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Abstract

In previous works we considered codes defined as ideals of quotients of non com-
mutative polynomial rings, so called Ore rings of automorphism type. In this paper
we consider codes defined as modules over non commutative polynomial rings, re-
moving therefore some of the constraints on the length of the codes defined as ideals.
The notion of BCH codes can be extended to this new approach and the codes whose
duals are also defined as modules can be characterized. We show that under some re-
striction, self dual module codes must be constacyclic ideal codes and found two non
equivalent Euclidean self-dual [56, 28, 15]4 codes which improve the best previously
known distance 14 for self-dual codes of this length over F4.

1 Coding with skew polynomial rings

Starting from the finite field Fq and an automorphism θ of Fq, we define a ring structure
on the set:

R = Fq[X, θ] = {anX
n + . . . + a1X + a0 | ai ∈ Fq and n ∈ N} .

The addition in R is defined to be the usual addition of polynomials and the multiplication
is defined by the basic rule X a = θ(a) X (a ∈ Fq) and extended to all elements of R by
associativity and distributivity (cf. [1, 7, 8]). The ring R is a left and right Euclidean ring
whose left and right ideals are principal [8]. In the following we denote F

θ
q ⊂ Fq the fixed

field of θ.

1.1 Ideal θ-codes

In [4] we defined codes as ideals of quotient rings of R. If I = (f) is a two sided ideal of R,
then, in analogy to classical cyclic codes, we associate to an element a(X) = an−1X

n−1 +
. . . + a1X + a0 in R/(f) the ‘word‘ a = (a0, a1, . . . , an−1) ∈ Fq

n.
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Definition 1 (cf. [4]) Let f ∈ R be of degree n. If I = (f) is a two sided ideal of R, then
an ideal1 θ-code C is a left ideal (g)/(f) ⊂ R/(f), where g ∈ R is a right divisor of f in
R.
If the order of θ divides n then,

1. If f = Xn + c with c ∈ F
θ
q, then we call the ideal θ-code corresponding to the left ideal

(g)/(Xn + c) ⊂ R/(Xn + c) an ideal θ-constacyclic code.

2. If f = Xn − 1 , then we call the ideal θ-code corresponding to the left ideal
(g)/(Xn − 1) ⊂ R/(Xn − 1) an ideal θ-cyclic code.

An ideal θ-cyclic code C has the following property ([3], Theorem 1)

(a0, a1, . . . , an−1) ∈ C ⇒ (θ(an−1), θ(a0), θ(a1), . . . , θ(an−2)) ∈ C.

If θ is not the identity, then the non commutative ring R is not a unique factorisation
ring and there are much more right factors of f ∈ R than in the commutative case, leading
to a huge number of linear codes that are not cyclic codes (cf. [3, 4]).

Example. Let α be a generator of the multiplicative group of F4 and θ the Frobenius
automorphism given by θ(a) = a2. The polynomial X2 + α2 X + α is a right divisor of
X4 − 1 ∈ F4[X, θ] so it generates a [4, 2]4 ideal θ-cyclic code. Note that there are seven
different monic right factors of degree two of X4 − 1 in F4[X, θ] ([3], Example 2).

In order to generate a two sided ideal of R, a monic polynomial f must be of the form
X t f̃ where f̃ is a monic polynomial belonging to the center F

θ
q[X

m] of R, where m is the
order of θ. If f is in the center of R, then we call the ideal θ-code, corresponding to the
left ideal (g)/(f) ⊂ R/(f), an ideal θ-central code (cf [4]).
The length of an ideal θ-code is determined by the degree of f , while the code itself is
given by the generator matrix

G =















g0 . . . gr−1 gr 0 . . . 0
0 θ(g0) . . . θ(gr−1) θ(gr) . . . 0

0
. . . . . . . . . . . . . . .

...
0
0 . . . 0 θn−r−1(g0) . . . θn−r−1(gr−1) θn−r−1(gr)















depending only on g.
The restriction on the length is that f has to be a multiple of the bound g∗ of g, which

is the generator of the smallest two sided ideal contained in the left ideal (g) ⊂ R. The
degree of the bound g∗ can be bounded in terms of the degree of g and the order of θ ([4],
Lemma 10) namely deg(g∗) ≤ λ · deg(g) where λ is at most m · [Fq : F

θ
q]. Over F4, we

proved that λ = 2 when θ 6= id (lemma 11 of [4]).

1In previous work we called those codes simply θ-codes, but we added ideal in the definition in order
to distinguish those codes from the module codes which we will introduce in the next section.
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Any polynomial g ∈ R of degree r always generates an ideal θ-code of length n ≥ λ · r.
But if n < λ · r, then those polynomials g ∈ R of degree r for which n < deg(g∗) do not
generate an ideal θ-code of length n. This restriction is the motivation in the following
section to generalize the notion of ideal θ-codes to module θ-codes.

Example. Consider g = X3 +α2 X2 +α X +1 ∈ F4[X, θ]. Its bound g∗ = X6 +1 is of
degree 6. Therefore the above matrix G obtained from the coefficients of g will generate an
ideal θ-code only if the length of the code is at least 6, i.e. if there are at least 3 lines in the
above matrix. The use of modules instead of ideals will allow to consider also generator
matrices with less lines.

