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Abstract

In this article, we design, analyze and implement a network coding based scheme for the problem of transmitting

multiple unicast streams from a single access point to multiple receivers. In particular, we consider the scenario in

which an access point has access to infinite streams of data to be distributed to their intended receivers. After each

time slot, the access point receives acknowledgments on previous transmissions. Based on the acknowledgements, it

decides on the structure of a coded or uncoded packet to be broadcast to all receivers in the next slot. The goal of the

access point is to maximize the cumulative throughput or discounted cumulative throughput in the system. We first

rigorously model the relevant coding problem and the information available to the access point and the receivers. We

then formulate the problem using a Markov decision process with an infinite horizon, analyze the value function

under the uncoded and coded policies and, despite the exponential number of states, devise greedy and

semi-greedy policies with a running time which is polynomial with high probability. We then analyze the two users

case in more detail and show the optimality of the semi-greedy policy in that case. Finally, we describe a simple

implementation of the suggested concepts within a WiFi open-source driver. The implementation performs the

network coding such that the enhanced WiFi architecture is transparent above the MAC layer.

1 Introduction
The inherent broadcast nature of the wireless medium,

which allows each transmission to be heard by all users

simultaneously, makes network coding techniques per-

tinent. In such techniques, nodes do not necessarily

forward incoming packets. Rather, they can transmit a

manipulation (usually a linear combination [1]) of their

incoming data. However, in order for such a combina-

tion to be valuable to multiple users, each such user needs

to possess different piece of the information encoded

into the combined packet. Accordingly, one of the key

challenges in network coding techniques is to decide

which packets to manipulate in each transmission. While

efficient algorithms answer this challenge in the multi-

cast setting [2], the problem of multiple unicast remains

open [3].

On the down side, the wireless medium characteristics

make wireless transmissions susceptible to losses due to

noise and interference (i.e., low SNR and SINR). In order
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to cope with packet loss in MAC layer, conventional wire-

less protocols rely on retransmissions (e.g., WiFi, [4]). In

such protocols, each packet has to be acknowledged by

the intended receiver. Packets which are not acknowl-

edged are retransmitted over and over again until they are

received successfully by the receiver, or until dropped by

the sender.

Typical last mile wireless Internet access architecture

comprises a gateway, e.g., an access point (AP) or a Base

Station (BS), to which all clients are wirelessly connected

(e.g., WiFi, WiMAX, LTE). In such architecture, all traf-

fic to and from the wired Internet must pass through the

gateway via the wireless medium. Accordingly, all trans-

missions by the gateway are potentially heard by all clients

associated with this gateway. In this article, we utilize

these aforementioned wireless properties of channel, pro-

tocol and last mile architecture and suggest coded wireless

retransmissions for downstream traffic. In particular, we

suggest a novel schemewhich is based onMarkov decision

process (MDP [5-7]), that combines multiple MAC layer

retransmissions which are intended to different receivers,

into a single packet transmission.

© 2013 Cohen et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.



Cohen et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:25 Page 2 of 20

http://asp.eurasipjournals.com/content/2013/1/25

1.1 Main contributions

Our contributions are thus as follows. First, we suggest

an ongoing process in which the AP (or gateway) alter-

nates between transmitting uncoded and coded packets.

Receivers acknowledge packets they have received suc-

cessfully and in addition provide feedbacks to the AP

regarding packets they overheard which were not meant

for them. Based on these feedbacks the AP chooses which

retransmitted packets (if any) should be coded in each

retransmission. Our model is inherently not multicast—

each receiver has a different stream as its demand. More-

over, we assume an infinite horizon model, where there is

no point in time in which all demands are met and the sys-

tem reaches a terminating step. Packets arrive at the AP

continuously, and only the current packets for each user

are available for coding. Based on this model, we are able

to analytically solve throughput problems.We believe that

these two aspects of our model are of key importance,

since this is the typical use of most wireless Internet access

networks.

Second, we show that the aforementioned continuous

transmission process can be modeled as a discrete time

stochastic process, in which at each state the next state is

determined solely based on the AP decision which packet

to transmit next (i.e., which coded or un-coded pack-

ets should comprise the next transmission) and based on

the channel state of each and every receiver which deter-

mines which nodes receive the next transmission. We

suggest an AP policy which is based on MDP theory, in

which the reward attained in each iteration corresponds

to the number of successful packets received in each

transmission.

Third, we leverage this continuous, infinite time

stochastic model, to compute stationary behavior, which

in turn allows us to define convergence, calculate the

resulting asymptotic performance efficiently (using only a

set of linear equations), and assess the benefit in coding

directly and analytically. Specifically, we give the matrix

equation that computes the cumulative expected reward

(equivalent to the system throughput when a unit reward

is given to decoding of one packet) for any state in the

system given the transition probabilities and the reward

vector. This enables us to directly compute the perfor-

mance of any coded or un-coded strategy. For the two user

case, we indeed give a few possible strategies and compute

the resulting performance.

Fourth, we show that in order to reach an optimal

decision, the AP needs to consider all possible future

states of the system, channel states of all users and all

possible actions and outcomes. This procedure certainly

cannot scale to large number of users. Accordingly, we

suggest a greedy approach in which at each transmis-

sion the AP tries to maximize the instantaneous reward

received for each transmission (as opposed to maximizing

an expected or discounted reward, which takes into

account the expected rewards at future states). We fur-

ther suggest an enhancement to the greedy approach,

termed semi-greedy approach, which takes some con-

cern into the future, without adding significant complexity

to the greedy approach. In the semi-greedy approach,

we also suggest a direct analysis for the simple case of

two receivers, which besides the analysis of this simple

case, also provides some insight into much larger sce-

narios. We evaluate both schemes via an extensive set

of simulations, which show that our approach attains

high gain over the traditional un-coded transmissions

while maintaining long time fairness. Moreover, we show

that the semi-greedy approach exploits the multi-user

diversity in the system, putting more emphasis on serv-

ing the users with the best channels conditions at any

given time.

Finally, we implement our scheme on a WLAN topol-

ogy in which a single AP transmits unicast traffic to two

receivers. We show that the suggested scheme can be eas-

ily implemented over a typical 802.11 card, with some

modifications to the wireless driver. To the best of our

knowledge, this is the first implementation of these con-

cepts within the WiFi driver, and transparently from the

upper layers. We further show that at least for this simple

case, the experimental gain agrees with the one predicted

by our analytical model.

1.2 Related study

At the basis of our study stands the already well under-

stood concepts of network coding [1]. In this pioneering

study, intermediate nodes in the network perform cod-

ing operation on the data in order to achieve certain

rate goals. Indeed, it was shown that network coding

can improve the network throughput significantly, and

achieve the optimal performance in the multicast sce-

nario. The theory of network coding includes linear [8,9]

as well as non-linear coding techniques. In this article, we

focus on coherent linear network coding.

Following [1], several important studies discussed var-

ious practical issues in network coding. [10] introduced

the idea of generations, and suggested coding only over

packets of the same generation. As generations advance,

old generations are flushed. In a sense, the concept is use-

ful in this study as well, when we suggest that if a user

acknowledges receiving a packet intended only to him,

neighboring users who overheard it in a previous trans-

mission and buffered it, discard it. Practical aspects of

network coding also include several key works on oppor-

tunistic coding. That is, protocols, algorithms and analysis

aimed at understanding which packets to send coded, and

which coding coefficient to use, given the senders (maybe

limited) knowledge on the data available at the receivers.

Coding using only local information and opportunistic
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network coding was first introduced in [11,12] as COPE.

While decentralized, this groundbreaking work was not

tailored to the multiple unicast with one sender scenario

we consider in this article. A polynomial time central-

ized algorithm, yet with guarantees only for the multicast

scenario, was given in [2].

In [13], loss aware coding in wireless multi-hop net-

works was considered. Therein, having knowledge of the

packets available at each users, the sender is trying to

come up with a sequence of transmissions to satisfy as

many users as possible. Thus, the model given in [13] is

not the Markovian model we consider in this study, and

is of finite horizon nature, i.e., where the set of packets

to be transmitted is finite and known in advance to the

sender, compared to the infinite sequences of data per user

we consider here. Note, however, that the assumption that

the sender is omniscient, knowing which packets received

where, is similar to our setting, and many related studies

[14-17].

Also related is the recent study by Sorour and Valaee

[18]. Therein, a fixed set of packets is transmitted to all

users. Then, after acknowledgments are received, the sys-

tem computes which coded packets to send in order to

satisfy the demands. A sequence of coded retransmissions

is constructed, sent, and only when all users reconstruct

all their intended packets the system continues to the

next set of packets. Again, this is fundamentally differ-

ent from the infinite horizon model we consider herein.

