pro-
tection mechanism available for opaque networks. Transparent
networks need to stick with the proactive mechanism due
to the weak signaling capability of all-optical networks. In



the first step, protection prompts as it is synchronized. As

a second step, when the end-nodes receive the error signals,

they add one bit control message to the data signals, which

transform them into “ambulance” signals. The “ambulance”

signals skip the buffers and are coded and encoded with data

streams consisting of all zeros. The second step is similar to

SPP but there is no need to configure the cross-connects. As

a result, CPP is faster and more stable even in the worst case.

The restoration time of the first part of the operation is

RTCPP1 = dsd + hb ×M + S,

where dsd is the propagation delay from node s to node d
and hb is the number of hops in the protection path between
d and s. The symbol M denotes the node processing time
and varies on the type of optical network. It is taken 0.3 ms
in [12] and 10 µs in [2]. The symbol S represents the delay
due to synchronization. The restoration time formulation of
the second step is

RTCPP2 = F + 2× dsd + (his + 1)×M + (hb + 1)×M,

where F is the failure detection time and his is number of
nodes between node i and node s. The exact formulation of
CPP for opaque optical networks is

RTCPP = min(RTCPP1, RTCPP2).

The recovery process in SPP starts with failure detection.
Failure notification is required before end-nodes switch the
traffic from primary to protection paths. Intermediate nodes
configure themselves after they receive error state signals.
In the protection switching step, some researchers claim that
nodes in the protection path configure the OXCs simultane-
ously which leads to significant restoration time savings [16].
Error state signals should be transmitted over a specialized
control plane to notify every node to enable simultaneous
configuration of cross-connects over the protection path. As
a tradeoff, this incurs high signaling complexity throughout
the network. The restoration time formulation of SPP is under
discussion, e.g., the results of some of the formulations [4],
[16] do not match the numerical results in [2]. The OXC
configuration time is stated to possibly be about 10 ms, but it
is also reported to be as much as one second [6]. In addition, in
[21] it is pointed out that an extra 40-80 ms is required only for
signaling and reconfiguration, such as uploading maps. This
means the OXC configuration time is not the only source of
delay in SPP. Keeping the ambiguity in mind, we adopt the
formula in [16] for the quantitative analysis of restoration time
in SPP, assuming a separate packet-based control plane exists
and has the same topology with the network of interest. The
symbol X represents the OXC configuration and test time, so
that

RTSPP1 = F +2× dsd+(hsi+1)×M +X +(hb+1)×M.

If a specialized control plane does not exist, in other words if
in-band signaling is employed, then the OXCs cannot transmit
the control message before they reconfigures themselves. This
leads to higher restoration time due to the reconfiguration of
OXCs in series. The formula for this case is adopted from [4]

RTSPP2 = F + dsd + (his + 1)×M + (hb + 1)×X

+2× dsd + 2× (hb + 1)×M.

TABLE I
SIMULATION RESULTS OF COST 239 NETWORK

COST 239 Network, 11 nodes, 26 spans

Scheme SCP ESCP
RT for different X values (ms)

0.5ms 1ms 5ms 10ms
CPP 72.71% 0% 11.57 11.57 11.57 11.57
SPP1 64.67% 0% 17.86 18.36 22.36 27.36
SPP2 64.67% 0% 28.5 31.1 51.1 76.1
p-cycle 44.82% 40-60% 25.31 25.81 29.81 34.81

The p-cycle approach is fundamentally a mixture of link
protection technique and ring-type protection technique. This
approach generally results in lower restoration time than SPP
since the operations are local. P-cycle offers pre-connected
OXCs around the cycle, so it minimizes the number of recon-
figurations of OXCs after a failure. Only the end-nodes of the
failure need to switch the traffic. However, an efficient p-cycle
consists of many nodes, and traverses a long distance. This
can add significant propagation and node processing delays in
relatively large networks, such as the U.S. long-haul network.
We employ the formula in [22] to calculate the restoration time
of the p-cycle technique. This formula is modified to include
the propagation delay after the source-end node of the failed
link switches to the p-cycle until destination-end node of the
failed link receives new data packets. In this paper, M is taken
as 0.3 ms [23], because the p-cycle uses o-e-o conversions. The
parameter d is the longest propagation delay between any two
nodes in a p-cycle and h is the number of nodes in a cycle.
Then,

RTp−cycle = F +X + h×M + d.

Numerical results of worst case restoration time for the three
techniques and a quantitative analysis are provided in the next
section.