Note that the bound of an element g ∈ F4[X, θ] can also be of degree strictly less than
2 · deg(g):

Example. Consider g = X4 + X3 + α2X2 + X + α ∈ F4[X, θ]. Its bound g∗ =
X6 + X4 + X2 + 1 is of degree 6 < 2 · 4. Therefore from the above matrix G obtained
from the coefficients of g we can generate an ideal θ-code (g)/(X g∗) ⊂ R/(X g∗) of length
7 whose minimum distance 4 is the best known distance for [7, 3]4 linear codes.

1.2 Module θ-codes

The goal of this section is to define codes as modules instead of ideals.
In the following we will consider left R-modules RM , where RM is an additive group

with a left scalar multiplication RM×R → RM given by (m, r) 7→ r ·m. Since R is left and
right Euclidean, all left ideals of R are principal of the form Rf and are examples of left
R-modules as well as the quotients R/Rf . The fact that R is a left and right Euclidean
ring also implies a similar structure theorem than for finitely generated abelian groups

Theorem 1 ([1], Theorem 3.3.6) A finitely generated right R-module is isomorphic to

R/Rf1 ⊕ R/Rf2 ⊕ . . . ⊕ R/Rfℓ ⊕ Rr

where s and r are non negative integers and the fi are non units of R with the property
that fi is a right divisor of fi+1 for i ∈ {1, . . . , ℓ − 1}.

In particular a left R-module is irreducible if and only if the module is isomorphic to
R/Rf where f is irreducible in R. Note that Rf ⊂ Rg if and only if g is a right factor of
f . If f = hg, then Rg/Rf is a submodule of R/Rf which is cyclic and generated as a left
R-module by g + Rf .

If f = hg ∈ R, then Rg/Rf ∼= R/Rh. For ℓ ∈ R the module R/Rℓ can be identified
with the set of possible remainders of a right division by ℓ in R and is therefore a Fq-vector
space of dimension deg(ℓ). Therefore the left R-submodule Rg/Rf ⊂ R/Rf is a Fq-vector
subspace of dimension deg(h) = deg(f)−deg(g) of the Fq-vector space R/Rf of dimension
deg(f). Since a vector subspace of a finite dimensional Fq-vector space is a code over Fq,
we obtain the following generalization of ideal θ-codes (cf. [4]) :
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Definition 2 Let f ∈ R be of degree n. A module θ-code C is a left R-submodule Rg/Rf ⊂
R/Rf where g is a right divisor of f in R. Its length is n = deg(f), its dimension is
k = deg(f)−deg(g) and if its distance is d then we say that the code C is of type [n, k, d]q.

As usual, we identify codewords with the list of coefficients of the remainder of a
right division by f in R. The elements of Rg/Rf are then all left multiples of g =
grX

r + · · · + g1X + g0 and are of the form




deg(f)−deg(g)−1
∑

i=0

biX
i



 · g

This shows that the generator matrix of the corresponding module θ-code of length
n = deg(f) is given by the matrix G in the previous section.

Note that the code is defined uniquely by the generator polynomial g whose leading
coefficient can be supposed to be one. Therefore a module θ-code of type [n, k] = [n, n −
deg(g)] is defined by the deg(g) − 1 coefficients of the monic polynomial g, and there are
(deg(g) − 1)q such codes.

Since the restriction linked to the degree of the bound g∗ of g no longer exists, there
are more module θ-codes than ideal θ-codes. In particular any polynomial g ∈ R is a right
divisor of some polynomial f of degree n ≥ deg(g), so for any g ∈ R and any n ≥ deg(g)
the matrix G generates a module θ-code.

Example. The previous polynomial g = X3 + α2 X2 + α X + 1 ∈ F4[X, θ] with bound
g∗ = X6 + 1 generates, via the matrix

G =

(

1 α α2 1 0
0 1 α2 α 1

)

a [5, 2]4 module θ-code over F4 which is not an ideal θ-code and whose minimum distance
4 matches the best known distance for [5, 2]4 linear codes.

2 Examples of distance improvements by using mod-

ules instead of ideals

The following table illustrates the gain of using module θ-codes instead of just ideal θ-codes.
In the table, n is the length of the module θ-codes over F4 = F2(α) and corresponds

to the degree of f . The integer r is the degree of g (therefore n − r is the dimension of
the code). An entry Cd indicates that the best known linear [n, n − r]4 code is of minimal
distance d and can be found within the family of cyclic codes. An entry Cθ

d indicates that
the best known linear [n, n − r]4 code is of minimal distance d and can be found within
the family of ideal θ-cyclic codes (the entry Cθ

ds indicates that there exists such a code
which is Euclidean self dual). An entry θd indicates that the best known linear [n, n − r]4
code is of minimal distance d and can be found within the family of ideal θ-codes. An
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n \ r 2 3 4 5 6 7 8 9 10 11

