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Abstract. Almost bent functions oppose an optimum resistance to linear and differential cryptanalysis. We
present basic properties of almost bent functions; particularly we give an upper bound on the degree. We develop
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1. Introduction

We denote byVm the setGF (2)m of all binary words of lengthm and study the functions
from Vm to itself. LetF be such a function, the Fourier transform ofF , whose value at
(a, b) ∈ Vm

2, is equal to:

µF (a, b) =
∑

x∈Vm

(−1)〈b,F (x)〉+〈a,x〉 , (1)

where “〈 , 〉” is the usual inner product onVm, plays a role in several topics of information
theory such as

• sequences (e.g.m-sequences, cf. [21]);

• correlation-immune and resilient functions (cf. [6], Theorem 5);

• permutations suitable for block ciphers (cf. [10, 31]).

We focus in this paper on the study of those functionsF for whichµF (a, b) takes the values
0 and±2

m+1
2 only (m odd), whena ranges overVm andb ranges overV ∗m = Vm \ {0}.

This problem is one of most interest in the study ofm-sequences: whenF is a power
functionx→ F (x) = xt, viewed as a function from the Galois fieldGF (2m) to itself, this
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corresponds to the fact that twom-sequences(αi)i=0,...,2m−2 and(αti)i=0,...,2m−2 (where
α is a primitive element ofGF (2m)) have apreferredcrosscorrelation function – see a
recent result in [5].

It is also a central problem in the study of permutations suitable for DES-like cryptosys-
tems: recall that the functions that oppose an optimum resistance to linear cryptanalysis
(cf. [30]) are thealmost bent(AB) functions (cf. [10]), i.e. those functions such that
the maximum of the magnitude ofµF (a, b), whena ranges overVm andb ranges over
V ∗m, reaches the lower bound2

m+1
2 , or equivalently those functions such that the minimum

distance between the set of all the functions〈b, F 〉, b ∈ V ∗m, and the set of all affine func-
tions fromVm into GF (2) is the largest. Note that AB functions do not exist whenm is
even. Chabaud and Vaudenay have re-discovered in [10] the bound quoted above that was
originally proved by Sidel’nikov in [35].

AB functions have the property thatµF (a, b) takes the values0 and±2
m+1

2 only, when
a ranges overVm andb ranges overV ∗m. Any AB function is almost perfect nonlinear
(APN), i.e. opposes an optimum resistance to differential cryptanalysis (cf. [3, 32]): for
any nonzero vectora and any vectorb, the equationF (x) + F (x + a) = b admits at most
two solutions inVm.

Recall that Nyberg [32] proposed two examples of APN functions, which are permutations
on the spaceVm, identified to the Galois fieldGF (2m). These permutations are the power
functionsx→ x2i+1, wherei is co-prime withm, andx→ x2m−2. Chabaud and Vaudenay
observed later that, for oddm, the first one of these functions is AB and the other is not.

Actually these last results are known in coding theory, as properties of some cyclic codes.
Moreover, another infinite class of AB permutations can be deduced from Remark 3 of [24],
page 379, by Kasami: for anyi such thati is co-prime withm, the functionx→ x22i−2i+1

is AB. Since the work of Kasami, no other infinite class of AB functions was discovered.
There exist also two conjectures (cf. [27]). The first one is due to Welch:the function
F (x) = xt, wheret = 2i +3 andi = (m−1)/2, is AB.The second one is due to Niho:the
functionF (x) = xs, wheres = 2i +2

3i+1
2 −1 if i = (m−1)/2 is odd ands = 2i +2

i
2 −1

if i = (m− 1)/2 is even, is AB.
In Section 2, we recall the definitions and present some basic properties of APN and

AB functions. We study the transformations that let globally invariant the set of AB (resp.
APN) functions. Our main result is an upper bound on the degree of any AB function.

In Section 3 we develop another point of view for studying the existence of APN and of
AB functions, by usingclassicaltools of coding theory. We first recall the characterization,
due to Kasami [23], of binary codes with parameters[2m−1, 2m, d] which areoptimal, in a
certain sense. We later show that these optimal codes correspond to AB functions; therefore
we prove that AB functions correspond to uniformly packed codes with external distance
three. To conclude, we explain how the primitive cyclic codes appear in this context and
how their parameters could be used. Particularly we develop the links with the study of
cyclic codes with two zeros.

We give in Section 4 new characterizations of AB functions, by establishing several links
between the notion of AB function and that of bent Boolean function. A functionF from
Vm to Vm being given, we define a Boolean functionγF onVm × Vm such thatF is APN
if and only if γF has weight22m−1− 2m−1 andF is AB if and only if γF is bent. We give
a sufficient condition for a functionF to be AB that involves bent functions onVm+1.
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2. AB and APN Functions

Definition 1 The functionF is said to bealmost perfect nonlinear(APN) if all the equations

F (x) + F (x + a) = b , a, b ∈ Vm , a 6= 0 , (2)

have no more than two solutions inVm.

Clearly, (2) must have then either0 or 2 solutions.

Definition 2 The functionF is said to be analmost bent(AB) function if the numbers
µF (a, b), given by (1), are equal to0 and±2

m+1
2 only, whena ∈ Vm and b ∈ V ∗m (or,

equivalently, whena, b ∈ Vm; (a, b) 6= (0, 0)).

