Codes and Turbo Codes

Springer

Paris Berlin Heidelberg New York Hong Kong Londres Milan Tokyo Claude Berrou (Ed.)

Codes and Turbo Codes

Claude Berrou

Télécom Bretagne CS 83818 29238 Brest Cedex 3 France

ISBN: 978-2-8178-0038-7 Springer Paris Berlin Heidelberg New York

© Springer-Verlag France, Paris, 2010 Printed in France Springer-Verlag France is a member of the group Springer Science + Business Media

First edition in French © Springer-Verlag France 2007 ISBN: 978-2-287-32739-1

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permissions for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Cover design: Jean-François MONTMARCHÉ Cover illustration: Jean-Noël JAFFRY

Codes and Turbo Codes

under the direction of Claude Berrou (Télécom Bretagne)

The following have contributed to this work:

- Karine Amis,
- Matthieu Arzel,
- Catherine Douillard,
- Alain Glavieux †,
- Alexandre Graell i Amat,
- Frédéric Guilloud,
- Michel Jézéquel,
- Sylvie Kerouédan,
- Charlotte Langlais,
- Christophe Laot,
- Raphaël Le Bidan,
- Émeric Maury,
- Youssouf Ould-Cheikh-Mouhamedou,
- Samir Saoudi,
- Yannick Saouter,
- all at Télécom Bretagne,
- Gérard Battail,
- at Télécom ParisTech,
- Emmanuel Boutillon,

at the Université de Bretagne Sud,

with the invaluable assistance of Josette Jouas, Mohamed Koubàa and Nicolas Puech.

Translation: Janet Ormrod (Télécom Bretagne).

Cover illustration: Jean-Noël Jaffry (Télécom Bretagne).

Any comments on the contents of this book can be sent to this e-mail address: turbocode@mlistes.telecom-bretagne.eu

"The oldest, shortest words — yes and no — are those which require the most thought"

Pythagoras, fifth century BC

To our late lamented colleagues and friends, Alain Glavieux and Gérard Graton.

Foreword

What is commonly called the information age began with a double big bang. It was 1948 and the United States of America was continuing to invest heavily in high-tech research, the first advantages of which had been reaped during the Second World War. In the *Bell Telephone Laboratories*, set up in New Jersey, to the south of New York, several teams were set up around brilliant researchers, many of whom had been trained at MIT (*Massachusetts Institute of Technology*). That year two exceptional discoveries were made, one technological and the other theoretical, which were to mark the 20th century. For, a few months apart, and in the same institution John Bardeen, Walter Brattain and William Shockley invented the transistor while Claude Elwood Shannon established information and digital communications theory. This phenomenal coincidence saw the birth of near-twins: the semi-conductor component which, according to its conduction state (on or off), is able to materially represent binary information ("0" or "1") and the *Shannon* or *bit* (short for binary unit), a unit that measures information capacity.

Today we can recognize the full importance of these two inventions that enabled the tremendous expansion of computing and telecommunications, to name but these two. Since 1948, the meteoric progress of electronics, then of microelectronics, has provided engineers and researchers in the world of telecommunications with a support for their innovations, in order to continually increase the performance of their systems. Who could have imagined, only a short while ago, that a television programme could be transmitted via a pair of telephone wires? In short, Shockley and his colleagues, following Gordon Moore's law (which states that the number of transistors on a silicon chip doubles every 18 months), gradually provided the means to solve the challenge issued by Shannon, thanks to algorithms that could only be more and more complex. A typical example of this is the somewhat late invention of turbo codes and iterative processing in receivers, which could only be imagined because the dozens or hundreds of thousands of transistors required were available.

Experts in micro-electronics foresee the ultimate limits of CMOS technology at around 10 billion transistors per square centimetre, in around 2015. This is about the same as the number of neurons in the human brain (which will, however, remain incomparably more powerful, due to its extraordinary network of connections - several thousand synapses per neuron). Billions of transistors on the same chip means that there will be easily enough room for algorithms that require the greatest calculating resources, at least among those algorithms that are known today. To repeat the slogan of one integrated circuit manufacturer, "the limit lies not in the silicon but in your imagination". Even so, and to be honest, let us point out that designing and testing these complex functions will not be easy.