3 M3

4 Cθ
3s C4

5 −1 M4 M5

6 C2 C4 Cθ
4 C6

7 θ2 θ3 θ4 M5 M7

8 C2 Cθ
3 Cθ

4s Cθ
5 Cθ

6 C8

9 θ2 θ3 θ4 M5 M6 M7 M9

10 C2 θ3 Cθ
4 Cθ

5 Cθ
6 θ6 θ8 C10

11 θ2 θ3 θ4 θ4 M6 M6 M7 M8 M11

12 C2 θ3 θ4 C4 Cθ
6s Cθ

6 Cθ
7 Cθ

8 Cθ
9 C12

13 θ2 θ3 θ4 θ4 θ5 M6 M7 M8 M9 M10

14 C2 Cθ
3 Cθ

4 C4 Cθ
5 Cθ

6s Cθ
7 M8 M9 Cθ

10

15 θ2 −1 −1 θ4 θ5 −1 −1 M8 M8 −1
16 C2 −1 −1 Cθ

4 −1 −1 −1 −1 Cθ
8 M9

17 θ2 −1 −1 θ4 −1 −1 −1 −1 M8 M9

18 C2 −1 θ3 θ4 −1 −1 Cθ
6 −1 Cθ

8 −1
19 θ2 −1 θ3 θ4 −1 −1 θ6 θ7 M8 θ8

20 C2 −1 θ3 θ4 −1 −1 θ6 Cθ
7 Cθ

8 Cθ
8

21 θ2 −1 θ3 θ4 −1 θ5 −1 −1 θ7 θ8

22 C2 θ2 θ3 θ4 θ4 θ5 −1 Cθ
6 Cθ

7 C8

Table 1: Codes over F4 constructed using R = F4[X, θ], where id 6= θ ∈ Aut(F4).

entry Md indicates that the best known linear [n, n− r]4 code is of minimal distance d and
can be found within the family of module θ-codes. A negative entry −j indicates that the
best module θ-code has a distance d − j, where d is the distance of the best known linear
[n, n − r]4 code.

In the part of the table below the diagonal staircase, there is no restriction on the
generators of an ideal θ-code due to the bound. Therefore module θ-codes will not improve
ideal θ-codes in this lower part of the table.

Example. The polynomial g = X9 +αX8 +X7 +X5 +α2 X4 +α X2 +X +1 generates
a module θ-code of any length ≥ 9. As its bound is X18 +X16 +X14 +X12 +X10 +X6 +1,
the module θ-code of length 14 generated by g is not an ideal θ-code. Its minimum distance
is 8, which is the best known distance for [14, 5]4 linear codes. Furthermore there is no
[14, 5]4 ideal θ-code reaching this best distance. In the table this code corresponds to the
entry M8 at line 14 and column 9 = 14 − 5.

In [3, 5] the BCH approach is generalized to the non-commutative case to construct
codes of arbitrary length and prescribed distance. In the following, we show that this
approach can be extended to the module θ-codes. The difference with the work in [3, 5] is
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that the use of module θ-codes allows to remove the restriction on the length of the codes
in terms of the bound of g ([4], Definition 9). We get the following definition derived from
definition 5 of [5]:

Definition 3 Let θ ∈ Aut(Fq) be given by a 7→ aq0, δ be a positive integer, q = qt
0 and β

belong to a field extension Fqs
0

of Fq = Fqt
0
. A BCH module θ-code over Fq with parameters

δ and β of length n is a module θ-code of length n generated by the monic skew polynomial
g ∈ Fq[X, θ] of smallest degree such that g is right divisible in Fqs

0
[X, θ] by X − βi for

i ∈ {0, . . . , δ − 1}.

For the construction of the generator polynomial g of a BCH module θ-code we can use
the algorithm given in [5] Section 4. The decoding algorithm described in [3, 5] also allows
to decode skew BCH module codes. The proof of Proposition 2 of [5] can be adapted word
for word in order to obtain

Proposition 1 Let C be a BCH module θ-code with the notations of the above definition.
If n ≤ (q0 − 1) · s and β is of order qs

0 − 1 then C has minimum distance at least δ.

The following proposition improves the previous one for codes defined over Fq = F2t ,
showing that β does not need to be a generator of the field extension F2s :

Proposition 2 Let C be a BCH module θ-code with the notations of definition (cf. 3) and
q0 = 2. If the order of β is at least 2n − 1 then C has a minimum distance at least δ.

Proof. Let m be the order of β. Following the proof of proposition 2 of [5] or the
proposition 2 of [3], the minimum distance of C is at least δ if and only if for all j < i < n,
β(2i−2j)/(2−1) 6= 1. Let us assume β2i−2j

= 1, then the order m of β divides 2i − 2j; as m
divides 2s − 1, it cannot divide 2j, so there exists l < n such that m divides 2l − 1. As
l < n we get m < 2n − 1. So if m ≥ 2n − 1 then the minimum distance of C is at least δ.

Using module θ-codes allows to remove the restriction on the length of the code due to
the bound of g and therefore allows to find more such skew BCH codes when the degree
of g is large compared to the length of the code (i.e. k is small). The following examples
show that there are more BCH module θ-codes than BCH ideal θ-codes.