In a sense, the model described in our study allows for

coding across MBS frames (using the notation of [18]),

whereas [18] allows coding only within an MBS frame.

Moreover, the scheme in [18] is adapted to the case

where all loss probabilities are equal. The successive stud-

ies in [19-21] also consider the finite horizon model, yet

contribute significantly to our knowledge in terms of min-

imizing delay [19,20] or maximizing coding opportunities

[21].

Studies on opportunistic coding for the finite horizon

broadcast case, where users are interested in all pack-

ets, and the sender has a fixed set of packets to send

also appeared in [15,16]. Nevertheless, a key difference

compared to the model we define herein is in the mul-

ticast demand structure—eventually all users demand all

the information available. While this demand structure is

well-understood [1,8,9], the capacity region in the general

multi-source multi-sink setting [22], as well as the multi-

ple unicast setting [3], remains unsolved. In the context

of the setting discussed in this article, the index coding

problem [17], which also considers only a single sender

with multiple receivers (having side information), is also

unsolved in general. Note that index coding is, in gen-

eral, over noiseless channels, and does not include the

dynamic, error-prone and infinite time setting we con-

sider herein.

In [23], the authors considered a similar star topology,

with one server supporting several clients (receivers).

The demand structure in [23] is more general compared

to the previously discussed studies [14-16], that is, not

necessarily all users require all information. However,

the model in [23] is different than the one suggested in

this article. First, it is a finite horizon model, where all

data is available at the server (in advance) for coding. In

the model discussed herein, only the packets intended

for current transmission (or retransmission) are available

at the server for coding. In many streaming applica-

tions, this is usually the case, and the server cannot code

“future” packets as these, usually, are not available at the

time of transmission. The model in [23] also assumes

user can buffer all packets, even those who cannot be

decoded immediately, requiring working over a large

finite alphabet. Moreover, in this case, optimally deciding

which coded packet to send is prohibitively complex. For

this reason, coding in [23] is done over “classes” of users,

and these classes are pre-defined and fixed for the entire

transmission. Random linear network coding was used,

where coding is only across classes of files. This converted

the problem to multiple-multicast sessions (that is, a user

is required to decode all files within its class in order

to retrieve its own file). Finally, the main figure of merit

therein was the delay. Indeed, a rule of thumb that arose

from this work was to avoid coding across files (users, in

our model), and code mainly over packets within the same

file. The results under our model will be significantly dif-

ferent, suggesting it is strictly better to code across users,

even though it is a multiple unicast scenario, as long as

the subsets of users sought for in the opportunistic coding

process are not too large, hence do not create a significant

computational burden.

In [14], the authors considered in more detail the spe-

cific case of coded retransmissions. That is, given the

knowledge of which packets were not received by their

intended users, but overheard by others, the authors sug-

gest a MDP approach to identify good coding strategies.

However, similar to [15,16], all receivers are interested in

all packets. In the context of the underlying MDP, note

that since [14] assumes a fixed, finite set of packets to

be sent to all users, there is a terminating state for the

chain, from which the optimal policy can be calculated

using backward recursion. However, stating the analytical

solution explicitly is not an easy task.

An information theoretic analysis of the intersession

network coding model (multiple unicast), with users’ abil-

ity to overhear packets intended to other users modeled as

an erasure channel, was given in [24]. The system model

used therein is the canonical 1-Hop relay model, where

the intersessions are performed through a relay. Upper

and lower bounds on the capacity of such a system were

discussed. We also mention that there is an inspiring body
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of work on network error correction, e.g., [25-27], and

noncoherent network coding [28]. Yet, the majority of

these studies focus on general network topology on the

one hand and specific multicast demand structure on the

other.

On the practical side, several studies implemented net-

work coding concepts on real networks. We focus here

only on works whose implementation is below the appli-

cation layer (i.e., excluding network-coded content dis-

tribution and related studies). A pioneering work in this

context is the already discussed [12]. The COPE header

in this work resides between the routing and the MAC

headers. The implementation runs on a 802.11a network

as a user space daemon, that is, it sends and receives

raw 802.11 frames. Random linear network coding on the

iPhone was studied in [29], though, again, the implemen-

tation is on top of theWiFi driver, and not within it. Using

Nokia mobile devices was suggested in [30]. In [31], the

authors considered a chain topology, and gave numerical

evaluation of the suggested iCORE scheme. Still, iCORE is

a user space daeamon, which usesWiFi, but does not alter

it. In this article, the implementation was within the WiFi

driver, rendering the coding procedure transparent to all

above layers.

2 Systemmodel
We first define the system model we use. We consider a

downlink wireless model, with one serving access-point/

base-station (sender) and K users/stations (receivers).

At the sender, we assume an infinite stream of packets

for each user. That is, the stream of packets
{

Pki

}∞

i=1
is

intended to the kth user. Thus, our demand structure

is that of multiple unicast sessions, with one common

sender. At the receiver, we assume packets transmitted

to other users are cached (if heard), even though those

packets are not intended to itself.

We consider a synchronized system, where the time

is divided to discrete slots. At each slot, the sender can

send one packet. Our channel model is as follows. At

each slot, the packet sent is received at receiver k with

probability pk , independently of the other receivers and

of the packets received previously (memoryless indepen-

dent users). However, when a receiver correctly receives

a packet, it broadcasts an acknowledgment, together with

its user index i. We assume this acknowledgement is cor-

rectly received by both the sender and all other receivers.

We comment on the possibilities to relax this assumption

in Section 4.5.

At each time instant, the sender chooses a packet to

send, according to its assessment of the state the system

is in. However, since the state definition and evolution

is intertwined with the coding strategy used, we first

describe the possible coding strategies.

2.1 Network coding strategies

Each time a packet is sent, the sender can either choose

a packet to send to a single user, or code together a few

packets. We assume the standard coherent linear network

coding model, e.g., [8,32]. The stream intended to each

user can be represented as an infinite stream of bits. This

stream is split into packets, each represented as m sym-

bols in a finite field Fq, for a total of m
⌊

log q
⌋

bits per

packet.

In an uncoded packet sent by the access point, sim-

ply a packet intended to a single user is sent. In a coded

packet, the access point sends a linear combination over

Fq of packets. In our model, the access point does not

code over packets intended to the same receiver, only across

packets intended to different receivers. That is, a sent

packet has the form X =
∑K

j=1 ajXj, where Xj is the packet

currently intended to user j and {aj}
K
j=1 ∈ F

K
q are the

coding coefficients. Note that an uncoded packet can be

treated as a coded one, with all coefficients but one equal

zero.

Since the access point keeps track of the current packet

requested by a receiver, packets within a coded packet can

be labeled using the receiver ID alone. To keep track of the

linear combination of the uncoded packets contained in a

coded one, a coefficient for each uncoded packet (i.e., for

each receiver) is sent in the header of each coded packet.

Similarly to prior work on network coding, we assume that

the packet payload is sufficiently large compared to the

header. This renders the overhead of the header negligible.

Clearly, the ability of a user to decode its intended

packet depends on its available information. In the gen-

eral network coding setting, a receiver keeps track of the

coded packets it received. The coefficient vectors of these

coded packets are stored in a matrix. Once it is full rank,

the data can be decoded. In this study, however, we con-

sider a different setting, where a user only keeps track of

uncoded packets it received, or packets it decoded at that

time instant, and disregards coded packets from which it

cannot instantaneously decode original packets. For this

reason, it is possible to limit the field Fq to be binary, and

avoid the complexity burden of larger fields. This can be

compared to network coding models where the field size

must scale with the number of users (e.g., linear [2]). Note

that the extension to a model where a user keeps track of

coded packets and the associated vectors of coefficients,

even if these cannot lead to decoding at the same time

slot, is conceptually simple, but practically does not scale

to a large amount of multicast sessions, as the dimension

of the state space will be prohibitively large.

2.2 State model

Thus, motivated by the smaller computational and mem-

ory complexity associated with keeping track only of

actual (uncoded) packets decoded by the users, from now
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on we assume each receiver has k − 1 buffers for storing

at most one packet for each other receiver in the system.

