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Abstract. Almost bent functions oppose an optimum resistance to linear and differential cryptanalysis. We
present basic properties of almost bent functions; particularly we give an upper bound on the degree. We develop
the “coding theory” point of view for studying the existence of almost bent functions, showing explicitly the links
with cyclic codes. We also give new characterizations of almost bent functions by means of associated Boolean
functions.
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1. Introduction

We denote by, the setGF'(2)™ of all binary words of lengthn and study the functions
from V,,, to itself. LetF be such a function, the Fourier transformiof whose value at
(a,b) € V,,,2, is equal to:

prlab) = Y () )
zEV,

where “, )" is the usual inner product o, plays a role in several topics of information
theory such as

e sequences (e.gn-sequences, cf. [21]);
e correlation-immune and resilient functions (cf. [6], Theorem 5);

e permutations suitable for block ciphers (cf. [10, 31]).

We focus in this paper on the study of those functiérfer which . (a, b) takes the values
0 and+£2"5" only (m odd), wheru ranges ove¥/,, andb ranges ove¥,* =V,, \ {0}.
This problem is one of most interest in the studynefsequences: whef' is a power

functionz — F(z) = z*, viewed as a function from the Galois figlt#'(2™) to itself, this
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corresponds to the fact that twe-sequencen’);—g .. om o and(a'*);—o, .. om_o (Where
« is a primitive element of7F'(2")) have apreferredcrosscorrelation function — see a
recent resultin [5].

It is also a central problem in the study of permutations suitable for DES-like cryptosys-
tems: recall that the functions that oppose an optimum resistance to linear cryptanalysis
(cf. [30]) are thealmost bent(AB) functions (cf. [10]), i.e. those functions such that
the maximum of the magnitude @fz(a,b), whena ranges ove#,,, andb ranges over

V., reaches the lower bourd’=~, or equivalently those functions such that the minimum
distance between the set of all the functidbsF'), b € V¥, and the set of all affine func-

tions fromV,, into GF(2) is the largest. Note that AB functions do not exist wheris

even. Chabaud and Vaudenay have re-discovered in [10] the bound quoted above that was
originally proved by Sidel'nikov in [35].

AB functions have the property that-(a, b) takes the value and-+2"" only, when
a ranges ovel,, andb ranges ovel,*. Any AB function isalmost perfect nonlinear
(APN), i.e. opposes an optimum resistance to differential cryptanalysis (cf. [3, 32]): for
any nonzero vectar and any vectob, the equatiorf’(z) + F(x + a) = b admits at most
two solutions inV/,,.

Recall that Nyberg [32] proposed two examples of APN functions, which are permutations
on the spac#/,,, identified to the Galois field’ F'(2™). These permutations are the power
functionse — 22 +1, wherei is co-prime withm, andz — 22" —2. Chabaud and Vaudenay
observed later that, for odd, the first one of these functions is AB and the other is not.

Actually these last results are known in coding theory, as properties of some cyclic codes.
Moreover, another infinite class of AB permutations can be deduced from Remark 3 of [24],
page 379, by Kasami: for ariysuch that is co-prime withm, the functionz — 22* —2'+1
is AB. Since the work of Kasami, no other infinite class of AB functions was discovered.
There exist also two conjectures (cf. [27]). The first one is due to Wetleh:function
F(x) = a2, wheret = 2! + 3 andi = (m —1)/2, is AB.The second one is due to Nihthe
functionF () = 2*, wheres = 2/ + 2%~ —1if i = (m—1)/2is odd ands = 2¢ 427 — 1
if i = (m —1)/2is even, is AB.

In Section 2, we recall the definitions and present some basic properties of APN and
AB functions. We study the transformations that let globally invariant the set of AB (resp.
APN) functions. Our main result is an upper bound on the degree of any AB function.

In Section 3 we develop another point of view for studying the existence of APN and of
AB functions, by usinglassicaltools of coding theory. We first recall the characterization,
due to Kasami [23], of binary codes with parametefs— 1, 2m, d] which areoptimal in a
certain sense. We later show that these optimal codes correspond to AB functions; therefore
we prove that AB functions correspond to uniformly packed codes with external distance
three. To conclude, we explain how the primitive cyclic codes appear in this context and
how their parameters could be used. Particularly we develop the links with the study of
cyclic codes with two zeros.

We give in Section 4 new characterizations of AB functions, by establishing several links
between the notion of AB function and that of bent Boolean function. A fundiidrom
Vo to V,,, being given, we define a Boolean functigp on 'V, x V,,, such thatF' is APN
if and only if v has weighg?™~1 — 2m~1 andF is AB if and only if v is bent. We give
a sufficient condition for a functiof to be AB that involves bent functions d#,, ;.
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2. AB and APN Functions

Definition 1 The functior¥ is said to bealmost perfect nonlinedAPN) if all the equations
F(z) + Flx+a) =b, a,beVy,a#0, 2

have no more than two solutions ¥, .

Clearly, (2) must have then eith@or 2 solutions.

Definition 2 The functionF' is said to be aralmost bent{AB) function if the numbers
ur(a,b), given by (1), are equal t6 and +275 only, whena € V,, andb € V,* (or,

equivalently, whem, b € V;,; (a,b) # (0,0)).

AB functions exist only whemn is odd. We will always assume: to be odd when we
study AB functions
Definition 2 does not depend on a particular choice of the inner produgt,in If we
identify V,,, with GF(2™), we can takgz,y) = tr(xy) in relation (1), wherer(z) =
z+a2+---+ 22" " is the trace function front?F (2) to GF(2).

2.1. Properties of Stability

Let us recall the properties of stability of APN functions given by Nyberg [32] and give
some others. We check that these properties are also valid for AB functions. We give the
proofs of the new results, only, since all these results are easy to prove.

Proposition 1 The right and the left compositions of an APN (resp. AB) function by an
affine permutation are APN (resp. AB). The inverse of an APN (resp. AB) permutation is
APN (resp. AB).

Proof: Let F' be AB andL be a linear permutation (the case of an affine permutation is
similar); pror(a,b) is equal tour(a, L*(b)) where L* is the adjoint operator ok (i.e.
where for anyz, y € V,,, we have:(x, L(y)) = (L*(x),y)). If”(,)” is the usual inner
product,L* is the linear permutation whose matrix is transposed of that &ffe have also
MFOL(av b) = MF(L_l*(a)a b) andup-1 ((l, b) = KF (b’ a)' u

Proposition 2 Let F'(xz) be an APN function (resp. an AB function) fréfp to itself, and
A(z) an affine function. Then the functidf(x) + A(x) is APN (resp. AB).

The proof is straightforward. Notice that Proposition 2 implies the existence of non-
bijective AB functions: obviously, for any permutatidn, there exist linear functions
such that” + L is non-bijective (choose two distinct vectar&ndv and takel such that
L(u) + L(v) = F(u) + F(v)).
Remark 1. (a) Because of Proposition 2, it is possible to assume without loss of generality
that F'(z) does not contain a constant term, iF0) = 0.
(b) We conjecture that the following statement holéts:any AB functionF, there exists a
linear functionL such thatF' + L is a permutation.



128 CARLET, CHARPIN AND ZINOVIEV

Let F; be a function fromV,,, to itself andF, a permutation ori/,,,. By definition,
F, o F,~1is APN if and only if, for any nonzero elemeft, b) of V.2, the system:

FioF, Y(a)+FloF '(y) = b
z+y = a

admits at most two solutiong:, y).
Changingz andy into F»(z) and F»(y), we deduce that the functidfy o F, ™' is APN if
and only if the system:
{ Fi(z) + Fi(y) = b,
Fy(z)+ Fa(y) = a

admits at most two solutions:, y). We then deduce.

Proposition 3 Let F' be an APN (resp. AB) function dr},, and Ly, Lo be two linear
functions fromV,,% to V,,,. Assume thatL,, L2) is a permutation or/,,,? and that the
functionFy(z) = Lo(F(x), x) is a permutation o¥,,,. Then, the functio; o F; *, where
Fi(z) = L1(F(x),x) is APN (resp. AB).

Proof: Let F' be an APN function (for AB functions, see Corollary 5). The function
Fy o F; ' is APN if and only if the following system with unknow(, y):

{Fl(l')JrFl(y) =0
By(z) + F(y) = o

admits at most two solutions for any nonzero vediarb), or equivalently, denoting by
(a’,b') the unique ordered pair such thdt;, L,)(V', a’) = (b, a) and applying the inverse
permutation of L1, L2), the system:

{F(J‘)+F(y) =V
r+y=a

admits at most two solutior(g;, y) for any nonzero vectadfa’, v'). ]

All the transformations we have seen above, that respect APN (resp. AB) property, are
particular cases of this general one:
-if (L1, Ly)(b,a) = (a,b), thenF; o F; ! is equal toF ~!;
-if Ly(b,a) andL+ (b, a) depend only o anda, respectively, this corresponds to the right
and left compositions of' by linear permutations;
-if L1(b,a) = b+ L(a) andLy (b, a) = a whereL is any linear function fron¥v,,, to itself,
then we obtairF(z) + L(x).