Example. Using modules we construct a [10, 4, 6]4 BCH module θ-code (best possible
distance). This code is obtained using the element β = a11 ∈ F212 of order 212 −1 (where a
is a generator of the multiplicative group of F212 used by Magma) by imposing a distance
2. The resulting generator polynomial is g = X6 + α2X5 + αX4 + αX2 + X + α2 (where
F4 = F2(α)). The bound of g is g∗ = X12 + 1, showing that the smallest length of an ideal
θ-code with generator polynomial g is 12. This code improves the BCH ideal θ-codes as
there exists no [10, 4] BCH ideal θ-code constructed from F212 ([5]).

Example. Using modules we construct the module θ-codes [8, 3, 5]4 and [8, 2, 6]4 re-
spectively (best possible distances) obtained from F212 = F2(a) (where a is a generator of
the multiplicative group of F212 used by Magma) by imposing a distance 2. No code with
such length and dimension can be constructed using ideal θ-codes ([5])
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1. In order to construct a [8, 3, 5]4 module θ-code we used β = a25 ∈ F212 of order
819 6= 212 − 1, 819 ≥ 28 − 1 to obtain g = X5 + α2X4 + α2X2 + αX + α2 ∈ F4[X, θ]
whose bound is g∗ = X10 + X8 + X6 + X4 + X2 + 1

2. In order to construct a [8, 2, 6]4 module θ-code, we used β = a ∈ F212 to obtain
g = X6 +X5 +α2X4 +X3 +αX2 +α2X +α2 ∈ F4[X, θ] whose bound is g∗ = X12 +1.

3 Self-dual module θ-codes

The Euclidean and Hermitian dual of an ideal θ-cyclic code (g)/(Xn − 1) is an ideal θ-
cyclic code whose generator polynomial depends on the factor h in the decomposition
Xn − 1 = hg = gh (cf. [4]). This allowed us in [4] to characterise self-dual codes by
polynomial equations satisfied by the coefficients of g. However, if an ideal θ-code is not
θ-cyclic then its dual may not be an ideal θ-code and until now we were not able to
characterize those ideal θ-central codes whose duals are ideal θ-central codes.

In the following we give a characterization of the module θ-codes whose duals are
module θ-codes. Like in [4] we derive polynomial equations which characterize self-dual
module θ-codes. Thanks to a refinement in the resolution of these polynomial equations we
were able to find two new [56, 28, 15]4 non equivalent Euclidean self-dual codes, improving
the previous [56, 28, 14]4 self-dual codes. It turns out that these two module θ-codes are
ideal θ-cyclic codes.

3.1 Dual for the Euclidean scalar product

The Euclidean dual C⊥ of a code C of Fq
n is the set of words which are orthogonal to

the code’s words relatively to the Euclidean scalar product. We characterize those module
θ-codes whose duals are module θ-codes, extending the corresponding result of [4] for ideal
θ-cyclic codes.

In the following we will assume that the constant term of the generator polynomial g
is 6= 0. This is not a strong restriction since if g is right divisible by Xs, then the resulting
ideal θ-code has s coordinates which are always zeros and the resulting code is of little
interest if s > 0 (cf. [4], Proposition 13).

Proposition 3 (Euclidean dual of a module θ-code) Let k ≤ n be integers, g ∈ Fq[X, θ]
of degree n − k with constant term 6= 0 and C be the module θ-code of length n generated
by g.
The Euclidean dual C⊥ of C is a module θ-code generated by a polynomial of degree k with
constant term 6= 0 if and only if there exists h ∈ Fq[X, θ] and c in Fq − {0} such that
g h = Xn − c (i.e. the remainder of the left division of Xn ∈ Fq[X, θ] by g is a non zero
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constant).
In this case the generator polynomial of C⊥ is given by :

g⊥ =
k
∑

i=0

θi(hk−i) X i

and g⊥ is a left divisor of Xn − θk−n
(

1
c

)

∈ Fq[X, θ].

Proof.

• Suppose that Xn − gh = c 6= 0 in Fq[X, θ] and define g⊥ :=
∑k

i=0 θi(hk−i) X i. As
g0h0 = c 6= 0 and g0 6= 0, we must have h0 6= 0. Therefore g⊥ is a polynomial of
degree k and generates a module θ-code C̃ of length n and dimension n− k. We now
prove that C̃ = C⊥ by showing that the words of C and C̃ are orthogonal:
For i0 ∈ {0, . . . , k − 1}, i1 ∈ {0, . . . , n − k − 1} we have < X i0g,X i1g⊥ >

= <

n−k
∑

i=0

θi0(gi) X i+i0 ,

k
∑

i=0

θi1(θi(hk−i))X
i+i1 >

= <

n−k
∑

i=0

θi0(gi) X i+i0 ,

i1−i0+k
∑

i=i1−i0

θi+i0(hk−i+i1−i0)X
i+i0 >

=

min(n−k,i1−i0+k)
∑

i=max(0,i1−i0)

θi0(gi)θ
i+i0(hk−i+i1−i0)

= θi0





min(n−k,l)
∑

i=max(0,l−k)

giθ
i(hl−i)