Namely, when a receiver overhears a packet intended to

a different receiver, or it can decode a packet intended to

a different user, it is able to store one such packet. This

gives rise to our state model, which is at the basis of the

system we propose. The state of the system at each time

instant t is a K × K matrix S. The state matrix is initial-

ized to the all-zeros matrix. When packets are received at

the users, the state matrix updates as follows: for k �= k′,

Sk,k′ = 1 if packet intended for user k was heard by

user k′ and Sk,k′ = 0 otherwise. However, when a packet

intended for user k is received by that user, Sk,k remains

0. This is since we assume once a packet is received at the

intended receiver, it immediately sends an acknowledge-

ment, together with his indexa. The sender thus knows

that the packet was received, and that this user is now

awaiting its next packet. Hence, Sk,k remains 0. Moreover,

since the acknowledgement was received by all other users

as well, the users which buffered this packet can discard it,

as it will no longer be used in coded packets. As a result,

if a receiver k acknowledges receiving a packet, all other

users who kept it discard it and we set Sk,k′ = 0 for all k′.

An example of the evolution of the state for three users is

given in Table 1. Note that since there are three users, the

state is represented by a 3 × 3 matrix. Additionally, the

table only depicts the evolution of the states, assuming the

actions (packets sent) as well as their results (where were

the packets received) are as given in the table.

Clearly, it is also important to depict the actual state

transition matrix, given the memoryless probabilities of

packet losses. For the sake of clarity, we depict here only

the two-users case. Table 2 includes the possible states.

Table 3 includes the state transition matrix and reward

vector with uncoded transmissions and equal loss prob-

abilities p. In this policy, marked by π , the sender sends

Table 1 Evolution of the state for three receivers

t t+1 t+2 t+3

Initial state P
1
1 received P

2
1 received P

1
1 + P

2
1 received

by users 2, 3 by user 1 by users 1, 2
⎛

⎜

⎜

⎝

0 0 0

0 0 0

0 0 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0 1 1

0 0 0

0 0 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0 1 1

1 0 0

0 0 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0 0 0

0 0 0

0 0 0

⎞

⎟

⎟

⎠

t + 4 t + 5 t + 6 t + 7

P
2
2 received P

2
2 received P

3
1 received P

2
3 received

by user 3 by users 1,2 by users 1,2 by users 1,2
⎛

⎜

⎜

⎝

0 0 0

0 0 1

0 0 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0 0 0

0 0 0

0 0 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0 0 0

0 0 0

1 1 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0 0 0

0 0 0

1 1 0

⎞

⎟

⎟

⎠

Table 2 State space for the two users case (coded and

uncoded)

S1 S2 S3 S4
⎛

⎝

0 0

0 0

⎞

⎠

⎛

⎝

0 1

0 0

⎞

⎠

⎛

⎝

0 0

1 0

⎞

⎠

⎛

⎝

0 1

1 0

⎞

⎠

a packet at random, either to the first user or to the sec-

ond, with equal probability. Table 4 includes the coded

scenario, with unequal loss probabilities pa and pb. In this

policy, marked by π̄ , since there are only two users, and

users do not save coded packets, the only coding oppor-

tunity is when each user has a packet intended to the

other (state S4). In any other state, packet is sent at ran-

dom, either to the first user or to the second, with equal

probability.

3 Markov decision processes—preliminaries
In this section, we give a brief description of the decision

process model we use, the required notation and known

methods and results which are relevant to this study

and will be used throughout. A detailed, more thorough

review of decision processes and reinforcement learning

can be found in [5-7].

We consider a discrete time time-axis, T = 0, 1, 2, . . ..

Note that we do not consider a fixed time N denoting

an end state, and rather consider an infinite time model.

We assume the system is defined on a finite state space

S . As mentioned, in our model these states represent the

knowledge at the terminals. At each time instant t, the

sender takes an action at(st), where st is the current state.

The actions belong to a predefined set A. Without loss of

generality, A includes all possible actions from all states

at all times. As an example, actions may include sending

uncoded messages, sending coded messages, etc.

We assume a Markovian state transition structure, that

is

pt(st+1 = s′|st , at)

=pt(st+1 = s′|st , at , st−1, at−1, . . . , s0, a0),

and further assume stationarity, i.e., pt(st+1 = s′|st , at) =

p(s′|s, a). We assume the policies which govern the actions

taken areMarkovian, that is, at = πt(st). Hence, the policy

depends only on the current state. It is also beneficial to

assume that the policies are stationary, that is, at = π(st).

As a result, the degree of freedom available to the sender is

in choosing the function π : S �→ A, its stationary control

policy. Note that π(s) can be a stochastic function. That is,

at a certain state the system can choose at random who to

send a packet to, or choose the coding coefficients at ran-

dom. As mentioned, the stationarity assumption allows us

to efficiently solve the equations for the optimal policy,
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Table 3 State transitions for the two users case: uncoded transmission (pa = pb = p)

State transition matrix Pπ Reward vector rπ

⎛

⎜

⎜

⎜

⎜

⎜

⎝

p2 + (1 − p) 1
2p(1 − p) 1

2p(1 − p) 0

1
2 (1 − p) p + 1

2 (1 − p)2 0 1
2p(1 − p)

1
2 (1 − p) 0 p + 1

2 (1 − p)2 1
2p(1 − p)

0 1
2 (1 − p) 1

2 (1 − p) p

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 − p

1 − p

1 − p

1 − p

⎞

⎟

⎟

⎟

⎟

⎟

⎠

describe the asymptotic system behavior, and gain insight

on the benefits of different strategies.

With each current state, action and next state, we asso-

ciate a reward r(s, a, s′). The reward associated with the

states and action might reflect both the benefit of transi-

tion (e.g., decoding packets) and the cost in the specific

action (e.g., the computational complexity in construct-

ing a coded message). Again, the reward model does not

depend on time, but can be stochastic, that is, with some

probability packets are decoded and the reward is high

and with some probability there is a loss or a decoding

failure. Moreover, we will be interested in the discounted

reward in the asymptotic regime, that is

Vπ
γ (s) = Eπ

{

∞
∑

t=0

γ tr(st , at , st+1) | s0 = s

}

,

where π is the policy used and s is the initial state. 0 <

γ < 1 is the discount factor. It determines the amount of

memory in the performance measure. That is, for γ →

0, the value per state is mainly affected by the current

reward, and does not take into account future transi-

tions, while γ → 1 weights almost identically the entire

sequence. Vπ
γ (s) is thus the asymptotic cumulative dis-

counted reward of the system. Clearly, our goals are to

computeVπ
γ (s) for a given policy and find the optimal pol-

icy in terms of minimizing Vπ
γ (s). For the infinite horizon,

stationary model we discuss in this article, these two goals

are within reach. This way, it will be possible to, for exam-

ple, understand when coding should take place and when

uncoded packets are optimal and what is the resulting

throughput in the system for each scheme.

The main two results for MDP in the stationary regime

are the following.

Theorem 1 (e.g., [5,6]). Let π be a stationary policy.

Then, the asymptotic discounted reward Vπ
γ is the unique

solution to the following set of linear equations:

Vπ
γ (s) =

∑

s′∈S

p(s′|s,π(s))
[

r(s,π(s), s′) + γVπ
γ (s′)

]

, s ∈ S .

(1)

To facilitate a vector representation, we denote by Vπ
γ ∈

R
|S| the vector of values achieved by the policy π , by Pπ

the state transition matrix under π , that is Pπ (s′|s) =

p(s′|s,π(s)), and by rπ the expected reward

rπ (s) =
∑

s′∈S

p(s′|s,π(s))r(s,π(s), s′).

Under this notation, we have

Vπ
γ =

(

I − γPπ
)−1

rπ , (2)

that is, in the stationary asymptotic regime, the total

rewards achieved by each policy are easily calculated using

a linear system. In our setting, (2) will be used to assess the

value of a given policy, and compare it to other policies.

For example, assess the value achieved by a certain coding

policy compared to an uncoded one. However, in certain

cases, it is interesting to compute the value function of

the optimal policy directly, as well as the optimal policy

itself. For this, the following results come in handy. In this

case, however, we assume deterministic policiesb. Define

the following operator from R
|S| to R

|S|, T∗
γ : (T∗

γV )(s) =

maxa∈A
∑

s′∈S p(s′|s, a)
[

r(s, a, s′) + γV (s′)
]

.