VI. SIMULATION RESULTS

In this section, we will present simulation results for link
failure recovery techniques previously discussed, in terms of
their spare capacity requirements and worst case restoration
time. In order to conduct a fair comparison between protection
schemes, we input the same set of possible routing scenarios to
ILP formulations of the SPP and the p-cycle approach. Since
the CPP solutions are based on the SPP solutions, they also
utilize the same set of routing scenarios.

The first network studied is the European COST 239 [24]
network whose topology is given in Figure 14. In Fig. 14
and Fig. 15, the numbers associated with the nodes represent
a node index, while the numbers associated with the edges
correspond to the distance (cost) of the edge. The distances
are useful to calculate the propagation delays. The traffic
demand is uniform. SCP represents spare capacity percentage
and explained in [11]. We provide the SCP values without the
wavelength continuity constraint and restoration time results
for the three schemes in Table I. In the third column, ESCP
means the extra spare capacity percentage required to satisfy
the wavelength continuity constraint [25].

Second network studied is the NSFNET network [13],
similar to the U.S long-haul network [11]. Again, the traffic
scenario is uniform. We provide the SCP values and restoration
time results for the three schemes in Table II.



1

2

3

4

5

6

7

8
9

10

11

1310

450

820

820

660

390
760

550

390
210

220

300

660

1090

340

740

730

320
565

390

600

920

400

350

320

Fig. 14. European COST 239 network.

TABLE II
SIMULATION RESULTS OF NSFNET NETWORK

NSFNET Network, 14 nodes, 21 spans

Scheme SCP ESCP
RT for different X values (ms)

0.5ms 1ms 5ms 10ms
CPP 95.26% 0% 34.65 34.65 34.65 34.65
SPP1 88.41% 1.43% 51.54 52.04 56.04 61.04
SPP2 88.41% 1.43% 79.01 81.51 101.5 126.5
p-cycle 84.51% 40-60% 76.43 76.93 80.93 85.93

As seen from the results, converting the SPP solution to CPP
results in approximately 6-7% extra spare capacity percentage.
On the other hand, the restoration speed increases three times
over SPP2 when in-band signaling is used and increases two
times over SPP1 when there is a separate control plane for SPP
scheme. The restoration time of SPP increases as the expected
time of OXC configuration and test increases. Realistically, in
some cases it may take seconds. The p-cycle technique results
in lower SCP than CPP without the wavelength continuity
constraint. Under the wavelength continuity constraint, CPP is
as capacity efficient as the p-cycle technique for the COST 239
network and is more capacity efficient than p-cycle technique
for the NSFNET network. It is observed that capacity effi-
ciency of the p-cycle technique vanishes while going towards
more sparse networks. The CPP is at least twice as fast as
p-cycle technique.

1

2

3

4

5
6

7

8

9

10

11
12

13

14

1125

2565

1710

945

675

2070

630

1935

1260

630
945

945

630

945

315

1935

1250

945

315

180

315

Fig. 15. NSFNET network.

VII. CONCLUSION

In this paper, we introduced a proactive network restoration
technique we call Coded Path Protection (CPP). The technique
makes use of symmetric transmission over protection paths and
link-disjointness among the connections in the same coding
group. We modified the coding structure and leveraged its
flexibility to convert sharing structure of a typical solution of
SPP into a coding structure of CPP in a simple manner. With
this approach, it is possible to quickly achieve close to optimal
solutions. As a result of this operation, the CPP algorithm has
the following properties.

• The restoration speed is 2 to 3 times faster than SPP and
the p-cycle technique

• Full transmission integrity and stability
• Low signaling complexity
• Protection is independent of any single link failure sce-

nario
• Simulation complexity significantly reduced over gener-

alized 1+N coding
• Lower spare capacity than p-cycle under wavelength

continuity constraint

with the tradeoff of

• At most 6-7 % extra spare capacity over SPP
• Lower capacity efficiency than p-cycle technique in dense

networks
• Additional synchronization and buffering

Although the capacity placement algorithm for SPP employed
in this paper is not optimal, this does not affect the optimality
of the conversion algorithm.

REFERENCES

[1] J. Zhang and B. Mukherjee, “Review of fault management in WDM
mesh networks: Basic concepts and research challenges,” IEEE Network,
vol. 18(2), pp. 41–48, March-April 2004.

[2] W. D. Grover, Mesh-Based Survivable Networks: Options and Strategies
for Optical, MPLS, SONET, and ATM Networking. Prentice-Hall PTR,
2004.

[3] M. Menth, M. Duelli, and J. Milbrandt, “Resilience analysis of packet-
switched communication networks,” IEEE/ACM Trans. Netw., vol. 17,
no. 6, p. 1, December 2009.