 (where l = k + i1 − i0 ∈ {1, . . . , n − 1})

= θi0 ((gh)l) (here (gh)l denotes the coefficient of X l in gh)
= 0 (because gh = Xn − c)

• Conversely, suppose that C⊥ is a module θ-code generated by a polynomial g̃ with
constant term 6= 0. Define h as h =

∑k
i=0 θi−k(g̃k−i)X

i ∈ Fq[X, θ]. Since the constant
term of g̃ is 6= 0, the polynomial h is of degree k. Then for all i0 ∈ {0, . . . , k},
i1 ∈ {0, . . . , n − k},

0 = < X i0g,X i1 g̃ >

= <

n−k
∑

i=0

θi0(gi) X i+i0 ,

k
∑

i=0

θi1(g̃i)X
i+i1 >

= <

n−k
∑

i=0

θi0(gi) X i+i0 ,

k+i1−i0
∑

i=i1−i0

θi1(g̃i−i1+i0)X
i+i0 >

=

min(n−k,i1−i0+k)
∑

i=max(0,i1−i0)

θi0(gi)θ
i1(g̃i−i1+i0)
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So for all l ∈ {1, . . . , n − 1} (l = i1 − i0 + k)

0 = θi0





min(n−k,l)
∑

i=max(0,l−k)

giθ
l−k(g̃i+k−l)





= θi0





min(n−k,l)
∑

i=max(0,l−k)

giθ
i(hl−i)





0 =

min(n−k,l)
∑

i=max(0,l−k)

giθ
i(hl−i) (the coefficient of X l in gh)

This shows that gh is of the form Xn + c with c ∈ Fq. Since g0h0 = g0θ
−k(g̃k) 6= 0

we have that c 6= 0.

• Denote Fq(X, θ) the right field of fraction of Fq[X, θ] and X−1 the inverse of X. We
have aX−1 = X−1θ(a) and

∑n
i=0 aiX

i 7→
∑n

i=0 X−iai is an anti-morphism of Fq(X, θ)
(cf. proof of Lemma 17 in [4]). If gh = Xn − c then

Xkϕ(h)ϕ(g)Xn−k = Xk(1/Xn − c)Xn−k = 1 − θk(c)Xn ∈ Fq[X, θ].

As g⊥ = Xkϕ(h), we obtain that g⊥ is a left divisor of 1 − θk(c)Xn ∈ Fq[X, θ] so it
is a left divisor of −(1 − θk(c)Xn)θ−n+k(1

c
) = Xn − θk−n(1

c
).

When a module θ-code is generated by a polynomial satisfying the conditions of the propo-
sition, one can deduce a nice expression for the parity check matrix of the code.

Corollary 1 (Parity check matrix) Let k ≤ n be integers, let g ∈ Fq[X, θ] be of degree
n − k with constant term 6= 0 . If there exists c ∈ Fq − {0} and h ∈ Fq[X, θ] such that
gh = Xn − c, then the parity check matrix of the module θ-code C of length n generated by
g is:

H =















hk . . . θk−1(h1) θk(h0) 0 . . . 0
0 θ(hk) . . . . . . θk+1(h0) . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . .
. . . 0

0 . . . 0 θn−k−1(hk) . . . θn−2(h1) θn−1(h0)















Proof. The parity check matrix of C is the matrix of the dual C⊥. As g satisfies the
conditions of proposition 3, C⊥ is a module θ-code with generator polynomial hk + · · · +
θk−1(h1) Xk−1 + θk(h0) Xk.

Example.
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1. Consider the polynomial g = X2 + α X + 1 ∈ F4[X, θ], where F4 = F2(α). Since
X3 − g(X + α) = α 6= 0, the proposition shows that the dual of the [3, 1]4 module
θ-code C generated by g is a module θ-code generated by g⊥ = 1 + α2 X. The parity
check matrix of C is:

H =

(

1 α2 0
0 1 α

)

2. Consider the polynomial g = X4+α3 ∈ F8[X, θ], where F8 = F2(α) and α3+α+1 = 0
and θ is the Frobenius automorphism. The polynomial g = X4+α3 generates a [8, 4]8
module θ-code C. Since X8−g(X4 +α5) = α 6= 0, the dual of the code C is a module
θ-code generated by : 1 + θ4(α5)X4 = 1 + α3X4 and the parity check matrix of C is
deduced from it.

In [4], we prove that the dual of an ideal θ-cyclic code is θ-cyclic. This result can be seen
as a consequence of the previous proposition :

Corollary 2 (Euclidean dual of an ideal θ-cyclic code) The dual code of an ideal θ-
constacyclic code is an ideal θ-constacyclic code.

Proof. The generator polynomial g of an ideal θ-constacyclic code of length n is a right
divisor of Xn − c ∈ R = Fq[X, θ], where c ∈ F

θ
q and n is a multiple of the order of θ. Since

Xn − c belongs to the center of R, the polynomial g is also a left divisor of Xn − c ∈ R.
According to proposition 3, the code C⊥ is a module θ-code whose generator polynomial
g⊥ is a left divisor of Xn − θk−n(1

c
) = Xn − 1

c
. Since Xn − 1/c belongs to the center of

R, we have that g⊥ is also a right divisor of Xn − 1/c. The central polynomial Xn − 1
c

generates a two-sided ideal of R, showing that C⊥ is an ideal θ-constacyclic code.