Theorem 2 (e.g., [5,6]). For any initial value function

V0, we have

Table 4 State transitions for the two user case: coded transmission

State transition matrix Pπ̄ Reward vector rπ̄
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
2 [ (1 − pa) + (1 − pb)]

1
2pa(1 − pb)

1
2 (1 − pa)pb 0

+papb
1
2 (1 − pa)

1
2pa + 1

2 [ (1 − pb) 0 1
2 (1 − pa)pb

+papb]

1
2 (1 − pb) 0 1

2 [ (1 − pa) + papb]+
1
2pb

1
2pa(1 − pb)

(1 − pa)(1 − pb) pa(1 − pb) (1 − pa)pb papb

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
2 (2 − pa − pb)

1
2 (2 − pa − pb)

1
2 (2 − pa − pb)

2 − pa − pb

⎞

⎟

⎟

⎟

⎟

⎟

⎠
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Table 5 Values of Vπ
γ and Vπ̄

γ with a discount γ = 0.5 and

different values of packet loss probability p

Packet loss and policy S1 S2 S3 S4

p = 0.1, uncoded 1.8 1.8 1.8 1.8

p = 0.1, coded 1.80231 1.82803 1.82803 2.708

p = 0.5, uncoded 1 1 1 1

p = 0.5, coded 1.01111 1.05556 1.055556 1.58889

1. Value iteration: If Vn+1 = T∗
γVn, then Vn → V ∗, the

value function under the optimal policy.

2. Any policy π∗ which satisfies π∗(s) =

argmaxa∈A
∑

s′∈S p(s′|s, a)
[

r(s, a, s′) + γV ∗(s′)
]

is

an optimal policy.

3. Policy iteration: Assume π̄ is defined according to

π̄(s) =

argmaxa∈A
∑

s′∈S p(s′|s, a)
[

r(s, a, s′) + γVπ
]

for

some policy π . Then V π̄ ≥ Vπ with equality iff π is

an optimal policy.

4 AMarkov decision process based approach
As mentioned in Section 3, in the stationary model under

discounted reward, suggested policies can be evaluated

analytically, with a closed form solution. We first give

here a basic 2-users example. An access point has two

streams of packets, one for each of the two users. The

four possible states are the ones given in Table 2. Pack-

ets are received at each receiver with probability 1 − p,

independently of the other. Each time a receiver decodes

its intended packet, a reward of 1 is received. The transi-

tion probability matrices and reward vectors were given

in Tables 3 and 4. We can now find Vπ
γ and V π̄

γ directly

according to (2). The solutions for different values of the

packet loss probability p are given in Table 5. Note that the

value function in the coded case is higher than that of the

uncoded case for all states Si, i ∈ 1, . . . , 4. Clearly, while

the value function is constant for all states in the uncoded

policy, in the coded policy it is significantly higher for

S4.

To conclude this example, we calculate the stationary

distributions associated with each of the two policies—

the uncoded and the coded one. That is, let vπ
s and vπ̄

s

be the stationary distributions of the uncoded and coded

policies, respectively. We have

vπ
s = (v1, . . . , v|S|) : (v1, . . . , v|S|)

TPπ = (v1, . . . , v|S|)
T .

(3)

vπ̄
s is calculated in a similar fashion. The total expected

discounted reward is thus Rπ = (vπ
s )TVπ

γ for the uncoded

case and similarly Rπ̄ for the coded one. The results for

different values of p are given in Table 6. Note that since

we consider cumulative discounted reward, the total sys-

tem throughput under a policy π , in packets delivered per

time slot, is (1 − γ )Rπ .

The benefit in the coded policy is clear, and it grows

larger as the packet loss probability increases. This will

also be clear in the simulations. Note, however, that

the system of equations is of dimension |S|. For this

reason, we include more efficient methods in the next

sub-sections.

4.1 A greedy algorithm

The model discussed thus far, allowed us to analytically

compute the reward associated with each state and action

pair, as well as the expected discounted reward for a given

policy. Moreover, using Theorem 2, it is possible to com-

pute the optimal policy. However, in practical situations,

the equations given in Theorem 2 are computationally

intractable. Note that forK users, the statematrix is of size

K×K , with theK diagonal values fixed at 0. Thus, the state

space is of size 2K(K−1), making it practically impossible to

list all states, a fortiori compute all entries of the state tran-

sition matrix analytically. Using a reinforcement learning

approach, such as Q-learning, would also be intractable

as is with such a state space. The reason is, at the basis

on suchmethods, e.g., deterministicQ-learning, stands an

update equation, Q(sn, an) ← rn + γ maxa′ Q(sn+1, a
′),

where sn and sn+1 are the current and next states, respec-

tively, and rn is the received reward. Thus, to be able to

update Q, the system needs to keep track of Q values for

all possible state-action pairs.

However, keeping track of the state at a given time, as

well as understanding the next state, given the current

one, the action taken and the channel status, is certainly a

Table 6 Stationary distribution and expected commutated discounted reward with a discount γ = 0.5 and different

values of packet loss probability p

Packet loss and policy S1 S2 S3 S4 Expected reward

p = 0.1, uncoded 0.826446 0.0826446 0.0826446 0.00826446 1.8

p = 0.1, coded 0.838028 0.0774648 0.0774648 0.00704225 1.81268

p = 0.5, uncoded 0.444444 0.222222 0.222222 0.111111 1

p = 0.5, coded 0.5 0.214286 0.214286 0.0714286 1.07143
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tractable solution, with quadratic number of operations in

each step and quadratic memory requirements. Thus, in

this part of our study, we seek efficient algorithms which

not only base their action only on the current state, but

also do not require tracking rewards for previous states

or solving directly systems of equation which are of the

same size as the state space. We will later see, that while

heuristic in nature, the greedy and semi-greedy algorithms

we suggest, are proved to be efficient, and improve perfor-

mance significantly compare to the un-coded version.

Consider the state matrix S seen at the access point

at a given time. A greedy algorithm will aim at maxi-

mizing the instantaneous reward received for its action

at that state (as opposed to maximizing an expected

or discounted reward, which, according to the Belman

equations in Theorem 2, takes into account the expected

rewards at future states). For twomatricesA and B, denote

by A ⊙ B the entry-wise multiplication of A and B, that

is, the matrix whose entries are ai,jbi,j. We first have the

following result.

Lemma 1. Let S be the state matrix at a given time.

Assume packet loss probabilities for all receivers are equal.

Then, the action which maximizes the instantaneous

reward is sending a packet which includes a XOR of the

packets intended to a set of users v which form a maximal

clique in the undirected graph whose adjacency matrix is

the upper triangle of S ⊙ ST .

Proof. A reward is received if and only if a receiver

decodes its intended packet. Thus, to maximize the total

instantaneous reward, the sender should aim at maximiz-

ing the number of receivers who decode their intended

packet at the current round.

Consider a single receiver. This receiver can decode its

packet if and only if it is included in the coded packet

received, together only with a subset of packets the receiver

overheard and buffered (the empty set is this case rep-

resents an uncoded packet). Note that receivers do not

buffer packets from which they cannot decode a packet

immediately. In the matrix notation of our model, receiver

i can decode its packet only if the action taken at that

round XORs the packets intended to receivers indexed

by the support of column i of S, together with its own

intended packet.

Now, consider two receivers, i and j, and assume the

sender wishes to satisfy both (hence receive a reward for

both). Clearly, the coded packet should include both pack-

ets in the XOR, otherwise at least one of them will not

be able to decode. However, this means receiver i must

have the packet intended to j and vice versa. That is,

S(i, j) = S(j, i) = 1. Thus, to satisfy n ≤ K receivers

i1, . . . , in simultaneously, the coded packet must XOR at

least those n packets, and the n × n sub-matrix consisting

of only rows and columns i1, . . . , in of S must have all its

entries as 1 except the diagonal. This sub-matrix corre-

sponds to a clique of size n in the directed graph whose

adjacency matrix is S, or in the undirected graph whose

adjacency matrix is the upper triangle of S⊙ST . Clearly, in

this case, to receive a reward n there is no need to code on

extra packets, besides the n intended to these users. This

completes the proof.

We call the undirected graph whose adjacency matrix

is the upper triangle of S ⊙ ST , the graph induced by S.

Lemma 1 thus gives rise to a conceptually simple policy.

We summarize this policy in Algorithm 1. The idea behind

the policy is simple: find the largest cliques in the graph

induced by S. If there are several largest cliques, choose

one at random, with uniform probability on the maximal

cliques. If there are no cliques—send a random uncoded

message. Note that for the case of unequal loss probabil-

ities, the requirements stated in the Proof of Lemma 1

remain: in order to receive a reward, a user must code its

own packet, and this can be done if and only if the coded

packet received includes its intended packet and packets

it overheard and buffered. However, due to the unequal

error probabilities, the sender might prefer smaller cliques

in which the receivers have lower loss probabilities, com-

pared to larger cliques with high loss probability. Thus,

the modification of the algorithm to this setting is straight

forward.

