
Linköping Studies in Science and Technology
Dissertation No. 440

Codes and Decoding

on General Graphs

Niclas Wiberg

Department of Electrical Engineering
Linköping University, S-581 83 Linköping, Sweden

Linköping 1996

Linköping Studies in Science and Technology
Dissertation No. 440

Codes and Decoding

on General Graphs

Niclas Wiberg

Department of Electrical Engineering
Linköping University, S-581 83 Linköping, Sweden

Linköping 1996

Corrections applied as of errata October 30, 1996

ISBN 91-7871-729-9

ISSN 0345-7524

To Kristin,

Isak, and Benjamin

v

Abstract

Iterative decoding techniques have become a viable alternative for constructing high perfor-

mance coding systems. In particular, the recent success of turbo codes indicates that perfor-

mance close to the Shannon limit may be achieved. In this thesis, it is showed that many

iterative decoding algorithms are special cases of two generic algorithms, the min-sum and

sum-product algorithms, which also include non-iterative algorithms such as Viterbi decod-

ing. The min-sum and sum-product algorithms are developed and presented as generalized

trellis algorithms, where the time axis of the trellis is replaced by an arbitrary graph, the

“Tanner graph”. With cycle-free Tanner graphs, the resulting decoding algorithms (e.g.,

Viterbi decoding) are maximum-likelihood but suffer from an exponentially increasing com-

plexity. Iterative decoding occurs when the Tanner graph has cycles (e.g., turbo codes); the

resulting algorithms are in general suboptimal, but significant complexity reductions are

possible compared to the cycle-free case. Several performance estimates for iterative decod-

ing are developed, including a generalization of the union bound used with Viterbi decoding

and a characterization of errors that are uncorrectable after infinitely many decoding itera-

tions.

vii

Acknowledgments

The best guarantee to a successful work, undoubtedly, is to work among intelligent and help-

ful people. Luckily for me, I had the opportunity to work closely with Andi Löliger and Ralf

Kötter for almost four years. Andi, who has been my co-supervisor, has many times pointed

me in directions that turned out to be very interesting (sometimes he had to push me to get

me started). Furthermore, he was always (well, almost) available for fruitful and engaged

discussions regarding my work. It is not an overstatement to say that this thesis would not

have been written without him. Thank you, Andi.

The many discussions with Ralf Kötter have also been very valuable. Ralf’s knowledge

in algebra, graph theory, and other subjects important to me, combined with his great interest

in iterative decoding, has often lead to important insights for both of us.

While a deep penetration of a subject is perhaps the essence of a doctoral thesis, it is

equally important to obtain a wider understanding and perspective of a problem area. I am

deeply thankful to my professor and supervisor Ingemar Ingemarsson for providing an envi-

ronment that always stimulated me to learn more about communication theory in general.

By involving me and other graduate students in the planning of undergraduate courses, and

by introducing unconventional teaching methods, we were all forced to review our own

knowledge again and again.

All my friends and colleagues at the divisions of information theory, image coding, and

data transmission have helped me a lot by providing an inspiring and enjoyable atmosphere.

It is a fact that the best way to learn something is to explain it to other people; many are the

times when I, uninvited, have exploited the patience of my colleagues by describing my

unsorted thoughts on the whiteboard in the coffee room and elsewhere. Thank you for listen-

ing—and please forgive me.

A special thanks goes to my friend Håkan Andersson, with whom I shared the office for

some years. Apart from our many discussions, he has helped me a lot by reading my manu-

scripts and providing constructive criticism on all aspects of the thesis. Maurice Devenney

also did a very good job in reading and correcting my writing.

Needless to say, my parents have been very important for me. Here, I would like to thank

my Father, who was the first to bring me into mathematics and science. By having a pro-

grammable home computer at the age of 13, my career was practically settled.

I dedicate the thesis to my wife Kristin and my children Isak and Benjamin. Sharing with

you the few hours that I did not work on the thesis made the long hours at work bearable.

Thank you for your support, understanding, and love!

Linköping, April 1996

Niclas Wiberg

ix

Contents

1 Introduction 1

1.1 Decoding Complexity 2

1.2 Iterative Decoding Based on Tanner Graphs 3

1.3 Turbo Codes 4

1.4 Thesis Outline 4

2 Code Realizations Based on Graphs 6

2.1 Systems, Check Structures and Tanner Graphs 7

2.2 Turbo Codes 10

3 The Min-Sum and Sum-Product Algorithms 12

3.1 The Min-Sum Algorithm 13

3.2 The Sum-Product Algorithm 18

3.3 Updating Order and Computation Complexity 21

3.4 Optimized Binary Version of the Min-Sum Algorithm 22

3.5 Non-Decoding Applications 23

3.6 Further Unifications 24

4 Analysis of Iterative Decoding 25

4.1 The Computation Tree 27

4.2 The Deviation Set 29

5 Decoding Performance on Cycle-Free Subgraphs 37

5.1 Estimating the Error Probability with the Union Bound 37

5.2 Asymptotic Union Bound 40

5.3 Computing Statistical Moments of Final Costs 45

5.4 Gaussian Approximation of Log-Cost-Ratios 49

6 Decoding Performance with Cycles 52

6.1 Cycle Codes 54

6.2 Tailbiting Trellises 57

6.3 The General Case 59

6.4 Turbo Codes 60

7 More on Code Realizations 61

7.1 Realization Complexity 62

7.2 Cycle-Free Realizations 63

7.3 Realizations with Cycles 64

7.4 Modeling Complicated Channels 71

8 Conclusions 74

A Proofs and Derivations 76

A.1 Proof of Theorems 3.1 and 3.2 76

A.2 Derivations for Section 3.3 80

A.3 Derivation for Section 3.4 84

A.4 Derivation used in Section 5.4 85

A.5 Proofs for Section 6.1 88

A.6 Proof of Theorem 7.2 91

References 92

1

Chapter 1

Introduction

This thesis deals with methods to achieve reliable communication over unreliable channels.

Such methods are used in a vast number of applications which affect many people’s every-

day life, for example mobile telephony, telephone modems for data communication, and

storage mediums such as compact discs.

A basic scheme for communicating over unreliable channels is illustrated in Figure 1.1.

The message to be sent is encoded with a channel code before it is transmitted on the chan-

nel. At the receiving end, the output from the channel is decoded back to a message, hope-

fully the same as the original one. A fundamental property of such systems is Shannon’s

channel coding theorem, which states that reliable communication can be achieved as long

as the information rate does not exceed the “capacity” of the channel, provided that the

encoder and decoder are allowed to operate on long enough sequences of data (extensive

treatments can be found in many textbooks, e.g. [1]).

We will deal with the decoding problem, i.e. finding a good message estimate given the

channel output. The problem can be solved, in principle, by searching through all possible

messages and comparing their corresponding codewords with the channel output, selecting

the message which is most likely to result in the observed channel output. While such a

method can be made optimal in the sense of minimizing the error probability, it is useless in

practice because the number of messages is too large to search through them all. The inter-

esting (and difficult!) aspect of the decoding problem is to find methods with reasonable

complexity that still give sufficiently good performance.

Decoding methods can be divided, roughly, in two classes: algebraic and “probabilistic”.

Algebraic methods are typically based on very powerful codes, but are only suited to rela-

tively reliable channels. In such cases, however, they can provide virtually error-free com-

munication. By “probabilistic” methods, we mean methods that are designed to use the

Figure 1.1 Shannon’s model for reliable communication on an unreliable channel.

Encoder Channel Decoder
message codeword channel message

output estimate

2 1 Introduction

channel output as efficiently as possible, approaching the performance of an optimal

decoder. Such methods are better suited to highly unreliable channels than algebraic meth-

ods are. Unfortunately, probabilistic methods in general work only for relatively weak codes,

and consequently, cannot completely avoid decoding errors. To achieve error-free communi-

cation on highly unreliable channels, one typically uses a combination of probabilistic and

algebraic decoding methods.

We will consider probabilistic decoding methods in this thesis, with the goal of finding

decoding methods that both use the channel output efficiently and are still capable of han-

dling relatively powerful codes. It is assumed that the reader is familiar with the basics of

communication theory.

1.1 Decoding Complexity

Until recently, the most important probabilistic decoding method has been the Viterbi algo-

rithm [2]. A main reason for its success is that it is optimal, or maximum-likelihood, in the

sense that it minimizes the probability of decoding error for a given code. The main draw-

back, on the other hand, is the computation complexity, which is very high for good codes

(the number of operations grows exponentially with the minimum distance of the code,

cf. [3]).

The reason behind this high complexity is to be found in the trellis code description,

illustrated in Figure 1.2 for a small code, on which the Viterbi algorithm is based. In a trellis,

the structure of the code is expressed by viewing the code as a dynamic system, introducing

a time axis on which the codeword components are laid out. (Of course, having such a time

axis is practical too, since the components must be transmitted in some order anyway. With a

memoryless channel, however, the transmission order is irrelevant from a theoretical per-

spective; the point here is that the decoding algorithm assumes some time axis on which it

operates.) With this dynamic-system view, all dependence between the past and the future

(with respect to some instant on the time axis) is expressed in the present state. The problem

is that good codes by necessity must have a high dependence between the codeword compo-

nents, implying that the state space of the trellis must be excessively large (cf. [3]), which

leads to a high decoding complexity.

0

0

11

0

1

0

0

1

1

0 0

0

1

1

0

1

1 1

11

0

0

0

Figure 1.2 A minimal trellis for a binary linear (6, 3, 3) code. The codewords are
obtained by following paths from left to right and reading off the labels encountered.

1.2 Iterative Decoding Based on Tanner Graphs 3

On the other hand, it has been known for a long time that tailbiting trellises can in some

cases be much smaller than any ordinary trellis for the same code [4]. In a tailbiting trellis

there are multiple starting states and equally many ending states (an ordinary trellis has sin-

gle starting and ending states), and a path is required to start and end in the same state.

Figure 1.3 illustrates a two-state tailbiting trellis for the same code as in Figure 1.2. In this

case, the maximal number of states is reduced from four to two.

Loosely speaking, tailbiting trellises are based on a circular time axis. This is also the

reason for the lower complexity: since the dependence between any two halves of the code-

words may be expressed in two states, one in each direction on the time axis, the size of each

of these state spaces may be smaller than if there were only one state space.

1.2 Iterative Decoding Based on Tanner Graphs

One of the major goals behind this thesis has been to search for code descriptions, or “real-

izations”, with lower complexity than trellises. The other major goal was to investigate how

such realizations could be exploited by decoding algorithms to achieve low decoding com-

plexity. In particular, a promising direction seemed to be “iterative” decoding, i.e. decoding

algorithms that operate on some internal state which is altered in small steps until a valid

codeword is reached.

The main result is a framework for code realizations based on “Tanner graphs”, which

have the role of generalized time axes, and two generic iterative decoding algorithms that

apply to any such realization. While our framework was developed as a combination and

generalization of trellis coding and Gallager’s low-density parity-check codes [5], the basic

ideas were all present in Tanner’s work “A recursive approach to low complexity codes” [6],

including the two mentioned algorithms. Our main contributions to the framework is to

explicitly include trellis-type realizations and to allow more general “metrics”, or “cost func-

tions”; the latter makes it possible to model, e.g., non-uniform a priori probability distribu-

tions, or channels with memory.

While this framework appeared interesting in itself, additional motivation for our

research arose from an unexpected direction: turbo codes.

0

0

1 1
0

1

0

0

1 1
0

1

0

0

1 1
0

1

Figure 1.3 A tailbiting trellis for a binary linear (6, 3, 3) code. The marked path cor-
responds to the codeword 011011.

4 1 Introduction

1.3 Turbo Codes

Undoubtedly, the invention of turbo codes [7] is a milestone in the development of commu-

nication theory. Compared to other coding systems, the improvement in performance

obtained with turbo coding is so big that, for many applications, the gap between practical

systems and Shannon’s theoretical limit is essentially closed, a situation which was probably

not predicted by anyone before the invention of turbo codes.

On the negative side, the turbo code construction is largely based on heuristics, in the

sense that no theoretical analysis exists as of yet that can predict their amazing performance.

More precisely, it is the decoding algorithm that remains to be analyzed; a relatively success-

ful analysis of the theoretical code performance is given in [8].

As it turned out, turbo codes and their decoding algorithm fit directly into our general

framework for codes and decoding based on graphs. This relation provided us with an addi-

tional research goal: to understand the turbo codes and their decoding performance, using

our framework. Consequently, a lot of the material in this thesis is highly related to turbo

codes and their decoding algorithms, and we have tried to make this connection explicit in

many places.

1.4 Thesis Outline

The following two chapters present the graph-based framework. Chapter 2 provides a formal

definition of code realizations based on graphs. While the basic ideas are due to Tanner [6],

our definitions are more general and based on a different terminology. Chapter 3 presents the

two decoding algorithms, the “min-sum” and the “sum-product” algorithms. We give a gen-

eral formulation of these two algorithms, which are extended versions of Tanner’s algo-

rithms A and B, and we show their optimality when applied to realizations with cycle-free

Tanner graphs (such as trellises). In both of these chapters we demonstrate explicitly how

trellises and turbo codes fit into the framework. Another important example that appears

throughout the thesis is Gallager’s low-density parity-check codes [5].

The material in Chapter 2 and Chapter 3 is relatively mature and has been presented ear-

lier, in [9], along with some parts of Chapter 6 and Chapter 7.

Chapters 4 through 6 are devoted to iterative decoding, i.e. the application of the min-

sum and sum-product algorithms to realizations with cycles. In Chapter 4 we develop some

fundamental results for performance analysis of iterative decoding; these are used in the fol-

lowing two chapters. Chapter 5 is focused on the decoding performance after the first few

decoding iterations, before the cycles have affected the computation. In Chapter 6, we con-

sider the performance obtained after this point, when the cycles do affect the computation.

For a limited class of realizations, we analyze the asymptotic performance after infinitely

many decoding iterations. The applicability of this result to turbo codes is also discussed.

In Chapter 7, we return to code realizations and complexity issues. A precise interpreta-

tion of the above complexity reasoning, regarding trellises and tailbiting trellises, will be

given. We will also give a few more examples of code realizations, both with and without

cycles. Some of these examples are closely related to turbo codes; in fact, they may point out

1.4 Thesis Outline 5

a convenient way of constructing good turbo-like realizations with moderate block lengths.

In addition, we will show how the framework can incorporate more complicated situations

involving, e.g., channels with memory.

Chapter 8, finally, contains our conclusions.

6

Chapter 2

Code Realizations Based on Graphs

The central theme of this thesis is to describe codes by means of “equation systems”, whose

structure are the basis for decoding algorithms. By structure we mean the relation between

the variables and the equations. More precisely, the equation system defines a bipartite

graph with vertices both for the variables and for the equations; an edge indicates that a par-

ticular variable is present in a particular equation.

Example 2.1 Figure 2.1 illustrates a linear equation system of six variables as well as its

structure in the form of the mentioned bipartite graph. Assuming binary variables, this par-

ticular equation system defines a binary linear (6, 3, 3) code, with the equations correspond-

ing to the rows of a parity-check matrix. ✼

While Example 2.1 and the term “equation system” conveys some of our ideas, the defini-

tions that we will soon give include a lot more than just linear equations. For maximal gener-

ality, we allow an “equation” on a set of variables to be any subset of the possible value

combinations; the “equation system” is then the intersection of these subsets. We hope that

the reader will not be repelled by this rather abstract viewpoint. As an aid, we provide sev-

eral examples that are familiar to the reader to show how our definitions unify many differ-

ent code descriptions and decoding algorithms. In Chapter 7, we provide some examples of

new code realizations too.

x1 x2

x4

x3

x6

x5

Figure 2.1 An equation system and the corresponding bipartite graph. Each filled dot
together with its neighbors corresponds to an equation with its variables.

x1 x2 x3+ + 0=

x3 x4 x5+ + 0=

x5 x6 x1+ + 0=

x2 x4 x6+ + 0=







2.1 Systems, Check Structures and Tanner Graphs 7

2.1 Systems, Check Structures and Tanner Graphs

A configuration space is a direct product , where is a collection of

alphabets (or state spaces). We will usually assume that the index set N, as well as all alpha-

bets , , are finite. (Neither of these assumptions is essential, though.) Elements of

W will be called configurations. Elements of N will be referred to as sites.

In many of our examples (e.g. 2.1), the index set N corresponds directly to the codeword

components, i.e. , and the site alphabets are the binary field, i.e.

for all . This means that the configuration space is the familiar space of binary n-

tuples. However, more general configuration spaces are also useful, e.g., for trellis-based

constructions, where some of the sites do not correspond to codeword components but rather

to “cuts” of the time axis; the corresponding site alphabets are then state spaces of the

trellis.

The components of a configuration will be denoted by , . More gener-

ally, the restriction (projection) of to a subset of sites will be denoted by .

For a set of configurations and a site subset we will use the notation

.

Definition 2.1 A system is a triple , where N is a set of sites, W is a

configuration space, and is the behavior. (This “behavioral” notion of

a system is due to Willems [10], cf. also [11].) The members of B will be

called valid configurations. A system is linear if all alphabets are vector

spaces (or scalars) over the same field, the configuration space W is the direct

product of the alphabets, and the behavior B is a subspace of W.

Definition 2.2 A check structure for a system is a collection Q of

subsets of N (check sets) such that any configuration satisfying

 for all check sets is valid (i.e., in B). The restriction of the

behavior to a check set E is called the local behavior at E. A configuration x is

locally valid on E if . Note that a configuration is valid if and only if it

is locally valid on all check sets.

The bipartite graph corresponding to a check structure Q for a system is called a

Tanner graph [6] for that system. Tanner graphs will be visualized as in Figure 2.1, with

sites represented by circles and check sets by filled dots which are connected to those sites

(circles) that they check.

The definitions 2.1 and 2.2 are “axiomatic” in the sense that they specify required prop-

erties for Q to be a check structure. Actual constructions are usually built in the opposite

way, by specifying a check structure Q and the corresponding local behaviors

(“checks”), so that a desired behavior B is obtained. This was illustrated in Example 2.1,

which can be seen as a system with and W the six-dimensional

binary vector space. The check structure Q = {{1, 2, 3}, {3, 4, 5}, {5, 6, 1}, {2, 4, 6}} and

the local behaviors (for all check sets) together define

the behavior B = {000000, 110001, 011100, 000111, 101101, 110110, 011011, 101010}.

W Πs N∈ As= As{ }s N∈

As s N∈

N 1 … n, ,{ }= As F2=

s N∈ F2
n

As

x W∈ xs s N∈
x W∈ R N⊆ xR

X W⊆ R N⊆
XR xR x X∈:{ }≡∧

N W B, ,()
B W⊆

As

N W B, ,()
x W∈

xE BE∈ E Q∈ BE

xE BE∈

N W B, ,()

BE

N W B, ,() N 1 … 6, ,{ }=

BE 000 110 101 011, , ,{ }= E Q∈

8 2 Code Realizations Based on Graphs

Any binary block code C of length n may be viewed as a system , where

, , and is the set of codewords. For linear codes, a par-

ity check matrix H (i.e., a matrix H such that if and only if) defines a check

structure with one check set for each row of H, containing those sites that have a “one” in

that row. The corresponding local behaviors are simple parity checks. Of special interest is

the case when the check sets have a small, fixed size k, and the sites are contained in a small,

fixed number j of check sets. Such systems, which were introduced by Gallager in [5], are

referred to as low-density parity-check codes. When , i.e., when sites belong to

exactly two check sets, the codes are referred to as cycle codes [12, pp. 136-138], since these

codes are generated by codewords whose support corresponds to cycles in the Tanner graph.

(Example 2.1 is a cycle code.)

So far, we have only considered systems where all sites correspond to components of the

codewords. However, it is often useful to allow hidden sites, which do not correspond to

codeword components but only serve to give a suitable check structure. The most familiar

example of such descriptions is the trellis, as illustrated by the following example.

Example 2.2 Figure 2.2 illustrates the minimal trellis for the same binary linear (6,3,3)

block code as in Example 2.1. The trellis is a system (N, W, B) with two types of sites: visi-

ble sites (corresponding to codeword components) and hidden sites (corresponding to the

“cuts” between the trellis sections). Hidden sites are illustrated by double circles. The visible

site alphabets are all binary, but the hidden site alphabets (the state spaces) contain one, two

or four states. A configuration is an assignment of states and output symbols, one from each

site alphabet. Such a configuration is valid (i.e. a path) if and only if each local configuration

of left state, output symbol, and right state is valid, i.e., a branch. ✼

N W B, ,()
N 1 2 … n, , ,{ }= W F2

n= B C=

H xT 0= x C∈

j k,() j 2=

0

1

00000

0

0

00

0

0

1
11

1 1
1

1

1

1

1

Figure 2.2 A trellis (top) for a (6,3,3) code, and the corresponding Tanner graph. The
values in the sites form a valid configuration, i.e., a path, which can be seen by check-
ing locally in each trellis section.

1
0

10

01

11

000000000

10 10 1

0101

1111

0

011011

1

001111110

2.1 Systems, Check Structures and Tanner Graphs 9

(As mentioned in the example, hidden sites will be depicted by double circles.) In general, if

(N, W, B) is a system with hidden sites, and is the set of visible sites, then a codeword

of the system is the restriction of a valid configuration to V. The visible behavior

or output code of the system is . We consider a system (N, W, B) with a

check structure Q to be a description or realization of the corresponding output code .

The motivation for introducing hidden sites, and indeed for studying systems with check

structures at all, is to find code descriptions that are suitable for decoding. There are many

different realizations for any given code, and the decoding algorithms that we will consider

in Chapter 3 can be applied, in principle, to all of them. However, both the decoding com-

plexity and the performance will differ between the realizations.

One important property of a realization is its structural complexity. In the decoding algo-

rithms that we will consider, all members of the site alphabets and of the local behaviors

 are considered explicitly during the decoding process, in some cases even several times.

For this reason, the site alphabets and the local behaviors should not be too large; in particu-

lar, trivial check structures such as the one with a single check set , and the one

with a single hidden site whose alphabet has a distinct value for each valid configuration, are

unsuitable for decoding (see Figure 2.3).

Another important property lies in the structure of the Tanner graph. As we will see in

Chapter 3, the decoding algorithms are optimal when applied to realizations with cycle-free

Tanner graphs. For realizations with cycles in the Tanner graphs, very little is actually

known about the decoding performance; however, most indications are that it is beneficial to

avoid short cycles. (This will be discussed later.)

So why do we consider realizations with cycles at all, when the decoding algorithms are

optimal for cycle-free realization? The advantage of introducing cycles is that the structural

complexity may be much smaller in such realizations, allowing for a smaller decoding com-

plexity. What happens, roughly, is that a single trellis state space of size m is split into a

number of hidden sites of size such that . This will be discussed in Chapter 7,

where we will continue the discussion of graph-based realizations. Here we just give one

further example of a realization with many cycles in the Tanner graph, an example that

deserves special attention.

V N⊆
xV x B∈
BV xV x B∈:{ }≡∧

BV

As

BE

Q N{ }=

Figure 2.3 Two trivial realizations that apply to any code (of length six).

ms mss∏ m≈

10 2 Code Realizations Based on Graphs

2.2 Turbo Codes

The turbo codes of Berrou et al. [7] are famous for their amazing performance, which beats

anything else that has been presented so far. Unfortunately, the performance has only been

demonstrated by simulations, and not by theoretical results. In particular, the decoding algo-

rithm proposed in [7] remains to be analyzed (the theoretical code performance was ana-

lyzed to some extent in [8]).

The conventional way of presenting turbo codes is to describe the encoder. As illustrated

in Figure 2.4, the information sequence is encoded twice by the same recursive systematic

convolutional encoder, in one case with the original symbol ordering and in the other case

after a random interleaving of the information symbols. (At the output, the redundancy

sequences are often punctured in order to achieve the overall rate 1/2.) The convolutional

encoders are usually rather simple; the typical encoder memory is 4 (i.e., there are 16 states

in the trellis).

The corresponding Tanner graph (Figure 2.5) makes the structure somewhat more appar-

ent, consisting of two trellises that share certain output symbols via an interleaver (i.e., the

order of the common symbols in one trellis is a permutation of the order in the other trellis).

It is well known (cf. [8]) that the amazing performance of turbo codes is primarily due to the

interleaver, i.e., due to the cycle structure of the Tanner graph.

Information
Sequence

Redundancy
Sequence 1

Redundancy
Sequence 2

Convolutional

Randomly
Chosen

Information
Sequence

Figure 2.4 The turbo codes as presented by Berrou et al [7].