The dual of an ideal θ-central code is not always an ideal θ-central code (examples 5
and 20 of [4]). The above proposition allows to characterize the ideal θ-central codes whose
duals are again θ-central codes.

Corollary 3 (Euclidean dual of an ideal θ-central code) Let k ≤ n be integers, let
C be an ideal θ-central code of length n generated by a polynomial g of degree n − k and
constant term 6= 0. The code C⊥ is an ideal θ-central code if and only if

1. there exists h ∈ Fq[X, θ] and a non zero constant c such that Xn − c = gh (i.e. the
remainder of the left division of Xn by g is a non zero constant);

2. the degree of the bound (g⊥)∗ of g⊥ =
∑k

i=0 θi(hk−i) X i is ≤ n.

In this case the ideal θ-central code C⊥ is generated by g⊥.

Proof. A module θ-code with generator g and length n is a central θ-code if and only
if the degree of the bound of g is ≤ n. The result now follows from proposition 3.

Example.

10



1. The polynomial g = X3 + X2 + X + α ∈ F4[X, θ] generates an ideal θ-central code
(which is not θ-cyclic) of length 12 (examples 5 and 20 in [4]). Since the remainder
X2 + α2X + α of the left division of X12 by g is not a constant, the code C⊥ is not a
module θ-code and therefore also not an ideal θ-central code.

2. The polynomial g = X2 + α ∈ F4[X, θ] generates a module θ-code C of length 4.
The bound of g is g∗ = X4 + X2 + 1, showing that this code is an ideal θ-central
code which is not θ-cyclic. Since the remainder α2 of the left (and right in this case)
division of X4 by g is a non zero constant, the above proposition shows that the
dual code is a module θ-code generated by g⊥ = X2 + α2. As the bound of g⊥ is
X4 + X2 + 1 is of degree ≤ 4, the code C⊥ is an ideal θ-central code.

3. The polynomial g = X2 + α ∈ F4[X, θ] also generates an ideal θ-central code of
length 8 which is not θ-cyclic. Since the remainder α of the left (and right in this
case) division of X8 by g is a non zero constant, the above proposition shows that
the dual code is a module θ-code generated by g⊥ = X6 + α2 X4 + α X2 + 1. As the
bound of g⊥ = X12 + X10 + X6 + X2 + 1 is of degree > 8, the code C⊥ is a module
θ-code which is not an ideal θ-central code.

A code is said to be self-dual if it is equal to its dual. Following [4], we characterize
Euclidean self-dual module θ-codes with a system of polynomial equations.

Corollary 4 (Euclidean self-dual module θ-codes) Let k be an integer and the poly-
nomial g =

∑k
i=0 giX

i ∈ Fq[X, θ] be monic of degree k and constant term g0 6= 0. Denote
C the module θ-code of length 2k generated by g. The code C is Euclidean self-dual if, and
only if,

∀l ∈ {1, . . . , k},
l
∑

i=0

θk−l(gi) gi+k−l = 0 (1)

Proof. The module θ-code C is self-dual if, and only if, C⊥ is a module θ-code whose
(monic) generator polynomial g⊥ is equal to g. According to proposition (3), C⊥ is a module
θ-code if and only if there exists c ∈ Fq − {0} and h ∈ Fq[X, θ] such that gh = X2k − c

and its (monic) generator polynomial is g⊥ =
∑k

i=0 θi(hk−i)/θ
k(h0) X i. So the code C is

self-dual if, and only if, there exists h and c such that gh = X2k − c where ∀i ∈ {0, . . . , k},
θi(hk−i)/θ

k(h0) = gi i.e. hi = θi(c/g0) θi−k(gk−i). This is equivalent to :

∃c ∈ Fq − {0},

(

k
∑

i=0

giX
i

)(

k
∑

i=0

θi

(

c

g0

)

θi−k(gk−i)X
i

)

= X2k − c
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⇔ ∀l ∈ {1, . . . , 2k − 1},
∑min(k,l)

i=max(0,l−k) giθ
i
(

θl−i
(

c
g0

)

θl−i−k(gk−l+i)
)

= 0

⇔ ∀l ∈ {1, . . . , 2k − 1},
∑min(k,l)

i=max(0,l−k) giθ
l
(

c
g0

)

θl−k(gk−l+i) = 0

⇔ ∀l ∈ {1, . . . , 2k − 1},

min(k,l)
∑

i=max(0,l−k)

θk(gi) θl(gi−(l−k)) = 0

To conclude, it suffices to notice a symetry in this system of equation, which enables to
consider only the k first equations.

Example. Over F4 the (Euclidean) self-dual module θ-codes of length 4 are generated
by the polynomials X2 + g1X + g0 where g0 and g1 satisfy the equations

{

θ(g0)g1 + θ(g1) = 0
g2
0 + g2

1 + 1 = 0

i.e. g1(g
2
0 + g1) = 0 and g2

0 + g2
1 = 1. We get three polynomials X2 + 1, X2 + α2X + α and

X2 + α X + α2. The codes they generate are self-dual and θ-cyclic.