Algorithm 1 Greedy Policy (S)

1 action = (0, . . . , 0)
2 X = UpperDiag(S ⊙ ST )
3 {C1, . . . ,Cl} = FindMaxCliques(X)
4 if {C1, . . . ,Cl} = φ
5 then i = RandomIndex(K)
6 action(i) = 1
7 else clique index = RandomIndex(l)
8 for i = 1tomax clique size
9 do action(Cclique index(i)) = 1
10 return action

At first sight, Algorithm 1, involves a computationally

hard problem, since the problem of finding a maximal

clique in a graph is known to be NP-complete [33].

Moreover, there are graphs with exponentially many large

cliques [34], and Algorithm 1 requires to list all and

choose one at random (this is done to avoid starvation

of cliques not listed first when one maximal clique is

sought). However, as the next lemma asserts, with high

probability, the graph induced by S has cliques of at

most logarithmic size (in K), hence a polynomial time

algorithm which searches for bounded size cliques can

approximate closely the performance of the best greedy

scheme, and a sub-exponential time algorithm is asymp-

totically optimal.
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Lemma 2. Assume the system starts at the initial all-

zero state, and proceeds according to Algorithm 1. Assume

equal packet loss probabilities. Then, at each stage of

the algorithm, with high probability, the largest clique

in the graph induced by the state matrix S is of size

O(logK).

Proof. The proof is by considering the evolution of the

state sequence up to a give time t ∈ Z
+, and is based

on the celebrated results in [35,36] regarding cliques in

random graphs. For a random adjacency matrix, having 1

with probability 1 − q, the size of the largest clique, XK ,

satisfies XK/ log(K) → 2/ log(1/(1 − q)) with probabil-

ity 1. Thus, we wish to show that with high probability,

the worst the state S can be, is a random i.i.d. adjacency

matrix, with probabilities (q, 1 − q) for some fixed q.

At slot zero, that is, t = 0, S contains no cliques. As long

as there are no cliques, packets are sent uncoded. Assume

an uncoded packet is sent to receiver i. Since this packet is

received at each receiver, including i itself, independently

of the other receivers with probability 1 − p, p being the

packet loss probability, this results in an OR operation

between the current ith row in S and a random row, hav-

ing ones with probability 1 − p and zeros otherwise. That

is, an OR between the current state and a vector repre-

senting the receivers of the packet in the current slot. The

OR operation is since some receivers might have buffered

the packet in a previous transmission. Now, if receiver i

received its intended packet, the whole line in S will be set

to zero immediately. Otherwise, each entry in the row will

have, independently of the other entries, 1 with probabil-

ity 1 − pr , r being the number of times the current packet

intended to user i was transmitted since the last time this

user decoded a packet (i.e., since the last time the row was

zeroed). In other words, each entry is still i.i.d., yet with

a much larger probability for 1. Yet, as long as r is finite,

1 − pr is bounded away from 1.

Clearly, if cliques are found, and packets are sent coded,

then users which decoded their intended packets zero the

corresponding rows, hence more than one row can be

zeroed. Users which did not decode, may either remain

in the same state, or decode other packets. However, from

a received packet, a user can decode at most one packet,

if received correctly (similar to the uncoded case), so the

distribution of the rows either does not change compared

to the uncoded case or includes more zero rows.

We now wish to assess the probability of finding a clique

of size larger than 2 logK/ log(1/(1 − q)), for some fixed

q > 0. Take q < p and set r =
⌊

log q
log p

⌋

. At time t, a row will

have ones with a Bernoulli(q) distribution only if in the

last r transmissions which included the intended packet,

it was not decoded by the intended receiver. This happens

with probability at most pr . However, to have cliques of

size larger than 2 logK/ log(1/(1 − q)) with a probability

bounded away from zero, we need �(K) rows with high

density. This happens with probability pKr , which is small

for large enough K.

At this point, a few remarks are in order. The first impor-

tant consequence of Lemma 2, is that if the procedure

FindMaxCliques(X) in Algorithm 1 is replaced with a one

which searches for cliques of bounded size, the algorithm is

guaranteed, with high probability, to yield the same per-

formance as the one with the original procedure, only now

the complexity is polynomial in K. This is since it can, at

worst, exhaustively search for such cliques. In particular,

fix some 0 < q < p. The probability of finding a clique

of size larger than 2 log(K)/ log(1/(1 − q)) + 1, is at most

p
K

⌊

log q
log p

⌋

. Thus, with large enough K, this probability can

be made arbitrarily small for any q < p. Numerical results

for the performance of Algorithm 1 in various setting are

given in Section 5. An important observation from the

results therein, is that in practice, the sizes of the largest

cliques is small, rendering the computational problem rel-

atively easy while still allowing for a high percentage of

coding gain over the uncoded scheme.

The results in Lemmas 1 and 2were stated only for equal

loss probabilities on all links. However, this assumption

was merely for the ease of presentation. It is straight-

forward to extend these results to unequal probabilities,

as long as the packet loss probability is bounded away

from 0. The only difference is that then cliques should be

weighted by their expected reward, given the various loss

probabilities of the members of the clique. For equal loss

probabilities, the expected reward is a linear function of

the size (with a constant which depends on p), hence the

algorithm searches for maximal cliques.

4.2 A semi-greedy approach

Clearly, the drawback of Algorithm 1 is in its inability

to foresee future states with large rewards. As soon as a

clique is identified, a coded packet intended to that clique

is sent. However, it is obvious that if one could devise

a policy targeted at setting the grounds for states with

larger rewards, yet without redundant packets, it will per-

form better. Of course, the optimal solution is solving the

backwards equations based on Belman’s criterion (finite

horizon) or using value or policy iteration (infinite hori-

zon). Yet, these solutions do not scale up to large systems,

with a large number of users.

In this sub-section, we propose a semi-greedy approach,

which performs significantly better than the greedy one

(see Section 5), yet does not require the complexity bur-

den of tracking rewards per state, which is infeasible

merely due to the large number of states, nor does it

require sending redundant packets. At the heart of this
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approach stands the following observation: empty rows in

the state matrix S, reduce the probabilities of finding large

cliques significantly. Hence, the semi-greedy approachwill

first send uncoded packets to users whose packets were not

heard by any other user, and only if no such empty rows

exist, it will send coded packets to the largest cliques.

As a result, the steady state of the system will tend to a

denser matrix, with higher probabilities for large cliques.

The policy is summarized in Algorithm 2.

Algorithm 2 Semi-Greedy Policy (S)

1 action = (0, . . . , 0)
2 {i1, . . . , il} = FindEmptyRows(S)
3 if {i1, . . . , il} = φ
4 action = GREEDY POLICY(S)
5
6 else row index = RandomIndex(l)
7 action(row index) = 1
8 return action

It is important to note, though, that the logarithmic

bound on the size of the largest clique will still hold in

this case, as any row in the state matrix for the semi-

greedy algorithm will still be an i.i.d. row with ones at

some probability 0 < q < 1 (if it is not the all-zeros row

intentionally).

Corollary 1. Assume the system starts at the initial all-

zero state, and proceeds according to Algorithm 2. Then,

at each stage of the algorithm, with high probability, the

largest clique in the graph induced by the state matrix S is

of size O(logK).

Proof. The corollary follows from the same reasoning

Lemma 2 follows. The difference, however, is in keeping

the state matrix S with as less empty rows as possible. Yet,

as an empty row in S causes the access point to send an

uncoded packet, the empty row will remain empty with

probability 1− p (the packet was decoded by the intended

user), or be replaced with a row of random i.i.d. entries

(1−p being the probability for 1 and p for 0), in which case

it will contribute to the graph at most like a row in a ran-

dom adjacency matrix of a graph, as it is drawn uniformly

and independently of the other rows in the matrix.

It is important to note that the benefits in Algorithm 2

are intimately related to multi-user diversity gain in

wireless systems [37]. To see this, note that a user with a

relatively better channel than the others, is more likely to

have the corresponding line in the state matrix S zeroed.

Thus, the impact of sending packets to users whose cor-

responding rows are all-zero, is in serving the users whose

channel states are better at the current time slots. When

channel conditions change, and different users observe

better channels, the focus will switch to these users, yield-

ing, on the average, better performance, without compro-

mising fairness. This is also very clear in the simulation

results given in Section 5.

4.3 Performance analysis for two users

We consider an asymmetric channel model, where pa and

pb are the error probabilities of packets from the access

point to users a and b, respectively. We focus on the aver-

age capacity given in terms of delivered packets per slot,

rather than the discounted reward.

The sender may transmit a coded packet only when

the system is at state S4. Indeed, at this state a clique

is formed. At all other states there is no clique, and the

greedy scheme would transmit a random uncoded packet.