Encoder

Recursive
Convolutional

Recursive

Interleaver Encoder

2.2 Turbo Codes 11

Figure 2.5 The Tanner graph of the turbo codes.

Interleaver

Information
Sequence

Redundancy
Sequence 1

Redundancy
Sequence 2

12

Chapter 3

The Min-Sum and Sum-Product

Algorithms

We will describe two generic decoding algorithms for code realizations based on Tanner

graphs, as described in the previous chapter. The structure of the algorithms matches the

graphs directly. It will be convenient to think of these algorithms as parallel processing algo-

rithms, where each site and each check is assigned its own processor and the communication

between them reflects the Tanner graph. (In fact, this “distributed” viewpoint was one of the

motivations for developing the framework. However, in many cases a sequential implemen-

tation is actually more natural.)

The algorithms come in two versions: the min-sum algorithm and the sum-product algo-

rithm. The ideas behind them are not essentially new; rather, the algorithms are generaliza-

tions of well-known algorithms such as the Viterbi algorithm [2] and other trellis-based

algorithms. Another important special case is Gallager’s algorithm for decoding low-density

parity-check codes [5]. A relatively general formulation of the algorithms was also given by

Tanner [6] (the relation between Tanner’s work and ours is discussed in Section 1.2 of the

introduction).

There are other generic decoding algorithms that apply to our general framework for

code descriptions. In a previous work [13] we discussed the application of Gibbs sampling,

or simulated annealing for decoding graph-based codes.

The overall structure of the algorithms, and the context in which they apply, is illustrated

in Figure 3.1. As shown, the algorithms do not make decisions, instead they compute a set of

final cost functions upon which a final decision can be made. The channel output enters the

algorithms as a set of local cost functions, and the goal of the algorithms is to concentrate,

for each site, all information from the channel output that is relevant to that site.

Formally, there is one local cost function for each site , denoted by

(where denotes the real numbers), and one for each check set , denoted by

. Similarly, there is one final cost function for each site , denoted by

, and one for each check set, denoted by . (In our applications,

s N∈ γ s As R→:

R E Q∈
γ E WE R→: s N∈
µs As R→: µE WE R→:

3.1 The Min-Sum Algorithm 13

the check cost functions and are often not used; they are most interesting when the

codewords are selected according to some non-uniform probability distribution, or, as dis-

cussed in Section 7.4, when dealing with channels with memory.)

During the computation, the algorithms maintain a set of intermediate cost functions: for

each pair of adjacent site and check set (i.e.,), there is one check-to-site cost

function and one site-to-check cost function . These cost

functions are best thought of as having a direction on the Tanner graph. For instance, we will

often call the “contribution” from the check set E to the site s. (In the cycle-free case,

this will be given a precise interpretation.) See Figure 3.2.

3.1 The Min-Sum Algorithm

The min-sum algorithm is a straightforward generalization of the Viterbi algorithm [2]. (The

resulting algorithm is essentially Tanner’s Algorithm B [6]; Tanner did not, however,

observe the connection to Viterbi decoding.) Hagenauer’s low-complexity turbo decoder

[14] fits directly into this framework. A well-known decoding algorithm for generalized con-

catenated codes [15] is also related, as is threshold decoding [16]. Before going into the gen-

eral description, we encourage the reader to go through the example in Figure 3.3 on

pages 14–15, where the decoding of a (7,4,2) binary linear code using the min-sum algo-

rithm is performed in detail.

Min-sum or

Channel
γ s

x B∈

noise

µE s, µs E,
µs

codeword
local

cost functions
final

cost functions

Decision
x̂

estimate

sum-product
algorithm

intermediate
cost functions

Figure 3.1 Typical decoding application of the min-sum or sum-product algorithm.
The channel output takes the form of local cost functions (“channel metrics”)
which are used by the min-sum or sum-product algorithm to compute final cost func-
tions , upon which the final decisions are based. During the computation process,
the algorithms maintain a set of intermediate cost functions.

γ s

µs

γ E µE

s E,() s E∈
µE s, As R→: µs E, As R→:

µE s,

s
E

µs E,

µE s,

Figure 3.2 The intermediate cost functions and .µs E, As R→: µE s, As R→:

14 3 The Min-Sum and Sum-Product Algorithms

[2,4][1,5]

[4,1]

[2,4][1,5]

[min(1+2,5+4),min(1+4,5+2)]
= [3,5]

c)

The check-to-site cost function from the upper
check to the middle site. For each possible value
in the middle site, the check finds the smallest
possible cost contribution from the two topmost
sites. E.g., for a “0” in the middle sites, the pat-
terns “00” and “11” are examined.

[2,4][1,5]

[3,4] [2,6]

[3,4][4,1][5,2]

b)

The channel output after transmitting a random
codeword. The numbers in the sites are the local
costs (log-likelihoods) for assigning “0” or “1”
to that site. The decoding problem is to find a
codeword with the smallest global cost, defined
as the sum of the local costs in the sites.

10

0 0

111

a)

The Tanner graph and a codeword. The circles
(sites) correspond to the codeword components
and the small dots (checks) to the parity-check
equations, i.e., the three sites connected to any
check are required to have even parity.

[4,1]

[6,5]

[3,5]

[5,6]

[4+3+6+5,1+5+5+6]
= [18,17]

decode to “1”

d)

Final decision of the middle site. (The two lower
checks have computed their contributions to the
middle site in the same way as was done in c.)
The global cost of “0” and “1” in the middle
site is then just the sum of the local costs and
the three incoming cost contributions.

Figure 3.3 The min-sum algorithm applied to a binary linear (7,4,2) code, whose Tanner graph is
shown in a). The decoding problem is to find the codeword with the smallest global cost (or “metric”),
defined as the sum over the codeword components of the corresponding local costs, which are indi-
cated in b). The local costs are typically channel log-likelihoods (such as Hamming distance or
squared Euclidean distance to the received values).

3.1 The Min-Sum Algorithm 15

[2,4][1,5]

[3,4] [2,6]

[3,4][4,1][5,2]

[18,17][20,17] [18,17]

[17,20][17,18]

[17,19] [18,17]

h)

The rest of the Tanner graph is processed in the
same way, resulting in final costs as shown. The
resulting optimal codeword turns out to be the
one shown in a).

[1,5]

[16,14]

[1+16,5+14]
= [17,19]

decode to “0”

g)

The final cost function of the upper-left site is
the sum of its local costs and the cost contribu-
tions from its only check. The resulting costs are
the smallest possible global costs that result
from assigning a “0” or “1” to the upper-left
site.

[2,4][1,5]

[4,1]

[2,4]

[15,12]

[m
in

(1
5+

2,
12

+
4)

,m
in

(1
5+

4,
12

+
2)

]

=
 [1

6,
14

]

f)f)

The top-left site receives the smallest cost con-
tributions from the rest of the graph that results
from assigning “0” or“1”to that site.

[5,6][6,5]

[4,1]

[4+6+5,1+5+6]
= [15,12]

e)

The site-to-check costs from the middle site to
the upper check is the smallest possible cost in
the lower five sites that results from assigning
“0” or “1” to the middle site; it is computed by
adding the middle site’s local costs to the sum of
the contributions from the two lower checks.

Figure 3.3 (continued) Boxes c) –g) illustrate the computation of the intermediate and final cost func-
tions for a few of the sites. In h), the final cost functions of all sites are shown.

16 3 The Min-Sum and Sum-Product Algorithms

As discussed in the example (Figure 3.3), the goal of the min-sum algorithm is to find a

valid configuration such that the sum of the local costs (over all sites and check sets)

is as small as possible. When using the min-sum algorithm in a channel-decoding situation

with a memoryless channel and a received vector y, the local check costs are typi-

cally omitted (set to zero) and the local site costs are the usual channel log-likelihoods

 (for visible sites; for hidden sites they are set to zero). On the binary symmet-

ric channel, for example, the local site cost would be the Hamming distance between

 and the received symbol .

The algorithm consists of the following three steps:

• Initialization. The local cost functions and are initialized as appropriate

(using, e.g., channel information). The intermediate cost functions and

 are set to zero.

• Iteration. The intermediate cost functions and are alternatingly

updated a suitable number of times as follows (cf. also Figure 3.4). The site-

to-check cost is computed as the sum of the site’s local cost and all

contributions coming into s except the one from E:

. (3.1)

The check-to-site cost is obtained by examining all locally valid con-

figurations on E that match a on the site s, for each summing the check’s local

cost and all contributions coming into E except the one from s. The minimum

over these sums is taken as the cost :

. (3.2)

x B∈

γ E xE()

γ s xs()

p ys xs()log–

γ s xs()

xs ys

γ s γ E

µE s,
µs E,

µs E, µE s,

µs E, a()

Figure 3.4 The updating rules for the min-sum algorithm.

s
E

µs E,

E1

E2

µE1 s,

µE2 s,

µs E, a() γ s a() µE1 s, a() µE2 s, a()+ +:=

E
µE s,

µs1 E,

µs2 E,

s

s1

s2

µE s, a() γ E xE() µs1 E, xs1
() µs2 E, xs2

()+ +[]
xE BE∈
xs a=

min:=

µs E, a() γ s a() µE ′ s, a()
E ′ Q∈ :

s E ′∈ E ′ E≠,

∑+:=

µE s, a()

µE s, a()

µE s, a() γ E xE() µs ′ E, xs ′()
s ′ E∈ s ′ s≠:

∑+
xE BE∈ xs a=:

min:=

3.1 The Min-Sum Algorithm 17

• Termination. The final cost functions and are computed as follows.

The final site cost is computed as the sum of the site’s local cost and all

contributions coming into s, i.e.,

, (3.3)

and the final check cost for a local configuration is computed

as the sum of the check’s local cost and all contributions coming into E, i.e.,

. (3.4)

As we mentioned above, the goal of the min-sum algorithm is to find a configuration with

the smallest possible cost sum. To formulate this precisely, we define the global cost of a

valid configuration as

. (3.5)

In a typical channel-decoding situation where the local check costs are set to zero

and the local site costs are , the global cost becomes the log-

likelihood for the codeword x; then maximum-likelihood decoding corresponds

to finding a valid configuration that minimizes . As we will see, the min-sum

algorithm does this minimization when the check structure is cycle-free. In addition, it is

also possible to assign nonzero values to the check costs in order to include, e.g., an a

priori distribution over the codewords: if we define the local check costs such that

, then the global cost will be

, and minimizing will be equivalent to maximizing the a posteri-

ori codeword probability . (See the next section for more about a priori probabilities.)

The following theorem is the fundamental theoretical property of the min-sum algo-

rithm:

Theorem 3.1 If the check structure is finite and cycle-free, then the cost

functions converge after finitely many iterations, and the final cost functions

become

(3.6)

and

. (3.7)

µs µE

µs a()

µs a() γ s a() µE ′ s, a()
E ′ Q∈ s E ′∈:

∑+:=

µE a() a BE∈

µE a() γ E a() µs ′ E, as ′()
s ′ E∈
∑+:=

x B∈

G x() γ E xE()
E Q∈
∑ γ s xs()

s N∈
∑+≡∧

γ E xE()

γ s xs() p ys xs()log–≡∧ G x()

p y x()log–

x B∈ G x()

γ E xE()

p x() γ E

p x()log– γ E xE()
E Q∈∑= G x() p x()log– p y x()log–≡∧ =

p x y()log– p y()log– G x()

p x y()

µs a() G x()
x B∈ xs a=:

min=

µE a() G x()
x B∈ xE a=:

min=

18 3 The Min-Sum and Sum-Product Algorithms

(The proof is given in Appendix A.1.) For Tanner graphs that contain cycles, there is no gen-

eral result for the final cost functions, or for the decoding performance. This issue is dis-

cussed in the following chapters.

As we mentioned earlier, the min-sum algorithm only computes the final costs; no deci-

sion is made. Usually, we also want to find a configuration that minimizes the global cost.

Such a configuration is obtained by taking, for each site s, a value that minimizes

the final cost . It may then happen that for some sites several values minimize the final

cost; then it may be a nontrivial problem to find a valid configuration that minimizes at

all sites. For a cycle-free check structure, however, there is a straightforward procedure for

solving this problem: start in a leaf site s (one that belongs to a single check set) and choose

an optimal value for ; then extend the configuration successively to neighboring sites,

always choosing site values that are both valid and minimize the final cost.

In a practical implementation it is important to handle numerical issues properly. Typi-

cally, the cost functions and grow out of range quickly. To overcome this, an arbi-

trary normalization term may be added to the updating formulas without affecting the finally

chosen configuration. Since the algorithm only involves addition and minimization (i.e., no

multiplication), fixed precision arithmetic can be used without losing information (the only

place where precision is lost is in the initial quantization of the local costs).

3.2 The Sum-Product Algorithm

The sum-product algorithm is a straightforward generalization of the forward-backward

algorithm of Bahl et al [17] for the computation of per-symbol a posteriori probabilities in a

trellis. Two other special cases of the sum-product algorithm are the classic turbo decoder by

Berrou et al. [7] and Gallager’s decoding algorithms for low-density parity-check codes [5].

The general case was outlined by Tanner [6], who did not, however, consider a priori proba-

bilities.

In the sum-product algorithm, the local cost functions and have a multiplicative

interpretation: we define the global “cost” for any configuration as the product

. (3.8)

The term “cost” is somewhat misleading in the sum-product algorithm, since it will usually

be subject to maximization (rather than minimization as in the min-sum algorithm); we have

chosen this term to make the close relation between the two algorithms transparent. The

algorithm does not maximize G directly; it merely computes certain “projections” of G,

which in turn are natural candidates for maximization.

When discussing the sum-product algorithm, it is natural not to consider the behavior B

explicitly, but to instead require that the check costs are zero for local configurations

that are non-valid and positive otherwise. Hence, we require

 with equality if and only if . (3.9)

xs As∈
µs xs()

µs

xs

µE s, µs E,

γ s γ E

x W∈

G x() γ E xE()
E Q∈
∏ γ s xs()

s N∈
∏≡∧

γ E xE()

γ E xE() 0≥ xE BE∉

3.2 The Sum-Product Algorithm 19

If we also require the local site costs to be strictly positive for all , then it is easy to

see that the global cost (3.8) of a configuration x is strictly positive if x is valid, and zero oth-

erwise. In particular, a configuration that maximizes G is always valid (provided that B is

nonempty).

In the typical channel-decoding situation, with a memoryless channel and a received vec-

tor y, the local site costs are set to the channel likelihoods (for visible sites;

for hidden sites is set to one), and the local check costs are chosen according to the a pri-

ori distribution for the transmitted configuration x, which must be of the form

. This form includes Markov random fields [18], Markov chains, and,

in particular, the uniform distribution over any set of valid configurations. (The latter is

achieved by taking as the indicator function for , with an appropriate scaling factor.)

With this setup, we get , i.e., is proportional to the a pos-

teriori probability of x. We will see later that if the check structure is cycle-free, the algo-

rithm computes the a posteriori probability for individual site (symbol) values

, which can be used to decode for minimal symbol error probability.

The sum-product algorithm consists of the following three steps:

• Initialization. The local cost functions and are initialized as appropriate

(using, e.g., channel information and/or some known a priori distribution).

The intermediate cost functions and are set to one.

• Iteration. The intermediate cost functions and are updated a suit-

able number of times as follows (cf. also Figure 3.5). The site-to-check cost

 is computed as the product of the site’s local cost and all contributions

coming into s except the one from E:

. (3.10)

γ s xs() xs

γ s xs() p ys xs()

γ s

p x() γ E xE()
E Q∈∏=

γ E BE

G x() p x() p y x() p x y()∝= G x()

p xs y() =

G x′()
x ′ B∈ x ′s: xs=∑

γ s γ E

µE s, µs E,

µE s, µs E,

µs E, a()

Figure 3.5 The updating rules for the sum-product algorithm.

s
E

µs E,

E1

E2

µE1 s,

µE2 s,

E
µE s,

µs1 E,

µs2 E,

s

s1

s2

µs E, a() γ s a() µE1 s, a() µE2 s, a():= µE s, a() γ E xE() µs1 E, xs1
() µs2 E, xs2

()
xE WE∈
xs a=

∑:=

µs E, a() γ s a() µE ′ s, a()
E ′ Q∈ :

s E ′∈ E ′ E≠,

∏:=

20 3 The Min-Sum and Sum-Product Algorithms

The check-to-site cost is obtained by summing over all local configu-

rations on E that match a on the site s, each term being the product of the

check’s local cost and all contributions coming into E except the one from s:

. (3.11)

Note that the sum in (3.11) actually only runs over (the locally valid con-

figurations) since is assumed to be zero for .

• Termination. The final cost functions and are computed as follows.

The final site cost is computed as the product of the site’s local cost and

all contributions coming into s, i.e.,

, (3.12)

and the final check cost is computed as the product of the check’s local

cost and all contributions coming into E, i.e.,

. (3.13)

The fundamental theoretical result for the sum-product algorithm is the following:

Theorem 3.2 If the check structure is finite and cycle-free, then the cost

functions converge after finitely many iterations and the final cost functions

become

(3.14)

and

. (3.15)

(The proof is essentially identical with that of Theorem 3.1, which is given in

Appendix A.1.) An important special case of Theorem 3.2 is when the cost functions corre-

spond to probability distributions:

Corollary 3.3 If the global cost function is (proportional to) some

probability distribution over the configuration space, then the final cost func-

tions are (proportional to) the corresponding marginal distributions for the site

µE s, a()

µE s, a() γ E xE() µs ′ E, xs ′()
s ′ E∈ s ′ s≠:

∏
xE W E∈ xs a=:

∑:=

BE

γ E xE() xE BE∉

µs µE

µs a()

µs a() γ s a() µE ′ s, a()
E ′ Q∈ s E ′∈:

∏:=

µE a()

µE a() γ E a() µs ′ E, as ′()
s ′ E∈
∏:=

µs a() G x()
x B∈ xs a=:

∑=

µE a() G x()
x B∈ xE a=:

∑=

G x()

3.3 Updating Order and Computation Complexity 21

values and the local configurations. In particular, if is proportional to the

a posteriori probability , then the final cost is proportional to the

per-symbol a posteriori probability and the final cost is propor-

tional to the per-check a posteriori probability .

As with the min-sum algorithm, there is no guarantee for the decoding performance when

the Tanner graph contains cycles. (We will come back to this case in later chapters.)

In a decoding (estimation) application, an estimate for the site value is obtained by

choosing the value that maximizes the final cost . With a cycle-free check struc-

ture, this minimizes the probability of symbol error.

As with the min-sum algorithm, it is important to handle numerical issues properly. Typ-

ically, it is necessary to include a normalization factor in the updating formulas in order to

prevent the costs from going out of numerical range. This normalization factor does not

influence the final maximization.

3.3 Updating Order and Computation Complexity

So far, we have only described the formulas that are used to compute the cost functions, and

not in which order they should be computed. In the introduction to this chapter, we men-

tioned that it is convenient to view the algorithms as “parallel”, with one processing unit for

each site and each check. Then all check-to-site cost functions would be updated simulta-

neously, and similarly for the site-to-check cost functions. This updating order is used in

Gallager’s sum-product decoding algorithm for low-density parity-check codes.

With a cycle-free check structure, however, each intermediate cost function need only be

computed once, namely when all its incoming cost functions have been computed. Not sur-

prisingly, trellis-based algorithms (such as the forward-backward algorithm [17] and the

soft-output Viterbi algorithm [19]) use “sequential” updating orders, where the entire trellis

is processed first from left to right and then from right to left, thereby updating each cost

function exactly once. It is possible to find such efficient updating orders for any cycle-free

check structure in the following way. Select any site as the “root” site. Then start updating

the cost functions at the leaves, working towards the root site, but always finishing all the

subgraphs leading into a check or site before proceeding with its outgoing cost function. For

each site and check, only the cost function pointing towards the root is updated. After the

root site is reached (from all directions), the updating process proceeds “outwards” again.

With the min-sum algorithm and a cycle-free realization, the “outwards” updating phase

may be avoided and replaced by a simpler backtracking procedure, if we only want to find a

lowest-cost realization. This requires that we remember in the first phase what particular

local configurations were optimal for each check. This is exactly what is done in the tradi-

tional version of the Viterbi algorithm [2] (i.e., not the soft-output version), when the best

incoming branch is stored for each state in a section.

Even with a check structure that is not cycle-free, certain updating orders may be more

natural (or efficient) than others. In the classic turbo decoder [7] (cf. Figure 2.5), for exam-

ple, the two trellises are processed alternatingly in a forward-backward manner, and the con-

nected sites are updated between processing of the two trellises.

G x()

p x y() µs

p xs y() µE

p xE y()

xs

xs µs xs()

22 3 The Min-Sum and Sum-Product Algorithms

From the updating rules of the min-sum and sum-product algorithms, it is relatively clear

that the computation complexity is closely related to the size of the site alphabets and the

local behaviors, i.e., the realization complexity. For cycle-free realizations, we have to com-

pute either all cost functions once, or (with the min-sum algorithm) only the cost functions

that point towards some “root” site. For realizations with cycles, each cost function will gen-

erally be computed several times, so the number of operations depends on the number of

decoding iterations.

In Appendix A.2, a detailed analysis of the number of binary operations (such as addi-

tion or multiplication of two numbers, or finding the smallest of two numbers) is performed

for these two cases. The number of operations needed to compute each cost function once is

, (3.16)

where is the number of check sets that s belongs to, and V is the set of visible sites. The

number of operations needed to compute the cost functions pointing towards a root site is

, (3.17)

where H are the hidden sites, I are the interior sites (not leaves), and r is the root site.

Naturally, both the alphabet sizes and the size of the local behaviors influence

the computation complexity. However, many relatively large local behaviors can be handled

efficiently with “smart” updating rules, obtaining a lower complexity; a typical example is

the parity check. This is issue is discussed in Appendix A.2, where we point out that such

smart updating rules can often be viewed as working on a refined realization, where a check

is replaced by a few sites and checks, and applying the straightforward updating rules to this

realization. The resulting complexity is then given by (3.16) or (3.17), but applied to the

refined realization. However, some smart updating rules cannot be viewed conveniently in

this way, as we will see in the next section.

3.4 Optimized Binary Version of the Min-Sum Algorithm

We have mentioned that normalization is important to keep the costs within available numer-

ical range, and that such a normalization (additive in the min-sum case and multiplicative in

the sum-product case) does not influence more than an overall constant in the final costs. In

effect, this means that a “q-ary” cost function actually only has degrees of freedom.

This fact can be exploited to simplify the computations, by representing the cost functions

with only values. For binary site alphabets and parity checks, the savings obtained in

this way are significant, as shown already by Gallager [5] for the sum-product algorithm.

Here, we derive a similar simplification for the min-sum algorithm.

BE E 2 E–()
E Q∈
∑ As 2 s 5–()

s V∈
∑ As 2 s 6–()

s N V\∈
∑+ +

s

As s
s I∈
∑ As s 1–()

s H∈
∑ BE E 1–()

E Q∈
∑ Ar 1–+ + +

As BE

q 1–

q 1–

3.5 Non-Decoding Applications 23

Since we are now only interested in the difference between the “1” cost and the “0” cost,

we will use a simplified notation for cost functions. The local cost difference at

the site s will be denoted by , and the final cost difference will be denoted

by . The same simplification will be used for the intermediate cost functions. Then it is

easy to see that the updating rule (3.1) for the site-to-check costs may be expressed as

(3.18)

, (3.19)

and, similarly, the updating rule (3.3) for the final cost functions may be written as

. (3.20)

Finally, the updating rule for the check-to-site cost functions has the form

. (3.21)

The derivation behind (3.21) can be found in Appendix A.3.

3.5 Non-Decoding Applications

Although our main focus is on decoding, it is clear that the min-sum and sum-product algo-

rithms have more general applications (this is one reason why we used the term “cost func-

tion” instead of the more common “metric”). This is perhaps most obvious for the min-sum

algorithm (applied to cycle-free Tanner graphs), which is used a lot in optimization, where it

is referred to as “dynamic programming”, cf. e.g. [20].

A useful non-decoding application of the sum-product algorithm is to compute weight

distributions. Incidentally, we will use the sum-product algorithm for this purpose in

Chapter 5. The idea is to compute the weight enumerator function by performing the sum-

product algorithm symbolically.

Consider a system with binary-only visible sites and a cycle-free check structure. Let all

local costs equal 1 except for the visible sites where and . Then, from

(3.8), the global cost of a configuration x is . By applying the sum-product

algorithm and using Theorem 3.2, the final cost is (after a suitable number of updates)

the weight enumerator for the subset of B with . Finally, the weight enumerator for

the whole behavior B is obtained as .