2.2. A Bound on the Degree

The notion of AB function is close to that of bent function. Recall that for any positive
evenm, a Boolean functiorf onV,, (i.e. a function fromV,,, to GF(2)) is calledbentif,
for everya € V,,,, the character sum:
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Z (—1)/ @+ az)

€V

is equal to+2% . A function F' from V,,, (m even) toV}, is calledbentif all the Boolean
functions(b, F') (b € V}}) are bent, i.e. if for any € V;* and anya € V,,, we have:
wr(a,b) = £2%. Such functions exist if and only if. > 2k (cf. [31]).

There exists an upper bound on the algebraic degree of any bent function (cf. [33]). We
shall obtain an upper bound on the algebraic degree of any AB function. We first recall
what is the algebraic degree of a function.

There exist two representations of a functiérirom V,,, to V,,,:

1. InthefirstoneF is considered as a function frof\F'(2™) to itself. It admits a unique
representation as a polynomial of degree smaller2fiarin one variable ove& F'(2™):

2" —1
F(z) = Y §a’, §; € GF(2™). ?3)
j=0
Fis linear if and only ifF'(x) is alinearized polynomiabver GF'(2™):
m—1 .
522, §; € GF(2™). (4)
j=0

It is called an affine function if it is the sum of a linear function and of a constant one.

2. In the second onel’ is uniquely represented as a polynomialriinvariables with
coefficients inV,,, (that can be identified t&'F'(2™)):

E(xla"'axm) = Z 6(’&) ]:[x]uJ

UE Vi,

This polynomial is called the algebraic normal form/of
The way to obtain one representation from the other is the following: chang the

m

expressiory ", ;0 !, wherea is a primitive element o7 /(2). We have:
F(zy, ., xm) = F(Z zjal ™t
j=1

2m—1 m

§ 2 j—1
6i (EjOlj
=0 J

1
) Zm—l iSQS
om_1 s=0

m

= Z i ijozj_l
i=0 j=1
= Z o(u) ij“j
j=1

UEV,,
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The algebraic degree &fis the degree of the polynomi&l(x, ..., z,,,). ltcan be expressed
by means of the exponents BYz).

Definition 3 Letj be any integer in the rang®, 2™ — 1]. Consider the binary expansion
of j:

m—1
Jo= Y342, js€{0,1}.

The2-weightws () of j is the number of nonzero coefficieritsi.e. wy(j) = 7" js -

Definition 4 Let F'(x) be a polynomial given by expression (F(z) has2-degreeD if
D is the maximun-weight of its exponents:

D = max {ws(j) : 0<j<2™—1,0; #0}. (5)

The algebraic degree @ is then equal to the-degree ofF'(z).
Itis well known that the algebraic degree of a bent functiowgris at mostz: (cf. [33]).
The following statement gives us also a bound on the algebraic degree of an AB function.

Theorem 1 LetF be any function oz F'(2™). If F'is AB, then the algebraic degree Bf
is less than or equal tom + 1)/2.

Proof:
E(‘/Blv'“vmrﬂ) = Z 5(’&) xlul ...xmum .
ueGF(2™)
For any nonzerd € V,, define the Boolean functiofi;

flxy, ) = Z (6(u),b) ™ - xpy ™.

ue€GF(2m)

It is clear that for any the degree of is at most equal to the algebraic degred-gf),
and there exists for which these degrees are equal. Therefore the algebraic degfeis of
bounded bym + 1)/2 if and only if, for any nonzerd € V,,, the Boolean functior, F)
has degree less than or equa(to+ 1)/2.

Let g be the Mobius transform off. That s for allu € V,,,,

gy = S f),

vEV,, v=u
this sum being computed {6 F'(2), and where < v, for binary vectors) = (vy,...,vy)
andu = (ug,...,u,), means that the conditian = 1 impliesu, = 1. One says thahe

binary vectoru covers the binary vectar. Let wt(u) denote the Hamming weight af,
i.e. the number of its nonzero symbols. The algebraic normal form of the Boolean function
fisequalto (cf. Th. 1, p. 372in [29]):
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flz1, ) = Z g(u) (Hﬁt) 7

u€Vm,

this sum being computed HF(2). Therefore, to prove the theorem, we have to prove that
for anyw, such thatwt(u) > (m + 1)/2, the value ofy(v) equals zero. Now denote kfy
the Walsh transform of:

Fwy =37 fo) (~)tm)

VEV

the sum being computed i1 Using the inverse transform, we have

F)=27" 37 Flw) (-1,

weVy,
and then
g(u) = 27> " f(w) (-1)"* [mod 2]
v=u WEV,,

=27 > fw) | (=1 ] [mod 2]

wEVy, v=u

The setE, = {v € V,,, |v <X u} is a vector subspace &f,,. Its dimension isvt(u). We

know that for any subspadé of V,,, and any wordw, the sumZ(—1)<"“’“’> is nonzero if

veE
and only ifw belongs to the orthogonal @f, that is the linear space

{w eV, | Yv € E, (v,w) =0},

in which case its value is equal to the cardinali§| of E. The orthogonal spacg, ™ is
equal toE, 1 whereu + 1 = (u; + 1,...,u,, + 1). SO

g(u) =2t~ N F(w) [mod 2] (6)

wEE, 41

Let f, = (—1)/. SinceF EAB, for anyw, the value atv of the Walsh transform of, is

equal either t@ or to+2"2 ", by definition. But we have,, = 1—2f, sincef is Boolean.
The Walsh transform of the constant functibis equal t@ A, whereA,(w) is the Dirac
symbol: Ag(w) = 1if w = 0 and0 otherwise. Thus, the value atof the Walsh transform
of f, is equal t2™ A (w) — 2f. We deduce that, for any, the valuef(w) is divisible by
2”7 . In accordance with (6), we can deduce that) = 0 whenwt(u) > (m + 1)/2.
Note that another proof of this property can be found in [8, Lemma 3]. [ ]

Theorem 1 permits to give another argument of the fact that the power funétior? is
not AB, since its algebraic degreeris— 1, and to eliminate some possible values,dbr
which a functionF'(z) = z* cannot be AB.
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Theorem 2 Letg, s andm be any integers, wherg s > 2, gs < m, andm is odd. Lett
be any integer] < t < 2™ — 1, which can be presented in the rifg _ in the following
form:

1425422 4 ... 4295 (7)
Assume the following conditions:
ged(s,m) =1, andm =1 (mod g+ 1) . (8)

ThenF(z) = ' is not AB.

The proofis based on the following statement, which gives the exact value2fibaht
of ¢t~! for all the numbers of the form above.

Lemmal Letg, sandm be any integers, whetg> 1, s > 2 andgs < m, and lett be
any integerl < t < 2™ — 1, which can be presented in the ridg~ _, in the form (7). If
mis such thatn = 1 (mod g + 1) and if ged(s, m) = 1, then the numbersand2™ — 1
are mutually prime andvz (t=1) = (gm +1)/(g + 1).

Proof: Setu:=(m—1)/(g+1).
Then we have (equality means congruence modtie- 1):

1—28
-1 =t

us(g+1l)+s _ 9s

= o1

2us(g+1) -1

AT

t2° (1 + 2809+ 4 92s(a+D) 2(“*”5(9*1)) .

Sinceged(s, m) = 1, the numbergg + 1)s andm are co-prime and any two numbers
i(g + 1)s andj(g + 1)s are pairwise non-congruent modulo for distincti,j < m.
Thus wy(—1/t) = u, and consequently,(1/t) = m —u = (gm + 1)/(g + 1).

[ |

Proof of Theorem 2: . According to Lemma 1, under the conditions of the theorem, the
numbert~—! has alway-weight (gm + 1)/(g + 1) which is more thar(m + 1)/2 for

g > 2. Now if F(z) = 2 is AB, then, according to Proposition £, (z) = 2t " is also
AB. But then, the2-degree ofet ' exceeds the upper bound of Theorem 1 and therefore
2t can not be AB. [ |

This lemma shows thahe bound of Theorem 1 is tightndeed, for the casg = 1, the
function F(z) = z! = z'*2", which is bijective and AB for any prime tom, has an

inverseF(z) = 2! (which is also AB by Proposition 1), whete,(t ) = (m + 1)/2.
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2.3.  AB mappings of Nonprime Lengths

Assumen = 2™ — 1 is not a prime number. For any proper divigoof », denote byM,
the set of all the multiples of in [0, n].

Theorem 3 Let

be any polynomial ove& F'(2) such that the condition; # 0 impliesi € M,, where
g is an arbitrary divisor ofn = 2™ — 1. ThenF(z) is neither a permutation nor an AB
function.