The system state transitions matrix and reward vector

were given in Table 4 (“coded transmission”). With the

transition matrix at hand, it is easy to devise the system

stationary probabilities �, as well as the average system

reward C (i.e., system capacity in packets per slot). For the

symmetric case of pa = pb = p,

� =

[

1 + 2p − p2

1 + 4p + 2p2
,

p(1 + p)

1 + 4p + 2p2
,

p(1 + p)

1 + 4p + 2p2
,

p2

1 + 4p + 2p2

]

,

(4)

and

C =
1 + 3p − p2 − 3p3

1 + 4p + 2p2
. (5)

In the semi-greedy algorithm, the difference is in states

S2 and S3. In S2 (S3), an uncoded packet is sent to user b

(a) with probability 1. The system state transitions matrix

and reward vector are given in Table 7.

Table 7 State transitions for the two terminal case: semi-greedy scheme

State transition matrix Pπ̂ Reward vector rπ̂

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
2 [ (1 − pa) + (1 − pb)]+papb

1
2pa(1 − pb)

1
2 (1 − pa)pb 0

0 (1 − pb) + papb 0 (1 − pa)pb

0 0 (1 − pa) + papb pa(1 − pb)

(1 − pa)(1 − pb) pa(1 − pb) (1 − pa)pb papb

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
2 (2 − pa − pb)

1 − pb

1 − pa

2 − pa − pb

⎞

⎟

⎟

⎟

⎟

⎟

⎠
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The following equations depicts the stationary proba-

bilities and the average capacity for the symmetric case of

pa = pb = p,

� =

[

1 − p

2 + p
,
1 + p

4 + 2p)
,
1 + p

4 + 2p)
,

p

2 + p

]

, (6)

and,

C =
2 − 2p2

2 + p
. (7)

We can now compare the system capacity obtained with

the greedy and the semi-greedy scheme relatively to the

average capacity of an uncoded scheme. Figure 1a,b depict

the system capacity gain as a function of the error prob-

abilities pa and pb. Table 8 depicts the users and system

capacity, for various error probability values, for the (i)

uncoded case, (ii) the greedy scheme, and (iii) the semi-

greedy scheme. The figures in the table clearly show the

advantage of the semi-greedy scheme in terms of system

capacity. Notice that the first rows in Table 8 are identical

to the first rows of Table 6 up to a factor of 1
1−γ

, which is

exactly the sum of the geometric series of the discounted

reward factor γ .

It is clear by now that the semi-greedy scheme obtains

a higher capacity than the uncoded as well as the greedy

schemes. Proposition 1 indicates that, for the two users

case with a symmetric channel, i.e., pa = pb = p, this

policy is optimal in terms of maximal average capacity

(reward).

Proposition 1. Consider the two users case with a single

packet buffer size. The Semi-Greedy Policy is the opti-

mal among all policies in terms of maximizing the aver-

age capacity.

Table 8 Two users capacity values

Packet loss and policy user a user b System

pa = 0.1, pb = 0.1, uncoded 0.45 0.45 0.9

pa = 0.1, pb = 0.1, greedy 0.453 0.453 0.906

pa = 0.1, pb = 0.1, semi-greedy 0.47 0.47 0.943

pa = 0.1, pb = 0.2, uncoded 0.45 0.4 0.85

pa = 0.1, pb = 0.2, greedy 0.455 0.404 0.86

pa = 0.1, pb = 0.2, semi-greedy 0.66 0.26 0.921

pa = 0.1, pb = 0.4, uncoded 0.45 0.3 0.75

pa = 0.1, pb = 0.4, greedy 0.457 0.305 0.762

pa = 0.1, pb = 0.4, semi-greedy 0.815 0.09 0.905

Proof. Intuitively, under our setting of a single packet

buffer size, each packet should be transmitted uncoded at

least once. Then, it could be retransmitted in coded pack-

ets. To maximize the average capacity, an optimal policy

would minimize the additional uncoded retransmissions.

Clearly, the semi-greedy scheme obtains this by sending

each packet uncoded only once and sending all retrans-

missions coded. In addition, from a symmetry reasoning,

at state S0 it does not matter whether to transmit to

user a or b. Accordingly, the semi-greedy policy transmits

either to user a or b at equal probabilities. More formally,

the proposition follows from the dynamic programming

optimality equation (i.e., Bellman’s equation) [5].

4.4 Fairness

Also clear from Table 8, is the potential unfairness of the

semi-greedy scheme (unequal capacities due to unequal

loss probabilities). As discussed previously, the semi-

greedy scheme increases the system capacity by both
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Figure 1 System capacity gain as a function of the error probabilities pa and pb. (a) Greedy (b) Semi-greedy.
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maximizing the usage of coded retransmission as well as

by opportunistically transmitting to terminals with higher

success probabilities. Indeed, users with worse channel

conditions may suffer from a short time fairness. With

mobile users, it is expected that their channel condition

would vary such that the long term fairness prevails.

However, a more rigorous solution to the problem is

possible, even for the case when mobility alone does

not suffice. To see this, consider the expected, cumula-

tive reward vector of the semi-greedy scheme in Table 7.

For pa < pb, it is clear that maximizing the reward

results in preferring state S3 over S2, i.e., the system is

biased towards user a decoding its packets. Nevertheless,

an important benefit of the MPD-based approach in this

article, is that this bias can be canceled using an appropri-

ate weighting of the reward given for each transition. By

increasing the reward given for decoding a packet by user b,

compared to the reward given for decoding by user a, one

can create an artificial bias towards user b. In fact, similar

reward weighting can be used to impose quality of service

constraints or any other fairness mechanism.

4.5 Missing acknowledgements

The schemes suggested in this article utilize an Automatic

Repeat reQuest (ARQ) mechanism which is compliant

with IEEE 802.11. Nevertheless, it is important to note

that the requirement that packets be acknowledged imme-

diately (which is mandatory for the IEEE 802.11 protocol)

is not compulsory in our scheme which can tolerate some

delay between the packet and its corresponding ACK.

Accordingly, if a certain delay is acceptable, the access

point can act according to reports received from the users,

once such reports are indeed received, and send the right

coded packets. Of course, this requires larger buffers at

the stations. Furthermore, it is also important to note

that the assumption that acknowledgements sent by the

receivers are received correctly by other receiving stations

is not mandatory and was made only for the sake of sim-

plicity. Specifically, receiving the acknowledgments by the

users is required only in order for a user to know if a

packet intended to a different user should be kept or dis-

carded. Thus, if an acknowledgement sent by a user is

not received by other users, the uninformed users keep

obsolete packets. Such packets could be discarded after a

certain timeout, or once these users identify newer pack-

ets are being sent (by examining a sequence number in a

packet). Hence, if users do not receive acknowledgements

sent by others, there is no degradation in performance,

only a requirement for slightly longer buffers.

The access point uses the acknowledgements in order to

assess the state. Misinterpretation of the state can result

in degradation of performance. Nevertheless, the theory

of MDP includes well-established algorithms for cases

when the state is only partially observed [38,39]. If the

observation of the state is kept within some mild fidelity

from the true state, these algorithms perform very well.

Furthermore, in a WiFi architecture, which is at the basis

of this article, immediate acknowledgements are compul-

sory, and the protocol does not function without a bidi-

rectional communication between the access point and

the user. Hence, assuming acknowledgements are received

properly at the access point is reasonable.

5 Numerical analysis
In this section, we evaluate and compare the Greedy and

Semi-greedy algorithms by simulation. We show that both

algorithms significantly improve the performance com-

pared to the uncoded version. Furthermore, we test the

algorithms in various channel conditions, and examine

fairness issues and their ability to adjust to varying condi-

tions. This implementation also verifies that the proposed

algorithms can be executed for a large number of users,

compared to the prohibitive complexity of listing the

entire state space.

We implemented the two algorithms in MATLAB. We

modeled the channel between the AP and user i according

to Bernoulli distribution with parameter pi. Accordingly,

user i receives each transmitted packet with probability

1 − pi. We further assumed small coherence time (fast

fading), i.e., the loss probability between two subsequent

transmissions is i.i.d. and non-correlated channels, i.e.,

the loss probability between two different users is inde-

pendent. Since both algorithms rely on finding the largest

cliques in the graph induced by the state matrix, which

as previously explained is known to be NP-complete in

general, we have used the MATLAB function [40], which

allows bounding the maximal clique size, hence bound

the complexity according to Lemma 2. As baseline for

comparison we used the traditional uncoded case.

We start by investigating the gain of the two algorithms

as a function of number of users and as a function of loss

probability. Accordingly, we varied the number of users

between 5, 10, and 15 and assumed that the AP always has

traffic to send to each user. For each different number of

users, we examined the performance for various loss prob-

abilities p, ranging between 0.05 to 0.95 (for completeness

we ran each set up for all loss probabilities, including very

high ones, even though such loss probabilities are not

common in real networks). Each setup was run for 20000

cycles. The results are depicted in Figure 2a.