γ s 1() γ s 0()–

γ s µs 1() µs 0()–

µs

µs E,

µs E, γ s 1() γ s 0()– µE ′ s, 1() µE ′ s, 0()–[]
E ′ Q∈ :

s E ′∈ E ′ E≠,

∑+=

γ s µE ′ s,
E ′ Q∈ :

s E ′∈ E ′ E≠,

∑+=

µs

µs γ s µE s,
E Q∈ :s E∈

∑+=

µE s, sign µs ′ E,() µs ′ E,
s ′ E∈ s ′ s≠:

min[]
s ′ E∈ s ′ s≠:

∏=

γ s 1() w= γ s 0() 1=

G x() wweight x()=

µs a()

xs a=

µs a()
a Ws∈∑

24 3 The Min-Sum and Sum-Product Algorithms

3.6 Further Unifications

The reader may have noted that (for both algorithms presented) the updating formulas for

the site-to-check cost functions, on the one hand, and the check-to-site cost functions, on the

other, are very similar (see, for example, Equation 3.1 vs. 3.2). In fact, sites could have been

treated as a special kind of checks, which would have formally unified the update formulas.

It seems, however, that the present notation is more natural and easier to understand.

It is also possible to unify (and possibly generalize) the min-sum and sum-product algo-

rithms formally, using an “universal algebra” approach with two binary operators ⊕ and ⊗.

For the sum-product algorithm the operator ⊕ is addition and the operator ⊗ is multiplica-

tion, while for the min-sum algorithm ⊕ is minimization (taking the smallest of two num-

bers) and ⊗ is addition. The theorems 3.1 and 3.2 have a counterpart in this universal setting

provided that the operators ⊕ and ⊗ are associative and commutative, and that the operator

⊗ is distributive over ⊕, i.e., = . The proof for such a general

theorem is readily obtained by substituting ⊕ for “min” and ⊗ for “+” in the proof of

Theorem 3.1, cf. Appendix A.1.

a b c⊕()⊗ a b⊗() a c⊗()⊕

25

Chapter 4

Analysis of Iterative Decoding

Iterative decoding is a generic term for decoding algorithms whose basic operation is to

modify some internal state in small steps until a valid codeword is reached. In our frame-

work, iterative decoding occurs when the min-sum or sum-product algorithm is applied to a

code realization with cycles in the Tanner graph. (There are other iterative decoding methods

too, cf. e.g. our previous work [13].) As opposed to the cycle-free case, there is no obvious

termination point: even when the cost contributions from each site have reached all other

sites, there is no guarantee that this information is used optimally in any sense. Typically, the

updating process is continued after this point, updating each intermediate cost function sev-

eral times before computing the final costs and making a decision.

Since the theorems of Chapter 3 do not apply when there are cycles in the Tanner graph,

it is somewhat surprising that, in fact, iterative decoding often works quite well. This is pri-

marily demonstrated by simulation results, the most well-known being the turbo codes of

Berrou et. al. [7]. A much older (and lesser known) indication of this is Gallager’s decoding

method for low-density parity-check codes [5].

A natural approach to analyzing iterative decoding is simply to disregard the influence of

the cycles. In fact, if the decoding process is terminated after only a few decoding iterations,

the algorithm will have operated on cycle-free subgraphs of the Tanner graph; consequently,

the theorems of Chapter 3 apply to these “subgraph codes”, a fact that can be used to esti-

mate the decoding performance. Put another way, the intermediate cost functions coming

into each site (or check) are statistically independent as long as the cycles have not “closed”.

One aspect of this approach is to consider the performance obtained after infinitely many

cycle-free decoding iterations. In particular, the error probability may in some cases tend to

zero when the number of decoding iterations increases. Of course, the number of cycle-free

decoding iterations for any fixed realization is limited by the length of the shortest cycles

(the girth) of the Tanner graph, so such an analysis is strictly applicable only to infinite real-

ization families having asymptotically unbounded girth. By considering such families, how-

ever, it is possible to construct coding systems with arbitrarily low probability of decoding

error for a given channel.

On the other hand, even if the number of decoding iterations is too large for a strict appli-

cation of this analysis, the initial influence of the cycles is probably relatively small (in fact,

Gallager states in [5] that “the dependencies have a relatively minor effect and tend to cancel

26 4 Analysis of Iterative Decoding

each other out somewhat”); in any case, it appears highly unlikely that the actual perfor-

mance would be significantly better than the estimate obtained from such a cycle-free analy-

sis.

Chapter 5 is devoted to performance analyses based on cycle-free subgraphs.

For any fixed code, the decoding performance is limited by the theoretical code perfor-

mance obtained with an optimal decoder. Ideally, an iterative decoding algorithm would

approach this performance when the number of iterations increases. Very little is actually

known about the asymptotic behavior of iterative decoding for fixed codes. Our results in

this area, along with a deeper discussion of the problem, are presented in Chapter 6.

The rest of this chapter contains some fundamental observations that are used in both

Chapter 5 and Chapter 6. In particular, we generalize the concept of trellis “detours”, (i.e.,

paths that diverge from the all-zero path exactly once) to the case of arbitrary realizations.

Most of the analysis applies only to the min-sum algorithm, since we have found its opera-

tion easier to characterize. For further simplification, we will also assume the following:

• The code is binary and linear, and all codewords are equally probable. In our

setting, this implies that the local check costs can be neglected, and that there

are site costs on binary sites only (we do allow nonbinary hidden sites, though,

including trellis state spaces).

• The channel is stationary, memoryless, and has binary input; the transition

probabilities are symmetric (i.e., and

).

These restrictions allow us to assume (without losing further generality) that the all-zero

codeword was transmitted. Furthermore, we will assume (also with full generality) that the

local site cost functions are normalized so that for all s, and use the shorthand

notation . Then the global cost may be written as

, (4.1)

where is the support of x, i.e., the number of nonzero visible sites in x. Under these

restrictions, we will be interested in the following problems:

• What combinations of local costs (error patterns) lead to a decoding error?

• For a given channel, what is the probability of decoding error?

By decoding error, we will usually consider symbol error for some site s, i.e., the event

. This may seem a little odd since we are analyzing the min-sum algorithm

rather than the sum-product algorithm. This has been the most fruitful approach, however. In

addition, while it is true for cycle-free systems that the min-sum algorithm minimizes the

block error probability and the sum-product algorithm minimizes the symbol error probabil-

ity, this need not be the case for systems with cycles.

p γ s 0() xs 0=() p γ s 1() xs 1=()=

p γ s 0() xs 1=() p γ s 1() xs 0=()=

γ s 0() 0=

γ s γ s 1()≡∧

G x() γ s xs()
s N∈
∑ γ s

s supp x()∈
∑= =

supp x()

γ s

µs 0() µs 1()≤

4.1 The Computation Tree 27

For simplicity, we will use Gallager’s low-density parity-check codes as the main exam-

ple. The discussion will be held on a fairly general level, though, and we will discuss the

applicability of our results to trellises and turbo codes, too.

4.1 The Computation Tree

Assume that either the min-sum or the sum-product algorithm is applied to a system

 with the check structure Q (cycle-free or not). The algorithm is run as described in

the previous chapter: the intermediate cost functions are initialized, the updating rules are

applied a suitable number of times (in some order), and the final cost functions are com-

puted.

Consider the final cost function for some site s. By examining the updatings that have

occurred, we may trace recursively back through time the computation of this cost function

and all the cost functions which it depends on. This traceback will form a tree graph consist-

ing of interconnected sites and checks, in the same way as the original Tanner graph. The

site s will be the root of the tree, and if we follow the tree towards the leaves, we will

encounter sites and checks with earlier versions of their cost functions; at the leaves, we will

encounter the initial cost functions (we will always assume that the leaves are sites (and not

checks), i.e., that the updating process starts by computing all site-to-check cost functions).

In general, the same sites and checks may occur at several places in the computation tree.

The depths in the tree at which the leaves occur depend on the updating order: in the case of

parallel updating, the leaves are all of the same depth; otherwise, the depths may be different

for different leaves. See Figure 4.1.

N W B, ,()

µs

Figure 4.1 The Tanner graph (left) of a small low-density code and the computation
tree (right) leading up to the computation of the final cost function . The sites and
check sets in the computation tree have, in this figure, been denoted with subscripts to
distinguish between multiple occurrences. The marked sites in the computation tree
correspond to the “ones” in a particular valid tree configuration. Note that this config-
uration does not correspond to a codeword since the site values differ in some cases for
tree sites that correspond to the same original site.

µ1

1
2

3
4

5

6

a

c

d

b 11

21

3141 51

61

42

52 32

444362 22

a1

b2

b1

c2

c1

d1

28 4 Analysis of Iterative Decoding

Computation trees provide a way to describe the operation of the algorithms by means of

a cycle-free graph instead of the original Tanner graph with cycles. More precisely, if the

min-sum or the sum-product algorithm were applied directly to the computation tree (with a

suitable updating order), then exactly the same operations would occur as when the algo-

rithms are applied to the original Tanner graph. The crucial observation is that the absence of

cycles in the computation tree makes it possible to apply the theorems of Section 3.1 and 3.2

to describe the result of the computation.

We will denote the sites and the check structure in the computation tree by N and Q,

respectively, treating possible multiple occurrences distinctly. It follows that there is a map-

ping such that for any tree site , is the corresponding site in the orig-

inal system. There is also a mapping such that for any tree check set ,

 is the corresponding check set in the original Tanner graph. Note

that a site (or check set) in the original Tanner graph may in general have multiple corre-

sponding tree sites (or check sets).

Associated with the computation tree is a tree system with the site alphabets

and local behaviors taken from the original system . More precisely,

for all , and the behavior B is defined by assuming that Q is a check structure and

that for all . The local site and check cost functions are also taken

directly from the original system, i.e., and . Finally, we define the glo-

bal tree cost function as

(4.2)

for the min-sum algorithm, and for the sum-product algorithm as

. (4.3)

With these definitions, we have the following corollary of Theorems 3.1 and 3.2.

Corollary 4.1 When the min-sum or sum-product algorithms are applied to

any system with a Tanner graph (cycle-free or not), and the corresponding tree

system is defined as above, the min-sum algorithm computes

, (4.4)

and the sum-product algorithm computes

. (4.5)

η N N→: t N∈ η t()

θ Q Q→: F Q∈
θ F() η t() t F∈:{ }≡∧

N W B, ,(
N W B, ,() W t Wη t()=

t N∈
BF Bθ F()= F Q∈

γ t γ η t()= γ F γ θ F()=

G W R→:

G u() γ F uF()
F Q∈
∑ γ t ut()

t N∈
∑+≡∧

G u() γ F uF()
F Q∈
∏ γ t ut()

t N∈
∏≡∧

µs a() G u()
u B∈ us a=:

min=

µs a() G u()
u B∈ us a=:

∑=

4.2 The Deviation Set 29

(Here and henceforth we use the convention that the particular site s refers

both to the root site in N and to the corresponding site in N.)

Proof. The tree system is clearly cycle-free; applying the min-sum or sum-

product algorithms to this system gives the final costs above (Theorems 3.1

and 3.2). But the operations performed in that case are exactly the same as

when the algorithms are applied to the original system, and hence the results

of the computation must be the same. ❑

To summarize this in words: the min-sum and sum-product algorithms always operate as if

on a cycle-free Tanner graph, providing optimal decision based on the tree system defined by

this graph. If the original Tanner graph is cycle-free, then this tree system will eventually

coincide with the original system. In other cases, the tree system may be quite different from

the original one, as was illustrated in Figure 4.1.

4.2 The Deviation Set

We now restrict the discussion to the min-sum algorithm. From Corollary 4.1, it is clear that

the site s will be decoded incorrectly (i.e., to a “one”) if and only if some valid tree configu-

ration with has a lower global cost than all valid tree configurations with

. Introducing the notations and ,

we thus have a necessary and sufficient condition for decoding error (at the site s) as

. (4.6)

The condition (4.6) is difficult to handle directly. A considerably simpler necessary condi-

tion is provided through the concept of deviations, which is a direct generalization of trellis

detours [21]:

Definition 4.1 Given a tree system rooted at s, a configuration

 is called a minimal valid deviation or, simply, a deviation if it does

not cover any other nonzero valid configurations, i.e., if there is no ,

, such that , where the support is defined over

the visible (binary) sites only. We also define the deviation set E of a tree sys-

tem as the set of all deviations.

Figure 4.2 illustrates two valid tree configurations in , one of which is a deviation. Using

the concept of deviations, the condition (4.6) may be simplified (weakened) into:

Theorem 4.2 A necessary condition for a decoding error to occur is that

 for some .

Before proving Theorem 4.2, we introduce another lemma, which states a useful property of

the deviation set.

u B∈ us 1=

us 0= B 0 u B∈ us 0=:{ }≡∧ B 1 u B∈ us 1=:{ }≡∧

G u()
u B 0∈
min G u()

u B 1∈
min≥

N W B, ,()
e B 1∈

u B∈
u 0≠ support u() support e()⊂

B 1

G e() 0≤ e E∈

30 4 Analysis of Iterative Decoding

Lemma 4.3 Let E be the deviation set for a tree system . Any

configuration may be decomposed as , where and

, and u and e have disjoint support. We will call this a deviation decom-

position (note, however, that a deviation decomposition need not be unique).

We also note that unless .

Proof of Lemma 4.3. Let . If v is a deviation, then we have ,

and we are done. On the other hand, if v is not a deviation, then, by

Definition 4.1, v covers some nonzero valid configuration x, and we can

decompose v as where v also covers y, and x and y have disjoint

support. Furthermore, since , exactly one of x and y is in , say

. By repeating this decomposition process recursively on x, we get v

as a sum of configurations with disjoint support, only one of which is in .

The process clearly stops when this configuration is also in E. ❑

Proof of Theorem 4.2. Assume that a decoding error occurred. Then, from

(4.6), we know that there is a such that for all .

Let be a deviation decomposition of . Then

, and thus . ❑

As an immediate result of Theorem 4.2, we have

Corollary 4.4 The probability of decoding the bit s incorrectly is upper

bounded by .

Since Theorem 4.2 provides a necessary condition for decoding error, it is natural to ask

whether it is also a sufficient condition. This is not the case: even if for some

, we may have a with .

1

1 0

1 011

0 1

01 0 0

1

1 0

1 000

0 1

01 0 0

Figure 4.2 Tree systems for a low-density parity-check code (actually, a cycle code).
To the left, a valid configuration in is shown; however, that configuration is not a
deviation, since it covers a valid configuration (with “ones” only in the marked
region). A deviation, shown to the right, is obtained by assigning zeros to those two
sites.

B 1

N W B, ,(
v B 1∈ v u e+= u B 0∈

e E∈

u 0≠ v E∈

v B 1∈ v 0 e+=

v x y+=

vs xs ys+= B 1

x B 1∈
B 1

v̂ B 1∈ G v̂() G u()≤ u B 0∈
v̂ e u+= v̂ G v̂() G e u+()= =

G e() G u()+ G e() G v̂() G u()– 0≤=

Pr G e() 0≤ for some e E∈{ }

G e() 0≤
e E∈ u B 0∈ G u() G e()<

4.2 The Deviation Set 31

Example 4.1 (trellises: detours vs. deviations) In a minimal trellis, a detour is defined as

a path segment that starts in the zero state and ends when it first reaches the zero state again

(if ever) [21]. If we consider the computation tree induced by the Viterbi algorithm (recall

that the Viterbi algorithm is a special case of the min-sum algorithm), then the detours are

just the nonzero parts of the configurations in the deviation set E. ✼

We will be interested in characterizing deviation sets for various code descriptions in order

to use Theorem 4.2 and Corollary 4.4 to characterize the error-correcting capability. It turns

out that all deviations can be constructed by starting with a nonzero value at the root site

(and zeros everywhere else), and extending the support along the branches of the computa-

tion tree, but no more than necessary to make the tree configuration valid. Whenever a zero

has been assigned to a site (binary or not), the entire subtree emanating from that site will be

zero. This process resembles that of constructing detours in a trellis, where we start with a

nonzero symbol and extend the path as long as we do not reach the zero state. However,

there is a difference between the general case and the special case of detours: in a detour, all

valid branches are allowed to follow a nonzero state; in the general case, we do not allow

local configurations that may be locally decomposed in a way similar to what is discussed in

Lemma 4.3. In other words, a deviation has the “deviation property” not only globally, but

also on each check set. See Figure 4.3. This property is formalized in the following lemma.

Lemma 4.5 Let be a deviation of the tree system rooted

at s. Let be a check set in which the site t is closest to s. Then there

does not exist a nonzero with such that

where , and and have disjoint support (in the binary sites).

Proof. Assume to the contrary that there is such a locally valid configuration

. Then, by definition of , corresponds to a globally valid configura-

tion u. In particular, by the definition of check structure, u may be taken as

equal to v on the subtrees that emanate from F through the nonzero sites of

1

0 0

0

0 0

1

1 1

0

0 0

0

0 0

0

0 0

00 1

1

Figure 4.3 Part of the computation tree for a (3,4) low-density parity-check code. The
configuration illustrated is valid. However, it is not a deviation, since it covers a valid
configuration with zeros everywhere except, e.g., in the two marked sites. Loosely
speaking, there are “too many” ones in that local configuration.

v E∈ N W B, ,()
F Q∈

uF BF∈ ut 0= vF uF eF+=

eF BF∈ eF uF

uF BF uF

32 4 Analysis of Iterative Decoding

, and zero everywhere else. But then and , con-

tradicting the fact that v is a deviation. ❑

To recapitulate, Lemma 4.5 states that for a given deviation e, all local configurations ,

, look like deviations too. In fact, the converse is also true, i.e., a configuration which

looks locally like a deviation on all check sets is in fact a deviation, as formalized in the

lemma:

Lemma 4.6 Let be a tree system rooted at , and let E be

the corresponding deviation set. Let Q be the check structure for .

Then Q is also a check structure for the system .

Proof. By definition of a check structure (Definition 2.2 on page 29), we have

to show that . Thus, we assume and

proceed to show that there is some for which . Now, if

 then for some F, since Q is obviously a check structure for

, and we are done. So we assume and write where

 and have disjoint support. Then there is a check set F with the

site closest to the root site s that has , but for which , and

we have . But, according to Lemma 4.5, there is no deviation

for which this is true, and thus . ❑

The importance of Lemma 4.6 is twofold. Firstly, it tells us that we may construct all devia-

tions (and only deviations) by starting with a nonzero value at the root site and extending the

configuration with local configurations that are local deviations. Secondly, the lemma allows

us to use the sum-product algorithm to compute the weight enumerator for the devia-

tion set E, as discussed in Section 3.5 of Chapter 3; the latter will be useful to provide a

union bound for the error probability.

Example 4.2 (deviations for low-density parity-check codes) For parity checks, the

nonzero local configurations of the deviations, i.e. the “local deviations” of the checks, are

easy to determine (cf. Figure 4.3): apart from the “one” in the innermost site of the check,

there is a “one” in exactly one of the other sites. Let e be a deviation in the computation tree

rooted at s of a (j, k) low-density parity-check code. The “one” at s gives rise to exactly one

additional “one” in each of the j parity check sets that s belongs to, and each of these new

“ones” gives rise to new “ones”, and so on. Each such required “one” may be placed in

any of the available sites of the check set. Thus, the support of e forms a regular sub-

tree of the computation tree, extending out to the leaves. The root site has j children in this

subtree and the other sites have children each. For a computation tree of depth m, i.e.,

after m complete updates, the number of “ones” in the deviation is

, and since each of these “ones” (except the one at the root)

may be placed in any of places, the number of different deviations is

. For cycle codes, the deviations are particularly simple: since each site is

uF u B 0∈ supp u() supp v()⊆

eF

F Q∈

N W B, , s N∈
N W B, ,

N W E, ,()

vF EF∈ for all F Q∈ v E∈⇒ v E∉
F Q∈ vF EF∉

v B 1∉ vF BF
1∉

B 1 v B 1∈ v u e+=

u B 0∈ e E∈
t F∈ ut 0= uF 0≠

vF uF eF+=

vF EF∉

T w()

j 1–

k 1–

j 1–

weight e() 1 j j 1–()i
i 1=

m∑+=

k 1–

k 1–() jΣi 1=
m

j 1–()i

4.2 The Deviation Set 33

contained in only two check sets, each “one” in the deviation only gives rise to one addi-

tional “one”, and the support takes the form of a straight walk starting in a leaf site, going

through the root site, and ending in another leaf site. ✼

It is a noteworthy property of low-density parity-check codes that the weight of their devia-

tions increases without bounds when the computation tree grows. This makes it interesting

to consider the asymptotic decoding performance of such codes when the number of itera-

tions increases. Not all systems have the property that the weight of their deviations

increases when the computation tree grows. In particular, trellises contain detours of fixed

weight (see Example 4.1), and thus the asymptotic performance of trellis codes (with a fixed

trellis structure) is not as interesting.

We conclude this section with a discussion of the computation tree of the turbo codes.

4.2.1 Computation Tree of Turbo Codes

The Tanner graph for the turbo codes of Berrou et al. [7] is illustrated in Figure 2.5

of Chapter 2 (page 11). We consider the computation tree for turbo codes, rooted at an infor-

mation site (i.e., a connected visible site). If the min-sum (or sum-product) algorithm was

applied in a parallel manner, alternatingly updating all check-to-site cost functions and all

site-to-check cost functions, we would get a computation tree of the form illustrated in

Figure 4.4, with all leaves occurring at the same depth. The decoder proposed in [7], how-

ever, does not use such an updating scheme, but instead processes the two trellises alternat-

ingly, in a forward-backward fashion, and updates in between the cost functions in the

connections between the two trellises. This results in a computation tree of the form illus-

trated in Figure 4.5, where the number of “trellis levels” is determined by the number of

decoding iterations, but each trellis occurs in its entirety.

We now consider the corresponding deviation set. Assigning a “one” to the root site of

the tree system means that an information bit is “one” in both of the trellises, which results

in a detour in each of the trellises. Since the convolutional encoders are recursive (cf. [7] and

Section 2.2), a detour with a single “one” among the information bits extends indefinitely (or

to the end of the trellis) in either one or both directions of the trellis, and thus have infinite

weight. An additional “one” among the information bits (connected sites) of the detour may

result in the next trellis state being zero, thus ending that detour; but the detour may also

continue, depending on where the additional “one” is placed. In either case, this “one”

results in a new detour in the trellis at the next level of the computation tree. Thus, the sup-

port of a deviation always extends out to the leaves of the computation tree, making it inter-

esting to consider asymptotic decoding performance. (Note that this is a consequence of the

recursive convolutional encoders; feed-forward encoders would result in deviations of finite

weight.)

Figure 4.6 illustrates the support of a few possible deviations. Some of the deviations

have support that resembles those of a cycle code, i.e., walks on the computation tree; these

deviations generally have the lowest weight among all deviations.

34 4 Analysis of Iterative Decoding

Figure 4.4 Computation tree for the turbo codes of Berrou et al. after a few parallel
updates of all cost functions.

4.2 The Deviation Set 35

Figure 4.5 Computation tree for the turbo codes after completely updating the two
trellises one time each. The dashed lines indicate that the computation tree extends
outside of the figure (to the end of the trellises).

36 4 Analysis of Iterative Decoding

Figure 4.6 Schematic illustration of (the support of) a few deviations in the turbo-
code computation tree. Top left: only one information bit (the root site) is “one”; one
of the two resulting detours extends in both directions, and the other extends in only
one direction. Top right: only one information bit is “one”, but the resulting detours
extend in one direction only. Bottom left: additional “ones” in the information bits give
rise to more detours; in some cases the detours are “cancelled” by such “ones”, i.e.
the zero state is reached. Bottom right: all “ones” in the information bits are placed
such that their detour reaches the zero state.

37

Chapter 5

Decoding Performance on Cycle-Free

Subgraphs

Since cycle-free Tanner graphs provide optimal decoding, it is natural to try to minimize the

influence of the cycles even in those cases where there are cycles in the graphs. This is the

approach taken both for low-density parity-check codes in [5] and for turbo codes in [7]. By

making the cycles long enough, the algorithms may run several iterations without being

affected by them, in practice working only on cycle-free subgraphs of the Tanner graph.

Based on this observation, Gallager [5] obtained a performance estimate for sum-product

decoding of low-density parity-check codes. We will discuss other estimates that apply

before the cycles are closed. In particular, the standard tools for analyzing Viterbi decoding

(union bound over the trellis detours) can be applied to the min-sum algorithm for any real-

ization. This is performed both for the general case and for the special cases of low-density

parity-check codes and turbo codes.