Proof: By hypothesis, there exists a polynomi@{x) such thatF'(x) = G(z9). Recall
thato is a primitive element o&GF(2™). Letu = n/g andf = o*. We haved # 1 and
F(Bz) = G(8%29) = G(29) = F(z). ThusF is not a permutationF’ is constant on each
set

{B'z 1 i=0,---,9—1}; x € GF(2™)*.
All these sets have the same cardinaignd define a partition & F'(2)*; thus, the sum
Z (_l)tr(bF(m))
TEGF(2m)*
is divisible byg. We deduce that for every, g is a divisor ofur(0,0) = 1. Note that
ur(0,b) = 0impliesg = 1 which contradicts the hypothesis.

m+1 m+1

Suppose thaF' is AB. Thenu(0,b) is equal tot27 2~ andg is a divisor of27 2~ £ 1,
which is impossible since™s~

*+1and2™ — 1are co-prime. ]

Remark 2. The same arguments show that if a power functiofxr) = z! is AB on
GF(2™), thenF(x) is a permutation o&GF'(2™). But it is easy to show more generally
that if F'(z) = z' is APN onGF(2™), thenged(t,2™ — 1) is equal tol if m is odd and to
3 if m is even.

3. AB and APN Functions and Codes
3.1. Preliminary Results from Coding Theory

We use standard notation of the algebraic coding theory (see [29]XHEmreming) weight
of any vectorz € V,, is denoted bywt(z), and the(Hamming) distancéetween any two
vectorsz andy from V,, is denoted byl(z,y). Any linear subspace df,, of dimension
k is called abinary linear codeC' and is denoted byn, k, d], whered is theminimum
Hamming distancef C. Foraz = (x1,...,z,) andy = (y1, ..., y,) from V,, we denote
(x, y) =191+ -+2xnyn @ainner productiv;,. Any linear[n, k, d] codeC is associated
with its dual [n, n — k, d*] code denoted bg'*:
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Ct ={zecV,: (z,c) = 0,YceC}.

Denote byy; the number of codewords &f of weighti. The vector(vy, ..., v,,) is called
theweight enumeratoof C', and the polynomial

is called theweight polynomiabf C. For any binary(r x n) matrix H define the linear
binary codeC of lengthn : C' = {c €V, : ¢H™ = 0}, whereH" is the transposed matrix
of H. We say that” is defined by thearity check matrix-.

Two binary code€” andC’ with same parameters are calleguivalentif they coincide,
up to the order of codewords, after some permutations of the positiatis of

Identify a vectorc = (cy,...,cn—1) Of V,, with the polynomialc(xz) = ¢y + c1z +
-+ cp_12™ L. A binary linear[n, k, d] code iscyclic, if it is an ideal of the ring
GF(2)[x]/(z™ — 1), of the polynomials ove& F'(2) modulo(z™ — 1). For any such code
C' there exists a uniqgue monic polynomiglz), called thegenerator polynomial of”,
such that any elementx) of C' can be uniquely expressed in the forafz) = a(x)g(z).
Denote bym, (x) theminimal polynomiabf o’ overGF'(2), wherex is aprimitive element
of GF(2™). For any binary cyclic cod€' of lengthn = 2™ — 1 we have: g(z) =
my, (z)---m;_(z); we say thatC is defined by the set’i, j = 1,..., s, called itszero’s
set Whenged(u, 2™ — 1) = 1, o™ is a primitive element too. Then the cyclic code
with zero’s set{a’i, j = 1,...,s}, is equivalent to the cyclic code whose zero’s set is
{(a™)4, j=1,...,s}.

We need to define two classical families of binary cyclic codes. The cyclic code of length
2™ — 1 whose zero’s set is

d—1

i 2 2L mod n

T:U{a,a yeee, QU }
=1

is calledthe narrow-sense primitive BCH code with designed distandte thatimplicitly

a? ¢ T. This code is ad — 1)/2-error-correcting BCH code (see [29, p.201]). The
puncturedReed-Muller code of length = 2™ — 1 and orderr, denoted byR*(m, ) (see
[29, p.383]), is the cyclic code with zero’s set

{a® 1i=1,..,2" =2, 1 <wy(i) <m—1r—1},

wherews(7) is the2-weight ofi (see Definition 3).

The interpretation of AB and APN functions in terms of coding theory is based on the
following result, which is actually due to Kasami ( Theorem 13 in [23]). We give here a
more general presentation, including codes of any dimension. For clarity and because we
will use these later, we also give the main elements of the proof.

Theorem 4 LetC be any lineafn, n — k, d] code with minimum distane&> 3, where
n = 2™ —1andm is odd. Assume that the dual ca@e, of dimensiork, does not contain
the all-one vectoll = (1, ...,1). Letn = (no, ..., n,) (resp.v = (v, ..., v, )) be the weight
enumerator of the cod€~ (resp. C). Letw, be the smallest) such that
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Nw + Mom—w 7é 07 0 < w< 2m71 .

Thenk > m and we have the following properties.
() If £ > 2m thenw, satisfies

wo S 2m71 _ 2(m71)/2 .

Moreover ifwy is identical with its upper bound, theg = v, = 0, k¥ = 2m and the weight
distribution ofC+ is the same as the weight distribution of the dual oftfeeror-correcting
BCH code, which is

Weight:w Number of wordsz,,
0 1
gm—1 _ 2(m—1)/2 (2m _ 1)(2171—2 + 2(m—3)/2)
2m—1 (2m _ 1)(2m—1 + 1)
gm—1 4 2(m—1)/2 (2771 _ 1)(2m—2 _ 2(m—3)/2)

(i) If m < k < 2m, then the minimum distance 6f is at most four. Moreover when
wo > 2m~1 — 92(m=1)/2 one must have:

vy +ug < ((2m71 = 1) (283 - 2ktmedy) /(3. 2k (9)

Sketch of Proof: . The main part of the proof is obtained by means of the Fitsss power
momentg28], actually the first four power moments of the weight distributiorCofand
Ch):

EZ:O Wy = 2k—1p,
Dm0 Wow = 2" %n(n + 1),
S Wi, = 2F=3(n2(n + 3) — 3! 1), (10)
S owine = 2874 (n(n+1)(n? 4+ 5n — 2) + 4! (vg — nug)) .
We consider the numberg, = Y7 _ (w — 2™~ 1)y,,. Since for/ even
(w = 2771 = (2" = w) - 2771)",
we have for any eveft
n om—1_1
Iy = Z(w —2m ey, = Z (w =21 (e + 12 —) - (11)

w=1 w=wo



136 CARLET, CHARPIN AND ZINOVIEV

Note that the codeword of weight zero is not taken in account in the sum above. Recall that
C does not contain the all-one codeword.

The values ofl; and I, are simply obtained by using the four power moments given by
(10). We replacex by 2™ — 1 and obtain

12 — 2k,+m—2 _ 22m—2 (12)
and
Iy =2ktm=43.9m _2) —24m=4 1 3. 9k 1 (s 4 yy) . (13)

Now we consider

2771—171

Li=2""h= > (w-2"""2((w—2""")2 = 2"7") (ny + mam _w) - (14)

W=wq

Note that, if2m—1 — 2(m=1)/2 « 4, < 2m~1 _ 1 then thewth term above is less than or
equal to zero. From (12) and (13) we have

Iy —2m 1, = (2m—t — 1) (2ktm=3 —23m=3) L 3. 9k=1(1s 4 1) . (15)

Whenk < m, the value ofl, is strictly negative which is impossible, proving th@t
cannot satisfy the hypothesis of the theorem.

(i) Suppose that > 2m. Then, from (15), the value df, — 2™~ 'I, cannot be negative. In
the sum (14), the terms which correspond to the valuesgreater thag” ! — 2(m—1)/2,
are negative. So the value of, is at mosg™ 1 — 2(m—1)/2,

Assume that, = 2™~ — 20m=1)/2 By replacingw, by its value in (14), we obtain
Iy — 2™~ 11, < 0. From (15), the only possibility i€, — 2™ ~!I, = 0. We deduce from
(15) thatk = 2m andvs + v4 = 0. ThereforeC'* has dimensiofm andC has minimum
distance at least five. Moreover only three valggsare unknown. They correspond to the
following values ofw:

w=2""14Lom=1/2 gng 4 =2m-1

Now we apply a classical result which can be found in [28]:S be a subset df1, 2, ..., n}
containings elements. Then the weight distributiongbf andC are uniquely determined
byVl, Vo,...,Vg_1 and thenl with g g S.

As vy = 1, = v3 = 1y = 0 and the valueg,, are unknown for only three values af,
the weight enumerator @i~ (and ofC) is unique. Since thg-error-correcting BCH code
satisfies our hypothesis, its weight polynomial is the solution.

(ii) If & = m thenI, = 0, proving thatC* has only one weighty = 2™~ ! —i.e. the
codeC has the same weight distribution as the simplex code.

Assume thatn < k < 2m. If v3 + v4 = 0 we obtain from (13),

14 — 2m—4<3 . 2m+k _ 2k’+1 _ 23m) .

If £ < 2m — 1thenly < 0, a contradiction. On the other hand kif= 2m — 1), a code
[2™ — 1, 2™ — 2m, 5] does not exist [18] (see also [4]). So the minimum distand@ f
at most four.
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Whenw, > 271 — 20m=1)/2 the value ofl, — 2"~ I, must be less than or equal to
zero (see (14)). We obtain the condition (9)m@+- v, from (15), completing the proof.
]

Remark 3. Let's explain what the hypotheses of Theorem 4 mean. First, the condition
d > 3 means that any two columns of the parity check matriX’adre distinct. Second,
the vectorl is not inC* if and only if C' contains some codewords of odd weight.