However, we are already a long way from the era when Andrew Viterbi, concluding the presentation of his famous algorithm in 1967, showed scepticism that matched his modesty: "Although this algorithm is rendered impractical by the excessive storage requirements, it contributes to a general understanding of convolutional codes and sequential decoding through its simplicity of mechanization and analysis" [1]. Today, a Viterbi decoder takes up a tenth of a square millimetre in a cellphone.

Among the results presented by Shannon in his founding paper [2], the following is particularly astonishing: in a digital transmission in the presence of perturbation, if the average level of the latter does not exceed a certain power threshold, by using appropriate coding, the receiver can identify the original message without any errors. By coding, here and throughout this book, we mean error-correcting coding, that is, the redundant writing of binary information. Source coding (digital compression), cryptographic coding, and any other meaning that the term coding might have, are not treated in *Codes and Turbo codes*.

For thousands of researchers and engineers, the theoretical result established by Shannon represented a major scientific challenge since the economic stakes are considerable. Improving the error correction capability of a code means, for the same quality of received information (for example, no more than one erroneous bit out of 10,000 received in digital telephony), enabling the transmission system to operate in more severe conditions. It is then possible to reduce the size of antennas or of solar panels and the weight of power batteries. In space systems (satellites, probes, etc.), the savings can be measured in hundreds of thousands of dollars since the weight of the equipment and the power of the launcher are thus notably reduced. In mobile telephone (cellphone) systems, improving the code also enables operators to increase the potential number of users in each cell. Today, rare are those telecommunications systems that do not integrate an error-correcting code in their specifications.

Another field of application for error-correcting codes is that of mass memories: computer hard drives, CD-ROMs, DVDs and so on. The progress made in the last few years in miniaturizing the elementary magnetic or optical memorization patterns has been accompanied by the normal degradation of energy available when the data is being read and therefore a greater vulnerability to perturbations. Added to this are the increased effects of interference between neighbours. Today, it is essential to use tried and tested techniques in telecommunications systems, especially coding and equalization, in order to counter the effects induced by the miniaturization of these storage devices. Although *Codes* and *Turbo codes* does not explicitly tackle these applications, the concepts developed and the algorithms presented herein are also a topical issue for mass memory providers.

This book therefore deals mainly with error-correction coding, also called channel coding, and with its applications to digital communications, in association with modulation. The general principles of writing redundant information and most of the techniques imagined up until 1990 to protect digital transmissions, are presented in the first half of the book (chapters 1 to 6). In this first part, one chapter is also dedicated to the different modulation techniques without which the coded signals could not be transported in real transmission environments. The second part (chapters 7 to 11) deals with turbo codes, invented more recently (1990-93), whose correction capability, neighbouring on the theoretical limits predicted by Shannon, have made them a coding standard in more and more applications. Different versions of turbo codes, as well as the important family of LDPC codes, are presented. Finally, certain techniques using the principles of turbo-decoding, like turbo-equalization and multi-user turbo-detection, are introduced at the end of the book.

A particular characteristic of this book, in comparison with the way in which the problem of coding may be tackled elsewhere, is its concern with applications. Mathematical aspects are dealt with only for the sake of necessity, and certain results, which depend on complex developments, will have to be taken as given. On the other hand, practical considerations, particularly concerning the processing algorithms and circuits, are fully detailed and commented upon. Many examples of performance are given, for different coding and coded modulation schemes.

The book's authors are lecturers and researchers well-known for their expertise in the domain of algorithms and the associated circuits for communications. They are, in particular, the inventors of turbo codes and responsible for generalizing the "turbo principle" to different functions of data processing in receivers. Special care has been taken in writing this collective work vis-à-vis the unity of point of view and the coherence of notations. Certain identical or similar concepts may, however, be introduced several times and in different ways, which – we hope – does not detract from the pedagogy of the work, for pedagogy is the art of repetition. The aim of *Codes and turbo codes* is for it to be a book not only for learning about error-correction coding and decoding, a precious source of information about the many techniques imagined since the middle of the twentieth century, but also for addressing problems that have not yet been completely resolved.

 A. J. Viterbi, "Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding algorithm", *IEEE Trans. Inform. Theory*, vol. IT-13, pp. 260-269, Apr. 1967.