Two kinds of performance estimates are interesting. Given a specific realization with

known girth , it may be interesting to estimate the probability of decoding error after

k iterations of the min-sum (or sum-product) algorithm. We will be more interested in the

asymptotic error probability when the number of decoding iterations tends to infinity, requir-

ing realization families with asymptotically unbounded girth (and, consequently, asymptoti-

cally unbounded block length). More specifically, we will investigate under what

circumstances (i.e., for what channels) the error probability tends to zero when the girth

tends to infinity.

5.1 Estimating the Error Probability with the Union Bound

From Corollary 4.4 we have

. (5.1)

2k 1+

Pr decoding error{ } Pr G e() 0≤ for some e E∈{ } Pr G e() 0≤{ }
e E∈
∑≤ ≤

38 5 Decoding Performance on Cycle-Free Subgraphs

Here we can apply the standard techniques found in textbooks on communications, for

example [21]. Since the channel is stationary and memoryless, we can write

, where w is the weight of e and is the probability that a par-

ticular codeword of weight w is more likely than the zero codeword given the received

sequence. If is the number of configurations in E with weight w, we may thus write

. For some channels, the bound may be even further

simplified (weakened) using a bound of the form . In particular, for the binary

symmetric channel with crossover probability ε, we have , while for the

additive white gaussian noise channel with signal-to-noise ratio , we have

 (see [21]). For such channels, we obtain the elegant formula

, (5.2)

where is the weight enumerator for the deviation set.

Example 5.1 (low-density parity-check codes) The weight distribution of the deviation set

for a (j, k) low-density parity-check code was determined in Example 4.2. If the decoding is

terminated after m steps without closing any cycle, then the bit error probability is upper

bounded by

(5.3)

. (5.4)

Figure 5.1 illustrates this bound for a few values of in the case of a Gaussian channel.

Both from (5.4) and the figure it is clear that the bound tends to zero when m increases if and

only if , and the speed at which this happens depends heavily on j (faster for

larger j). Considering that the rate of a low-density parity-check code is (see

[5]), it is rather surprising that the range of asymptotically “tolerable” channels is indepen-

dent of j.

A different bound was obtained by Gallager [5] for the case of a binary symmetric chan-

nel and (i.e., not cycle codes) and the sum-product algorithm. A comparison between

the union bound (for the min-sum algorithm) and Gallager’s bound (for the sum-product

algorithm) is illustrated in Figure 5.2. The union bound gives only trivial bounds for chan-

nels with a high noise level but has a fast convergence for better channels; Gallager’s bound

has a much smoother behavior. Even though the bounds apply to two different decoding

algorithms, it appears that the union bound is weak for channels with high noise levels. ✼

A general approach to computing the weight enumerator and the union bound of the error

probability is provided by Lemma 4.6 and the sum-product algorithm. With the aid of a

computer program for symbolic expression manipulation, it is possible to use the sum-prod-

uct algorithm applied to the deviation set E to compute the weight enumerator symbolically,

Pr G e() 0≤{ } p0 w()= p0 w()

Aw

Pr G e() 0≤{ }
e E∈∑ Aw p0 w()

w 0=

∞∑=

p0 w() βw≤
β 2 ε 1 ε–()=

P σ2⁄
β e P 2σ2⁄–=

Pr decoding error{ } T w() w β=≤

T w() Aiw
i

i 0=

∞∑≡∧

Pr decoding error{ } k 1–() jΣr 1=
m

j 1–()r 1– β1 jΣr 1=
m

j 1–()r 1–+≤

βe k 1–()ln βln+() jΣr 1=
m

j 1–()r 1–

=

j k,()

β 1 k 1–()⁄<
R 1 j k⁄–≥

j 3≥

5.1 Estimating the Error Probability with the Union Bound 39

in general resulting in a huge polynomial , which can be used to compute upper bounds

for the error probability for different channels. If the goal is to compute numerically

for a particular value (i.e., for a particular channel), then it may be more efficient to

substitute β for w directly in each site, and perform the sum-product algorithm numerically.

We are, however, more interested in the asymptotic behavior of when the number of

iterations increases.

0 5 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

j=2, k=3 (R=1/3)

0 5 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

j=2, k=4 (R=1/2)

0 5 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

j=4, k=6 (R=1/3)

0 5 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

j=3, k=6 (R=1/2)

Figure 5.1 Union bound estimate for a few low-density parity-check codes and the
min-sum algorithm. The diagrams, which are obtained from Equation 5.4, show the
union upper bound of the bit error probability versus the signal-to-noise ratio (in dB)
of a Gaussian channel, for 0 to 10 cycle-free decoding iterations. (In the bottom two
diagrams, the curves cannot be distinguished for more than the first few iterations.)

10
−3

10
−2

10
−1

10
0

10
−20

10
−10

10
0

j=3, k=4 (R=1/4)

10
−3

10
−2

10
−1

10
0

10
−20

10
−10

10
0

j=3, k=6 (R=1/2)

Figure 5.2 Comparison between union bound estimate (solid) and Gallager’s esti-
mate (dotted), for 0, 2, 4, 6, 8, and 10 decoding iterations on a binary symmetric chan-
nel. The diagrams show the probability of decoding error versus the crossover
probability of the channel.

T w()

T w()

w β=

T w()

40 5 Decoding Performance on Cycle-Free Subgraphs

5.2 Asymptotic Union Bound

For many graph-based code constructions, it is possible to construct infinite code families

with asymptotically infinite girth in the Tanner graph. For such families, it is interesting to

consider the asymptotic error probability when the number of decoding iterations increases;

in particular, this error probability may tend to zero if the channel is not too noisy. By apply-

ing the techniques discussed above, we can compute the weight enumerator corre-

sponding to i iterations, and evaluate for what values (if any) of the channel parameter β the

union bound tends to zero as the number of iterations tend to infinity (as we did in

Example 5.1).

For complicated realizations it may be difficult to obtain a closed-form expression for

. This is not necessary, however. Instead, we can determine directly from the struc-

ture of the realization for what values of β we have as . The idea is to

analyze how changes when one more decoding iteration is performed, i.e., when the

computation tree grows.

For (j, k) low-density parity-check codes with parallel updates, increasing the number of

decoding iterations by one corresponds to increasing the depth of the computation tree by

one, i.e., to append parity checks to each leaf site and sites to each new such par-

ity check. For turbo codes, we will consider one “decoding iteration” to be a complete

updating of an entire trellis, so that increasing the number of decoding iterations by one cor-

responds to appending a whole trellis to the “information” sites that are leaves in the current

computation tree. (There are some problems with this view, which we will return to in

Example 5.3.)

Consider an infinite sequence of larger and larger computation trees,

where is the computation tree obtained after i iterations with the min-sum algorithm (

is the computation tree after zero iterations, containing only the root site). For any such com-

putation tree , we define its extendable leaf sites as those leaf sites that occur as interior

sites of some larger computation tree. We require, for simplicity, that all extendable leaf sites

are binary, and that they are extended in exactly the same way (i.e., the subtrees emanating

from all extendable leaf sites have the same set of valid tree configurations). This is true for

low-density parity-check codes; it is also true for unpunctured turbo codes (but not for punc-

tured turbo codes, whose extendable leaf sites differ depending on whether they extend

through a punctured trellis section or not).

Let be the deviation set of , and define the extendable weight enumerator

 for as

, (5.5)

where is the number of deviations in with weight q among the extendable leaf sites,

and weight p among all visible sites. In other words, the variable u corresponds to “ones” in

the extendable leaf sites. Note that a site can be both visible and an extendable leaf site at the

T
i()

w()

T
i() β()

T
i()

w()

T
i() β() 0→ i ∞→

T w()

j 1– k 1–

T 0 T 1 T 2 …, , ,
T i T 0

T i

E i T i

U
i()

w u,() E i

U
i()

w u,() U p q,
i()

wpuq

p q,
∑≡∧

U p q,
i()

E i

5.2 Asymptotic Union Bound 41

same time; a “one” in such a site corresponds to a factor in a term of . The

ordinary weight enumerator for the deviation set is obtained by simply discard-

ing u, i.e., as

. (5.6)

Next, let t be an extendable leaf site in , and let F be a check set in that is not also

in but that is adjacent to t (in other words, t is the innermost site of F). The subtree of

 emanating from F will be called the extension tree of t through F. Let d be the number

of such extension trees of the extendable leaf site t. (For example, for (j, k) low-

density parity-check codes, except for the root site, for which). Let be the sites of

the extension tree from t through F. Let be the extendable weight enumerator (for

the deviation set) on the extension tree, defined as

, (5.7)

wu U
i()

w u,()

T
i()

w() E i

T
i()

w() U
i()

w 1,()=

T i T i 1+

T i

T i 1+

d j 1–=

d j= SF

V w u,()

s

t

F

s

t

Figure 5.3 The process of “extending” an extendable leaf site. Left: the computation
tree corresponding to one decoding iteration on a (3, 4) low-density parity-check code:
s is the root site and t is an extendable leaf site; the extendable weight enumerator is
shown below the tree. Right: the computation tree after one further decoding iteration
(only a part is shown). S are the sites of the extension tree of the site t through the check
set F. As shown below the tree, the new extendable weight enumerator is obtained from
the old by substituting, for u, the squared extendable weight enumerator for the exten-
sion tree (the reason for the squaring is that each extendable leaf site is extended with
two extension trees).

U
1()

w u,() 33w4u3=

V w u,() 3wu=

U
2()

w u,() U
1()

w V 2 w u,(),()=

39w10u6=

SF

V w u,() V p q, wpuq

p q,
∑≡∧

42 5 Decoding Performance on Cycle-Free Subgraphs

where is the number of local deviations with weight q among all

extendable leaf sites in and weight p among all visible sites in (note that). The

point is that can be obtained from by simply substituting, for u,

 (raised to d). In other words, we have

. (5.8)

(This follows from the properties of deviations: the presence of a factor u in a term of

 indicates that an extendable leaf site is “one” in a corresponding deviation e. But

such a “one” forces a nonzero configuration (a deviation) in the subtrees of that leaf site.)

Using (5.8), the extendable weight enumerator can be computed for any i,

and therefore also the ordinary weight enumerator . To determine ,

we note that is a polynomial in w and u with nonnegative coefficients. This

implies that is a monotone function in u, so that

 if and only if . (5.9)

Using (5.6) and (5.8), we can write the weight enumerator function as

, (5.10)

and we obtain, from (5.9),

 if and only if . (5.11)

From (5.11) it follows that a necessary condition for to approach zero when ,

is that . This is not a sufficient condition, however, since may be

bounded from below by some positive constant. (In fact, this is exactly what happens when

there are deviations of fixed, finite weight regardless of the number of iterations, which is the

case for detours in a trellis.) A precise condition for convergence to zero is given by the fol-

lowing theorem.

Theorem 5.1 The upper bound for the error probability tends to zero

as the number i of iterations tends to infinity if and con-

tains a factor u.

Proof. Assume that the required conditions are met. Since

it follows by induction that for all i, contains a factor u, so we can

write for some polynomial with nonne-

gative coefficients. From (5.6) and (5.8) we obtain

. (5.12)

V p q, eS E i 1+()SF
∈

SF SF t SF∉
U

i 1+()
w u,() U

i()
w u,()

V d w u,() V w u,()

U
i 1+()

w u,() U
i()

w V d w u,(),()=

U
i()

w u,()

U
i()

w u,()

T
i()

w() limi ∞→ T
i() β()

U
i()

w u,()

U
i()

w u,()

U
i() β u,() U

i() β 1,()< u 1<

T
i 1+()

w()

T
i 1+()

w() U
i 1+()

w 1,() U
i()

w V d w 1,(),()= =

T
i 1+() β() T

i() β()< V d β 1,() 1<

T
i() β() i ∞→

V β 1,() 1< T
i() β()

T
i() β()

V β 1,() 1< V w u,()

U
0()

w u,() wu=

U
i()

w u,()

U
i()

w u,() uŨ
i()

w u,()= Ũ
i()

w u,()

T
i 1+() β() U

i 1+() β 1,() U
i() β V d β 1,(),() V d β 1,()Ũ

i() β V d β 1,(),()= = =

5.2 Asymptotic Union Bound 43

Since is a polynomial with nonnegative coefficients and since

, we get from (5.11)

, (5.13)

which can be inserted into (5.12) to obtain the upper bound

(5.14)

(5.15)

, (5.16)

and thus we have obtained

(5.17)

for . Thus, . ❑

Note that the range of β for which is independent of d, but a larger d gives a

faster convergence.

Example 5.2 (low-density parity-check codes) For a (j, k) low-density parity-check code,

we have (from Example 4.2) and (except for , when

). Since contains a factor u, it follows from Theorem 5.1 that the error probability

tends to zero if , i.e., if . This is the same result as obtained in

Example 5.1. ✼

A specific requirement for this approach was that all extendable leaf sites should extend in

the same way. This rules out the classic turbo codes which extend differently through punc-

tured and unpunctured sections. It is possible to handle a more general situation by using an

extendable weight enumerator with several variables , one for each type of extend-

able leaf site. It is also possible to handle nonbinary extendable leaf sites, such as trellis state

spaces, by assigning a unique variable for each nonzero value of the leaf sites. In the follow-

ing example, we avoid this complexity by considering an unpunctured turbo code.

Example 5.3 (union bound for turbo decoding) We consider a simple unpunctured turbo

code based on the four-state component trellis illustrated in Figure 5.4 (since it is unpunc-

tured, it has the rate), with the usual forward-backward updating scheme, alter-

nating between the two trellises, which we assume to have infinite length. This corresponds

Ũ
i()

w u,()

V β 1,() 1<

Ũ
i() β V d β 1,(),() Ũ

i() β 1,()≤

T
i 1+() β() V d β 1,()Ũ

i() β 1,()≤

V d β 1,()U
i() β V d β 1,(),()=

V d β 1,()T
i() β()=

T
i 1+() β() αT

i() β()≤

α V d β 1,() 1<= limi ∞→ T
i() β() 0=

T
i() β() 0→

V w u,() k 1–()wu= d j 1–= i 0=

d j= V

V β 1,() 1< k 1–()β 1<

u1 u2 …, ,

R 1 3⁄=

44 5 Decoding Performance on Cycle-Free Subgraphs

to a computation tree similar to the one in Figure 4.5, but with redundancy sites in all sec-

tions. At the same time, we will assume that there are no multiple sites in the computation

tree, i.e. no cycles have closed during the computation.

These assumptions make the analysis convenient, since there is only one type of extend-

able leaf sites in each computation tree, namely the visible connected sites (the information

bits of the trellis), and since these leaf sites are binary. Extending such a site amounts to

appending a complete trellis to the computation tree, as discussed in Section 4.2.1. The

drawback of these assumptions is that they exclude a finite realization (or block length) even

for a single decoding iteration, since each trellis has infinite length in itself. Thus, the result

to be presented in this example does not strictly correspond to any family of finite realiza-

tions with asymptotically infinite girth. (The small state space of the trellis code suggests,

however, that the “effective length” of the trellis is relatively short, so that the influence of

cycles in a single trellis should be small. Strict results could be obtained by having as

extendable leaf sites both visible connected sites and trellis state sites, thus extending the

computation tree in two ways simultaneously.)

Adopting these assumptions, we get the extendable weight enumerator for the extension

tree (5.7) as a version of the usual path weight enumerator for trellis codes; the difference is

that we have to treat the information bits (the extendable leaf sites) specially. More precisely,

 where is the number of detours with overall weight p and

weight q in the connected “information” positions (not counting the root site of the detours).

This function can be obtained using the conventional flowchart technique (cf, e.g. [21]),

obtaining (for the trellis section of Figure 4.5)

. (5.18)

Since has a factor u, we can use Theorem 5.1 to determine a range on β for which

the error probability tends to zero with an increasing number of cycle-free iterations. On a

Gaussian channel, this results in the range , which should be compared to the

Shannon limit at (for the rate), i.e., the bound is above the channel

capacity curve. Apparently this is a very weak result, since simulations on the same code

indicate that the error probability decreases already at about , cf. Figure 5.5. ✼

00

10

01

11

00

11

10

01

Figure 5.4 One section of the component trellis for a simple turbo code. The leftmost
bit is shared between the two trellises.

V w u,() V p q, wpuq
p q,∑≡∧ Vp q,

V w u,()
2w5u 2w7u– 3w4u2 5w6u2– 8w5u3– 4w7u3 7w6u4 2w7u5–+ + +

1 2w2– w4 4wu– 4w3u 6w2u2 2w4u2– 4w3u3– w4u4+ + + +
--=

V w u,()

SNR 2.4 dB>
2.3dB– /1

3 4.7dB

1– dB

5.3 Computing Statistical Moments of Final Costs 45

From these two examples (low-density and turbo codes), it appears that estimates based on

the union bound are rather weak. This is not surprising, since many deviations are highly

overlapping (for example, there are deviations which differ only in a few leaf sites), a fact

which is discarded in the union bound argument.

We now consider a different approach which is not based on the union bound.

5.3 Computing Statistical Moments of Final Costs

An alternative approach for estimating the performance of iterative decoding on cycle-free

Tanner graphs is to consider the statistical properties of the cost functions. We will describe

two such methods. The first has the “potential” of being applicable to any code description

and of giving strict upper bounds to the error probability; unfortunately, it seems that the

bounds obtained are only trivial, i.e., larger than 1. The second method, which is based on

insights obtained from the first, is unfortunately only approximate. However, it seems to give

fairly accurate predictions of the error probability for some systems.

The first method applies only to the sum-product algorithm (rather than the min-sum

algorithm, to which all other discussion in this chapter applies). The method is based on the

observation that it is easy to compute statistical moments of the final costs computed by the

sum-product algorithm, provided that the corresponding moments of the local costs are

known. If we know the first and second moments of the final costs and , then it

is also easy to compute the mean and variance of their difference , and

we can apply well-known bounds to compute the error probability .

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Signal−to−Noise Ratio [dB]

B
it
 E

rr
o
r

R
a
te

Figure 5.5 Simulation results showing bit error rate on a Gaussian channel for the
rate 1/3 , 4-state turbo code discussed in the text.

µs 0() µs 1()

D µs 0() µs 1()–=

Pr D 0<{ }

46 5 Decoding Performance on Cycle-Free Subgraphs

Recall from Section 3.2 that the final costs computed by the sum-product algorithm for

cycle-free Tanner graphs are of the form , where the global cost is

defined as (we assume, for simplicity, that there are no local check

cost functions). On a memoryless channel, the local costs are statistically independent

for different sites s, and thus the statistical moments of can be computed as

. (5.19)

The first moment of the final costs, i.e., their mean, is particularly simple to compute. Since

the final cost is just the sum of the global costs for all x with , we have

, (5.20)

which means that the mean of the final costs from the sum-product algorithm can be com-

puted recursively with the sum-product algorithm, using as local costs the mean of the actual

local costs. In fact, even the second (and other) moments of the final costs can be computed

with the sum-product algorithm; however, the computation in those cases has to be carried

out on a larger system , where the alphabets are products of the original alpha-

bets, i.e., , and the local behaviors are products of the original local behav-

iors (in fact, this is true only for the second moments; for higher moments even larger

systems are required). We will not go into the details of this computation since the results are

not encouraging anyway. Instead, we will look at the results for a particular example.

Consider a cycle code with three bits in each parity check. Let the all-zero codeword be

transmitted on a Gaussian channel with noise variance using antipodal signaling at the

signal levels . The sum-product algorithm is applied with the local costs defined as

 and , where is the noise compo-

nent at site s. The mean of the local costs may then be computed as ,

, and the second moments as ,

, and . Using the

method outline above, we have computed the mean and standard deviation of the “discrimi-

nator” for , i.e., for signal-to-noise ratio , and the result

is displayed in Table 5.6 for 1 to 5 decoding iterations. Clearly, the ratio between the stan-

dard deviation and the mean grows quickly when the number of decoding iterations

increases, and consequently, it is impossible to obtain a nontrivial estimate of the error prob-

ability without making assumptions on the probability distribution of D.

Table 5.6 also displays the actual (simulated) error probability for the sum-product algo-

rithm in this case, and it is obvious that the approach based on first and second moments of

the final costs is useless. The reason for this can be found in Figure 5.7, which illustrates the

empirical distribution of the discriminator D after one iteration with the sum-product algo-

rithm, obtained from simulation of 10000 decoding attempts. The distribution is heavily

asymmetric; the mean is mainly determined by a large peak just to the right of the decision

µs a() G x()
x B∈ xs a=:∑=

G x() γ s xs()
s N∈∏=

γ s xs()

G x()

E G x()()k[] E γ s xs()()k[]
s N∈
∏=

µs a() xs a=

E µs a()[] E G x()[]
x B∈ xs a=:

∑ E γ s xs()[]
s N∈
∏

x B∈ xs a=:
∑= =

N W′ B′, ,()
W′s W s W s×=

σ2

1±
γ s 0() exp zs

2 2σ2⁄–()= γ s 1() exp zs 2–()2 2σ2⁄–()= zs

E γ s 0()[] 1 2⁄=

E γ s 1()[] exp 1 σ2⁄–() 2⁄= E γ s 0()()2[] 1 3⁄=

E γ s 0()γ s 1()[] exp 4 3σ2⁄–() 3⁄= E γ s 1()()2[] exp 4 3σ2⁄–() 3⁄=

D µs 0() µs 1()–≡∧ σ2 1 2⁄= 3dB

Pr D 0≤{ }

5.3 Computing Statistical Moments of Final Costs 47

boundary at , while the relatively few samples with large positive value are the rea-

son for the large variance. The few negative samples, which correspond to the error events,

influence the moments very little. (After further decoding iterations, this situation is even

more exaggerated.)

To better understand the situation, we have plotted the empirical distribution of the final

costs and in Figure 5.8. After a few decoding iterations, the final costs appear

approximately Gaussian on a logarithmic scale, i.e., the log-costs and

Table 5.6 Mean and variance of sum-product “discriminator” .

Number of Decoding

Iterations

Mean Standard

Deviation

Simulated Error

Probability

1 0.18 0.18 0.021

2 0.012 0.026 0.0069

3 0.0024

4 0.0010

5 0.00046

µs 0() µs 1()–

5.0
5–×10 3.6

4–×10

8.9
10–×10 6.0

8–×10

2.8
19–×10 1.6

15–×10

D 0=

Figure 5.7 Histogram of “discriminator” after one iteration with the
sum-product algorithm on a cycle code.

µs 0() µs 1()–

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

900

1000

µs 0() µs 1()–

N
u
m

b
er

 o
f

O
cc

u
rr

en
ce

s

µs 0() µs 1()

µs 0()log µs 1()log

48 5 Decoding Performance on Cycle-Free Subgraphs

are almost Gaussian. In particular, the empirical distribution of the “log-cost-ratio”

 approximates a Gaussian distribution relatively well, as illustrated in

Figure 5.9.

It seems natural, then, to assume that the log-cost-ratio is truly Gaussian, and to use this

assumption to obtain an approximate estimate of the error probability. It turns out that, with

the additional assumption that the difference is statistically independent

from the sum —an assumption that is also justified by simulation

results such as Figure 5.8—it is possible to express the final Gaussian distribution of

 directly in terms of the first and second moments of and .

Unfortunately, the estimates obtained in this manner do not conform at all with simulation

results. While we have not investigated this approach much further, it appears that the highly

asymmetric “log-normal” distributions of the final costs and are inherently dif-

ficult to handle, and that it may be easier to deal directly with the distribution of the log-cost

ratios of the intermediate and final cost functions.

µs 0()log µs 1()log–

10
−20

10
−10

10
0

10
−20

10
−10

10
0

10
−40

10
−20

10
0

10
−40

10
−20

10
0

µs 0()

µs 1() µs 1()

µs 0()

Figure 5.8 Distribution of final costs after one iteration (left) and four iterations
(right) with the sum-product algorithm on a cycle code. Each dot is one decoding
attempt. The dashed line is the decision boundary, i.e., where .µs 0() µs 1()=

−20 0 20 40 60
0

0.01

0.02

0.03

0.04

−20 0 20 40 60
10

−5

10
−4

10
−3

10
−2

10
−1

µs 0()log µs 1()log–µs 0()log µs 1()log–

Figure 5.9 Distribution of log-cost-ratio after four iterations
with the sum-product algorithm on a cycle code. The left diagram shows a histogram
on a linear scale, while the right diagram compares the histogram with a Gaussian dis-
tribution on a logarithmic scale.