3.2. Coding Theory Point of View

Definition 5 Let C be a linear code of length and denote by(ry, ..., 7, ) the weight
enumerator of its duaC*+. Theset) = {j : n; # 0, 1 < j < n} is said to be the
characteristic set of”. The external distance @, denoted by, is the cardinality of
Q: 0 = card .

Theorem 5 Let F' be any polynomial of the form (3) such tHat0) = 0 and letC'r be the
[n =2™ — 1,k ,d] code defined by the parity check matrix

1 a a2 ... ot
Hr = ( F(1) Fla) F(a?) ... F(a"™1) ) ; (16)
where each entry is viewed as a binary vector. Then:
(i) The code’'r is such thaBB < d < 5.

(i) Fis APNifand only ifd = 5.
(iif) F'is AB if and only if the characteristic set 6f» looks as follows

0= { 2m71’ gm—1 4 2(777,71)/2 } )

Proof: First note that, for any mapping’, the dimensiont of Cr is such thatc >
2™ — 1 — 2m. Since any two columns dfi are distinct, we have that > 3. Assume
thatd > 6. As the existence of a lineqn, k, d] code implies the existence of a linear
[n — 1, k, d — 1] code, the cod€’'r with parameterf2™ — 1, k, 6], k > 2™ — 1 — 2m,
provides a linea2™ — 2, k, 5] code. But such a code does not exist by [18] (see also [4]).
Thus we should havé < 5, completing the proof ofi).

Letc = (co, ..., cn—1) be a binary vector. By the definition & (see (16))¢ belongs
to Cr, if and only if it satisfies

n—1 n—1
Zcio/ =0 and ZciF(ai) =0. 17
=0 i=0

According to (17),Cr has minimum weigh8 or 4 if and only if there exist four distinct
elements, say, y, 2/, v/, of GF(2™) such that

r4+y+2 +y =0 and F(z) + F(y) + F(z') + F(y') = 0. (18)

The minimum weight i, if one of these elements is zero; otherwise it.iS'he equation
(2) can be rewritten as follows:
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r+y=a and F(z) + F(y) = b, (19)

wherea # 0 andb are arbitrary elements 6f F'(2™). Suppose that there exist two distinct
pairs (z,y) and(z’,y") which satisfy (19). Of coursdistinctimplies that we have here
four distinct elements off '(2"). The existence of such four elements, for sanandb,
is equivalent to the existence of four elements satisfying (18). So we have provédithat
APN if and only if Cr has minimum distancé > 5. But from (i) we have, thatl < 5. So
we have provedii).

Now setf(x) = (b, F(z)) + (a,z). Considering the elements 6fF'(2"™) as binary
vectors, we can see that the functigris actually a linear combination of rows @fr.
Hence the numbers

Aap = card {a’ | f(a') =1}

are the weights of codewords 6f# (i.e. the elements of2). Assume thatF is AB,
i.e. up(a,b) = 0or£2"2" . Firstup(a,b) = 0 means thah, , = 2! and therefore

2m=1 ¢ Q. Similarly, the conditionur(a,b) = +2"3" means that

m—1

e Ap=2""1t+2"7 € Q.

gy =2M 277
Thus, we have prove(dii). Note thatin (1) the values @fr (a, 0) are not considered. From
this point of view they correspond to the codeword€’gf which are generated by the first
m rows of Hp. That is the codewords of thr@mplex codavhich have weigh™ 1.

[ |

Corollary 1 Let F' be any polynomial (3). Then:

(i) If F'is APN then the dimension 6fz is equal to2™ — 2m — 1.

(i) If Fis APN thenC# does not contain the all-one vector.

(iii) If F'is AB thenF is APN.

(iv) If F'is AB then the weight distribution 6t is unique and given by Theorem(d,

Proof: (i) Let F' be any APN function. In accordance with Theorend®’s,is an[n, k, d]
code, withn = 2™ —1,d = 5andk > n —2m. If £ = n + 1 — 2m then we obtain a
linear[2™ — 1, 2™ — 2m, 5] code, which does not exist [18]. Therefore we should have
k=2"—1-2m.

(i) Assume thatF' is APN. ThenCr contains some codewords of weight Since the
vectorl = (1, ..., 1) cannot be orthogonal to any codeword of odd weigti§ not inC.
(iii) Assume thatF” is AB. By definition, the dimension of'% is at most2m. Suppose
that it is less thar2m. It means that there are at least gheZ 0 and oney such that
(B, F(x)) + (y,z) = 0, forallz € GF(2™). Sour(y,5) = 2™, a contradiction.
Moreover the code0 has exactly three weight@™ ! and 2™~ + 2(m=1)/2_ This
implies that the sum in (14) is zero. Sinke= 2m, we deduce from (153 = v4 = 0.
ThusF' is APN.

(iv) Follows immediately from Theorem 4i). ]

For any binary cod€’ denote byp its covering radius



CODES, BENT FUNCTIONS AND PERMUTATIONS 139

= in { d .
p = max min {d(z,c) }

Proposition 4 LetF' be any APN mapping. Then the covering ragiws C is such that:
3<p< 4.

Proof: An e-error-correcting code is said to perfectif its covering radius is equal te
Itis well known that there are no binary perfect codes of lemgth 7 with distances (see
[29, p. 182]). Since’ is APN, the code’'r is a2-error-correcting code. Assuming that
Cr is not a trivial perfect code of leng#h its covering radiug is at leasB.

Suppose now thas = 5 and consider any cosé? of Cr of weight5. According to
Corollary 1(i), the dimension o’ is 2™ — 1 — 2m. Therefore the cod® U Cr is a
(linear) code[2™ — 1, k, 5] with & = 2™ — 2m. But such a code does not exist [18].

]

There is an interesting connection between AB functions and so called uniformly packed
codes. We will define these codes in the sense of [1] — see other definitions in [34], [19]
and [20].

Definition 6 [1] LetC be any binary code of length, with minimum distancé = 2e + 1
and covering radiup. Foranyz € V, denote by;(x) the number of codewords 6f
at distancej from x. The codeC is calleduniformly packed if there exist real numbers
ho, hi,..., h, such that for any: € V;, the following equality holds

P
7=0

A special case of such codes, introduced in [34], corresponds to theocase+ 1 and

ho=hi = =he1 =1, he = hey1 = 1/¢, (20)
where/ is a positive integer.

Theorem 6 Let F' be any polynomial (3), where is odd. Thent' is AB, if and only ifCr
is a uniformly packed code of length= 2™ — 1 with minimum distancé = 2e+1 =5
and covering radiup = e + 1 = 3.

Proof: Let F'be any AB mapping. From Corollary(ii) , F'is APN. Moreover, according
to Theorem 5Cr has minimum distancg and its characteristic set is

Q={(n+1)/2, (n+1)/2+£+/(n+1)/2}.

So its external distanagis equal to3. Therefore by the well known Delsarte inequality
[12] (thatp < 6 for any codeC'), we havep < 3. But from Proposition 4 we havei > 3,
and thereforep = 3 = 6. Now we use the following result [2], [20k codeC' is uniformly
packed, if and only if its covering radiysis equal to its external distan¢e ThereforeC'r

is a uniformly packed code witi = 2e + 1 =5andp =e+ 1 = 3.
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For the converse statement, first we recall two results. In [1] it was proved that the
error-correcting BCH code of length= 2" — 1, wherem odd, is uniformly packed with
parameters (20), where= (n — 1)/6 and where the root§;, i = 1,2, 3, of the Lloyd
polynomial are:

n—+1 n—+1 n+1 n—+1 n—+1

61 = 9 - T> 52 = 2 ) 63 = 2 + 2 . (21)

Then in [20] it was proved that these codes are the only uniformly packed codes of length
n=2"—1,n > 31, (modd) withd = 2e + 1 = 5andp = e+ 1 = 3. In fact, the
uniformly packed codes given in [20] differ from Definition 6, but it is easy to see (and
it was mentioned in [20], [2]), that uniformly packed codes with parameters (20) coincide
with uniformly packed codes in the sense of [20] whes 1 = p (see p. 23 in [20]).

SinceCF is linear, the values of the roots, j = 1,2, 3, give the values of nonzero
components of the weight enumerator of the dual aOge which form the characteristic
set() of C'r (see Definition 5). Then by Theorem(ii) , we obtain thaf’ is AB. ]

According to Theorem 5, if the functiof is AB then the weight distribution of' » is
unique, and equal to the weight distribution of therror-correcting BCH code. Now we
can say more: such a codg- is completely regular

Definition 7 A codeC' is completely regular, if for any its cosgt,
U=x2+C ={zx+c|lceC},
the weight distribution of/ is uniquely defined by its minimum weight.

It is known that any uniformly packed code with parameters (20) is completely regular
[34, Theorem 4] (see also [20, p.23], where this property is proved for a more general class
of codes).