As expected, for very low loss probability the gain in

using any retransmission scheme is small, as when loss

probability approaches 0 there are no retransmissions,

neither in the uncoded nor in the coded schemes (hence

no coding opportunities). For example for loss probabil-

ity of 0.05 for 10 users the gain over the uncoded scheme

is 1% and 4%, for the greedy and semi-greedy algorithms,

respectively. As can be seen in the figure, the greater the
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Figure 2 The benefit in the Semi-Greedy and Greedy approaches compared to the uncoded scheme. (a) Average reward (γ = 1, normalized

by the number of cycles). (b) Discounted reward (γ = 0.95).

loss probability the higher the coding opportunities, hence

the higher the gains. For example for 10 users and loss

probability of 0.5 the gain over the uncoded scheme is

23% and 42%, for the greedy and semi-greedy algorithms,

respectively. Since the same holds also for number of

users, i.e., the higher the number of users the greater the

coding opportunities, the gain is an increasing function

of the number of users. Furthermore, even though both

algorithms offer high gains over the uncoded scheme,

Figure 2a clearly depicts that the semi-greedy algorithm

provides much higher gains than those of the greedy algo-

rithm. For example, for loss probability of 0.3 the gain of

the semi-greedy algorithm is 2.2 times, 2.4 times and 2.1

times higher than those of the greedy algorithm, for the 5,

10, and 15 users, respectively.

To better understand the gain of the two algorithms,

Figure 3 shows the average rewards seen by each user,

for the 15 users setup for different loss probabilities (the
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Figure 3 Histograms of the average rewards seen by each user. Left bars—Greedy algorithm. Right—Semi-Greedy. The Horizontal line

represents the expected reward of the uncoded policy. Values are normalized by the number of users. (a) Packet loss probability 0.25. (b) Packet

loss probability 0.4.
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left bars correspond to the greedy algorithm and the right

to the semi-greed). Each bar in the histogram represents

the average reward seen by each user, where the average

reward obtained by each user is normalized with respect

to the number of users. The vertical line represents the

average reward per transmission for the uncoded case. As

can be seen in the figure, the average reward seen by each

user is high compared to the uncoded case for all loss

probabilities for both algorithms. Recall that the expected

reward for packets which are sent uncoded for both algo-

rithms is (1−p), which equals the one seen by the uncoded

approach. It is interesting to note that variance of average

reward obtained by different users is quite high.

Next, we examined the rewards per transmission.

Figure 4 shows a reward distribution comparison between

the two algorithms for loss probability of 0.5 and 15 users.

As expected, the semi-greedy algorithm yields greater

average reward per transmission, confirming its superior-

ity in terms of throughput gain over the greedy algorithm.

Note also that the reward is a lower bound on the clique

size to which the coded packet was transmitted. That is,

the reward distribution gives good indication regarding

the number of packets XORed in a coded packet, and a

good indication regarding the sparseness of the matrix,

and accordingly the complexity of finding the cliques. As

can be seen in the figure, for both algorithms the matrices

are relatively sparse.

Figure 2b depicts the asymptotic cumulative discounted

reward of the system when γ = 0.95 for the semi-greedy

and the greedy approaches compared to the uncoded

scheme. The dependency on the error probability, the

benefit over the uncoded scheme and the benefit of the

semi-greedy algorithm over the greedy one are similar to

those seen in the average reward setting. Note, however,

that due to the exponential discount, results are effectively

averaged over a much smaller window size, and hence are

noisier.

Next, we compared the two algorithms when the chan-

nels experienced by different users were not identical, i.e.,

different loss probabilities for different users. We ran a

setup of ten users, where each user had different loss

probability. Specifically, the loss probability ranged from

0.05 for user 1 to 0.5 for user 10. Figure 5 depicts the

results where the x-axis presents the user I.D. (which cor-

responds to the loss probability, i.e., loss probability =

0.05 · userID). The y-axis depicts the normalized user

throughput.

As can be seen, regarding throughput, the semi-greedy

algorithm provides a higher average throughput, nonethe-

less, regarding fairness, the greedy algorithm is much

more fair than the semi-greedy one. The greedy algorithm

distributes the throughput quite evenly, giving only slight

advantage to users with low loss probability, e.g., the users

with 0.05 and 0.5 loss probabilities get throughput of 0.08

and 0.06, respectively. The semi-greedy algorithm gives

many more transmission opportunities to users with good

channel quality (low loss probability).

Finally, we continued examining the performance of the

two algorithms when the user’s loss probabilities were not

constant. We modeled each channel as a Markov chan-

nel, where the channel of each user alternated between

good and bad. The loss probabilities were 0.05 and 0.5

for the good and bad channels, respectively. The transi-

tion probability between the two states was 0.01. Figure 6
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Figure 4 Reward distribution per iteration for packet loss probability 0.5 and 15 users. For both algorithms, clique sizes are moderate and can

be found efficiently. (a) Greedy algorithm. (b) Semi-Greedy algorithm.
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Figure 5 User throughput with unequal packet loss probabilities. Probabilities range from 0.05 for user 1 to 0.5 for user 10. (a) Greedy

algorithm. (b) Semi-Greedy algorithm.
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depicts the results for the case of three users. The x-axis

depicts the time (in this setup, 15000 rounds), and the y-

axis shows the cumulative throughput for each of the three

users. As can be seen in the figure, the semi-greedy algo-

rithm works in an opportunistic fashion, i.e., serving users

with good channels while deferring the ones with the bad

channels. Obviously, the aggregate system throughput is

higher in the semi-greedy approach. Still, in the long run,

the system is quite fair, giving all users approximately the

same throughput.

6 WiFi implementation and testing
In this section, we consider the design and implementa-

tion of coded retransmissions in an IEEE 802.11 (WiFi)

wireless network, operating in infrastructure mode (com-

monly termed WLAN). Note that this mode of operation

is perfectly suited to the suggested schemes, as all traffic

passes through the access point.

In order to allow 802.11 devices to support the NC sug-

gested schemes, besides the basic network operation such

as coding and decoding messages or implementing the

decision policy at the AP, only a few modifications which

are related to the standard are required. Specifically it is

required to: (I) allow users to accept packets of which they

are not the addressee, and to realize local buffers to store

such packets; (II) stop the automatic MAC layer retrans-

missions (i.e., to set the dot11LongRetryLimit to one); (III)

modify 802.11 MAC headers to incorporate network cod-

ing information; and IV) design newMAC control packets

which provide the status of each user.

6.1 Implementation on an Atheros chipset

Here, we describe a simple WiFi implementation of the

suggested scheme using off the shelf 802.11 devices.

Specifically, we implement the scheme on cards with an

Atheros chipset (ATHEROS AR5007G chipset), operating

the open source ath5k drivers (2.6.32 version) for a Linux

environment (kernel 2.6.32). We realize the suggested

scheme in a simple network comprising two stations

and an AP. Due to some hardware limitations we imple-

ment a slightly modified version of the suggested scheme

which we describe below. We distinguish between the

enhancements required by the AP (transmitter), required

by the stations (receivers) and those necessitated by the

standard.

6.1.1 Frame format

In order for users to keep track of the packets received

intended for other users, the header of each uncoded

frame includes a two byte sequential frame index, Figure 7.

We utilize a special multicast address to mark all coded

frames. In addition, in all coded frames, besides the two

byte sequential frame index which is included in the

header, an additional two times two bytes are included in

the header, indicating the sequence numbers of the two

frames that are coded, Figure 7.

6.1.2 Station

In contrast to 802.11, and in order to support the NC pro-

cedure, a station needs to receive packets not addressed

to it. Accordingly, we set each station network interface

card (NIC) to work in promiscuous mode, which means

that each station captures all frames sent by the AP, even

if it is not its intended addressee. If a regular frame is

received successfully at the addressee station, the station

sends immediately an ACK, in accordance to the 802.11

standard. On the other hand if the station receives a frame

which is not addressed to it, it stores it locally in a hashed

buffer, as illustrated in Figure 8a. Once a coded frame is

received, (recognized according to the designated multi-

cast address) the relevant two byte header with the frame

sequence number is used to locate the hashed frame.

Then, the station retrieves the missing frame by XORing

the XORed received frame with the hashed frame (if avail-

able). If a frame cannot be decoded from the NC retrans-

mission (e.g., due to unavailability of both frames), no

action is taken. Note that in such an event the packet is not

going to be retransmitted, i.e., it is going to be dropped.