µs 0()log µs 1()log–

µs 0()log µs 1()log–

µs 0()log µs 1()log+

µs 0()log µs 1()log– µs 0() µs 1()

µs 0() µs 1()

5.4 Gaussian Approximation of Log-Cost-Ratios 49

5.4 Gaussian Approximation of Log-Cost-Ratios

As mentioned in the previous section, the empirical distribution of the final “log-cost-ratio”

 for the sum-product algorithm is very close to a Gaussian distribution.

It turns out that this is almost always the case, both for final and intermediate cost functions.

Furthermore, the same holds for the cost functions in the min-sum algorithm, i.e., the empir-

ical distribution of cost differences such as and are very

close to being Gaussian, especially if the local costs are Gaussian distributed, i.e., if the

channel is Gaussian. See Figure 5.10.

In this section, we will discuss performance estimates for the min-sum algorithm, based

on the assumptions that the cost differences (of both final and intermediate cost functions)

are truly Gaussian. Since this is only an approximation (albeit often a rather good one), the

results obtained here are only approximate.

We will only consider low-density parity-check codes. For these codes, the min-sum

updating rules have the following simple form (cf. Section 3.4):

(5.21)

(5.22)

µs 0()log µs 1()log–

µs 0() µs 1()– µE s, 0() µE s, 1()–

−5 0 5 10
0

0.01

0.02

0.03

0.04

−5 0 5 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

−5 0 5 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

−5 0 5 10
0

0.01

0.02

0.03

0.04

Figure 5.10 Distribution of final cost difference from min-sum algo-
rithm as applied to a cycle code used on a Gaussian channel. The upper diagrams
were obtained after one decoding iteration and the lower after four decoding itera-
tions. The dotted curves are true Gaussian distributions with the same mean and vari-
ance as the empirical distributions.

µs 1() µs 0()–

µs µE s,E Q∈ s E∈:∑=

µE s, sign µs ′ E,()
s ′ E∈ s ′ s≠:

∏ µs ′ E,
s ′ E∈ s ′ s≠:

min=

50 5 Decoding Performance on Cycle-Free Subgraphs

. (5.23)

Clearly, if the check-to-site costs were truly Gaussian, then so would the final costs

and the site-to-check costs , since they are computed as sums of the former

(Equations 5.21 and 5.23). Moreover, if the check-to-site costs are “close” to Gaussian, then,

according to the central limit theorem, the other costs will be even “closer” to Gaussian. So,

the critical point is obviously the distribution of the check-to-site costs, as computed accord-

ing to (5.22). Figure 5.11 illustrates the distribution of the check-to-site costs

 for a cycle code with three bits per parity check, indicating that the

distribution is approximated relatively well by a Gaussian distribution in this case.

In fact, for cycle codes with three bits per parity check, it is possible to derive the mean

and variance of the check-to-site costs analytically, assuming that

the site-to-check costs are independent and Gaussian distributed. The derivation is rather

lengthy (it can be found in Appendix A.4), and leads to the formulas

µs E, µE ′ s,
E ′ Q∈ s E ′∈ E ′ E≠,:

∑=

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

−5 0 5
10

−8

10
−6

10
−4

10
−2

10
0

−5 0 5
0

0.2

0.4

0.6

0.8

−5 0 5
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

Figure 5.11 Probability distribution of check-to-site cost as
computed by the min-sum algorithm on a cycle code with three bits per parity check.
The site-to-check costs are assumed to have Gaussian dis-
tribution with mean 1. In the upper two diagrams, the variance of is 2, and in the
lower two diagrams, the variance is 1/2. The solid curves are the actual probability
distributions; the dotted curves are Gaussian distributions with the same mean and
variance.

µE s, µE s, 1() µE s, 0()–=

µs ′ E, µs ′ E, 1() µs ′ E, 0()–=
µs ′ E,

µE s, µs

µs E,

µE s, µE s, 1() µE s, 0()–=

µE s, µE s, 1() µE s, 0()–=

5.4 Gaussian Approximation of Log-Cost-Ratios 51

(5.24)

, (5.25)

where m and σ are the mean and standard deviation of the site-to-check costs , respec-

tively, and and are the usual “error functions”.

So, using this cycle code on a Gaussian channel, it is easy to compute estimates of the

error probability, under the assumption that the check-to-site cost functions are almost Gaus-

sian. In Figure 5.12, we have plotted the estimates obtained this way along with simulation

results. As can be seen in the figure, the estimate is somewhat optimistic.

For more interesting realizations, such as turbo codes, it appears difficult to obtain a the-

oretical expression for the mean and variance of the log-cost ratios obtained during the com-

putations. By simulating the decoding process for a single trellis, it would be possible to

approximate the relation between the distributions of the incoming and outgoing log-cost

ratios numerically.

E µE s,[] mQ 2
m

σ
----()

e

m2

σ2
------–

σ
2 π

--------------–=

E µE s,()2[] m2 σ2 2σ2

π
---------e

m2

σ2
------–

–
2mσ

π
-----------erf

m

σ
----()–+=

µs ′ E,
Q .() erf .()

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
it
 E

rr
o
r

R
a
te

Figure 5.12 Bit error rate with cycle code and the min-sum algorithm. The solid
curves are the estimates obtained with the Gaussian assumption, while the dashed
curves are obtained from simulations. The number of decoding iterations are shown in
the diagram.

0

2

4

10
20

6

52

Chapter 6

Decoding Performance with Cycles

We now turn to the case where the cycles do in fact influence the decoder, i.e., when there

are multiple copies of some sites (and checks) in the computation tree. It is not at all obvious

that the performance will continue to improve if the decoding process goes on after this

point. However, simulation results strongly indicate that this may in fact be the case, at least

for certain code constructions. This was already observed by Gallager in [5]; it is also clear

that the dramatic performance of turbo codes [7] is achieved when the cycles have closed.

Gallager explained this behavior by stating that “the dependencies have a relatively minor

effect and tend to cancel each other out somewhat”.

While the analysis of Chapter 5 does not apply in this case, the concept of computation

trees and deviation sets, and in particular Theorem 4.2, still applies: a necessary condition

for a decoding error to occur is that the global cost of some deviation is negative.

However, the cost of a deviation is not a sum of independent local costs, as it is in the cycle-

free case. Instead, some of the local costs are the same (since they correspond to the same

sites). Therefore, the probability that the cost is negative depends not only on the weight of

e, but also on the number of multiple occurrences. Still, it is possible to formalize the situa-

tion in a nice way, as follows.

Thus, let be a system with sites, where the visible sites are

all binary, and let be a corresponding tree system rooted at the site s. Then we

have

Definition 6.1 The multiplicity vector of a tree configuration is an

integer-valued n-tuple , where is the number of tree sites t with

 that correspond to s (for a visible site s).

With this definition, the global cost of the tree configuration u may be expressed as

. (6.1)

e E∈

N W B, ,() n N= V N⊆
N W B, ,)

u W∈
u[] Z

n∈ u[]s
ut 1=

G u() u[]sγ s
s V∈
∑=

53

We now assume that the channel is Gaussian and (as usual) that the all-zero codeword was

transmitted (using antipodal signaling); this means that the local costs are mutually inde-

pendent and normally distributed with mean 1 and variance . Furthermore, from (6.1) we

see that is normally distributed with mean and variance

, giving

, (6.2)

where is the usual error function.

The expression in (6.2) closely resembles the corresponding expression

 in the cycle-free case, making it natural to define the generalized weight

 of a tree configuration u as the quantity

, (6.3)

obtaining the convenient formulation

. (6.4)

Note that the generalized weight of u is in inverse proportion to a kind of “normalized

empirical variance” of [u], so that is large when the components of [u] are similar,

whereas is small when some components dominate over the rest, i.e., when a few sites

occur more often than others in the support of u.

We now consider the deviation set and the probability of decoding error. Corollary 4.4

applies regardless of the presence of cycles, and we have the error probability bound

. (6.5)

From (6.4), it is clear that should be as large as possible to give a small error probabil-

ity. This indicates that there should be no short cycles in the Tanner graph, because other-

wise it is possible for a deviation to concentrate a lot of its support on such a short cycle and

thus obtain a small generalized weight, thereby contributing to a large error probability. This

idea will be formalized into a strict result, regarding cycle codes, below.

The upper bound on the error probability (6.5) may, in turn, be upper-bounded with the

usual union bound, giving

γ s

σ2

G u() E G u()[] u[]ss V∈∑=

V G u()[] σ2 u[]s2s V∈∑=

Pr G u() 0≤{ } Q
u[]ss V∈∑

σ u[]s2s V∈∑

 
 
 

=

Q .()

Q weight u() σ⁄()

ω u()

ω u()
u[]ss V∈∑()2

u[]s2s V∈∑
-------------------------------≡∧

Pr G u() 0≤{ } Q
ω u()

σ
--------------- 

 =

ω u()

ω u()

Pr decoding error{ } Pr G e() 0≤ for some e E∈{ }≤

ω e()

54 6 Decoding Performance with Cycles

. (6.6)

In parallel with the cycle-free case, it is even possible to define a “generalized weight enu-

merator” , where is the number of devia-

tions with generalized weight ω, and the sum in runs over all generalized weights ω that

occur in E. This would make it possible to write (a weakened version of) the bound (6.6) in

the compact form , where, as usual, for a Gaussian

channel. Unfortunately, no method is known for computing the generalized weight distribu-

tion , apart from going through all deviations explicitly. In particular, it is not possible to

apply the sum-product algorithm in the straightforward fashion described in Section 5.1,

since the generalized weight of a configuration e is not additive over disjoint site subsets (as

is the conventional weight).

For a limited class of systems, however, it is possible to analyze in more detail the behav-

ior of the deviations when the number of decoding iterations tends to infinity. This is possi-

ble with systems for which the deviations have a “chain-like” structure, i.e., their support

forms a single walk through the computation tree, starting and ending in two leaf sites and

going through the middle (root) site. There are two interesting kinds of systems in this class:

cycle codes and tailbiting trellises.

The idea is, essentially, that the lowest-cost deviation will have a periodic structure: the

walk formed by such a deviation will spend most of its time in the lowest-cost part of the

graph. We begin with the simplest case, namely cycle codes.

6.1 Cycle Codes

Recall that a cycle code is a low-density parity-check code with each bit checked by two par-

ity checks. We noted in Example 4.2 that the support of a deviation forms a “walk”

on the computation tree. More precisely, such a walk is a sequence of sites in the

original system, corresponding to a connected sequence of alternating sites and checks on

the Tanner graph, with the property that the same edge is never utilized twice in a row (these

requirements follow from the updating rules of the min-sum algorithm).

We need a few definitions. A finite walk will be called closed if the site sequence

formed by concatenating the walk with itself, i.e., , is also a walk. A

walk is reducible if, for some i and some , the segment is a closed

walk and the remaining part is still a walk; walks that are not reducible

are called irreducible. Clearly, any walk may be “factored” into a collection of irreducible

closed walks (not necessarily distinct) and a single remaining irreducible walk.

A cycle on a Tanner graph is an irreducible closed walk, but there may be irreducible

closed walks that are not cycles. The difference is that, in a cycle, all sites are distinct,

whereas in a general irreducible closed walk, the same site may appear several times. See

Figure 6.1 for an example of a closed irreducible walk that is not a cycle.

We are now ready for the main result about cycle codes.

Pr decoding error{ } Pr G e() 0≤{ }
e E∈
∑ Q

ω e()

σ
-------------- 

 
e E∈
∑=≤

T Ω() AωΩω
ω∑≡∧ Aω e E∈ ω e() ω=:{ }≡∧

Pr decoding error{ } T β()≤ β e 1 2σ2⁄–=

Aω

e E∈
s1 s2 …, ,

s1…sn

s1 … sn s1 … sn, , , , ,
s1 s2 …, , j i> si … s j, ,

s1 … si 1– s j 1+ …, , , ,

6.1 Cycle Codes 55

Theorem 6.1 After sufficiently many decoding iterations, a necessary condi-

tion for a decoding error to occur somewhere, i.e., for some s is

that for some irreducible closed walk .

(The proof is given in Appendix A.5.) Note that the theorem provides a necessary condition

for decoding error, but not a sufficient condition. As for the other direction, we have the fol-

lowing weaker result.

Theorem 6.2 If, for all sites s and check sets E with , it holds that

 as the number of updates tends to infinity, then there is

no irreducible closed walk for which .

(The proof is given in Appendix A.5.) The theorem only implies that if the necessary condi-

tion for decoding error that was given in Theorem 6.1 is actually met, then at least some

intermediate cost function will not tend towards infinity, i.e., not provide a very clear “zero”

decision. This does not rule out a correct decision, however, since a correct decision (i.e.,

deciding that the all-zero codeword was transmitted) only requires the final cost functions to

be positive.

We now return to Theorem 6.1 and the condition for decoding error. The condition is met

if the cost sum along some cycle is negative, since a cycle is an irreducible closed walk. We

would not expect the decoder to decode correctly in that case, though, since even a maxi-

mum-likelihood decoder would make a decoding error. Consequently, if such errors (i.e.,

corresponding to cycles) were the only possible ones, then the min-sum algorithm would in

fact find the maximum-likelihood codeword for cycle codes. However, as was illustrated by

Figure 6.1, there may be irreducible closed walks that are not cycles. So, it is natural to ask if

it is possible to have a negative cost sum along such a walk, while having positive cost sum

along all cycles. This is in fact the case, as illustrated by Figure 6.2.

It is thus interesting to study irreducible closed walks that are not cycles, in order to esti-

mate the decoding performance (compared to maximum-likelihood) of the min-sum algo-

rithm for cycle codes. In particular, in view of (6.4), we would like to study the multiplicity

vectors, (or generalized weights) of such irreducible closed walks. For any particular cycle

code, there is a finite number of such walks, so the problem, in principle, is possible to solve.

2

4

3

5

69

8

1 7

Figure 6.1 A cycle code with an irreducible closed walk (8,7,5,3,6,7,9,1) that is not a
cycle. The walk consists of two interconnected cycles, forming a “necktie”.

µs 0() µs 1()≥
γ sii 1=

k∑ 0≤ s1 … sk, ,

s E∈
µE s, 1() µE s, 0()– ∞→

s1 … sk, , γ sii 1=

k∑ 0≤

56 6 Decoding Performance with Cycles

We are, however, more interested in theoretical results that apply to any cycle code. The fol-

lowing two results, which are proved in Appendix A.5, provides some insight to the struc-

ture of irreducible closed walks.

Lemma 6.3 No site occurs more than twice in an irreducible closed walk.

Lemma 6.4 Any non-cycle irreducible closed walk contains at least two

cycles (which may be partially or completely overlapping, or disjoint).

From these two results, it appears to be “relatively unlikely” to have a negative cost sum

along a non-cycle irreducible closed walk when the cost sums along all cycles are positive.

The reasoning behind this is that the cost sum of such a walk can be written as the sum of the

costs of some (at least two) positive terms corresponding to cycles in the walk, and a remain-

ing term; to get a negative sum, the remaining term has to outweigh the sum of the other

terms.

Unfortunately, we do not have a formal (nontrivial) result regarding the influence on the

error probability of these non-cycle irreducible closed walks. To illustrate the complexity of

the problem, we give in Figure 6.3 two non-cycle irreducible closed walks, both rather dif-

ferent from the one in Figure 6.1.

3

3

1

1

11

1

1 -4

Figure 6.2 An assignment of local costs with a positive cost sum along all cycles but
a negative cost sum along the indicated irreducible closed walk.

Figure 6.3 Two examples of irreducible closed walks that are not cycles.

6.2 Tailbiting Trellises 57

For very small codes, it is possible to use simulation to compare the performance of the

min-sum algorithm with that of maximum-likelihood decoding. The result of such a simula-

tion is illustrated in Figure 6.4, indicating that the min-sum algorithm is very close to maxi-

mum-likelihood for that code.

6.2 Tailbiting Trellises

The reason why it is possible to characterize the possible error events for cycle codes is that

their deviations have a chain-like structure and may thus be partitioned into finite parts cor-

responding to a certain structure on the graphs. This structure is shared with the deviations

of trellises (i.e., the detours). For ordinary (not tailbiting) trellises, which are cycle-free, this

leads to the standard analysis of the distance structure, which can be found, e.g., in [21]. For

tailbiting trellises, which are not cycle-free, we can use an analysis similar to that of cycle

codes.

Recall that the walks corresponding to the deviations of cycle codes can be partitioned

into irreducible closed walks. Similarly, deviations on a tailbiting trellis (i.e., detours) can be

partitioned into closed subpaths whose length are multiples of the trellis length, each starting

and ending in the same state; the deviation can only have negative cost if at least one such

Figure 6.4 Decoding performance of the (15, 6, 5) cycle code of the Peterson graph
[12, pp. 136-138] used on a Gaussian channel. The upper curve corresponds to 30
iterations of the min-sum algorithm, and the lower curve corresponds to maximum-
likelihood decoding.

0 1 2 3 4 5 6 7
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
lo

c
k
 E

rr
o
r

R
a
te

58 6 Decoding Performance with Cycles

closed subpath has negative cost. The situation is more complex than for cycle codes, how-

ever, since detours may end before the leaves of the computation tree, i.e., they may have

finite support even when the number of iterations tends to infinity.

So, consider the computation tree obtained with the min-sum algorithm on a tailbiting

trellis. Let n be the number of trellis sections and let l be the number of sections in the com-

putation tree. As long as , the computation tree is cycle-free, and the analysis of

Chapter 5 applies. We are interested in the case when . The valid configurations on the

tree system are paths in a computation trellis which consists of multiple copies of the origi-

nal tailbiting trellis, pasted together. See Figure 6.5.

The deviations on this tree system take the form of detours on the computation trellis, as

discussed in Example 4.1. This means that if we follow the path from the nonzero root sec-

tion towards one of the leaves (in either direction) then the path will either stay away from

the zero state altogether or enter the zero state exactly once and stay in the all-zero path

afterwards. The length of a detour is the number of nonzero branches.

As usual, we restrict ourselves to binary symbols and assume that the local costs for a

“0” is zero () so that the cost of a path equals the cost sum of its nonzero branches.

(In fact, a branch is actually a local configuration on a section; its cost is the sum of the costs

of its visible sites.)

We now define a closed path (in the computation trellis) as a subpath that starts and ends

in the same state (of the same state spaces). Just as for cycle codes, a path is called reducible

if it contains a closed path that may be removed, leaving a shorter path, so that the cost of the

original path is the sum of the costs of the remaining shorter path and the closed path. A path

is called irreducible if it does not contain a closed path; the lengths of irreducible paths are

l n≤
l n>

0

0

1 1
0

1

0

0

1 1
0

1

0

0

1 1
0

1

1 2 3 4 5 6

0

0

1 1
0

1

0

0

1 1
0

1

0

0

1 1
0

1

0

0

1 1
0

1

0

0

1 1
0

1

1 2 3 4 5 6 1 265

Figure 6.5 A tailbiting trellis of length 6 (top) and the “computation trellis” corre-
sponding to a computation tree of length 10 (bottom). The numbers below the trellis
sections indicate the corresponding codeword component index. The marked path is
valid on the computation trellis (in fact, it is a “detour”) although it uses different
branches in sections corresponding to the same original section.

γ s 0() 0=

6.3 The General Case 59

limited by , where M is the number of states in the largest trellis state space. Note that

closed paths of length n correspond to valid paths on the original tailbiting trellis, i.e., to

codewords.

With these definitions, it is easy to see that any path S on the computation trellis may be

decomposed into a collection of irreducible closed paths and a remaining irreduc-

ible path , so that the cost is the sum . In particular, any

detour may be decomposed in this way, and the remaining irreducible path will also be a

detour (unless its length is zero). But since a decoding error can only occur if some detour

has negative cost, we have proved

Theorem 6.5 Using the min-sum algorithm with a tailbiting trellis, a neces-

sary condition for decoding error is that there is an irreducible detour (on the

computation trellis) with negative cost.

As with the cycle codes, this provides a finite formulation of the problem of estimating the

decoding performance, since there is a finite number of irreducible detours on the computa-

tion trellis of any given tailbiting trellis.

6.3 The General Case

While the above analysis for realizations with chain-like deviations is relatively successful,

it is also quite limited since not many realizations have this structure. Ideally, we would want

to have, for any realization, a similar characterization of possibly uncorrectable channel out-

puts. In particular, it would be interesting to obtain such a result for turbo codes. Unfortu-

nately, the above analysis does not work in the general case, and we will now outline why.

The discussion is based on the proof of Theorem 6.1 (cf. Section A.5). As we will see, the

situation is not completely hopeless.

An essential idea behind the proof of Theorem 6.1 is that the cost of an infinite deviation

(i.e., a deviation on an asymptotically growing tree system) is determined in the interior of

the tree; any boundary effects at the root or at the leafs can be discarded. This is because the

number of nonzero positions at a particular depth in a deviation is fixed (for any deviation,

there are exactly two “ones” at any depth of the computation tree), so each depth of the com-

putation tree contributes equally much to the sum (4.2) for the global cost of a tree configu-

ration.

Since the realization is finite, an infinite deviation cannot behave completely irregularly;

it must repeat itself somehow. For cycle codes, these repetitions form irreducible closed

walks, which are the building blocks of any deviation. It appears natural to look for similar

repeatable, or “closed” structures in the general case, with the property that any deviation

could be decomposed into such structures.

The problem with this approach is that, in many cases, the cost of an infinite deviation is

not determined in the interior of the tree but rather at the leafs, so any possible regularities in

the deviations do not influence the global cost. This is the case if the support of the devia-

tions are trees (and not walks), so that the number of nonzero positions at a particular depth

grows exponentially with the depth.

nM

S1 … Sm, ,
S0 G S() G S0() G S1() … G Sn()+ + +

60 6 Decoding Performance with Cycles

As an example, consider a (3, 4) low-density parity-check code. The support of the devi-

ations of the corresponding tree system (cf. Example 4.2 on page 32) are binary trees; the

number of ones at depth d is . So, in the sum (4.2) for the global cost of a tree config-

uration, about half of the terms correspond to leaf sites; 3/4 of the terms correspond to leaf

sites or next-to-leaf sites, and so on. Therefore, the global cost is mainly determined by the

sites near the leafs in the computation tree. And, as mentioned, any regularities inside the

computation tree influence the global cost very little.

6.4 Turbo Codes

Turbo codes seem to fall somewhere between cycle codes, with their chain-like deviations,

and more general constructions such as (3, 4) low-density parity-check codes, whose devia-

tions have a tree structure. As illustrated in Figure 4.6 on page 36, some of the deviations of

turbo codes are chain-like and some have support that are trees. Moreover, the chain-like

deviations have lower weight than the others, and the weight increases with the number of

branches in the tree.

This observation indicates that the chain-like deviations could be the “weak points” of

the turbo decoding algorithm, i.e., they could, essentially, determine the error probability. In

that case, we could use a similar method as for cycle codes to characterize the uncorrectable

errors for the turbo decoding algorithm.

There are some difficulties with this approach, however, since the probability that a spe-

cific deviation e has a negative cost is not determined by its weight, but rather by its “gener-

alized weight”, as defined in Equation 6.3, which depends on the cycle structure of the

Tanner graph. There is no straightforward relation between the weight and the generalized

weight of a deviation. For example, two infinite chain-like deviations of the same weight can

differ significantly in their generalized weight if one has support in a large part of the Tanner

graph while the other has support only in a single cycle. It would be even worse (for our pur-

poses) with a tree-shaped deviation having most of its support concentrated on a subgraph

that is smaller than a cycle, since such a deviation could then have lower generalized weight

than any chain-like deviation. For the moment, we do not know if such deviations are possi-

ble.

3 2d×

61

Chapter 7

More on Code Realizations

The possibilities for constructing code realizations with Tanner graphs are enormous. Exam-

ples of parameters that may be varied are

• the Tanner graph,

• the number of hidden sites,

• the site alphabets, and

• the local behaviors.

Since the goal is to use the realizations for decoding, they should (ideally) provide good

decoding performance while keeping the decoding complexity low. The connection between

realization complexity and decoding complexity is relatively straightforward (cf.

Section 3.3), except for the number of decoding iterations, which depends, of course, on

how fast the decoding performance increases. Unfortunately, the results on the decoding per-

formance have been rather meager so far. Still, it seems natural to look for realizations with

large girth, since a larger girth gives a larger number of cycle-free decoding iterations. Indi-

cations on the connection between decoding performance and girth were given in [22] and

[23] (graphs with large girth are discussed in, e.g., [24] and [25]). An obvious requirement

for good decoding performance is, of course, that the theoretical code performance is good.

In summary, we are looking for realizations with

• low realization complexity,

• good theoretical code performance,

• no short cycles in the Tanner graph.