Corollary 2 Let F' be any polynomial (3), where: is odd. If F' is AB, thenCF is a
completely regular code.

Thus, if F is AB, the weight polynomialVy (z) of any cosetU of Cr is uniquely
defined by its minimum weight. Following [1], we will show how to write out the weight
polynomials of the cosets @f». The Lloyd’s type theorem for uniformly packed codes
asserts ([1], Theorem 1) that the existence of a uniformly packedCaafdengthn with
parameters;, i =0,1,..., p, implies that the Lloyd polynomial ,(x,n) of C,

hasp distinct integral roots betwednandn. Here P, (x, n) is the Krawtchouk polynomial
of degreek:

Pulan) = 3 (-1t (n i x) (k : j) |

=0
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where
(x) oz —1)---(x—j+1)
J J! ’
for any realz. Denote by¢; thei-th root of L,(x,n), wherei = 1,..., p. Now suppose

thatU is an arbitrary coset of’ of weights: s = min {wt(c) : ¢ € U}. Denote by
Nes) = (Ms,05 Ms,1, -+, Ns,n) its Weight enumerator. The firgtvalues ofy; ; follow from
the definition of the uniformly packed code with parameters (20):

0,..,e—=1: n,;=0, Vj<e+1, j#sandn,=1,
s = e: Ns; =0, Vi<snss=landns s 1 =¢—-1, (22)
e+1: Ns,; = 0, Vj<sandns,,=~¢.

Assuming that we know all the roogs of the Lloyd polynomial, we can write the weight
polynomialW;(z) of U in the following evident form (Theorem 2, [1]) :

_[olatayr

P
) n—=& (1 _ »\&
o + ) ) (- a)Y (23)

j=1

W, (l‘)

wherep constants ; depend on the known coefficienis ; (see( 22)) ofiv,(x) and are
therefore defined by the corresponding system of linear equations. Since thejyalue
uniquely defines the weight enumeratgyy, any uniformly packed code with= ¢ + 1 is
completely regular. For the case= 2 andn = 2™ — 1, m is odd, the weight polynomial
We(z) = Wy(z) of the codeC = Cr looks as follows:
We(z) = st 201+ 2)" 4 ngs(1+ 2)8 (1 — 2)% +
(24)
+ nn+3)(1+2)2 1 —2)% + n&(1+2)87 11 —2)%),

where the rootg; are given by (21).

Corollary 3 Let F' be any APN mapping. Thefi is AB if and only if the cod€’'r has
external distancé = 3.

Proof: First assume thak’ is AB. According to Theorem 5, it implies that the weight
enumerator of the cod€3:, has exactly three nonzero components, (g has external
distance) = 3 (see Definition 5).

Now assume that the cod&- has minimum distanceand external distanc According
to Proposition 4C'r has covering radius > 3. But by the Delsarte inequalityp, < 6§ and
thereforep = 3. Sincep = 6, the codeC'r is uniformly packed and the statement follows
from Theorem 6 above. ]

3.3. APN Functions and Cyclic Codes

We consider only binary cyclic codes of length= 2™ — 1. In order to establish the
connection between the properties of APN (or AB) functions and cyclic codes, itis necessary



142 CARLET, CHARPIN AND ZINOVIEV
to define these codes in terms of systems of equations. Any binary veet(r, ..., ¢,—1)
can be identified to itsupport also called itset of locators This is the set

{a' € GF(2™)" |¢;=1,i=0,1,..,n— 1},

whose cardinality isvt(c). Now we define thgpower function®f any vectore of weight

w. Let{Xy,..., X, } be the set of locators @f the power functions(c) of care :
or(c) = ZXJ" , kell,n]. (25)
j=1

Note thaty,,(c) is equal towt(c) modulo2.

Definition 8 Denote bycl(j) the 2-cyclotomic coset of modulon. LetT be a set of
integers from0, n — 1], which is a union of some cosetg;). The binary cyclic code of
lengthn, with zeros sef o | k € T }, is the set of all vectors such thatpy (c) = 0 for
all k € T. The sefl’ is called the defining set @f.

In this section we assume thB{z) = 3 §;27 is a polynomial (3), such that(0) = 0.
We mentioned in Remark 1 that for the study of APN (or AB) functions we can add this
hypothesis without loss of generality. We will explain later why we are then in accordance
with the hypotheses of Theorem 4 (see the next lemma).

Now we can construct the codé&- with parity check matrix{ r (see Theorem 5). Then
a vectore = (cg, ..., ¢n—1) IS in C if and only if

n—1 n—1
Z cat =0 and Z ciF(a)=0.
i=0 i=0

We have clearly that)"" "} ¢;a’ = ¢, (c) and

n—1 n—1 n n—1

Z ciF(a) = Z ¢ Zéjaij = Z(Sj Z ci(a') = Z(Sjgoj(c) .
i=0 i=0 j=1 j=1  i=0 j=1
Henceforthe is in Cr if and only if

p1(c) =0 and Zéj(pj(c) =0 (26)

Jj=3

(note thatps(c) = (p1(c))? = 0). Particularly ifc is such thatp; (¢c) = 0 andp;(c) = 0
for all 6; # 0, thenc is a codeword ofCr. Actually c is contained in a subcode 6fx
which is the binary cyclic code, which we denote By, whose zeros are all the elements
o? such that; # 0. Whena™ = 1 is not a zero o3, thenBr contains some codewords
of odd weight. It means that the all-one vector is noBif, implying thatC# does not
contain the all-one vector. Note thais not a zero ofBr if and only if §,, = 0. Thus we
have proved the following property.
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Lemma 2 Let F(x) be a polynomial (3), such thdf(0) = 0. Denote byl the set of
exponentg such that; # 0. Set

Tp = {d1) }u{c()]jelr}.

Then the cod€’'r contains the binary cyclic codBr of lengthn whose defining set iBx.
Whené,, = 0, the dual code:’l% does not contain the all-one vector.

So we can exhibit a large class of polynomials which cannot be APN.

Theorem 7 Notationisthatof Lemma 2. Lgbe any proper divisor of.. LetA, be the set
of allintegerst, ¢ € [1, 2™ — 2], such that = 2¢ (mod 29 — 1) forsomel, 0 < ¢ < g—1.
If F'is such thatlr is a subset of\,, thenF" is not APN (and therefore not AB).

Proof: By definition, T is a union of2-cyclotomic cosets. Sincg, is invariant under
the multiplication by2 modulon and containg!(1), T can be a subset df,.
Let C be the binary cyclic code of lengthwith defining set\,. Itis provedin[11],ina
more general context, that the minimum distance of such a code is three. Indeed, consider
the vectorc whose locators ar€l, 3, 5 + 1}, whereg is any element o F'(29) \ {0,1}.
Then for anyt € A,, t = 2¢ (mod29 — 1), we have, that:

pre)=1+8"+(1+8) =1+ +(1+8)* =0,

implying thatc is a codeword of®. AsTy is contained im\,, C is contained in the cyclic

codeBr. From Lemma 2B is contained irCr, proving thatC'» has minimum distance
three. In accordance with Theorenfip, the function’, cannot be APN, and, therefore,
F cannot be AB. ]

ExAMPLE 1. Forthe casen = 9 andg = 3 let A5 be the set of all integers s € [1, 510,
such thats modulo7 is a power of two. The set; is a union of some cyclotomic cosets
modulo511, whose set of representatives, dayis:

R 1,9,11,15,23,25,29,37,39, 43, 51,53, 57,79,
~ 85,93,95,107,109, 123, 127, 183, 191, 219, 239

Take anyF'(z), given by (3), and consider the dgt of exponents corresponding to nonzero
coefficients. If for anyj € Ir some element of the cosé(j) belongs taR, thenF(z) is
not APN. For instance, the polynomial is not APN for anyt € R.

3.4. The Quadratic Case

Denote byQ,, the set of all integers, s € {1,...,2™ — 1}, whose2-weight is equal to
one or two. That is

Qm = {2F+2% | kandlin[0,m —1]}. (27)

The polynomialF'(z) is said to beguadraticif its algebraic degree is equal o It means
that F'(x) has the following form
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F(z)= Y &a’, ;€ GF2™). (28)

JEQm

Note that the associated Boolean functiinf(z) = (b, F(x)) + {(a, z) is quadratic (its
algebraic normal form is a polynomial of degrzen m variables).

Proposition 5 Let F' be a quadratic polynomial (28). Then the codg is contained in
R*(m, 2).

Proof: Recall that the cod®&*(m, r) (see Section 3) is defined by thos& where the
integers, 1 < s < 2™ —2,issuchthatl < wy(s) < m —r — 1. So the se),, is exactly
the defining set oR*(m, m — 3). On the other hand, the defining setf(m, m — 2) is
{cl(1)}. HenceCF is always contained iR * (m, m — 2), sincep; (¢) = 0 foranyc € Cp
(see (26)).

