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Foreword

What is commonly called the information age began with a double big bang.
It was 1948 and the United States of America was continuing to invest heavily
in high-tech research, the first advantages of which had been reaped during the
Second World War. In the Bell Telephone Laboratories, set up in New Jersey, to
the south of New York, several teams were set up around brilliant researchers,
many of whom had been trained at MIT (Massachusetts Institute of Technology).
That year two exceptional discoveries were made, one technological and the other
theoretical, which were to mark the 20th century. For, a few months apart, and
in the same institution John Bardeen, Walter Brattain and William Shockley
invented the transistor while Claude Elwood Shannon established information
and digital communications theory. This phenomenal coincidence saw the birth
of near-twins: the semi-conductor component which, according to its conduction
state (on or off), is able to materially represent binary information ("0" or "1")
and the Shannon or bit (short for binary unit), a unit that measures information
capacity.

Today we can recognize the full importance of these two inventions that en-
abled the tremendous expansion of computing and telecommunications, to name
but these two. Since 1948, the meteoric progress of electronics, then of micro-
electronics, has provided engineers and researchers in the world of telecommuni-
cations with a support for their innovations, in order to continually increase the
performance of their systems. Who could have imagined, only a short while ago,
that a television programme could be transmitted via a pair of telephone wires?
In short, Shockley and his colleagues, following Gordon Moore’s law (which
states that the number of transistors on a silicon chip doubles every 18 months),
gradually provided the means to solve the challenge issued by Shannon, thanks
to algorithms that could only be more and more complex. A typical example
of this is the somewhat late invention of turbo codes and iterative processing
in receivers, which could only be imagined because the dozens or hundreds of
thousands of transistors required were available.

Experts in micro-electronics foresee the ultimate limits of CMOS technology
at around 10 billion transistors per square centimetre, in around 2015. This
is about the same as the number of neurons in the human brain (which will,
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however, remain incomparably more powerful, due to its extraordinary network
of connections - several thousand synapses per neuron). Billions of transistors on
the same chip means that there will be easily enough room for algorithms that
require the greatest calculating resources, at least among those algorithms that
are known today. To repeat the slogan of one integrated circuit manufacturer,
"the limit lies not in the silicon but in your imagination". Even so, and to be
honest, let us point out that designing and testing these complex functions will
not be easy.

However, we are already a long way from the era when Andrew Viterbi,
concluding the presentation of his famous algorithm in 1967, showed scepticism
that matched his modesty: "Although this algorithm is rendered impractical
by the excessive storage requirements, it contributes to a general understanding
of convolutional codes and sequential decoding through its simplicity of mecha-
nization and analysis" [1]. Today, a Viterbi decoder takes up a tenth of a square
millimetre in a cellphone.

Among the results presented by Shannon in his founding paper [2], the fol-
lowing is particularly astonishing: in a digital transmission in the presence of

perturbation, if the average level of the latter does not exceed a certain power

threshold, by using appropriate coding, the receiver can identify the original mes-

sage without any errors. By coding, here and throughout this book, we mean
error-correcting coding, that is, the redundant writing of binary information.
Source coding (digital compression), cryptographic coding, and any other mean-
ing that the term coding might have, are not treated in Codes and Turbo codes.

For thousands of researchers and engineers, the theoretical result established
by Shannon represented a major scientific challenge since the economic stakes are
considerable. Improving the error correction capability of a code means, for the
same quality of received information (for example, no more than one erroneous
bit out of 10,000 received in digital telephony), enabling the transmission system
to operate in more severe conditions. It is then possible to reduce the size of
antennas or of solar panels and the weight of power batteries. In space systems
(satellites, probes, etc.), the savings can be measured in hundreds of thousands
of dollars since the weight of the equipment and the power of the launcher are
thus notably reduced. In mobile telephone (cellphone) systems, improving the
code also enables operators to increase the potential number of users in each
cell. Today, rare are those telecommunications systems that do not integrate an
error-correcting code in their specifications.

Another field of application for error-correcting codes is that of mass mem-
ories: computer hard drives, CD-ROMs, DVDs and so on. The progress made
in the last few years in miniaturizing the elementary magnetic or optical mem-
orization patterns has been accompanied by the normal degradation of energy
available when the data is being read and therefore a greater vulnerability to
perturbations. Added to this are the increased effects of interference between
neighbours. Today, it is essential to use tried and tested techniques in telecom-
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munications systems, especially coding and equalization, in order to counter the
effects induced by the miniaturization of these storage devices. Although Codes

and Turbo codes does not explicitly tackle these applications, the concepts de-
veloped and the algorithms presented herein are also a topical issue for mass
memory providers.

This book therefore deals mainly with error-correction coding, also called
channel coding, and with its applications to digital communications, in associa-
tion with modulation. The general principles of writing redundant information
and most of the techniques imagined up until 1990 to protect digital trans-
missions, are presented in the first half of the book (chapters 1 to 6). In this
first part, one chapter is also dedicated to the different modulation techniques
without which the coded signals could not be transported in real transmission
environments. The second part (chapters 7 to 11) deals with turbo codes, in-
vented more recently (1990-93), whose correction capability, neighbouring on
the theoretical limits predicted by Shannon, have made them a coding standard
in more and more applications. Different versions of turbo codes, as well as
the important family of LDPC codes, are presented. Finally, certain techniques
using the principles of turbo-decoding, like turbo-equalization and multi-user
turbo-detection, are introduced at the end of the book.

A particular characteristic of this book, in comparison with the way in which
the problem of coding may be tackled elsewhere, is its concern with applications.
Mathematical aspects are dealt with only for the sake of necessity, and certain
results, which depend on complex developments, will have to be taken as given.
On the other hand, practical considerations, particularly concerning the pro-
cessing algorithms and circuits, are fully detailed and commented upon. Many
examples of performance are given, for different coding and coded modulation
schemes.

The book’s authors are lecturers and researchers well-known for their exper-
tise in the domain of algorithms and the associated circuits for communications.
They are, in particular, the inventors of turbo codes and responsible for general-
izing the "turbo principle" to different functions of data processing in receivers.
Special care has been taken in writing this collective work vis-à-vis the unity
of point of view and the coherence of notations. Certain identical or similar
concepts may, however, be introduced several times and in different ways, which
– we hope – does not detract from the pedagogy of the work, for pedagogy is
the art of repetition. The aim of Codes and turbo codes is for it to be a book
not only for learning about error-correction coding and decoding, a precious
source of information about the many techniques imagined since the middle of
the twentieth century, but also for addressing problems that have not yet been
completely resolved.

[1] A. J. Viterbi, "Error Bounds for Convolutional Codes and an Asymptoti-
cally Optimum Decoding algorithm", IEEE Trans. Inform. Theory, vol. IT-13,
pp. 260-269, Apr. 1967.

[2] C. E. Shannon, "A Mathematical Theory of Communication", Bell System

Technical Journal, Vol. 27, July and October 1948.
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