Thanks to a further simplification of the system (1) that we do not detail here, we
could perform the computation of Euclidean self-dual codes over F4 of length ≤ 58. We
found two non equivalent Euclidean self-dual [56, 28, 15]4 codes which improve the best
known distance (14, [6]) for self-dual codes of this length over F4. Here are the generator
polynomials of these codes :

X28 +X26 +α X24 +α2 X22 +α X21 +X20 +X19 +α2 X18 +α X17 +α2 X16 +α X15 +X13 +

α2 X12 + X11 + α2 X10 + α X9 + α X8 + X7 + α2 X6 + X4 + α X2 + α ,

X28 +X26 +α X25 +α2 X24 +α2 X23 +X22 +X21 +α X19 +α X18 +α2 X17 +α2 X16 +α2 X15 +

α X14 + X13 + X12 + X11 + α X10 + α X9 + α2 X7 + α2 X6 + X5 + X4 + α X3 + α2 X2 + α2

It turns out that these two codes are θ-cyclic and that we found no self-dual module
θ-code which is not θ-constacyclic . We conjecture that such codes do not exist, which can
be proven over Fq[X, θ] when θ 6= id has order 2 :

Proposition 4 Let θ be an automorphism of order 2 of Fq. If C is an Euclidean self-dual
module θ-code over Fq generated by a polynomial with constant term 6= 0, then C is an ideal
θ-constacyclic code.

Proof. Let the polynomial g of degree k be the generator of the Euclidean self-dual mod-
ule θ-code C. According to proposition 3, there exists a constant c 6= 0 and a polynomial
h ∈ R such that gh = X2k − c. Since X2k belongs to the center of R we obtain from
(gh)g = X2kg− cg that g(X2k −hg) = cg. We deduce that g is a left divisor of cg, showing
that cg = gc̃ for some c̃ ∈ Fq. Since the constant term of g is 6= 0, comparing the constant
terms on both sides shows that c = c̃ and we obtain cg = gc. Therefore ∀i ∈ {0, . . . , k− 1}
we have c gi = giθ

i(c).
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Let us assume that θ(c) 6= c. Then gi = 0 for all odd i, which implies that k is even. From
proposition 3 we obtain that the polynomial g⊥ is a left divisor of X2k−θk−2k(1

c
) = X2k− 1

c

(note that k is even and θ is of order 2). Since C is Euclidean self-dual, the polynomial g⊥

is equal to θk(h0) · g. As X2k − 1
c

commutes with θk(h0) we get that g is a left divisor of
X2k − 1

c
. Since g is also a left divisor of X2k − c, the polynomial g is also a left divisor of

the difference of the two polynomials
(

X2k −
1

c

)

−
(

X2k − c
)

= c −
1

c

which must therefore be zero. From c2 = 1 we obtain c = 1 or −1, showing that c ∈ F
θ
q

and contradicting our assumption that θ(c) 6= c.
Therefore g is a left and right divisor of the central polynomial X2k − c with θ(c) = c, ,
which implies that C is an ideal θ-constacyclic code.

Example. Over F9 = F3(α) with α2−α−1 = 0 and θ : a 7→ a3 the (Euclidean) self-dual
module θ-codes of length 12 are generated by the polynomials X6 + g5X

5 + · · ·+ g1X + g0

where g0, . . . , g5 satisfy the equations































g3
0 g5 + g3

1 = 0
g0 g4 + g1 g5 + g2 = 0
g3
0 g3 + g3

1 g4 + g3
2 g5 + g3

3 = 0
g0 g2 + g1 g3 + g2 g4 + g3 g5 + g4 = 0
g3
0 g1 + g3

1 g2 + g3
2 g3 + g3

3 g4 + g3
4 g5 + g3

5 = 0
g2
0 + g2

1 + g2
2 + g2

3 + g2
4 + g2

5 + 1 = 0

Solving the corresponding polynomial system, we find 40 solutions in F
6
9; one of these gives

the polynomial X6 + 2X5 + α3X4 + α2X3 + αX2 + X + 1 which divides on the right the
polynomial X12 +1. It generates an Euclidean self-dual [12, 6, 6]9 ideal θ-constacyclic code.

For the Hermitian scalar product, we find self-dual module θ-codes which are not θ-
constacyclic.