Consider now the cod®r with defining setl’» (see Lemma 2). By definition, the
polynomial F'(z) is quadratic if and only ifl is contained in@,,, meaning that the
cyclic code Br contains the cod®*(m,m — 3). Then all the elements® satisfying
1 < ws(s) < m — 3 are zeros of the dual codg;, proving thatBz is contained in
R*(m,2). So we have:

R*(m,m —3) C Bp CCr = Cg C Bf C R*(m,2).

WhenF' is quadratic, there is an interesting expansion of Theorem 4.

Theorem 8 Let F' be a quadratic polynomial (28). Thenis AB if and only iff’ is APN.
More generally this property holds whenis such that the cod€'r is equivalent to a
codeC whose dual is in the punctured Reed-Muller code of order two.

Proof: Thisresultis directly obtained from the identities stated in the proof of Theorem 4.
Consider any linear cod€ such thatC* is in R*(m, 2) and whose dimension &Bn. The
weight distribution of the codB* (m, 2) is well-known (see [29], Chapter 15). In particular
whenm is odd, this code has no codewords of weighsuch that27—1 — 2(m—1)/2
w < 2m~1, Therefore this property holds for any subcodésf(m, 2).

Now the result is deduced from (14) and (15) (where notation is that of Theorem 4). If
vz = v4 = 0, with k& = 2m, we obtain

271171_2(7n71)/2
L-2""L= Y (w22 (w22 2 ) () = 0.

w=wo

SinceC*+ has no weightw such that 271 — 2(m=1)/2 < 4 < 2m~1 there are no
negative terms in the sum above. This implies that all terms are zero, which means that
Nw + Nam _w = 0, for all w which are not in the set 21 + 2(m=1)/2 gm=1 1,

We have already proved that any AB mapping is APN; on the other hafidsfAPN
then the dimension of' equals2m (see Corollary 1). Now we assume thatis APN
and that the cod€'r is equivalent to a cod€ whose dual is a subcode & (m, 2). Then
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the dual ofCr is equivalent taC+. The weight polynomial o€r (resp.Cy) is the same
as the weight polynomial of' (resp. C+). SinceF is APN, C has minimum distancg
and, according to the proof abov@;- has only three weight&/—1 + 2(m=1)/2 gnd2m 1,
So F is AB. From Proposition 5, whef' is quadratic, the cod€'#- is itself a subcode of
R*(m,2), completing the proof. [ |

Corollary 4 Assume thaf’(z) = x*. Suppose that there js= 2¢ + 1 such thatjk =
2%(2" 4+ 1) modulo2™ — 1, for somes and some-.
Then ifF is APN,F' is AB.

Proof: Inthis case the cod@p is a cyclic code with zeras anda” (and their conjugates).
The transformation above carri€g- to the cyclic codeC' whose zeros are’ anda’*.
Sincej is prime to2™ — 1 it is a permutation which conserves the weight polynomials.
We can deduce that the codg- is equivalent to a code which is in the Reed-Muller of
order two and apply the previous theorem. ]

Remark 4. (a)We have proved in Theorem 1 that the algebraic degree of any AB function is
upper bounded bym + 1) /2. On the other hand, there are few examples of APN functions
which are not AB. The numerical results induce a conjecture, ahgtAPN function is
always AB when its algebraic degree is strictly less thar+- 1) /2.
(b) Aninfinite class of quadratic AB mappings was given by Kasami (see Theorem 10 later).
It is strongly conjectured thatip to equivalence, there are no other quadratic mappings
which are AB

To conclude this section, we are going to express the property for a quadratic fuRiction
to be AB, in terms of a system of equations o¢&F'(2™). Recall thatF' is APN if and
only if the codeC'r has minimum distanck. WhenF' is quadratic, we have a particular
situation: the cod€’r contains codewords of weightif and only if it contains codewords
of weight3. We begin by proving this property.

Lemma 3 Let F' be a quadratic polynomial. Thefiis AB if and only if the cod€'r does
not contain any codeword of weight three.

Proof: WhenF is AB, thenF' is APN, implying thatC'» has minimum distance five. So
Cr cannot contain any codeword of weight three.

For the converse statement we will use the terminology of Section 3.3 &e€'r of
weight three whose support, denotedsayp(c), is the sef X, X,, X3}. By definition,
if c € Cr then

p1(c)=X1+Xo+X3=0

(see (25) and (26)). By adding “0” to the locators setofve obtain a linear subspace of
GF(2™) of dimension2. Similarly, the support of any’ € Cr of weight4 is an affine
subspace ofz F'(2™) of dimension2. Its support is a coset 6fupp(c) U {0}, for somec

satisfyingg, (c) = 0:

supp(c’) = {v} U {v + X| X € supp(c)}, v e GF(2™). (29)
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TakeF(x) = Zjel §;x7 wherel C @, andd; # 0. Letc’ be a codeword of weight of
Cr. Recall that’ € CF if and only if

01(c’)=0 and Zéj 0;i(c)=0.
JerI
Obviously ¢ (c’) = ¢1(c). Moreover for anyj € Q,,, wherej = 2% + 2¢, we obtain,
using (29),

3
ei(e) = v Y x)T
=1

3
= 2 Z (V2k+2z +2 (Xz')QZ + v (Xi)zlc + (Xi)zk”g)
i=1
3 k £
= )T = g0,

i=1

sincerZl(Xi)QS = 0 for any s. Thus we have proved that thereds ¢ Cp, with
wt(c") = 4, if and only if there isc € Cp with wi(c) = 3, completing the proof.
[

Theorem 9 Let F' be a quadratic polynomial of the form (28). Theris AB if and only if
foranyk, k € [1,n — 1], and for anyv, v € GF(2™) \ {0, 1}, the following unequality
holds:

Z J; A (e Vzé) # 0. (30)

JEQm,j=242%,5>4

Proof: In accordance with Lemma 3, any quadratic polynoniiak AB if and only if
CF does not contain any codeword whose support can be identified with a linear subspace
of GF(2™) of dimension2. LetV be the set of such subspaces. The cardinality &
well-known to be(2™ — 1)(2m~! —1)/3. There are™~! — 1 elements od’ of the type

{0, , v,v+1}, ve GF(2™)\ {0,1},
By shifting, for a fixedv, we obtain2™ — 1 subspaces of the type.
{0, o, o*v, &*(v+1)}, ke[0,n—1]. (31)

We obtain at al(2™ — 1)(2™~! — 1) subspaces, where each subspace occurs three times.
So any element op has the form (31) for some, corresponding to a codeword that we
will denote byc, 1.

Letj € Q. Sincep:(c, ) = 0, by definition, we havep;(c, ;) = 0 for all j = 2°.
Moreover if j = 2° + 2¢, s > ¢, we have

w;(cur) = ok 4+ (aFv) + (aF (v +1)) = M (1/25 + sz) . (32)
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Now we express the fact, thaty does not contain any codewotd,,. According to (26),
we must have

> Gipilcur) #0, veGF(2™)\{0,1}, andk € [0,n — 1] .

JEQm

Sincey; (c,1) = 0 and by using (32), we conclude that the condition above is equivalent
to (30), completing the proof. ]

EXAMPLE 2. Suppose thaF(z) = 67, j = 2° 4+ 2¢ ands > ¢. Then (30) is satisfied if
and only ifs — £ is prime withm. Indeed we must have

6ok (v + 1/2£) #0

for all » and for allk. Sincev? +12° = (12" +1)% | itis possible only if the polynomial
22" + 2 has only0 and1 as roots inGF(2™). We have again a well known resuif:

t = 2¢ + 1, if m is odd andi andm are co-prime, then the functioki(z) = 2! is AB(see
Theorem 10 later).

3.5. AB Functions and Cyclic Codes with Two Zeros

In this section we suppose thaYz) is a power polynomial oveGF(2™), F(z) = x*
where the2-cyclotomic coseti(t) has the cardinality (if it is not satisfied, ther' is not
APN according to Corollary 1). The cod&- is the binary cyclic code whose zeros are
o' and their conjugates. This code is obviously equivalent to any €bdéose zeros are
o7 anda’?, wherejt is computed modula, for any; which is co-prime withn. Actually
we consider now binary cyclic codes with two zetdsanda® (and their conjugates). Such
a codeC, ; has the parity check matrix:
1 a" o ... abr
Hr,s = < 1 o a2 ... OL(”71)5 .
Although the functionF' is the most simple here, the problem of finding such functions

which are APN (furthermore, which are AB) remainstaard open problemThe known
AB functions are due to Kasami.

Theorem 10 [23],[24] (i) Let F(z) = 2>+, whereged(i, m) = 1. ThenF is AB. (ii) Let
r =2/ +1ands = 2% + 1, wheregcd(j,m) = 1. Then the cod€, , is equivalent to the
codeC ,1,, where the functiod () = &7 '* = (), #(j) = 2% — 27 + 1, is AB.

Remark 5. Note that, in Theorem 1@3/ + 1 is viewed modulo:; we obtain there all the
functions defined foj € [1, (m — 1)/2] andged(j, m) = 1. Our conjecture is thébr all
class of code$ C.. ; }, wherer = 2! + 1 ands = 27 + 1, this is the only situation where
the minimum distance is five.