[4] S. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee, “Survivable
WDM mesh networks,” J. Lightwave Technol., vol. 21, no. 4, pp. 870–
883, April 2003.

[5] W. Grover and D. Stamatelakis, “Cycle-oriented distributed preconfigu-
ration: ring-like speed with mesh-like capacity for self-planning network
restoration,” in Proc. ICC ’98, vol. 1, 1998, pp. 537–543.

[6] G. Li, A. Chiu, and J. Strand, “Resilience design in all-optical ultralong-
haul networks,” J. Opt. Netw., vol. 5, no. 8, pp. 625–636, July 2006.

[7] T. Chow, F. Chudak, and A. Ffrench, “Fast optical layer mesh protection
using pre-cross-connected trails,” IEEE/ACM Trans. Netw., vol. 12, no. 3,
pp. 539–548, June 2004.

[8] E. Ayanoglu, C.-L. I, R. D. Gitlin, and J. E. Mazo, “Diversity coding:
Using error control for self-healing in communication networks,” in
Proc. IEEE INFOCOM ’90, vol. 1, June 1990, pp. 95–104.

[9] ——, “Diversity coding for transparent self-healing and fault-tolerant
communication networks,” IEEE Trans. Commun., vol. 41, pp. 1677–
1686, November 1993.

[10] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Trans. Inf. Theory, vol. 46, pp. 1204–1216, July
2000.

[11] S. Avci and E. Ayanoglu, “Recovery from link failures in networks with
arbitrary topology via diversity coding,” in Proc. Globecom (to appear),
December 2011.

[12] A. E. Kamal, “1+N network protection for mesh networks: Net-
work coding-based protection using p-cycles,” IEEE/ACM Trans. Netw.,
vol. 18, no. 1, pp. 67–80, Feb. 2010.

[13] A. E. Kamal and O. Al-Kofahi, “Efficient and agile 1+N protection,”
IEEE Trans. Comm., vol. 59, no. 1, pp. 169–180, January 2011.



[14] A. E. Kamal, A. Ramamoorthy, L. Long, and S. Li, “Overlay protection
against link failures using network coding,” IEEE/ACM Trans. Netw.,
vol. 19, no. 4, pp. 1071–1084, Aug. 2011.

[15] D. Traskov, N. Ratnakar, D. Lun, R. Koetter, and M. Médard, “Network
coding for multiple unicasts: An approach based on linear optimization,”
in Proc. IEEE ISIT, July 2006, pp. 1758–1762.

[16] C. O. et al., “Subpath protection for scalability and fast recovery in
optical WDM mesh networks,” IEEE J. Select. Area Commun., vol. 22,
no. 9, p. 18591875, November 2004.

[17] B. Wu, K. L. Yeung, and P.-H. Ho, “ILP formulations for p-cycle design
without candidate cycle enumeration,” IEEE/ACM Trans. Netw., vol. 18,
no. 1, pp. 284–295, February 2010.

[18] B. Ramamurthy, S. Yaragorla, and X. Yang, “Translucent optical WDM
networks for the next-generation backbone networks,” in Proc. GLOBE-
COM, vol. 1, November 2001, pp. 60–64.

[19] J. Wang, Q. Sun, and J. Sun, “All-optical 40 gbit/s csrz-dpsk logic xor
gate and format conversion using four-wave mixing,” Optics Express,
vol. 17, no. 15, pp. 12 555–12 563, 2009.

[20] A. Kodian and W. D. Grover, “Failure-independent path protecting p-
cycles; efficient and simple fully pre-connected optical path protection,”
J. Lightwave Technol., vol. 23, no. 10, pp. 3241–3259, Oct. 2005.

[21] S. Kim, X. Zhang, and S. S. Lumetta, “Rapid and efficient protection
for All-optical WDM mesh networks,” IEEE J. Select. Area Commun.,
vol. 25, no. 9, pp. 68–82, December 2007.

[22] W. He and A. Somani, “Comparison of protection mechanisms: Capacity
efficiency and recovery time,” in Proc. ICC, vol. 1, 2007, pp. 2218–2223.

[23] G. L. et al., “Experiments in fast restoration using GMPLS in op-
tical/electronic mesh networks,” in Proc. OFC 2001, Anaheim, CA,
March 2001, pp. 2218–2223.

[24] P. B. et al., “Ultra high capacity optical transmission networks: Final
report of action COST 239,” Faculty Elect. Eng. Computing, Univ.
Zagreb, Zagreb, Croatia, Tech. Rep., 1999.

[25] C. Mauz, “P -cycle protection in wavelength routed networks,” in
Proceedings of the Seventh Working Conference on Optical Network
Design and Modelling (ONDM’03), Feb. 2007.