3.2 Dual for the Hermitian scalar product

Let q be an even power of a prime number and let θ be the automorphism of order 2 over
Fq: a 7→ a

√
q. The Hermitian scalar product is defined over Fq

n by

∀x, y ∈ Fq
n, < x, y >H=

n
∑

i=1

xi · θ(yi)

i.e.
< x, y >H=< x, θ(y) >

The Hermitian dual of a code of Fq
n is the set of words which are orthogonal to the code’s

words relatively to the Hermitian scalar product.
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Proposition 5 (Hermitian dual of a module θ-code) Let k ≤ n be integers, g ∈
Fq[X, θ] of degree n − k with constant term 6= 0 and C be the module θ-code of length
n generated by g.
The Hermitian dual CH of C is a module θ-code generated by a polynomial of degree k with
constant term 6= 0 if and only if there exists h ∈ Fq[X, θ] and c in Fq − {0} such that
g h = Xn − c (i.e. the remainder of the left division of Xn ∈ Fq[X, θ] by g is a non zero
constant).
In this case the generator polynomial of CH is given by :

gH =
k
∑

i=0

θi+1(hk−i) X i = φ(g⊥)

where φ(
∑n

i=0 aiX
i) =

∑n
i=0 θ(ai)X

i. Lastly, gH divides the polynomial Xn − θk−n+1(1/c)
on the left.

Proof. The proof is based on the proposition 3 and the equality

∀i0 ∈ {0, . . . , k},∀i1 ∈ {0, . . . , n−k}, < X i0g,X i1gH >H=< X i0g,X i1φ(gH) >=< X i0g, X i1g⊥ >

Corollary 5 (Hermitian self-dual module θ-codes) Let k ∈ N and g ∈ Fq[X, θ] be a
monic polynomial of degree k and constant term 6= 0. Let C be the module θ-code of length
2k generated by g. The code C is Hermitian self-dual if, and only if,

∀l ∈ {1, . . . , k},
l
∑

i=0

θk−l−1(gi) gi+k−l = 0 (2)

Proof. We use the same techniques as in the lemma for Euclidean self-dual codes.

Example. Over F4 the (Hermitian) self-dual module θ-codes of length 4 are generated
by the polynomials X2 + g1X + g0 where g0 and g1 satisfy the equations

{

g0g1 + g1 = 0
g0 θ(g0) + g1 θ(g1) + 1 = 0

i.e g1(g0 + 1) = 0 and g3
0 + g3

1 = 1. We get three polynomials X2 + 1, X2 + α and X2 + α2.
The bound of the polynomials X2+α and X2+α2 is X4+X2+1, so these two polynomials
generate Hermitian self-dual central θ-codes which are not ideal θ-cyclic. One can notice
that the remainder in the left division of X4 by X2 + α (resp. X2 + α2) is equal to α2

(resp. α).

The following lemma enables to give a more accurate description of Hermitian self-dual
module θ-codes.

Lemma 1 Let C be a Hermitian self-dual module θ-code with generator polynomial g of
degree k and constant term 6= 0. Then
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• there exists a non zero constant c and h ∈ Fq[X, θ] such that gh = X2k − c = hg ;

• if k is even then θ(c) c = 1; else c2 = 1;

• if θ(c) 6= c then all odd terms of g cancel.

Proof. Let us assume that C is a Hermitian self-dual module θ-code of length 2k and
let g be its generator polynomial. Then there exists c in F − {0} and h in Fq[X, θ] such
that gh = X2k − c. So (gh)g = X2kg − cg = gX2k − cg because X2k is in the center of
Fq[X, θ]. We deduce from this that g divides cg on the left and as g0 6= 0, we get gc = cg.
So g(hg) = gX2k − gc and hg = X2k − c.
The polynomial gH divides on the left X2k − θk+1(1/c) and as the leading term θk+1(h0)
of gH commutes with X2k, the polynomial 1/θk+1(h0)g

H divides also X2k − θk+1(1/c).
Therefore g and 1/θk+1(h0)g

H are both monic and generate the same code, they must be
equal. So X2k − c = X2k − θk+1(1/c) and if k is odd c = 1/c; if k is even, c = θ(1/c).
Lastly, as gh = hg = X2k − c, we have (X2k − c)g = g(X2k − c) so ∀i ∈ {0, . . . , k}, (c −
θi(c)) gi = 0. For odd integers i, we get (c − θ(c)) gi = 0. So if θ(c) 6= c then all odd terms
of g cancel.

The last point of this lemma implies that any Hermitian self-dual module θ-code which is
not θ-constacylic (i.e. θ(c) 6= c) has a generator polynomial which is quite ”sparse”. The
minimum distances of these codes are worse than the minimum distances of the self dual
θ-constacyclic codes previously obtained in [4]. This can be explained by the ”sparsity” of
this generator polynomial.

Example. There are six Hermitian self-dual module θ-codes of length 20 over F4 which
are central but not θ-cyclic. They give two non equivalent Hermitian self-dual module θ-
codes over F4. The polynomial X10 + α2 divides on the left X20 − α and its bound is
X20 + X10 + 1. It generates a [20, 10, 2]4 Hermitian self-dual module θ-code which is θ-
central and not θ-cyclic. The polynomial X10 +α X8 +X6 +α X4 +α X2 +α2 also divides
on the left X20 − α and its bound is X20 + X18 + X16 + X8 + X6 + X2 + 1. It generates
an [20, 10, 4]4 Hermitian self-dual module θ-code which is θ-central and not θ-cyclic. The
best distance for ideal θ-cyclic codes of the same length is 6 ([4]). One can notice the
sparsity of these generator polynomials which may explain the bad distances of the codes
they generate.
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