We begin this chapter by discussing the connection between realization complexity and the

presence of cycles in the Tanner graph, as promised in Chapter 2.

62 7 More on Code Realizations

7.1 Realization Complexity

It is well known that, for a given ordering of the time axis, a linear (block or convolutional)

code (or, more generally, a group code) has a well-defined unique minimal trellis; any trellis

for the same code can be collapsed (by state merging) to the minimal trellis (see for example

[11]). An equivalent statement holds for realizations with an arbitrary cycle-free Tanner

graph, which is easily seen by adapting the proofs of [11] to this case.

For Tanner graphs with cycles, however, this is no longer true. For instance, for tail-bit-

ing convolutional codes, it is easy to construct examples of inequivalent realizations (in this

case: tail-biting trellises) for the same linear code that are minimal in the sense that no states

can be merged [13, pp. 34-36]. Nevertheless, the theory of [11] is easily adapted to give a

lower bound on the size of certain site alphabets (state spaces), which we will now develop.

Let be a linear system with the check structure Q. We will use the notion of a

cut: A cut on a check structure Q is a partition of the sites in Q such that no check

set in Q contains sites from both I and J. Informally, there is no walk from I to J that does not

go through K. We will use the following obvious result about cuts:

Lemma 7.1 Let be a cut on Q. Then any is valid (i.e., in B)

if and only if and .

For a site subset , we define , i.e., consists of those

valid configurations that are zero outside R. We then have the following definition, which is

adapted directly from [11]:

Definition 7.1 Let be a partition of N. The abstract state space

between I and J is the quotient space . The abstract

state between I and J of a valid configuration is the coset

.

For , the time-j state space of the minimal trellis for B (with the given order

of the time axis) is in one-to-one correspondence with the abstract state space

. For general check structures, we have the following bound, which is

the main result of this section:

Theorem 7.2 Let be a linear system with the check structure Q.

Let be a cut on Q. Then, for any and any , there exists

a linear mapping from onto . In particular,

.

(The proof is given in Appendix A.6.) Of special interest is the case when K contains only

hidden sites:

Corollary 7.3 Let be a linear system with hidden sites and with

a check structure Q. Let be a cut on Q such that K contains no visi-

ble sites, i.e., and form a partition of V. Then

.

N W B, ,()
I K J, ,()

K I J,;() x W∈
xK I∪ BK I∪∈ xK J∪ BK J∪∈

R N⊆ B̃R x B∈ xN R\ 0=:{ }≡∧ B̃R

I J,()
SI J, B() B B̃I B̃J+()⁄≡∧

x B∈
σI J, x() x B̃I B̃J+()+≡∧

N 1…n{ }=

S 1…j{ } j 1…n+{ }, B()

N W B, ,()
K I J,;() I′ I⊆ J′ J⊆

BK SI ′ J ′, BI ′ J ′∪()

dim BK dim SI ′ J ′, BI ′ J ′∪()≥

L V W B, , ,()
K I J,;()

I′ I V∩≡∧ J′ J V∩≡∧
dim Ass K∈∑ dim SI ′ J ′, BV()≥

7.2 Cycle-Free Realizations 63

Note that this bound can simultaneously be applied to all cuts of the Tanner graph, which

results in a linear programming bound on the dimensions of the site state spaces. Note fur-

ther that bounds on the dimensions of the subcodes may be obtained from the dimen-

sion/length profile (generalized Hamming weights) of the code (cf. e.g. [26]), which in turn

can be bounded by known bounds on the minimum distance of block codes. The full devel-

opment of this approach is a challenging research problem; for us, Theorem 7.2 and

Corollary 7.3 mainly serve to indicate why it is useful to consider realizations with cycles.

7.2 Cycle-Free Realizations

Despite the inherent complexity of cycle-free realizations (as shown in the previous section),

they prove very useful for applications. The reason, of course, is the optimality of the min-

sum and sum-product algorithms when used on such realizations. Therefore, it is interesting

to search for cycle-free realizations with as low complexity as possible for a given output

code. Much recent work has been devoted to finding the symbol orderings and “sectionaliza-

tion” that give rise the smallest minimal trellises, see for example [27] and [28].

It appears natural to extend that work to include cycle-free realizations that are not trel-

lises. As it turns out, some trellis realizations that are already proposed may be more natu-

rally described with a different, non-trellis (but still cycle-free) Tanner graph. This is the

case for some trellis realizations with large sections containing many parallel branches (cf.

e.g. [27]). Moreover, the variation of the Viterbi decoding algorithm that is usually proposed

for such realizations (where the parallel branches are processed in a first computation step

before the trellis is processed in the usual way) is a direct application of the min-sum algo-

rithm applied to the other cycle-free Tanner graph.

As an example, consider the “Cubing Construction” by Forney [29], where a code of

length is obtained from codes V, C, and D of length n such that a codeword x may be

written as , where

, , and . (The codes V, C, and D are obtained in a special way,

which is not important for our discussion.) Forney [29] described these codes with a trellis

consisting of three sections of length n, corresponding to , , and ; the intermediate

states would then be and , i.e., the information that is “shared” between the

sections. See Figure 7.1.

However, the trellis description hides some of the symmetry of the construction since the

middle section is seemingly different from the others. With a different Tanner graph (for the

same system), the symmetry is transparent, see Figure 7.2. Moreover, the “variation” of the

B̃R

3n

x x1 x2 x3, ,() v1 c1 d+ + v2 c1 c2 d+ + + v3 c2 d+ +, ,()= =

v1 v2 v3, , V∈ c1 c2, C∈ d D∈

x1 x2 x3

c1 d+ c2 d+

c2 d+c1 d+

v3 c2 d+ +v1 c1 d+ + v2 c1 c2 d+ + +

Figure 7.1 Tanner graph for the trellis description of the “Cubing Construction”. The
expressions indicate the site values of a general valid configuration.

64 7 More on Code Realizations

Viterbi algorithm proposed by Forney in [29], which in many cases uses fewer operations

than what is possible with a normal trellis, is a direct application of the min-sum algorithm

to the Tanner graph of Figure 7.2.

From this example and the recent work on trellis sectionalization [27], it is clear that it is

often advantageous to allow large trellis sections with many parallel branches. From our per-

spective, this indicates that non-trellis cycle-free realizations may sometimes be less com-

plex than trellis realizations for the same codes. Arguably, any such realization could be seen

as a trellis with (perhaps extremely) large sections; with the use of Tanner graphs, on the

other hand, the underlying structure may be more transparent.

7.3 Realizations with Cycles

The benefits (in terms of complexity) of allowing cycles in the Tanner graphs are illustrated

nicely by tailbiting trellises [4], which are the perhaps “simplest” extension from cycle-free

Tanner graphs. As mentioned in the introduction (Section 1.1), a tailbiting trellis contains

several starting states, and equally many ending states; a path is required to start and end in

the same state. Figure 7.3 illustrates the Tanner graph for the tailbiting trellis of Figure 1.3.

v1 c1 d+ +

c1 d+

c2 d+

v2 c2 d+ + v3 c3 d+ +

c3 d+

c1 c2 c3+ + 0=

Figure 7.2 A different, perhaps more natural Tanner graph for the “Cubing Construc-
tion”. The expressions indicate the site values of a general valid configuration. The
equation in the middle indicates the local behavior of the middle check.

Figure 7.3 The Tanner graph of a small tailbiting trellis.

7.3 Realizations with Cycles 65

It is well-known (cf. [4]) that for some codes, the number of states in a tailbiting trellis

may be much lower than the number of states in any ordinary trellis. For example, it is dem-

onstrated in [4] that a (22, 11, 7) subcode of the Golay code has a tailbiting trellis with as

few as eight states, as shown in Figure 7.4. In view of Corollary 7.3, this means that the

abstract state space of that code, with respect to a cut that divides the Tanner graph in two

halves, has dimension at most six (since the abstract state space must be spanned by the two

hidden site alphabets in the cut, each having dimension three). In fact, the dimension of the

abstract state space is exactly six for many such cuts, implying that a trellis (not tailbiting)

must have 64 states in some state spaces.

Even further complexity reductions are possible with more complicated Tanner graphs

with more connections. Figure 7.5 illustrates a “wheel-shaped” Tanner graph for a four-state

realization of a (22, 11, 7) subcode of the binary Golay code. The realization consists of a

tailbiting trellis with some of the output bits shared across the graph, thereby creating a

structure which is locally identical to the turbo code realization (cf. Figures 2.4 and 2.5); in

particular, the computation trees are exactly the same (cf. Section 4.2.1). The underlying

trellis section (which is repeated 11 times) is shown in Figure 7.6. As with the turbo codes,

every other redundancy bit is punctured to achieve the rate 1/2.

To see that this realization actually yields the desired (22, 11, 7) code, consider the gen-

erator matrix for that code, as given in [30, pp. 509]. It is a double circulant matrix of the

form where the top row of P is .

Figure 7.4 Tailbiting trellis realization of a (22, 11, 7) subcode of the binary Golay
code. The eight-state trellis section to the left is repeated 11 times and “tied together”
at the ends, forming the Tanner graph shown to the right.

00
11
11
00
10
01
01
10
01
10
10
01
11
00
00
11

G I P()= 1 0 1 1 0 1 1 1 0 0 0, , , , , , , , , ,()

66 7 More on Code Realizations

Figure 7.5 The Tanner graph of a “turbo-style” realization of the (22, 11, 7) subcode
of the Golay code. The trellis section is shown in Figure 7.6. The rightmost bit of the
trellis section is punctured in every other occurrence of the section.

00

11

11

00

10

01

01

10

Figure 7.6 Trellis diagram for the realization in Figure 7.5. The leftmost bit corre-
sponds to the connected sites in the interior of Figure 7.5, while the rightmost bit cor-
responds to the leaf sites on the outside of the Tanner graph (some of which are
punctured away).

7.3 Realizations with Cycles 67

We will show that the leftmost 11 columns of G (the information bits) correspond to the con-

nected sites of the realization whereas the rightmost 11 columns (the redundancy bits) corre-

spond to the remaining sites. To do this, we will show that the 11 connected sites determine

the remaining sites uniquely, and that a single “one” placed in any of the interior sites corre-

sponds to a row of G, i.e., it is a generator of the (22, 11, 7) code.

To see that the interior sites determine the entire configuration, consider the tailbiting

trellis (Figure 7.7) and a path that is zero in all the information bits. From Figure 7.6, it is

clear that such a path must be either the all-zero path, or a path that circulates among the

nonzero states with a period of three sections. But a path cannot have period three, because

there are 22 sections in the tailbiting trellis. Thus, there is only one path with zeros in the

information bits; it follows by linearity that any valid configuration on the interior sites (the

information bits) determines the rest of the configuration uniquely.

Next, assume that a single interior site is “one” (the remaining sites are zero). A corre-

sponding valid configuration, i.e. a path with “ones” in two connected positions, is shown in

Figure 7.7. This valid configuration corresponds to a row of G (the upper bits are found to

the right in the matrix). The remaining rows of G correspond to cyclic shifts of this valid

configuration.

As mentioned, the realization of Figure 7.5 is rather similar to the turbo code realization

(the difference is that the turbo codes consist of two terminated trellises which are intercon-

nected). In particular, the computation tree has the same structure as that of a turbo code. We

now consider the “wheel construction” more generally, allowing different connection pat-

terns and other trellis sections. A potential advantage of this variation of turbo codes is that it

permits constructions with high symmetry, which may simplify both analysis and computer

search for good realizations.

0
0 0

0
0 0

1
1 0

0
0 0

1
0 0

1
0 0

0
0 0

1
0 0

1
0 0

1
0 1

0
0 0

Figure 7.7 A valid path that corresponds to one of the generators of the (22, 11, 6)
code. The 22 lower bits correspond to the interior sites in Figure 7.5; note that the single
“one” occurs at two places in the trellis. The 11 upper bits correspond to the redun-
dancy sites on the outside of the wheel.

68 7 More on Code Realizations

7.3.1 The Wheel Construction

The following ingredients are needed to define the wheel construction in general.

• A regular graph of degree 3 with a Hamiltonian cycle (a cycle containing all

vertices exactly once), and

• a trellis section with one bit considered as information bit (i.e., the left state

and the information bit determine the redundancy bits and the right state

uniquely).

The Tanner graph is constructed from these ingredients by associating a hidden site with

each edge in the Hamiltonian cycle and visible sites with the remaining edges. As in

Figure 7.5, the Hamiltonian cycle is laid out in a circle, forming the “time axis” for a trellis,

with the remaining edges extending across the circle. Each vertex of the original graph is a

section of the trellis (i.e., a check set of the Tanner graph), and the redundancy bits of the

trellis sections are appended as leaf sites; often, some of them will be punctured (i.e., not

transmitted) and thus need not be included in the realization at all. The realization of

Figure 7.5 was obtained in this way from the graph of Figure 7.8.

As a side note, cycle codes appear as a special case of the wheel construction, with the

two-state trellis section shown in Figure 7.9. Following the general wheel construction, the

leftmost bit is considered as the information bit and the corresponding visible site is shared

with some other section, while the rightmost bit is considered as a redundancy bit and its vis-

ible site is a leaf site. The point is that the right state of the section is identical to the redun-

dancy bit, so instead of a visible leaf site at each section we can simply make the state sites

visible. But then the local behavior is just a parity check on three visible sites (the informa-

tion site and the left and right state sites) and we have obtained a cycle code.

Figure 7.8 The 3-regular graph underlying the realization of Figure 7.5.

00
11

10
01

Figure 7.9 A simple two-state trellis section.

7.3 Realizations with Cycles 69

Naturally, more powerful codes can be obtained by using larger state spaces. We have

made some investigations of the wheel realizations obtained with the four-state trellis sec-

tion of Figure 7.6. To limit the possibilities further, we have required the graphs to have a

periodic structure, as follows. Let p be a positive even integer, the period, and consider a

graph of order n with a Hamiltonian cycle, where . Number the vertices consecutively

along the Hamiltonian cycle with elements from , i.e., from 0 to modulo n. (Thus,

there is an edge between the vertices i and , for any integer i.) The remaining edges

(those that correspond to the connected “information” sites) are determined by p integers

 such that for any i, there is an edge between the vertices and

where is the remainder of i mod p. For example, in the graph of Figure 7.8, we

have , , , and .

(Not all value combinations of are valid. For example, for , must

be odd (unless) and is given by , to make the graph 3-

regular. For general p, since the edge between the vertices i and must be the

same edge as the one between vertices j and for , we have the

requirement .)

Table 7.1 Some codes obtained from wheel realizations with period 2 and the trellis

section of Figure 7.6.

Code parameters

n girth unpunctured punctured

12 5 7 4 (18, 6, 6) (12, 6, 4)

14 5 12 6 (21, 7, 7) (14, 7, 3)

14 7 7 4 (21, 7, 6) (14, 7, 4)

16 5 11 6 (24, 8, 8) (16, 8, 5)

16 7 9 4 (24, 8, 8) (16, 8, 5)

18 5 13 6 (27, 9, 8) (18, 9, 5)

20 5 15 6 (30, 10, 9) (20, 10, 5)

20 7 13 6 (30, 10, 9) (20, 10, 5)

20 9 11 4 (30, 10, 9) (20, 10, 5)

22 5 17 6 (33, 11, 10) (22, 11, 5)

22 7 15 6 (33, 11, 11) (22, 11, 7)

22 9 13 6 (33, 11, 9) (22, 11, 5)

p n

Z n n 1–

i 1+

k0 … k p 1–, , i i krem i p,()+

rem i p,()

n 22= p 2= k0 7= k1 15=

k0 … k p 1–, , p 2= k0

k0 n 2⁄= k1 k0 k1+ 0 (mod n)≡
i krem i p,()+

j krem j p,()+ j i krem i p,()+=

krem i p,() krem j p,()+ 0 (modn)≡

k0 k1

70 7 More on Code Realizations

Table 7.1 lists some of the realizations obtained with the period and the four-state

trellis section of Figure 7.6, including the realization of Figure 7.8. For each realization, we

have considered both the output code obtained by including all bits of the trellis sections as

visible sites, and the output code obtained when every second redundancy site is punctured.

In Table 7.1, the realization obtained with and (cf. Figure 7.8) gives

the largest minimum distances, both in the punctured () and unpunctured ()

versions. In fact, these are the largest possible minimum distances for realizations with

period 2 and the trellis section of Figure 7.6. The reason for this is that, with period 2, there

is an information pattern that gives a codeword of weight at most 7 (in the punctured ver-

sion, 11 in the unpunctured version) regardless of n, , and . As illustrated in

Figure 7.10, the nonzero information bits are placed such that two identical low-weight

detours are obtained. For unpunctured codes, this gives a weight of at most 11 (remember

that the information bits are shared); for punctured codes, the weight is at most 7. The mini-

mum weight may often be smaller than 7 or 11, as seen in Table 7.1. (For small graphs, for

instance, the two detours obtained in this way may in fact overlap, giving an even lower

weight. And, of course, there may be other configurations with low weight, too.)

Similar types of information patterns exist for any period p, but in general, a larger value

of p gives a larger upper bound to the minimum distance. For example, for , the larg-

est possible minimum distance is 15 for the unpunctured version and 9 for the punctured ver-

sion. Table 7.2 lists some codes obtained with .

Table 7.2 Some codes obtained from wheel realizations with period 4 and the trellis

section of Figure 7.6.

Code parameters

n girth unpunctured punctured

40 15 33 7 25 8 (60, 20, 11) (40, 20, 7)

52 19 41 11 33 8 (78, 26, 15) (52, 26, 8)

56 23 13 43 33 8 (84, 28, 15) (56, 28, 9)

64 23 13 51 41 8 (96, 32, 15) (64, 32, 9)

p 2=

k0 7= k1 15=

d 7= d 11=

k0 k1

1100 10 01 10 11 00 1100 10 01 10 11 00

Figure 7.10 A low-weight configuration. The arrows indicate the connected “ones”.

p 4=

p 4=

k0 k1 k2 k3

7.4 Modeling Complicated Channels 71

7.4 Modeling Complicated Channels

Although our main focus in the thesis is on single-user communication on memoryless chan-

nels, we also wish to point out that the framework of realizations based on Tanner graphs

may be useful to model more complicated situations, in particular channels with memory.

The idea is to model the random behavior of the channel with local check cost functions.

As an example, consider the Gilbert-Elliot channel model [31], which is a binary sym-

metric channel with two different crossover probabilities, depending on whether the channel

is in the good or in the bad state, and some probability of going from the good to the bad

state and vice versa. The Gilbert-Elliot channel model is a simple model of channels gener-

ating error bursts. One way of handling the error bursts is to reorder the encoded symbols

with an interleaver before they are sent on the channel (and reorder the channel output back

again before decoding). This way, the decoder only “sees” the mean crossover probability

(weighted by the marginal probabilities of the two states) provided that the interleaving is

long enough. In the simplest case, the decoder just operates as if the channel was truly mem-

oryless, i.e., it searches for the codeword which corresponds to the fewest number of errors.

The disadvantage of this simple procedure is that some information about the channel is

discarded, leading to an inefficient system. Assume, for a moment, that the decoder knows

the true state of the channel at each symbol interval. Then this information could be used to

improve the performance by relying more on the good symbols and less on the bad ones. Of

course, the true states of the channel are inaccessible; it is possible, however, to estimate the

channel states given the channel output and the code structure. One way of doing this is to

use the interleaving scheme described above and an iterative decoding method, as follows.

First, the deinterleaved channel output is decoded as if the channel was memoryless. Then

the result of this decoding is fed back to a model of the channel, and used in a channel esti-

mation procedure based on this model. The channel estimates can then be used to obtain a

better decoding result, which may be used to get an even better channel estimate, and so on.

The sum-product algorithm and realizations with Tanner graphs seem to be an ideal tool

for modeling such a decoding procedure, as follows. We first consider the channel model

only. Let be the channel error vector and let be the

sequence of channel states. Let and be the crossover probabilities in the two channel

states, let and be the transition probabilities (is the probability of going from

state 1 to state 2), and let be the probability of starting in the state . Then the joint

probability distribution of the pair may be written as

. (7.1)

This probability may actually be seen as the global cost of a “configuration” , using the

multiplicative global cost function as defined for the sum-product algorithm in Section 3.2.

The Tanner graph used for that global cost function is shown in Figure 7.11; the factors of

(7.1) appear as local check (and site) cost functions, which are also shown in the figure.

Z Z1 … Zn, ,()= S S1 … Sn, ,()=

ε1 ε2

p12 p21 p12

ps1
s1

S Z,()

pS Z, s z,() ps1
psi si 1+,

i 1=

n 1–

∏ εsi

zi 1 εsi

1 zi––()
i 1=

n

∏=

s z,()

72 7 More on Code Realizations

We now include the code in the model. Let be an interleaved version

of a random codeword (uniformly distributed over the code), and let

be the received word (S and Z are defined as before). Then the a posteriori distribu-

tion of X conditioned on Y is

, (7.2)

where the sum is over all channel state sequences s. The terms of the sum can be written as

, (7.3)

using the fact that X and S are statistically independent. This probability distribution can be

modeled by a global cost function , which depends on the channel output y. The cor-

responding Tanner graph is illustrated in Figure 7.12. The code structure is represented by a

trellis and local check cost functions of the “indicator” type, as discussed in Section 3.2, so

that the trellis part of G is .

s1 s2 sn

znz2z1

ps2 s3,ps1 s2, psn 1– sn,

εs1

z1 1 εs1

1 z1––() εs2

z2 1 εs2

1 z2––() εsn

zn 1 εsn

1 zn––()

ps1

Figure 7.11 A Tanner graph for the Gilbert-Elliot channel model, with local check
(and site) cost functions.

X X1 … Xn, ,()=

Y Y 1 … Y n, ,()=

X Z+=

pX Y x y()
pX Y, x y,()

pY y()

1

pY y()
------------- pX Y S, , x y s, ,()

s
∑= =

pX Y S, , x y s, ,() pX x() pS s() pY X S, y x s,() pX x() ps1
psi si 1+,

i 1=

n 1–

∏ εsi

yi xi– 1 εsi

1 yi xi+––()
i 1=

n

∏= =

G x s,()

pX x()

s1 s2 sn
ps2 s3,ps1 s2, psn 1– sn,

εs1

y1 x1– 1 εs1

1 y1– x1+–() εs2

y2 x2– 1 εs2

1 y2– x2+–() εsn

yn xn– 1 εsn

1 yn– xn+–()

ps1

Interleaver

x1 x2 xn

Figure 7.12 Model for the system with trellis code (bottom), interleaver, and channel
(top). Note that the channel output influences the local check cost functions.y1 … yn, ,

7.4 Modeling Complicated Channels 73

In particular, the projection of G onto a codeword component is proportional to the a

posteriori distribution of conditioned on Y, i.e.,

. (7.4)

So, if the realization had been cycle-free, the sum-product algorithm would have computed,

as its final cost functions, the a posteriori distributions (7.4) (Theorem 3.2), thereby allowing

optimal (MAP) decoding of the codeword components conditioned on the channel output

Y. Obviously, the realization contains cycles, so we cannot use Theorem 3.2 directly; still, by

using a suitable interleaving scheme, it is possible to avoid short cycles in the Tanner graph,

thereby allowing at least a few cycle-free decoding iterations, as discussed in Chapter 5.

For the moment, this seems like a promising direction for future research.

X i

X i

pX i Y a y() pX Y x y()
x xi a=:

∑ 1

pY y()
------------- G x s,()

s
∑

x xi a=:
∑= =

X i

74

Chapter 8

Conclusions

The min-sum and sum-product algorithms are two fundamental algorithms that appear in

many versions, in many fields, and under different names. In particular, many well-known

decoding algorithms, such as Gallager’s decoding algorithms for low-density parity-check

codes, the Viterbi algorithm, the forward-backward algorithm, and turbo decoding are spe-

cial cases of either the min-sum or the sum-product algorithm. This observation is the main

contribution of this thesis, along with a general formulation of the two algorithms, within the

framework of “realizations” based on “Tanner graphs”.

The fundamental theoretical property of the min-sum and sum-product algorithms, their

optimality on cycle-free Tanner graphs, has been stated and proved in a general setting.

While cycle-free Tanner graphs have the advantage of yielding optimal decoders, such as the

Viterbi algorithm, they have a severe disadvantage regarding decoding complexity, which

increases exponentially with the minimum distance of the code. Tanner graphs with cycles,

on the other hand, offer significantly lower complexity, but the resulting “iterative” decoders

are generally suboptimal.