Furthermore, it is important to note that even though we

ran our experiment only on two receivers hence when

receiving a coded packet the receiver knows that one of

the XORed packets is intended for it, in the first part of

the payload we also XORed the two MAC addresses of

the intended receivers, such that our implementation also

applies to more than two receivers.

6.1.3 AP

The first modification in the AP driver to allow coded

retransmissions, is to stop its automatic retransmissions.

Accordingly, we set the 802.11 retry limit to 0, i.e.,

no retransmission attempts. Nonetheless, in contrast to

802.11 where a frame is dropped when it reaches the retry

limit, in our implementation if the AP does not receive

an ACK message for a certain packet, it stores it in a

pre-allocated buffer. A separate buffer is allocated to each

user, Figure 8a. As soon as two “failed” frames (waiting

for retransmission) addressed to each of the two stations

are available, the AP codes the two frames into a sin-

gle retransmission frame. Coding is obtained by using a

XOR operation. Then, the XORed frame is transmitted to

a predefined multicast address which differentiates coded

frames from regular uncoded frames, Figure 8c.

In contrast to the algorithm presented in Section 4

the AP does not work in a Stop and Wait manner, in

which it stops all transmissions to a certain station upon

frame failure until the frame is either received correctly

or dropped. Rather, in our implementation it stores the

un-acknowledged frame in the aforementioned buffer and
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Figure 7 Regular frame, modified uncoded frame and network-code-frame structure.

continues sending subsequent frames to this user (i.e.,

selective repeat manner). Note that the unique sequential

frame index included in each frame enables the support

of such selective repeat mechanism and allows frame

reordering. In order to avoid buffer overflows due to the

selective repeat mechanism (which has an infinite win-

dow size), as soon as the buffer size crosses a threshold,

all frames in the buffer are transmitted uncoded and the

buffer is flushed. Additionally, for each un-acknowledged

packet which is stored in the buffer, a time stamp is

attached. A time-out mechanism is implemented such

that the packet is retransmitted uncoded upon expiration

of the time-out. It is important to note that in contrast

to the algorithm presented earlier, no status packets are

sent by the users to indicate which packets in their buffer

are meant to the other user and were not acknowledged.

In our implementation the AP assumes that each un-

acknowledged packet is received by the other receiver,

hence can be used for the coded packets. Consequently,

the AP can send a coded packet that one or both receivers

cannot really decode. Accordingly, as previously men-

tioned a retransmitted packet which cannot be decoded

is lost. An enhancement in which a user periodically or

upon request sends a status message which includes the

unreceived packets can be easily implemented.

6.2 Implementation results

In our experiment, and in accordance to the algorithm,

the AP generated packets to each one of the users at con-

stant rate. Whenever two un-acknowledged packets were

stored at the AP, one for each user, a single XORed packet

was sent. In order to control the loss probability on each

link, we artificially dropped packets at the receiver accord-

ing to a fixed probability denoted by p. We varied the loss

probability between zero (i.e., all packets are received suc-

cessfully) and one (i.e., all packets are dropped). Note that

coded packets were also subject to losses, according to the

same probability p as uncoded packets. For comparison

we also show in some of the figures analytical results of

three other schemes, (i) no retransmission—each packet

is transmitted exactly once, accordingly an unsuccess-

ful attempt on the first transmission results in packet

loss (denoted by dashed line in the figures). (ii) Uncoded

with single retransmission—each packet can be retrans-

mitted at most once (i.e., retry limit is set to one) where

the retransmitted packets are sent uncoded (denoted by

dashed dotted line). Since the uncoded retransmissions

scheme allows for the same number of sent packets more

overall transmissions than the coded scheme, we also

examine a hybrid of the two first schemes, in which

the number of transmissions (rather than the number of
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transmitted packets) is the same. (iii) Hybrid scheme—

each un-acknowledged packet is retransmitted once more

with probability half or dropped with probability half

(denoted by dotted line).

We first examined the effect of network coding on air

time utilization. We compare the number of successfully

received packets by both receivers with the total number

of packets sent, i.e.,
total received packets

total transmitted packets . Note that system

utilization for all uncoded schemes is the same as it counts

the number of successfully received packets, regardless of

whether or not the received packet is a retransmission.

Figure 9a depicts the results.

As can be seen in Figure 9a the coded schemes (denoted

by circles in the figure) are always better than the uncoded

schemes (squares) as far as airtime utilization is con-

cerned. Note that per-packet overhead is not taken into

account in the figure. Nonetheless such overhead is neg-

ligible, an extra 2 Bytes for uncoded packets and an

extra 12 Bytes for the coded packets. The dashed line

represents the expected analytical results for the coded

scheme (expressed as the fraction of successfully received

packets).

Next, we evaluate the effect of not sending status pack-

ets. Recall that in our implementation the AP does not

know which packets were received by each unintended

user, and assumes that each unacknowledged packet was

received by the other user. Furthermore, XORed pack-

ets are not acknowledged by the receivers. Accordingly, a

XORed packet which is not received or cannot be decoded

(i.e., its coupled packet was not received) by the receiver is

lost. In Figure 9b, we show the packet loss probability as a

function of the link loss probability, p. As expected the no

retransmission scheme generates the highest packet drop

for all values of p. Since in the uncoded single retransmis-

sion, the retransmissions are not coded and are dedicated

to the intended receiver, the least drop packets are pro-

duced. Obviously this drop packet gain comes at the

price of more packets being sent altogether. Interestingly

the hybrid scheme is inferior to the coded scheme with

respect to packet loss probability, i.e., more packets are

dropped than at the coded scheme for 0 < p < 0.5 and is

superior as far as packet loss probability is concerned for

0.5 < p < 1. The reason is that for the coded scheme to

receive a coded packet successfully, relies not only on the

acceptance of the coded packet itself but also on receiv-

ing the coupled packet successfully. Accordingly the mean

packet loss probability is p(p+ (1− p)p), where the first p

relates to the original transmission loss, and the terms in

the parentheses refer to the retransmission of the coded

packet which can be either lost or received successfully

but its coupled packet was lost. For the hybrid scheme, the

mean packet loss probability is 1
2p + 1

2p
2, which indeed is

greater than the coded loss probability for p < 1/2 and

less for p > 1/2.

Finally, we examine the retransmission delay due to

the coding mechanism. Recall that the AP waits for un-

acknowledged packets from both receivers before sending

a retransmission. In Figure 9c, we show the average num-

ber of packets which are transmitted between the first

transmission attempt and its coded retransmission.

Obviously, and as can be seen in the figure, the greater

the link loss probability (p), the less the number of trans-

missions needed before the AP has two un-acknowledged

packets, one for each receiver, hence can send a coded

packet. On the other hand the less p is, the longer a

retransmitted packets needs to wait before it can be cou-

pled with another lost packet to the other receiver.

7 Conclusion
In this study, we considered the problem of multiple uni-

cast streams from one sender to a group of receivers

under a general wireless channel setting. We suggested a

coded solution to the problem, which codes over packets

intended to different users. Although unnecessary in the
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Figure 9 Experimental results (a) Comparison of the total number of successfully received packets with the total number of packets sent.

Circles—coded scheme, experimental; Squares—uncoded; Dashed—coded, theoretical. (b) Packet loss probability as a function of the link loss

probability. Dashed—scheme (i); Dashed-dot—scheme (ii); Dotted—scheme (iii); Circles—coded, experimental. (c) Average number of packets

transmitted between the first transmission attempt of an unsuccessful packet andits coded retransmission.
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noiseless scenario, in the noisy scenario coding across dif-

ferent streams is beneficial in case packets intended to one

receiver are overheard by others.

We suggested a MDP framework to analyze the coded

and uncoded schemes, and showed how it can be

exploited to find good coding strategies. Moreover, we

suggested two coding schemes, which although work over

a system with an exponentially large state space, do not

keep track of the rewards per state (in order to solve opti-

mality equations), yet perform significantly better than

uncoded schemes. These coding schemes are based on

finding large cliques in graphs, which can be solved effi-

ciently in the graphs relevant to these coding schemes.

Finally, we depicted an architecture to implement the

coded solutions within WiFi devices, in a way which is

transparent to the users of the WiFi network. The basic

concepts of the architecture were implemented and tested

on a WiFi testbed, resulting in a coded retransmissions

version of WiFi.

Endnotes
aAlternatively, one can associate a packet index. However,

since the sender does not send a packet to a user until the

previous one was decoded correctly, it suffices to index

them using the user index alone.
bFor random policies, one can define the optimization

over the relevant distributions.While we use randompoli-

cies in this study, solving such optimization problems will

not be required.
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