The only known class of APN functions, which are not AB, is the class of functions

F(x) = x~!. These functions correspond to the so-called Melas codes, i.e. the codes
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Cy,—1 of length2™ — 1, wherem is odd. The weights of the corresponding dual codes
were determined by Lachaud and Wolfmann [25].

Actually, taking into account the equivalent cyclic codes, the result of Kasami provides a
larger class of AB functions. In the following example we consider the let@thwhich
is the last length for which any AB function of the tyg&gx) = x' belongs to a known
class.
ExamPLE 3. Consider codes of lengtl27. Sincel27 is prime, all the integers, 2, .., 126
are partitioned intd26,/7 = 18 cosets. These cosets form a multiplicative group,&ay
of order18 under multiplication moduld27: ¢l(i)cl(j) = cl(ij) (the cosetl(3) is a
generator of this group). It means that there @fé different choices of unordered pairs
{r, s} and each such choice defines a c6tlg. Under the action ofi7, all these codes are
partitioned intd orbits O, = {C3: ,.5: : i =0, 1,...17}, consisting of all codes equivalent
to Cl,t-

From Kasami’s results (Theorem 10 above) we have three AB funcfign$ = '),
t(j) =2% — 29 + 1andj € {1,2,3}:

t1) =3, t(2) =13, ¢(3) =57,

which correspond to the codés ; for ¢ = 3, 13 and23 (indeed,57 belongs tocl(23)).

We have also the three quadratic AB functiofs(z) = 2> *!, 1 < i < 3. Since the
first functions of both types coincide (indeed]) = 2! + 1), it gives five AB functions
F(z) = z' corresponding to five codes, , : ¢ € {3, 5, 9, 13, 23 }. Itis clear that the
orbit O,, corresponding to the codg, ., contains also a cod€, ;-:. Indeed, the code
Cs .15 for s = t=1, which is in factC; 1, is equivalent to the cod€' ;, ensuring that the

function F(z) = 2° = 2! is AB too. We have the following five inverse values- ¢ ~!:
t]3]5]913] 23
s]/43|27]15|11]29 .

Therefore, we obtain ten AB functiodd(z) = ! of Kasami type, which correspond to the
codesC; ; of Kasami type and belong to five orbit%, fort € {3,5,9,13,23}. The only

one short orbitDgs (which consists 0 codes) corresponds to the mentioned above Melas
code (and give APN functions). The three remaining ortitsfor ¢t € {7, 19, 21}, consist

of codes with minimum distance four. Actually, for = 7 all AB functions F'(z) = z*

are of Kasami type. This property holds also far= 5, but not form = 9, where the
function F(z) = z'° is AB and appears as the first example of AB function, which is not
of Kasami type, but corresponds to the conjecture of Welsh.

There are recent works on the classification of cadgs via their minimum distances.
By using the Weil bound for the number of zeroes of the polynomial of two variables, Janwa
et al. [22] characterized several classes of c@deswhose minimum distance is at most
four. We formulate their main result.

Theorem 11 [22] For any fixedt satisfyingt = 3 (mod 4) and¢ > 3, there is no infinite
family of codeg”; ; with minimum distancé.

Roughly speaking, the work [22] strengthens the conjecture that APN functions are ex-
ceptional. A fortiori this conjecture holds for AB functions. It is important to notice that
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the approach, used in [22], is not connected with the weight enumerators of the duals of the
codes( 4, i.e. with the AB property of codes.

On the other hand in [11], the authors focus on the characterization of cyclic codes with
minimum distance3. They introduce some tools that we use now for two results related
with two conjectures, already mentioned in Remark 6. In both cases, we characterize a
large class of codes with minimum distance at leagtor the generality we consider any
value ofm, even or odd.

Proposition 6 LetC,. ; be abinary cyclic code oflength= 2™ —1, wherem is any integer,
r=2+lands = 2/+1,0 < i < j < m. Forevennassumethajcd(2'+1, 2™ —1) = 1.

If further ged(j + i, m) = ged(j — i, m) = 1, then the cod€, ; has minimum distance at
least four. Otherwise(’, s has minimum distance three.

Proof:  First notice that for the proof we need the conditipr/(2! + 1,2™ — 1) = 1.
However this is always satisfied whenis odd. Indeed let us define for any0 < i < m:
g=gcd(2t +1, 2™ — 1), u = ged(i,m) andh = gcd(2i,m). The condition

g|2™ —1landg|2% —1

implies thatg divides2” — 1. For oddm we haveu = h; thusg divides2* — 1 and2* — 1
divides2’ — 1. Thereforgy divides2’ — 1, implying thatg divides(2¢ + 1)+ (2¢ — 1) = 2¢+1,
which is possible only foy = 1.

Sinceged(2! + 1, 2™ — 1) = 1, any two columns of the parity check matrix 6f ; are
distinct, meaning that there is no codeword of weightAs we know, the codé€’; ; has
minimum distance three, if and only if there is a solut{df, V') of the following system
of equations:

Y2H X2 41 = 0

yZP+l 4 x4l 41 = 0 (33)

whereX andY are inGF(2™) \ {0,1} andX # Y. We can expres¥ by means ofX,
using the first equation of (33). Note that the conditied (2! + 1,2™ — 1) = 1 implies
that this correspondence is one-to-one.

Thus solving (33) is equivalent to solving the following equation with only one indeter-
minate:

(X2 415 X7 1 =0,

or equivalently
(X2i+1 + 1)2J’+1 + (X2f+1 + 1)2i+1 -0,

which, by expanding the preceding, might be rewritten as:
X2J‘(2i+1) +XTH +X2i(2j+1) +X2-7'+1 —0.

The polynomial above, saf(X), can be simply factorized:
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PX)= (x> + X)(X¥ + X¥) = (X¥ + X)(xX¥ T+ X)¥ .

We have proved that the codg. ; has minimum distance three, if and onlyR{X) has
at least one root igF'(2™) \ {0, 1}. However, the roots oP (X)) are the elements of the
fieldsGF(271%) andGF(27~*%). Hence we can conclude th@t s has minimum distance
three, if and only ifgcd(j + ¢,m) > 1 or ged(j — i, m) > 1; otherwise the cod€', ; has
minimum distance four or five. ]

Consider again the codé€s ;. It is clear that such a code cannot contain a codeword of
weight2 (see Theorem 5). Suppose that it contains a codeword of w&ighthat means
that, up to a shift, the system

Y+X+1 =0
Y4 Xt4+1 = 0

has at least one solutidiX, Y') in GF(2™) \ {0, 1}, whereX # Y. Itis equivalent to say
that the polynomial

U(X) =1+ X" + (1+X)* (34)

has at least one root idF'(2™) \ {0, 1}. Moreover if we know the factorization &f;(X),

we can state a necessary and sufficient condition for the€pgdeo have minimum distance
three (as we made above in Proposition 6). In [11], the authors obtained such a condition
for anyt = 2% + (2 — 1), wherev andu are any positive integer$, < v < u < m.

Theorem 12 [11] Let C} ; be a binary cyclic code of length = 2™ — 1, wherem is any
integer, and let = 2% 4+ (2 — 1), whereu, v (1 < v < u < m) are arbitrary integers. Let

912{ ged(myu), if ¢ =242V —1, (35)

ged(myu —v), if t=2%—2Y+1,

andgs = ged(m,v). Then the cod€’; , has minimum distance at least four, if and only if
g1 = g2 = 1, and in all other cases the minimum distance is equal to three.

ExaMPLE 4. As an illustration of the previous theorem, we consider the cyclic cOtigs
for the cases = 2¢ + 1 andt = 2¢ + 3. For the caseé = 2° + 1 we have immediately that
Ui(X) = X% + X. The polynomiallU;(X) has roots inGF(2™) \ {0, 1} if and only if
ged(m, i) = 1. Whent = 2¢ + 3 we obtain

Uy(X) = 1+ X253 4 (14 X)¥+3
= XPP X XY X X2+ X
= (XT+X)(X2+ X +1).

So the set of roots df; (X) is the union of the field& F' (22) andG F(2%). The polynomial
U:(X) has noroot irGF'(2™) \ {0, 1} if and only if ged(i,m) = 1 andm odd.
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4. Bent Functions and AB Functions

This section is devoted to the study of the properties of some Boolean fungtassociated
to the function/” and whose definition follows.

Definition 9 For any functionF' from V,,, to itself, we denote byr the integer-valued
function onV,,?> whose value ata, b) is the number of solutions i, of the equation
F(x)+ F(z+a) = b. We denote by the Boolean function ol,,,”> whose value afa, b)
islifa# 0anddp(a,b) #O0.