A major part of the thesis has been devoted to performance analysis of iterative decod-

ing. Unfortunately, the results are far from conclusive; some new results have been obtained,

though. In particular, the union bound commonly used with the Viterbi algorithm is shown

to be applicable to the min-sum algorithm in general, at least for the first few decoding itera-

tions; the bound seems rather weak, however. For further decoding iterations, the cycles of

the Tanner graph begin to influence the decoding process, which makes the analysis much

more difficult. Still, for a limited class of codes, we have characterized the decoding errors

remaining after infinitely many decoding iterations; the result suggests that the performance

is relatively close to maximum-likelihood, which is also verified by simulations. This result

is not strictly applicable to turbo codes; on the other hand, some similarity between turbo

codes and the codes in this class exists, indicating that the success of turbo decoding might

be partly “explained” by this result. In summary, our new results on decoding performance

might provide additional understanding of the underlying mechanisms, although they fail to

predict the amazing decoding performance of turbo coding, which is still only demonstrated

by simulations.

75

Since the performance of turbo coding (as indicated by theoretical code performance [8]

and simulation of decoding [7]) is so close to the Shannon limit, it is an adequate question

whether further research on coding methods is interesting. Indeed, in situations involving

single user communication on memoryless channels, and where very long block lengths are

tolerable, it seems unlikely that further improvements could have any practical significance.

(Of course it would still be desirable to obtain a better theoretical understanding, if for no

other reason than to provide guidance when designing turbo coding systems for particular

applications.)

On the other hand, many applications (such as telephony) actually demand relatively

short block lengths (under 1000 bits). In this area, it appears promising to look at explicit

code constructions (rather than the random construction used in turbo codes, which works

well for very long blocks). A particular example is the work of Kötter and Nilsson [22][23],

which indicates that interleaving schemes obtained from graph theory may provide better

performance than random interleavers for moderate block lengths. In Section 7.3.1, we

pointed out a slightly different way of constructing short turbo codes.

Another research area that appears promising is coding in more complicated situations,

for example multiuser communication and channels with memory. As pointed out in

Section 7.4, the framework of realizations on Tanner graphs is a powerful and straightfor-

ward tool for constructing iterative decoding schemes in such situations.

76

Appendix A

Proofs and Derivations

A.1 Proof of Theorems 3.1 and 3.2

We will actually only carry out the proof for Theorem 3.1, i.e., for the min-sum algorithm.

The proof is readily adapted to the sum-product algorithm by replacing all sums with prod-

ucts and all minimizations with sums.

Let Q be a cycle-free check structure for the system . For any site subset

, we will use the notation

(A.1)

for the part of the global cost that corresponds to R. (We then have as a spe-

cial case.)

To prove the theorem, we will start with the claimed expression (3.6) for the final site

cost functions. (The final check cost functions will be discussed afterwards.) This expression

will be broken down recursively, working backwards through the algorithm, until only the

local cost functions remain. In order to keep the notation transparent, the proof is carried out

only for the specific check structure of Figure A.1; the generalization to arbitrary check

structures will be obvious.

The final site cost functions

Consider the final cost for some value at site 1 in Figure A.1. Let

denote the claimed value for the final cost, i.e., . We write this

expression as a sum of three terms, patterned after the updating rule:

(A.2)

(A.3)

N W B, ,()
R N⊆

GR xR() γ E xE()
E Q∈ E R⊆:

∑ γ s xs()
s R∈
∑+≡∧

GN x() G x()=

µs

µ1 a() a A1∈ ν1 a()

ν1 a() G x()
x B∈ x1 a=:

min≡∧

ν1 a() G x()
x B∈ x1 a=:

min=

γ 1 a() GR1
xR1

() γ E1
xE1

()+ GR2
xR2

() γ E2
xE2

()++ +{ }
x B∈ x1 a=:

min=

A.1 Proof of Theorems 3.1 and 3.2 77

(A.4)

This expression has the same structure as the updating rule for the final costs (cf.

Figure A.1), and it follows that the final cost functions indeed get the claimed value , pro-

vided that the cost functions coming into site 1 have the right value, i.e., provided that

 and . Due to the symmetry of the situation, it suffices to con-

sider .

The check-to-site cost functions

Figure A.2 illustrates the computation of , which we claim equals . The lat-

ter can be broken up into three independent parts: the local check-set cost and two

costs associated with the site subsets and , respectively:

(A.5)

(A.6)

1

3

2

R1 2 3 …, ,{ }=

R2 4 …,{ }=

4

E1

E2

E4

E3

µE1 1,

µE2 1,

µ1 a() γ 1 a() µE1 1, a() µE2 1, a()+ +=

Figure A.1 Computation of the final site cost .µ1 a()

γ 1 a() GR1
xR1

() γ E1
xE1

()+[]
xR

1
1{ }∪ BR

1
1{ }∪∈ x1 a=:

min

νE1 1, a()

GR2
xR2

() γ E2
xE2

()+[]
xR

2
1{ }∪ BR

2
1{ }∪∈ x1 a=:

min

νE2 1, a()

+ +=

                                 

ν1

µE1 1, νE1 1,= µE2 1, νE2 1,=

µE1 1,

µE s,

µE1 1, a() νE1 1, a()

γ E1
xE1

()

R2 R3

νE1 1, a() GR1
xR1

() γ E1
xE1

()+[]
xR

1
1{ }∪ BR

1
1{ }∪∈ x1 a=:

min=

γ E1
xE1

() GR2
xR2

() GR3
xR3

()+ +[]
xR

1
1{ }∪ BR

1
1{ }∪∈ x1 a=:

min=

78 A Proofs and Derivations

. (A.7)

Again, this expression has the same structure as the updating formula for , cf.

Figure A.2. To prove that the updating indeed computes , we will show that the input

costs to the updating rule are the same as the terms of (A.7), i.e., that and

. Due to the symmetry of the situation, it suffices to consider .

The site-to-check cost functions

Figure A.3 illustrates the computation of , which we claim equals . The lat-

ter can be broken up into three independent parts: the local site cost and two costs

associated with the site subsets and , respectively:

(A.8)

(A.9)

1

3

2

R1 2 3 …, ,{ }=

4

E1

E2

E4

E3

µE1 1,

Figure A.2 Computation of the check-to-site cost .µE1 1, a()

µ2 E1,

µ3 E1,

R3 3 …,{ }=R2 2 …,{ }=

µE1 1, a() γ E xE() µ2 E1, x2() µ3 E1, x3()+ +[]
xE

1
BE

1
∈

x1 a=

min:=

γ E1
xE1

() GR2
x′R2

()
x ′R

2
BR

2
∈ x ′2 x2=:

min

ν2 E1, x2()

GR3
x′R3

(
x ′R

3
BR

3
∈ x ′3 x3=:

min

ν3 E1, x3()

+ +

1
BE

1
∈ x1 a=:

min

                    

µE1 1,
νE1 1,

µ2 E1, ν2 E1,=

µ3 E1, ν3 E1,= µ2 E1,

µs E,

µ2 E1, a() ν2 E1, a()

γ 2 a()

R3 R4

ν2 E1, a() GR2
a()

xR
2

BR
2

∈ x2 a=:

min=

γ 2 a() GR3
xR3

() γ E3
xE3

()+ GR4
xR4

() γ E3
xE3

()++ +{ }
xR

2
BR

2
∈ x2 a=:

min=

A.1 Proof of Theorems 3.1 and 3.2 79

(A.10)

Again, this expression has the same form as the updating rule for , and we only need to

show that the input to the updating rule has the value of the last terms of (A.10). This can be

done by going back to the previous step, “the check-to-site cost functions ”. This pro-

cess is repeated recursively until the leaf sites are reached (those that belong to a single

check set), where we observe that the very first updating step computes the desired expres-

sion :

. (A.11)

This completes the proof for the final site costs. For the final check-set costs , only the

first step of the proof (the last step of the algorithm) needs to be changed, i.e., we need to

start with the claimed expression (3.7) for the final check-set cost. Thus, let E be any check

set (in a cycle-free check structure), and let , , be the set of sites that are reachable

from E through s. Then the claimed expression can be written as

1

3

2

4

E1

E2

E4

E3

µ2 E1,

R2 2 …,{ }=

µ2 E1, a() γ 2 a() µE3 2, µE4 2,+ +:=

Figure A.3 Computation of the site-to-check cost .µ2 E1, a()

R3

R4

µE3 2,

µE4 2,

γ 2 a() GR3
xR3

() γ E3
xE3

()+[]
xR

3
2{ }∪ BR

3
2{ }∪∈ x2 a=:

min

νE3 2, a()

GR4
xR4

() γ E3
xE3

()+[]
xR

4
2{ }∪ BR

4
2{ }∪∈ x1 a=:

min

νE4 2, a()

+ +=

                                 
µ2 E1,

µE s,

νs E,

νs E, xs() G s{ } xs()
xs Bs∈
min γ s xs()= =

µE a()

Rs s E∈

80 A Proofs and Derivations

,

(A.12)

which matches the formula for , and the recursive process of above can be applied to

the terms of the last sum in (A.12).

A.2 Derivations for Section 3.3

We will consider the complexity of the algorithms presented in terms of the number of

binary operations, such as additions, multiplications, and taking the minimum of two values.

It is easy to see that adding n numbers requires binary additions; similar results hold

for multiplication and taking minimum. By examining the updating rules (3.1)–(3.4) and

(3.10)–(3.13), it is also easy to verify that the min-sum and sum-product algorithms require

exactly the same number of binary operations (although the complexity of each operation

may be higher for the sum-product algorithm). Therefore, in the following we will only

mention the min-sum algorithm. Further, we will not consider the computation of the local

costs, and we will (for simplicity) assume that there are no local check costs.

Let be a system with the check structure Q. Let denote the number of

binary operations required to compute the cost function µ. For a site s, let be the degree

of s, i.e., the number of check sets that s appears in. By simply counting the number of oper-

ations specified by the update rules, we get the complexity for updating the intermediate

site-to-check cost functions , and , as

 if s is visible, (A.13)

 if s is hidden. (A.14)

The difference between (A.13) and (A.14) arises because we have to add the local costs

 (i.e., the channel information) when s is visible. Note that is independent of

the check set E. Note also, that for a hidden site s that only belongs to two check sets (such

as trellis state spaces), we have , i.e., there is nothing to compute since the out-

going cost functions from such sites are just copies of the incoming cost functions. Also, for

a “leaf” site s (i.e., a site that belongs to exactly one check set), there is nothing to compute

and we have . (In fact, if a leaf site was hidden, we would get a negative number

in (A.14). This may be attributed to the fact that is the all-zero function in that case,

and the computations regarding the adjacent check can be simplified by simply discarding

. However, the “negative complexity” obtained from (A.14) need not necessarily “bal-

ance” this reduction in complexity. We will assume that there are no hidden leaf sites.)

The complexity of computing a final site cost function , , is

 if s is visible. (A.15)

G x()
x B∈ xE a=:

min γ E a() GRs
xRs

()
s E∈
∑+

x B∈ xE a=:

min γ E a() GRs
xRs

()
x B∈ xE a=:

min
s E∈
∑+= =

µE a()

n 1–

N W B, ,() C µ()

s

µs E, E Q∈ s E∈

C µs E,() As s 1–()=

C µs E,() As s 2–()=

γ s a() C µs E,()

C µs E,() 0=

µs E, γ s=

µs E,

µs E,

µs s N∈

C µs() As s=

A.2 Derivations for Section 3.3 81

We now turn to the complexity of updating the check-to-site cost function . We may

divide the computation into two steps. At the first step we loop through all local configura-

tions and compute their cost sum; this takes operations (if there is no local

check cost function , otherwise are needed). At the second step, we con-

sider, for each site value , all local configurations that match with a, i.e.,

with , and take the minimum of their costs. So, let be

the number of local configurations that match with a. Then, the number of operations in this

second step to compute is , and the total number of operations in the second

step is . By adding the complexity of the two steps, we get

. (A.16)

For large and , there are often more efficient ways of updating the check E than just

looping through the local behavior. Such “optimizations” can often be described as replacing

the check with a small cycle-free realization of . For example, a parity check on k sites

has a local behavior of size ; if the corresponding check-to-site cost functions are

computed in the “naive” way, by applying the updating formula (3.2) k times (one for each

site of E), the total complexity of that check is (using (A.16)) . By

implementing the parity check as a small cycle-free system, a much lower complexity is

obtained, at least for large values of k. A parity check of size k can be replaced by par-

ity checks of size three, and intermediate (hidden) binary sites, as in Figure A.4. Using

(A.16) again, the number of operations for each such small check is 18, so the total complex-

ity of the refined check structure is (the new hidden sites require no computation,

and the other sites are excluded from the comparison).

Since the savings that can be obtained in this way depend heavily on , we will not

consider this issue further, but instead assume that the local behaviors are small, so that

(A.16) is useful.

A.2.1 Updating All Intermediate Cost Functions

When using the min-sum (or sum-product) algorithm on a realization with cycles, all inter-

mediate cost functions typically have to be computed for each iteration. Here we consider

the number of operations needed for each such iteration.

µE s,

BE E 2–()
γ E BE E 1–()

a As∈ xE BE∈
xs a= Ma xE BE∈ xs a=:{ }≡∧

µE s, a() Ma 1–

Ma 1–()
a As∈∑ BE As–=

C µE s,() BE E 2–() BE As–+ BE E 1–() As–= =

BE E

BE

2k 1– µE s,

k 2k 1– k 1–() 2–()

k 2–

k 3–

18 k 2–()

E

s1 s2 s3 s4 s1 s2 s3 s4s5 s5

Figure A.4 A refinement of a check E (left) into a small cycle-free check structure
(right).

BE

82 A Proofs and Derivations

Consider first the computation of the final cost function and all the site-to-check cost

functions from a site s, i.e., and for all check sets E with . In a naive imple-

mentation, we might compute these cost functions independently, with the total number of

operations . A more economical way is to save and

reuse the temporary sums that occur in the computations, as follows. Let be the

check sets that s belongs to. Let and for . Similarly,

let and for . Then . Comput-

ing for all i requires operations, while (for all i) requires

operations. The final additions to get the cost functions require opera-

tions (not counting addition with a zero constant) The total number of operations

involved in computing the site-to-check cost functions from the site s in this way is thus

 if s is visible. (A.17)

For hidden sites, the number of additions is one less, as usual. The computation of the final

cost function requires only a single addition (for each element of the site alphabet), since

. Also, it is not necessary that all outgoing cost functions of the site s are

computed at the same time for this updating scheme to work.

In fact, this “optimized” site updating scheme can be obtained by replacing the site with

a small cycle-free realization of it (just as with checks), consisting of several sites that are

copies of the original one. Each site with degree larger than two is replaced by a small check

structure, as illustrated in Figure A.5. The refined check structure consists of several new

sites with the same alphabet as the original site, only one of which is visible, and each is

connected to only two check sets. The new checks that are introduced are “repetition codes”,

i.e., they force their sites to have the same value. In other words, the new hidden sites are

“copies” of the original site s.

Consider a realization of the output code (where are the visible

sites) and a corresponding check structure Q. The number of binary operations of a complete

update of all cost functions can be expressed using (A.17) and (A.16). Updating all site-to-

check cost functions thus amounts to

(A.18)

µs µs E, s E∈

C µs() C µs E,()
E Q∈ s E∈:∑+ s 2 As=

E1 … E s, ,
L0 γ s= Li Li 1– µE i s,+= 1 i s<≤

R s 1+ 0= Ri Ri 1+ µE i s,+= 1 i s≤< µs E i, Li 1– Ri 1++=

Li As s 1–() Ri As s 2–()
µs E i, As s 2–()

C s

C s As 3 s 5–()=

µs

µs L s 1– µE s s,
+=

E1 E2 E3

s

E1 E2 E3

s

Figure A.5 A site, s, which is connected to three checks (left), is refined into several
sites, each connected to only two checks (right).

E4 E4

N W B, ,() BV V N⊆

As 3 s 5–()
s V∈
∑ As 3 s 6–()

s N V\∈
∑+

A.2 Derivations for Section 3.3 83

binary operations, while updating all check-to-site functions requires

(A.19)

binary operations. The total number of binary operations of a complete update (excluding

the final cost functions) is thus

. (A.20)

Computing the final cost functions requires only additions for each site s for which the

final cost function is desired.

A.2.2 The Min-Sum Algorithm on Cycle-Free Realizations

In a cycle-free code realization, it is natural to use a smart updating order as discussed in

Section 3.3. Such an updating order consists of two updating phases. In the first phase, all

cost functions pointing “towards” a given site r, called the “root site”, are computed, as well

as the final cost function at r. In the second phase, the remaining intermediate cost functions,

which point “outwards” from r are computed, together with the final cost functions. With the

min-sum algorithm, the second updating phase may be replaced by a simple “backtracking”

procedure (as in the Viterbi algorithm), if the goal is just to find the lowest-cost valid config-

uration. We now consider only the first phase.

For each site s except r, we need to compute where is the check set contain-

ing s which is “closest” to the root site r. For each check set E, we need to compute ,

where is the site of E which is “closest” to r. Finally, we need to compute . Thus, the

complexity of the first phase may be expressed as

. (A.21)

Now, let be a partition of the site set N such that L are the leaf sites, I are the

visible interior sites except for the root site r, and H are the hidden sites except for r. Then

we can expand (A.21) as

(A.22)

, (A.23)

BE E 1–() As–[]
s E∈
∑

E Q∈
∑ BE E 2 E–()

E Q∈
∑ As s

s N∈
∑–=

BE E 2 E–()
E Q∈
∑ As 2 s 5–()

s V∈
∑ As 2 s 6–()

s N V\∈
∑+ +

As

µs E s(), E s()

µE s E(),
s E() µr

C 1

C 1 C µs E s(),()
s N∈ s r≠:

∑ C µE s E(),()
E Q∈
∑ C µr()+ +=

L I H r{ }, , ,()

C 1 As s 1–()
s I∈
∑ As s 2–()

s H∈
∑ BE E 1–() As E()–[]

E Q∈
∑ r Ar+ + +=

As s
s I∈
∑ As s 1–()

s H∈
∑ BE E 1–()

E Q∈
∑+ +=

84 A Proofs and Derivations

where the last equality follows from , which holds

because contains all interior sites exactly once, except for the

root site r which occurs times.

As mentioned, with the min-sum algorithm it often suffices to find the best configuration,

and it only remains to find the optimum value at r and then trace stored pointers outwards

through the Tanner graph. The complexity of finding the smallest of values is ,

so the overall complexity in this case is plus the complexity of following the

pointers.

A.3 Derivation for Section 3.4

For the updating of , consider the site-to-check costs , , and let and

denote their sign and magnitude, so that . With these definitions, the updat-

ing rule can be written in the simple form

, (A.24)

where runs through all sites in E except that . To see that this is in fact the case, we

first define the function

, (A.25)

i.e., is the sum of the site-to-check costs over the “ones” in (except for the

site s). We also define the sets and

. We can then write the cost of “0” as

(A.26)

, (A.27)

and, similarly, the cost of “1” as

, (A.28)

so that the cost difference is

As E()E Q∈∑ Ass V H∪∈∑ r Ar+=

s E() E Q∈:{ } s I H∪∈
r

Ar Ar 1–

C 1 Ar 1–+

µE s, µs ′ E, s′ s≠ Ss ′ Ms ′
µs ′ E, Ss ′Ms ′=

µE s, Ss ′
s ′
∏ 

  Ms ′
s ′

min=

s′ s′ s≠

c BE R→ c xE() µs ′ E,
s ′ support xE()∈ s ′ s≠:

∑=: :

c xE() µs ′ E, xE

BE
0() xE BE∈ xs 0=:{ }≡∧

BE
1() xE BE∈ xs 1=:{ }≡∧

µE s, 0() µs ′ E, xs ′()
s ′ E∈ s ′ s≠:

∑
xE BE

0()∈
min=

µs ′ E, 0()
s ′ E∈ s ′ s≠:

∑ c xE()
xE BE

0()∈
min+=

µE s, 1() µs ′ E, 0()
s ′ E∈ s ′ s≠:

∑ c xE()
xE BE

1()∈
min+=

µE s, µE s, 1() µE s, 0()–≡∧

A.4 Derivation used in Section 5.4 85

. (A.29)

Consider a local configuration that minimizes among all local configurations

in . Let be the value at the site s in this minimizing configuration; clearly,

. We will now try to find a local configuration , for , which

minimizes in . Then we will have, from (A.29), that .

Assume, for a moment, that for some , . Then there is a

 with (the one that differs from only at s and), and we can

conclude that . So, in the following, we assume that for all .

Since the bits of are chosen freely (except at s) to minimize , it is clear that

 exactly for . This means that for any local configuration we can write

, (A.30)

and in particular, for where and differ in at least one bit (except s), it is

best to choose to minimize . Thus, . It remains to determine the

sign of . From (A.29), we see that if , otherwise

. But precisely if there is an even number of ones in , i.e., if

for an even number of sites ; it follows that .

A.4 Derivation used in Section 5.4

Let X and Y be i.i.d. random variables with density and distribution functions

. Let . Let Z be a random variable

defined as a function of X and Y as

. (A.31)

Then we have the density of Z as

(A.32)

. (A.33)

The expectation of Z is then

µE s, c xE()
xE BE

1()∈
min c xE()

xE BE
0()∈

min–=

xÊ BE∈ c .()

BE a xÊ()s=

xÊ BE
a()∈ xẼ BE

b()∈ b 1 a–=

c .() BE
b() µE s, c xẼ() c xÊ()–=

µs ′ E, 0= s′ E∈ s′ s≠
xẼ BE

b()∈ c xẼ() c xÊ()= xÊ s′
µE s, 0= µs ′ E, 0≠ s′

xÊ c .()

xs ′ˆ 1= µs ′ E, 0< xE

c xE() c xÊ() Ms ′
s ′ support xE xÊ–()∈ s ′ s≠:

∑+=

xẼ BE
b()∈ xẼ xÊ

s′ Ms ′ µE s, Ms ′s ′min=

µE s, µE s, c xẼ() c xÊ()– 0>= xÊ BE
0()∈

µE s, 0< xÊ BE
0()∈ xÊ µs ′ E, 0<

s′ sign µE s,() Ss ′s ′∏=

f X x() f Y x()=

FX x() FY x() P X x≤()= = FX x() FY x() 1 FX x()–= =

Z signXY min X Y,()=

f Z z()
2 f X z()FX z() 2 f X z–()FX z–()+ if z 0≥,

2 f X z()FX z–() 2 f X z–()FX z()+ if z 0<,



=

2 f X z()FX z() 2 f X z–()FX z–()+=

86 A Proofs and Derivations

(A.34)

(substituting z for -z in second the term of the integral)

(A.35)

(A.36)

(utilizing)

. (A.37)

We now assume that X and Y are gaussian with and , i.e.

(A.38)

. (A.39)

Inserting this into (A.37), and performing variable substitutions of the form ,

, we get (with the aid of Maple)

, (A.40)

and

. (A.41)

E Z[] z f Z z() zd

∞–

∞

∫ 2 z f X z()FX z() zd

∞–

∞

∫ 2 z f X z–()FX z–() zd

∞–

∞

∫+= =

2 z f X z() 1 FX z()–() zd

∞–

∞

∫ 2 z f X z()FX z–() zd

∞–

∞

∫–=

2 z f X z() zd

∞–

∞

∫ 2 z f X z() FX z() FX z–()+() zd

∞–

∞

∫–=

FX z() FX z–()+ FX z() FX z–()+=

2E X[] 2 z f X z()FX z() zd

∞–

∞

∫
A

– 2 z f X z()FX z–() zd

∞–

∞

∫
B

–

               

E X[] µ= V X[] σ2=

f X x()
1

2πσ2
-----------------e

x µ–()2

2σ2
-------------------–

=

FX x()
1

2πσ2
-----------------e

t µ–()2

2σ2
------------------–

td

∞–

x

∫ Φ t µ–

σ
----------- 

 ≡∧=

z u v+=

t u v–=

A
µ
2

σ
2 π
----------+=

B µQ 2
µ
σ
---()

e

µ2

σ2
------–

σ
2 π
-------------–=

A.4 Derivation used in Section 5.4 87

where is the standard tail function of the normal distribution. Inserting A and B in

(A.37) gives

(A.42)

. (A.43)

We now go on to compute the second moment of Z.