[2] C. E. Shannon, "A Mathematical Theory of Communication", *Bell System Technical Journal*, Vol. 27, July and October 1948.

Contents

Contributors				
Fo	orewo	ord		ix
1	Introduction			1
	1.1	Digit	al messages	3
	1.2	A firs	st code	4
	1.3	Hard	input decoding and soft input decoding	7
	1.4	Hard	output decoding and soft output decoding	11
	1.5	The j	performance measure	11
	1.6	What	t is a good code?	15
	1.7	Fami	lies of codes	17
2	Dig	gital c	ommunications	19
	2.1	Digit	al Modulations	19
		2.1.1	Introduction	19
		2.1.2	Linear Memoryless Modulations	22
		2.1.3	Memoryless modulation with M states (M-FSK) \ldots .	29
		2.1.4	Modulations with memory by continuous phase frequency	
			shift keying (CPFSK)	31
	2.2	2.2 Structure and performance of the optimal receiver on a Gau		
		chan	nel	37
		2.2.1	Structure of the coherent receiver	37
		2.2.2	Performance of the coherent receiver	42
	2.3	Trans	smission on a band-limited channel	59
		2.3.1	Introduction	59
		2.3.2	Intersymbol interference	60
		2.3.3	Condition of absence of ISI: Nyquist criterion	63
		2.3.4	Expression of the error probability in presence of Nyquist	
			filtering	68
	2.4	Trans	smission on fading channels	69
		2.4.1	Characterization of a fading channel	69
		2.4.2	Transmission on non-frequency-selective slow-fading chan-	
			nels	73

3	\mathbf{Th}	eoreti	cal limits	83
	3.1	Inform	mation theory \ldots	83
		3.1.1	Transmission channel	83
		3.1.2	An example: the binary symmetric channel	84
		3.1.3	Overview of the fundamental coding theorem	86
		3.1.4	Geometrical interpretation	87
		3.1.5	Random coding	88
	3.2	Theorem	retical limits to performance	91
		3.2.1	Binary input and real output channel	91
		3.2.2	Capacity of a transmission channel	92
	3.3	Pract	tical limits to performance	96
		3.3.1	Gaussian binary input channel	96
		3.3.2	Gaussian continuous input channel	97
		3.3.3	Some examples of limits	99
	3.4	Minir	num distances required $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	100
		3.4.1	MHD required with 4-PSK modulation	100
		3.4.2	MHD required with 8-PSK modulation	102
		3.4.3	MHD required with 16-QAM modulation	104
	Bibl	iograpł	ıy	107
4	Blo	ock co	des	109
	4.1	Block	codes with binary symbols	110
		4.1.1	Generator matrix of a binary block code	110
		4.1.2	Dual code and parity check matrix	112
		4.1.3	Minimum distance	113
		4.1.4	Extended codes and shortened codes	114
		4.1.5	Product codes	115
		4.1.6	Examples of binary block codes	115
		4.1.7	Cyclic codes	120
	4.2	Block	codes with non-binary symbols	130
		4.2.1	Reed-Solomon codes	130
		4.2.2	Implementing the encoder	132
	4.3	Deco	ding and performance of codes with binary symbols	132
		4.3.1	Error detection	132
		4.3.2	Error correction	134
	4.4	Deco	ding and performance of codes with non-binary symbols	143
		4.4.1	Hard input decoding of Reed-Solomon codes	143
		4.4.2	Peterson's direct method	144
		4.4.3	Iterative method	151
		4.4.4	Hard input decoding performance of Reed-Solomon codes	159
	Bibl	iograpł	1y	160
	App	endix:	Notions about Galois fields and minimal polynomials	161