EXAMPLE 5. TakeF(z) = 2%+, wherei is co-prime withm. Then for any vectors and
b,a # 0,~r(a,b) is equal to 1 if and only if there exisissuch thatiz® +a z+a?>+t' = b
or, equivalently

(E)T#E: Y

a a a2t!

b .
Therefore, we haveyr(a,b) = tr (W) (with % =0).
EXAMPLE 6. Take nowF(z) = z2" ~2, then for any nonzero vectousandb, vr(a, b) is
. . . 1 1 .
equal to 1 if and only if there exists # 0, a, such that; + Tra b (or, equivalently:

2
(f) + %~ Ly Therefore, we have:
a a ab

a

1
vr(a,b) = tr <_b) + 14+ Ag(a) + Ag(b) + Ag(a)Ag(b) + Ag(ab + 1).
Open Question whatis the function; whereF (z) = 22" =2+ (with ged(i, m) = 1)?

4.1. Properties of the Functiofg

Now we will characterize the APN and AB functions by means of the functignsIn
the proof of the next theorem, we will need the following lemma. In the sedugl, b)
denotes the Dirac symbol &, b), whose value i§ if (a,b) = (0,0) and0 otherwise.

Lemma 4 For any APN functior¥’, the Walsh transform of the functiéng), = (—1)7*
is equal to22m Ay — (up)® + 2™,

Proof: SinceF' is APN, ¢ is equal to2™ Ay + 2+, according to Definition 1. Since
~r is Booleanvyr), is equal tol — 2vyp, thatisl — dp + 2™ A,.

Now the Walsh transform of the constant functiga 22 A, and that o\ is the constant
function1. Hence, the Walsh transform of the function-),, is equal t@?™ A — 5 +2™.

It is well known thatgl; is equal to(up)2 (cf. for instance [10]) . So, the Walsh

transform of the functiortyr), is equal to2*™ A, — (up)? + 2™, completing the proof.
|
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In the next theorem, we callual of a bent Boolean functioti onV,,, (cf. definition in
Section 2.2) the Boolean functighsuch thatf, = 2™ f,. Itis a bent function too.

Theorem 13 Let I be a function froni/,, to itself. Then the following properties hold:

(i) Fis APN if and only if the Boolean functiop- has weighg?m—1 — 2m—1,

(ii) Fis AB if and only ifyr is bent.

(i) If F is an APN function, then the functién— ~r(a,b) is balanced for any
nonzero vectou —i.e. it takes equally often the valuesndo0.

(iv) If F'is an APN permutation, then the functian— ~r(a, b) is balanced for
any nonzero vectar.

(v) If F'is AB, then the functiofyr is the Boolean function whose value(atd) is
1ifand only ifb # 0 and pp(a, b) # 0.

Proof: (i) Obviously, adding all the values 6f-(a, b), b € V,,,, being same as counting

all the elements oV/,,,, the sum Z or(a,b), computed inZ, is equal to2™, for anya.

beV,
Therefore

> dp(ab) =2 —2m (36)

a€Vp*, beEVy,

On the other handf’ is APN if and only if

> dp(ab)=2 > qp(ab).

a€Vip*, beVy, a€Vip™*, beVy,

So, F is APN if and only if the sum Z vr(a,b), computed irz, is equal ta2?m~! —
a,beV,,
om—1,
(ii) According to(i), we may without loss of generality assume tlhats APN. Indeed,
if Fis AB, then it is APN and ifyx is bent, then its weight i82™~! + 21, that is
22m—1 _ 9m—1 gince it is bounded bg?>™~!. By definition,~x is bent if and only if the
Walsh transform of the functiofyz), is equal to+2™, for everya, b. In fact, according
to Parseval’s relation, the sum of the squares of the values of the Walsh transform of the
function (), is equal to2™. So,~r is bent if and only if, for any(a, b) different from
(0,0), the value ata, b) of the Walsh transform of the functign ), is equal to+2™.
According to Lemma 4, the Walsh transform of the functigr ), is equal to:

257 Ao — (ur)* +27. (37)

We deduce that is bent if and only if, for anya, b) different from(0,0), (ur)* (a, b) is
equal to0 or to 2 *1, that is if F is AB.

(iif) The sumd_, ;. dr(a,b)is equalt@™ anditis also equalt®y ", . ~r(a,b) since
F'is APN.

(iv) If Fisapermutation, we can apgly) toits inverse and dedu¢®), sinceyg-1(a,b) =
’YF(ba a)'
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(v) The proof is a direct consequence of (37} equals 1 if and only if the Walsh transform
m+41

of the function(yr), is equal to—2, i.e. if and only ifur equalst2™= . [ |

Remark 6.

1. We know that any bent function dn,” has algebraic degree at mast(see Definition
4). So, whenF' is AB, vr has algebraic degree at mosat That is not true for APN
functions (consideF : z — 22" ~2).

2. WhenF is an AB power function, the bent functioy- has the form described by H.
Dobbertin in [14] under the name of triple-construction.

Corollary 5 Under the hypothesis of PropositionB,is AB if and only ifF; o F; ! is AB.

Proof: VryoFy ! (a,b) isequalto 1ifandonlyif # 0 and if there existéz, y) in V,,, x V;,
such thatFy () + Fo(y) = e andFy () + Fi(y) = b. Thus,ﬂyFloF;l isequal toypo L1,

whereL = (L, Ls). The functionyFloF;l is therefore bent if and only i is bent.
[ |

4.2. The quadratic case revisited

We have already seen that any quadratic APN mapping is AB. We can deduce it also from
Theorem 13 and say more, whéhs a permutation. Recall that is quadratic if and only
if the function fromV,,, x V,,, to V,,,:

er(z,y) = F(0)+ F(z) + F(y) + F(z +y)

is bilinear. Let us show that there exists then a unique permutationV,,,, such that, for
anya andb:

vr(a,b) = (G(a),b).

For any nonzero vectar, F'(z) + F(z+a) is equal topp (x, a) + F(0) + F(a). Therefore,
the setf, = {F(z) + F(z + a) : = € V,} is an affine subspace &f,. SinceF is

a permutation,E, does not contaid. SinceF is APN, E, has cardinality2™~! and

so is an hyperplane. Therefore, there exists a unique vétioy such thatt, = {y €
Vin| (G(a),y) = 1}. CompleteGG by settingG(0) = 0. We haveyg(a,b) = (G(a),b) for
any vectors: andb. SinceF is a permutation, the functiom — vz (a, ) is balanced for
any nonzera, which means that is a permutation. We know that, for every permutation
G, the function(a, b) — (G(a), b) is bent (cf. [13]). ThusF'is AB.

This result is more generally valid for any permutatidisuch that any spadg, is a flat.
Thus, it is true if, for any, the Boolean functionp, F'(z)) is partially bent (cf. [7]): we
know that, under this condition, for any nonzerandb, the function(b, F(z) + F(z +a))
is either balanced or constant. According to [29], Chapter 13, Lemma 6, this implies that
any spacdz, is an hyperplane.

Notice that the rather natural conjecture that, for any AB funcfiband any nonzero,

the function(b, F'(x)) is partially bent is false: for any nonzebpthe function(b, F'(z))

would have degree at mogh — 1)/2 and we know that there exist AB functiofiswhose
algebraic degree ign + 1) /2.
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We give now a sufficient condition far(z) to be AB.

Proposition 7 Let F(x) be a function fronV/,,, to itself. A sufficient condition faF' () to
be AB is that, for any nonzefoin V,,,, the Boolean functiokp, F'(x)) is the restriction to
V. of a bent function ofv,,, 1, i.e. there exists a Boolean functigp(x) onV,,, such that
the Boolean function(z, €) — (b, F'(z)) + €fy(x) is bent onV,,, x GF(2).

Proof: We have

S (n)eF@ten 1 3 (1) 0P @) +eful@)+(a,m)
TEGF(2m) 2 (z,6)EGF(2m)x GF(2)
+ Z (_1){b,F(z)>+€fb(m)+<a,x)+e

(2,e) EGF(2m™)xGF(2)

Since the functiorb, F'(z)) + efy(x) is bent, for any:, these two last sums are both equal

to 273 ; their mean is then equal ta2”>~ or to 0. (]

Notice thatf; must be balanced for amy~ 0, according to the properties of bent functions,
and that it is impossible tha () = (b, f(z)) wheref(z) is a function fromV/,,, to V,,,:

the functionF'(z) + ef(x) from V,,, x GF(2) to V,,, would be bent, a contradiction since
the dimension o¥/,, x GF(2) is not twice as great as that bf,.

Remark 7. (a)Let F' be any quadratic AB function, then it satisfies the hypothesis of
Proposition 7: for any # 0, (b, F'(z)) is an element of the Reed-Muller code of order 2;
the symplectic form associated{a F'(x)) has the form L, (x), y), whereLy is linear (cf.
[29], Chapter 15)F being AB, L, has a kernek, of dimensiont; letc ¢ I'm(Ly) | Ep™
(such an element always exists sidee(L;) andE," are linear hyperplanes) then it is a
simple matter to check that the function

(b, F(z)) + € {c,x)

has a nondegenerate associated symplectic form, i.e. is bent.

(b) Identify V,,, to GF'(2™) and take as inner produgt, y) = tr(zy), wheretr is the trace
function fromGF (2™) to GF(2). If Fis a power permutation a8 F(2™), i.e. F(x) = 2"
with ged(r, 2™ — 1) = 1, then it is enough to show the existencefpfor oneb # 0 only.
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