(A.44)

(again, we substitute for in the second term)

(A.45)

(A.46)

(A.47)

(A.48)

With similar substitutions as in the case of the first moment, we get

(A.49)

Q .()

E Z[] 2µ 2
µ
2

σ
2 π
----------+ 

 – 2 µQ 2
µ
σ
---()

e

µ2

σ2
------–

σ
2 π
-------------–

 
 
 
 

–=

µerf
µ
σ
---()

σ
π

-------–
e

µ2

σ2
------–

π
---------+=

E Z2[] z2 f Z z() zd

∞–

∞

∫ 2 z2 f X z()FX z() zd

∞–

∞

∫ 2 z2 f X z–()FX z–() zd

∞–

∞

∫+= =

z– z

2 z2 f X z() 1 FX z()–() zd

∞–

∞

∫ 2 z2 f X z()FX z–() zd

∞–

∞

∫+=

2E X2[] 2 z2 f X z()FX z–() zd

∞–

∞

∫ 2 z2 f X z()FX z() zd

∞–

∞

∫–+=

2E X2[] 2 z2 f X z() f X t() td

∞–

z–

∫ zd

∞–

∞

∫ 2 z2 f X z() f X t() td

∞–

z

∫ d

∞–

∞

∫–+=

2E X2[] 2 z2 f X z() f X t() td

z–

z

∫ zd

0

∞

∫
A

z2 f X z() f X t() td

z

z–

∫ zd

∞–

0

∫
B

+

 
 
 
 
 

–=

                 

A 2 u v+()2 f X u v+() f X u v–() vd

0

∞

∫ ud

0

∞

∫=

88 A Proofs and Derivations

, (A.50)

and

(A.51)

. (A.52)

Inserting in (A.48), we obtain

(A.53)

. (A.54)

A.5 Proofs for Section 6.1

A.5.1 Proof of Theorem 6.1

To prove the theorem, we will need the following lemma:

Lemma A.1 On a finite Tanner graph, the length of any irreducible walk is

upper bounded by the number of edges in the graph.

Proof. Let be a walk where n is larger than the number of edges in the

Tanner graph. Then there is a corresponding sequence

of alternating sites and check sets on the tree. Any combination of a

site and a check set (with) corresponds to an edge on the Tanner graph;

since n is larger than the number of edges, it follows that there are integers i

and such that and correspond to the same edge. But

then corresponds to a closed walk, and the remaining

sequence corresponds to a walk, thus

the walk is reducible. ❑

Proof of Theorem 6.1. Let be the walk corresponding to a

deviation e (the root site is in the middle of the walk). We now factor this walk

1

4π
------ µσ π 2σ2+()e

µ2

σ2
------– 1

2
--- µ2 2µσ

π
---------- σ2+ + 

  1 Q
µ 2

σ
-----------()– 

 +=

B 2 u v+()–()2 f X u v+()–() f X u v–() vd

0

∞

∫ ud

0

∞

∫=

1

2
--- µ2 σ2 2µσ

π
----------–+ 

 Q
µ 2

σ
-----------()

σ2

2π

µσ
4 π
----------– 

 e

µ2

σ2
------–

+=

E Z2[] 2 µ2 σ2+() 2A– 2B–=

µ2 σ2 2σ2

π
---------e

µ2

σ2
------–

–
2µσ

π
----------erf

µ
σ
---()–+=

s1…sn

t1 F1 t2 F2 … tn Fn, , , , , ,
t F,()

t F∈

j i> ti F i,() t j F j,()
ti F i … t j 1– F j 1–, , , ,

t1 F1 … ti 1– F i 1– t j F j … tn Fn, , , , , , , , ,
s1…sn

S s1 s2 … sk, , ,=

A.5 Proofs for Section 6.1 89

into a collection of irreducible closed walks and a remaining irre-

ducible walk . The cost of e may be expressed as

, (A.55)

where the cost of any of the “factor” irreducible walks is finite (since

their length is finite). Let be the smallest cost of any irreducible closed

walk. Then

(A.56)

which tends to infinity if . Thus, when the number of itera-

tions tends to infinity only if some irreducible closed walks have negative (or

zero) cost. ❑

A.5.2 Proof of Theorem 6.2

Let and be the intermediate cost functions after iteration i, and

assume that as , for all check sets E and sites

. Then, for any site , there exists an integer such that both

(A.57)

and

(A.58)

for all . Let be the maximum over these , .

We now fix a check set E, a site , and some . Recall that is

the lowest cost on the subtree emanating from s through E of all valid configu-

rations x with . Let be such a lowest-cost configuration. But (A.57)

and (A.58) imply that is all-zero from the root site on to depth . We

record this as a lemma:

For any fixed check set E, site , and any , the tree configuration

with lowest cost on the subtree through E is zero from the root on to depth

. ❑

S1 … Sm, ,
S0

G e() γ si

s 1=

k

∑ γ s
s S0∈
∑ γ s

s Si∈
∑

i 1=

m

∑+ G S0() G Si()

i 1=

m

∑+= = =

G S()

Ĝ

G e() G S0() mĜ+≥

Ĝ 0> G e() 0≤

µE s,
i() µs E,

i()

µE s,
i()

1() µE s,
i()

0()– ∞→ i ∞→
s E∈ s N∈ ls

µE s,
i()

0() µE s,
i()

1()<

µs E,
i()

0() µs E,
i()

1()≤

i ls≥ l0 ls s N∈

s E∈ l l0> µE s,
i()

0()

xs 0= x̂

x̂ l l0–

s E∈ l l0> x̂

l l0–

90 A Proofs and Derivations

Continuing with the proof of Theorem 6.2 we now assume, contrary to the

claim of the theorem, that there exists an irreducible closed walk on Q

such that . We will derive a contradiction, which proves the claim.

First, note that there exists a real number τ such that

(A.59)

for any walk of length at most . We now choose a site s in S.

Let E be the check set “between” s and its successor in S. For some fixed

, let be the lowest-cost configuration with , as discussed

above. We now travel from the root to one of the leaves, along the walk that

corresponds to circulating in S; along this path, we invert all bits of , which

results in a valid tree configuration with root value one. This new config-

uration cannot have a cost lower than , and thus

(A.60)

But the above lemma implies that is zero from the root on to depth .

By using (A.59) and the fact that , we get

. (A.61)

Since τ is independent of l, this contradicts our assumption that

, and the theorem is proved. ❑

A.5.3 Proof of Lemma 6.3

Let be an irreducible closed walk, and let the corresponding alter-

nating site/check set sequence be . Note that, for irreducible

walks, implies , since otherwise would be a

closed walk and the remaining sites would also be a

walk (the last fact follows since a site belongs to exactly two check sets, and

thus and implies).

Assume, contrary to the claim, that with . Then we have

 and , and thus we have (since).

But then is a closed walk that can be removed from S, leaving the

walk , which is impossible since we assumed S to be

irreducible. ❑

S N⊆
G S() 0≤

γ si

i 1=

k

∑ τ<

s1 … sk, , l0 S+

l l0> x̂ x̂s 0=

Ŝ

x̂

x
1()

µE s,
l()

1()

µE s,
l()

1() µE s,
l()

0()– γ s' xs'
1()

() γ s' x̂s'()–
s' Ŝ∈
∑≤

x̂ l l0–

G S() 0≤

µE s,
l()

1() µE s,
l()

0()– τ≤

µE s,
l()

1() µE s,
l()

0()– ∞→

s1 … sn, ,
s1 E1 … sn En, , , ,

si s j= E i E j 1–= si … s j 1–, ,
s1 … si 1– s j … sn, , , , ,

E i E j 1–≠ si s j= E i 1– E j≠

si s j sk= = i j k< <
E i E j 1–= E j Ek 1–= E i Ek 1–≠ E j 1– E j≠

si … sk 1–, ,
s1 … si 1– sk … sn, , , , ,

A.6 Proof of Theorem 7.2 91

A.5.4 Proof of Lemma 6.4

Let be an irreducible closed walk with for and

assume that no site occurs twice between i and j, i.e., there are no with

 and (we can do this with full generality because, if there

were such p and q, then we would simply take and and start

over). Then is a cycle, because (), and

 are all in the same check set (see the proof for Lemma 6.3).

By applying the same reasoning to the site sequence , we

see that there is a cycle there too. ❑

A.6 Proof of Theorem 7.2

For disjoint site subsets I and J, the notation will be used for the concatenation of

 and , i.e., with and . To prove Theorem 7.2, we

need the following lemma:

Lemma A.2 Let be a linear system and let be a partition

of the site set N. Then, for arbitrary valid configurations and , the

“mix” configuration is valid (i.e., in B) if and only if

, i.e., if and only if .

Proof. . Similarly,

. Together, this gives

. ❑

Proof of Theorem 7.2. We first claim that, for any valid configurations x and y

such that , we have , where and

. Indeed, from Lemma A.2, we have and thus

, which implies by Lemma A.2

(applied to).

The mapping (for arbitrary

) is thus well defined. It remains to verify that is linear, i.e., that

 for any and any scalars .

This follows from the following derivation.

(A.62)

(A.63)

. (A.64)

S s1 … sn, ,= si s j= i j<
p q,

sp sq= i p q j< < <
i p= j q=

si 1+ si 2+ … s j 2– s j 1–, , , , si s j= si 1+

s j 1–

s j … sn s1 … si, , , , ,

xI yJ,[]
xI yJ z xI yJ,[] W I J∪∈= zI xI= zJ yJ=

N W B, ,() I J,()
x B∈ y B∈

xI yJ,[]
σI J, x() σI J, y()= y x– B̃I B̃J+∈

xI yJ,[] B∈ 0I y x–()J,[] B∈ y x–()J B̃J∈⇔ ⇔
xI yJ,[] B∈ y x–()I B̃I∈⇔
xI yJ,[] B∈ y x– B̃I B̃J+∈⇔

xK yK= σI ′ J ′, x'() σI ′ J ′, y'()= x' xI ′ J ′∪≡∧
y' yI ′ J ′∪≡∧ xK xI yJ, ,[] B∈

x'I ′ y'J ′,[] BI ′ J ′∪∈ σI ′ J ′, x'() σI ′ J ′, y'()=

BI ′ J ′∪

ϕ BK SI ′ J ′, BI ′ J ′∪()→ xK
|→ σI ′ J ′, xI ′ J ′∪(): :

x B∈ ϕ
ϕ αxK βyK+() αϕ xK() βϕ yK()+= x y B∈, α β,

ϕ αxK βyK+() σI ′ J ′, αxK βyK+()
I ′ J ′∪()=

ασI ′ J ′, xI ′ J ′∪() βσI ′ J ′, yI ′ J ′∪()+()=

αϕ xK() βϕ yK()+()=

92

References

 [1] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley & Sons, 1991.

 [2] G. D. Forney, Jr., “The Viterbi algorithm”, Proc. IEEE, vol. 61, pp. 268–278, March

1973.

 [3] D. J. Muder, “Minimal trellises for block codes”, IEEE Trans. Inform. Theory,

vol. IT–34, pp. 1049–1053, Sept. 1988.

 [4] G. Solomon and H. C. A. van Tilborg, “A connection between block and convolu-

tional codes”, SIAM J. of Appl. Math, vol. 37, no. 2, Oct. 1979.

 [5] R. G. Gallager, “Low-density parity-check codes”, IRE Trans. Inform. Theory, vol. 8,

pp. 21–28, Jan. 1962.

 [6] R. M. Tanner, “A recursive approach to low complexity codes”, IEEE Trans. Inform.

Theory, vol. IT-27, pp. 533–547, Sept. 1981.

 [7] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting

coding and decoding: Turbo codes (1)”, Proc. ICC’93, Geneva, Switzerland, 1993,

pp. 1064–1070.

 [8] S. Benedetto and G. Montorsi, “Unveiling turbo codes: some results on parallel con-

catenated coding schemes”, to appear in IEEE Trans. Inform. Theory.

 [9] N. Wiberg, H.-A. Loeliger, R. Kötter, “Codes and Iterative Decoding on General

Graphs”, European Trans. on Telecomm., vol. 6, no. 5, pp. 513–526, Sept. 1995.

 [10] J. C. Willems, “Models for dynamics”, in Dynamics Reported, vol. 2, U. Kirchgraber

and H. O. Walther, eds., Wiley and Teubner, 1989, pp. 171–269.

 [11] H.-A. Loeliger, G. D. Forney, T. Mittelholzer and M. D. Trott, “Minimality and

observability of group systems”, Linear Algebra & Appl., vol. 205–206, pp. 937–963,

July 1994.

 [12] W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes. 2nd ed., Cambridge,

MA: MIT Press, 1972.

 [13] N. Wiberg, Approaches to Neural-Network Decoding of Error-Correcting Codes,

Linköping Studies in Science and Technology, Thesis No. 425, 1994.

References 93

 [14] J. Hagenauer and L. Papke, “Decoding ‘turbo’-codes with the soft output Viterbi

algorithm (SOVA)”, Proc. 1994 IEEE Int. Symp. Inform. Th., Trondheim, Norway,

June 27–July 1, 1994, p. 164.

 [15] V. A. Zinoviev and V. V. Zyablov, “Decoding of non-linear generalized concatenated

codes”, Probl. Peredach. Inform., vol. 14, pp. 46–52, 1978.

 [16] J. L. Massey, Threshold decoding, MIT Press, Cambridge, MA, 1963.

 [17] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear Codes for

Minimizing Symbol Error Rate”, IEEE Trans. Inform. Theory, vol. IT-20, pp. 284–

287, March 1974.

 [18] R. Kindermann and J. L. Snell, Markov Random Fields and their Applications. Prov-

idence: American Mathematical Society, 1980.

 [19] J. Hagenauer, P. Hoeher, “A Viterbi algorithm with soft-decision outputs and its

applications”, Proc. GLOBECOM’89, Dallas, Texas, pp. 47.1.1–47.1.7, Nov. 1989.

 [20] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

 [21] R. Johannesson, K. S. Zigangirov, Fundamentals of Convolutional Codes, Unfinished

working manuscript, Aug. 1992.

 [22] J. E. M. Nilsson and R. Kötter, “Iterative decoding of product code constructions”,

Proc. ISITA94, pp. 1059–1064, Sydney, November 1994.

 [23] R. Kötter and J. E. M. Nilsson, “Interleaving strategies for product codes”, Proc.

EIDMA Winter Meeting on Coding Th., Inform. Th. and Cryptol., Veldhoven, Nether-

lands, Dec. 19–21, 1994, p. 34.

 [24] A. E. Brouwer and A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer,

Berlin, 1989.

 [25] P. K. Wong, “Cages—a survey”, J. Graph. Th., vol. 6, pp. 1–22, 1982.

 [26] G. D. Forney, Jr., “Density/length profiles and trellis complexity of linear block codes

and lattices”, Proc. IEEE Int. Symp. Inform. Th., Trondheim, Norway, June 27–

July 1, 1994, p. 339.

 [27] A. Lafourcade-Jumenbo and A. Vardy, “On Trellis Complexity of Block Codes: Opti-

mal Sectionalizations”, Proc. IEEE Int. Symp. Inform. Th., Whistler, B.C., Canada,

Sept. 17–22, 1995, p. 123.

 [28] A. Lafourcade-Jumenbo and A. Vardy, “On Trellis Complexity of Block Codes:

Lower Bounds”, Proc. IEEE Int. Symp. Inform. Th., Whistler, B.C., Canada, Sept.

17–22, 1995, p. 124.

 [29] G. D. Forney, Jr., “Coset Codes—Part II: Binary Lattices and Related Codes”, IEEE

Trans. Inform. Theory, vol. IT-34, pp. 1152–1187, Sept. 1974.

94 References

 [30] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Else-

vier Science Publishers B.V., 1977.

 [31] L. N. Kanal and A. R. K. Sastry, “Models for Channels with Memory and Their

Applications to Error Control”, Proc. IEEE, vol. 66, no. 7, July 1978.

Linköping Studies in Science and Technology

Dissertations, Information Theory

Viiveke Fåk: Data Security by Application of Cryptographic Methods.

Dissertation No. 25, 1978.

Robert Forchheimer: Vectorial Delta Modulation for Picture Coding.

Dissertation No. 40, 1979.

Rolf Blom: Information Theoretic Analysis of Ciphers.

Dissertation No. 41, 1979.

Hans Knutsson: Filtering and Reconstruction in Image Processing.

Dissertation No. 88, 1982.

Jan-Olof Brüer: Information Security in a Computerized Office.

Dissertation No. 100, 1983.

Torbjörn Kronander: Some Aspects of Perception Based Image Coding.

Dissertation No. 203, 1989.

Michael Bertilsson: Linear Codes and Secret Sharing.

Dissertation No. 299, 1993.

Jonas Wallberg: Permutation Codes and Digital Magnetic Recording.

Dissertation No. 306, 1993.

Haibo Li: Low Bitrate Image Sequence Coding.

Dissertation No. 318, 1993.

Magnus Nilsson: Linear Block Codes over Rings for Phase Shift Keying.

Dissertation No. 321. 1993.

Ragnar Nohre: Some Topics in Descriptive Complexity.

Dissertation No. 330, 1994.

	Front Cover
	Abstract
	Acknowledgments
	Contents
	Chapter 1 Introduction
	Figure�1.1 Shannon’s model for reliable communicat...
	1.1 Decoding Complexity
	Figure�1.2 A minimal trellis for a binary linear (...
	Figure�1.3 A tailbiting trellis for a binary linea...

	1.2 Iterative Decoding Based on Tanner Graphs
	1.3 Turbo Codes
	1.4 Thesis Outline

	Chapter 2 Code Realizations Based on Graphs
	Example�2.1
	Figure�2.1 An equation system and the correspondin...
	2.1 Systems, Check Structures and Tanner Graphs
	Definition�2.1 A system is a triple , where N is a...
	Definition�2.2 A check structure for a system is a...
	Example�2.2
	Figure�2.2 A trellis (top) for a (6,3,3) code, and...
	Figure�2.3 Two trivial realizations that apply to ...

	2.2 Turbo Codes
	Figure�2.4 The turbo codes as presented by Berrou ...
	Figure�2.5 The Tanner graph of the turbo codes.
	The check-to-site cost function from the upper che...
	The channel output after transmitting a random cod...
	The Tanner graph and a codeword. The circles (site...

	Chapter 3 The Min-Sum and Sum-Product Algorithms
	Figure�3.1 Typical decoding application of the min...
	Figure�3.2 The intermediate cost functions and .
	3.1 The Min-Sum Algorithm
	Figure�3.3 The min-sum algorithm applied to a bina...
	Figure�3.3 (continued) Boxes c)� –g) illustrate th...
	Figure�3.4 The updating rules for the min-sum algo...
	Theorem�3.1 If the check structure is finite and c...

	3.2 The Sum-Product Algorithm
	Figure�3.5 The updating rules for the sum-product ...
	Theorem�3.2 If the check structure is finite and c...
	Corollary�3.3 If the global cost function is (prop...

	3.3 Updating Order and Computation Complexity
	3.4 Optimized Binary Version of the Min-Sum Algori...
	3.5 Non-Decoding Applications
	3.6 Further Unifications
	Final decision of the middle site. (The two lower ...
	The rest of the Tanner graph is processed in the s...
	The final cost function of the upper-left site is ...
	The top-left site receives the smallest cost contr...
	The site-to-check costs from the middle site to th...

	Chapter 4 Analysis of Iterative Decoding
	4.1 The Computation Tree
	Figure�4.1 The Tanner graph (left) of a small low-...
	Corollary�4.1 When the min-sum or sum-product algo...

	4.2 The Deviation Set
	Definition�4.1 Given a tree system rooted at s, a ...
	Figure�4.2 Tree systems for a low-density parity-c...
	Theorem�4.2 A necessary condition for a decoding e...
	Lemma�4.3 Let E be the deviation set for a tree sy...
	Corollary�4.4 The probability of decoding the bit ...
	Example�4.1 (trellises: detours vs. deviations)���...
	Figure�4.3 Part of the computation tree for a (3,4...
	Lemma�4.5 Let be a deviation of the tree system ro...
	Lemma�4.6 Let be a tree system rooted at , and let...
	Example�4.2 (deviations for low-density parity-che...
	Figure�4.4 Computation tree for the turbo codes of...
	4.2.1 Computation Tree of Turbo Codes
	Figure�4.5 Computation tree for the turbo codes af...
	Figure�4.6 Schematic illustration of (the support ...

	Chapter 5 Decoding Performance on Cycle-Free Subgr...
	5.1 Estimating the Error Probability with the Unio...
	Example�5.1 (low-density parity-check codes)
	Figure�5.1 Union bound estimate for a few low-dens...
	Figure�5.2 Comparison between union bound estimate...

	5.2 Asymptotic Union Bound
	Figure�5.3 The process of “extending” an extendabl...
	Theorem�5.1 The upper bound for the error probabil...
	Example�5.2 (low-density parity-check codes)
	Example�5.3 (union bound for turbo decoding)
	Figure�5.4 One section of the component trellis fo...
	Figure�5.5 Simulation results showing bit error ra...

	5.3 Computing Statistical Moments of Final Costs
	Table 5.6 Mean and variance of sum-product “discri...
	Figure�5.7 Histogram of “discriminator” after one ...
	Figure�5.8 Distribution of final costs after one i...
	Figure�5.9 Distribution of log-cost-ratio after fo...

	5.4 Gaussian Approximation of Log-Cost-Ratios
	Figure�5.10 Distribution of final cost difference ...
	Figure�5.11 Probability distribution of check-to-s...
	Figure�5.12 Bit error rate with cycle code and the...

	Chapter 6 Decoding Performance with Cycles
	Definition�6.1 The multiplicity vector of a tree c...
	6.1 Cycle Codes
	Figure�6.1 A cycle code with an irreducible closed...
	Theorem�6.1 After sufficiently many decoding itera...
	Theorem�6.2 If, for all sites s and check sets E w...
	Figure�6.2 An assignment of local costs with a pos...
	Lemma�6.3 No site occurs more than twice in an irr...
	Lemma�6.4 Any non-cycle irreducible closed walk co...
	Figure�6.3 Two examples of irreducible closed walk...
	Figure�6.4 Decoding performance of the (15, 6, 5) ...

	6.2 Tailbiting Trellises
	Figure�6.5 A tailbiting trellis of length 6 (top) ...
	Theorem�6.5 Using the min-sum algorithm with a tai...

	6.3 The General Case
	6.4 Turbo Codes

	Chapter 7 More on Code Realizations
	7.1 Realization Complexity
	Lemma�7.1 Let be a cut on Q. Then any is valid (i....
	Definition�7.1 Let be a partition of N. The abstra...
	Theorem�7.2 Let be a linear system with the check ...
	Corollary�7.3 Let be a linear system with hidden s...

	7.2 Cycle-Free Realizations
	Figure�7.1 Tanner graph for the trellis descriptio...
	Figure�7.2 A different, perhaps more natural Tanne...

	7.3 Realizations with Cycles
	Figure�7.3 The Tanner graph of a small tailbiting ...
	Figure�7.4 Tailbiting trellis realization of a (22...
	Figure�7.5 The Tanner graph of a “turbo-style” rea...
	Figure�7.6 Trellis diagram for the realization in ...
	Figure�7.7 A valid path that corresponds to one of...
	7.3.1 The Wheel Construction
	Figure�7.8 The 3-regular graph underlying the real...
	Figure�7.9 A simple two-state trellis section.
	Table 7.1 Some codes obtained from wheel realizati...
	Figure�7.10 A low-weight configuration. The arrows...
	Table 7.2 Some codes obtained from wheel realizati...

	7.4 Modeling Complicated Channels
	Figure�7.11 A Tanner graph for the Gilbert-Elliot ...
	Figure�7.12 Model for the system with trellis code...

	Chapter 8 Conclusions
	Appendix A Proofs and Derivations
	A.1 Proof of Theorems�3.1 and�3.2
	Figure�A.1 Computation of the final site cost .
	Figure�A.2 Computation of the check-to-site cost
	Figure�A.3 Computation of the site-to-check cost

	A.2 Derivations for Section�3.3
	Figure�A.4 A refinement of a check E (left) into a...
	A.2.1 Updating All Intermediate Cost Functions
	Figure�A.5 A site, s, which is connected to three ...

	A.2.2 The Min-Sum Algorithm on Cycle-Free Realizat...

	A.3 Derivation for Section�3.4
	A.4 Derivation used in Section�5.4
	A.5 Proofs for Section�6.1
	A.5.1 Proof of Theorem�6.1
	Lemma�A.1 On a finite Tanner graph, the length of ...

	A.5.2 Proof of Theorem�6.2
	A.5.3 Proof of Lemma�6.3
	A.5.4 Proof of Lemma�6.4

	A.6 Proof of Theorem�7.2
	Lemma�A.2 Let be a linear system and let be a part...

	References
	Back Cover