5	Co	nvolutional codes and their decoding 1	67		
	5.1	History	67		
	5.2	Representations of convolutional codes	69		
		5.2.1 Generic representation of a convolutional encoder 1	69		
		5.2.2 Polynomial representation	72		
		5.2.3 Tree of a code \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1	73		
		5.2.4 Trellis of a code	73		
		5.2.5 State machine of a code $\ldots \ldots $	76		
	5.3	Code distances and performance	78		
		5.3.1 Choosing a good code	78		
		5.3.2 RTZ sequences	78		
		5.3.3 Transfer function and distance spectrum	80		
		5.3.4 Performance	83		
	5.4	Decoding convolutional codes	.86		
		5.4.1 Model of the transmission chain and notations 1	87		
		5.4.2 The Viterbi algorithm	.87		
		5.4.3 The Maximum A Posteriori algorithm or MAP algorithm 1	92		
	5.5	Convolutional block codes	.92		
		5.5.1 Trellis termination	93		
		5.5.2 Puncturing	96		
	Bibl	iography	98		
6	Concatenated codes 20				
	6.1	Parallel concatenation and serial concatenation	03		
	6.2	Parallel concatenation and LDPC codes	:06		
	6.3	Permutations	208		
	6.4	Turbo crossword	208		
	Bibl	Bibliography			
7	Co	nvolutional turbo codes 2	13		
•	71	The history of turbo codes 2	13		
	7.2	Multiple concatenation of BSC codes	15		
	7.2	Turbo codes	17		
	1.0	7.3.1 Termination of constituent codes	21		
		7.3.2 The permutation function	21		
	74	Decoding turbo codes	22		
	1.4	7.4.1 Turbe decoding 2	25		
		7.4.1 Turbo decoding and extringic information	20		
		7.4.2 Diso account and examined information	00 15		
	75	$7.4.5$ Flactical considerations $\ldots \ldots \ldots$	40 240		
	1.0	751 m-binary RSC oncodors	-49 140		
		$7.5.1 m = \text{Diffaty fuely encours} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	949 151		
	76	Applyzig tools	91 956		
	1.0	Analysis tools	00 150		
		(.0.1 Informatical performance	00		

		7.6.2	Asymptotic behaviour	256
		7.6.3	Convergence	259
	Bibli	ograph	y	266
8	Tur	bo pro	oduct codes	271
	8.1	Histor	y	271
	8.2	Produ	nct codes	271
	8.3	Hard	input decoding of product codes	273
		8.3.1	Row-column decoding	273
		8.3.2	The Reddy-Robinson algorithm	274
	8.4	Soft in	nput decoding of product codes	277
		8.4.1	The Chase algorithm with weighted input	277
		8.4.2	Performance of the Chase-Pyndiah algorithm	280
		8.4.3	The Fang-Battail algorithm	280
		8.4.4	The Hartmann-Nazarov algorithm	285
		8.4.5	Other soft input decoding algorithms	289
	8.5	Impla	ntation of the Chase-Pyndiah algorithm	291
	Bibli	ograph	у	293
9	LD	PC co	des	297
	9.1	Princi	ple of LDPC codes	297
		9.1.1	Parity check code	298
		9.1.2	Definition of an LDPC code	301
		9.1.3	Encoding	304
		9.1.4	Decoding LDPC codes	308
		9.1.5	Random construction of LDPC codes	312
		9.1.6	Some geometrical constructions of LDPC codes	315
	9.2	Archit	tecture for decoding LDPC codes for the Gaussian channel	318
		9.2.1	Analysis of the complexity	318
		9.2.2	Architecture of a generic node processor (GNP)	319
		9.2.3	Generic architecture for message propagation	322
		9.2.4	Example of synthesis of an LDBC decoder architecture	320
		9.2.0	Sub optimal decoding algorithm	320
		9.2.0	Influence of quantization	222
		9.2.1	State of the art of published LDPC decoder architectures	335
	Bibli	ograph	y	337
10	ጥጥ	bo co	dos and large spectral officiency transmissions	2/2
10	10.1	Turbo	trellis coded modulation (TTCM)	343
	10.1	Pragn	natic turbo coded modulation	347
	Bibli	ograph		357
	ынадгариу			

11	The turbo principle applied to equalization and detection	359
	11.1 Turbo equalization	360
	11.1.1 Multipath channels and intersymbol interference	360
	11.1.2 The equalization function	362
	11.1.3 Combining equalization and decoding	366
	11.1.4 Principle of turbo equalization	369
	11.1.5 MAP turbo equalization	372
	11.1.6 MMSE turbo equalization	381
	11.2 Multi-user turbo detection and its application to CDMA systems	396
	11.2.1 Introduction and some notations	396
	11.2.2 Multi-user detection	397
	11.2.3 Turbo CDMA	403
	11.3 Conclusions	405
	Bibliography	407
-	1	1 - 0

Index

413