AB functions exist only whenm is odd. We will always assumem to be odd when we
study AB functions.
Definition 2 does not depend on a particular choice of the inner product inVm. If we
identify Vm with GF (2m), we can take〈x, y〉 = tr(xy) in relation (1), wheretr(x) =
x + x2 + · · ·+ x2m−1

is the trace function fromGF (2m) to GF (2).

2.1. Properties of Stability

Let us recall the properties of stability of APN functions given by Nyberg [32] and give
some others. We check that these properties are also valid for AB functions. We give the
proofs of the new results, only, since all these results are easy to prove.

Proposition 1 The right and the left compositions of an APN (resp. AB) function by an
affine permutation are APN (resp. AB). The inverse of an APN (resp. AB) permutation is
APN (resp. AB).

Proof: Let F be AB andL be a linear permutation (the case of an affine permutation is
similar); µL◦F (a, b) is equal toµF (a, L∗(b)) whereL∗ is the adjoint operator ofL (i.e.
where for anyx, y ∈ Vm we have:〈x, L(y)〉 = 〈L∗(x), y〉). If ” 〈 , 〉” is the usual inner
product,L∗ is the linear permutation whose matrix is transposed of that ofL. We have also
µF◦L(a, b) = µF (L−1∗(a), b) andµF−1(a, b) = µF (b, a).

Proposition 2 LetF (x) be an APN function (resp. an AB function) fromVm to itself, and
A(x) an affine function. Then the functionF (x) + A(x) is APN (resp. AB).

The proof is straightforward. Notice that Proposition 2 implies the existence of non-
bijective AB functions: obviously, for any permutationF , there exist linear functionsL
such thatF + L is non-bijective (choose two distinct vectorsu andv and takeL such that
L(u) + L(v) = F (u) + F (v)).
Remark 1. (a)Because of Proposition 2, it is possible to assume without loss of generality
thatF (x) does not contain a constant term, i.e.F (0) = 0.
(b) We conjecture that the following statement holds:for any AB functionF , there exists a
linear functionL such thatF + L is a permutation.
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Let F1 be a function fromVm to itself andF2 a permutation onVm. By definition,
F1 ◦ F2

−1 is APN if and only if, for any nonzero element(a, b) of Vm
2, the system:{

F1 ◦ F2
−1(x) + F1 ◦ F2

−1(y) = b
x + y = a

admits at most two solutions(x, y).
Changingx andy into F2(x) andF2(y), we deduce that the functionF1 ◦ F2

−1 is APN if
and only if the system: {

F1(x) + F1(y) = b,
F2(x) + F2(y) = a

admits at most two solutions(x, y). We then deduce.

Proposition 3 Let F be an APN (resp. AB) function onVm and L1, L2 be two linear
functions fromVm

2 to Vm. Assume that(L1, L2) is a permutation onVm
2 and that the

functionF2(x) = L2(F (x), x) is a permutation onVm. Then, the functionF1◦F−1
2 , where

F1(x) = L1(F (x), x) is APN (resp. AB).

Proof: Let F be an APN function (for AB functions, see Corollary 5). The function
F1 ◦ F−1

2 is APN if and only if the following system with unknown(x, y):{
F1(x) + F1(y) = b
F2(x) + F2(y) = a

admits at most two solutions for any nonzero vector(a, b), or equivalently, denoting by
(a′, b′) the unique ordered pair such that(L1, L2)(b′, a′) = (b, a) and applying the inverse
permutation of(L1, L2), the system:{

F (x) + F (y) = b′

x + y = a′

admits at most two solutions(x, y) for any nonzero vector(a′, b′).

All the transformations we have seen above, that respect APN (resp. AB) property, are
particular cases of this general one:
- if (L1, L2)(b, a) = (a, b), thenF1 ◦ F−1

2 is equal toF−1;
- if L1(b, a) andL2(b, a) depend only onb anda, respectively, this corresponds to the right
and left compositions ofF by linear permutations;
- if L1(b, a) = b + L(a) andL2(b, a) = a whereL is any linear function fromVm to itself,
then we obtainF (x) + L(x).

2.2. A Bound on the Degree

The notion of AB function is close to that of bent function. Recall that for any positive
evenm, a Boolean functionf onVm (i.e. a function fromVm to GF (2)) is calledbentif,
for everya ∈ Vm, the character sum:



CODES, BENT FUNCTIONS AND PERMUTATIONS 129

∑
x∈Vm

(−1)f(x)+〈a,x〉

is equal to±2
m
2 . A functionF from Vm (m even) toVk is calledbentif all the Boolean

functions〈b, F 〉 (b ∈ V ∗k ) are bent, i.e. if for anyb ∈ V ∗k and anya ∈ Vm, we have:
µF (a, b) = ±2

m
2 . Such functions exist if and only ifm ≥ 2k (cf. [31]).

There exists an upper bound on the algebraic degree of any bent function (cf. [33]). We
shall obtain an upper bound on the algebraic degree of any AB function. We first recall
what is the algebraic degree of a function.
There exist two representations of a functionF from Vm to Vm:

1. In the first one,F is considered as a function fromGF (2m) to itself. It admits a unique
representation as a polynomial of degree smaller than2m, in one variable overGF (2m):

F (x) =
2m−1∑
j=0

δjx
j , δj ∈ GF (2m) . (3)

F is linear if and only ifF (x) is a linearized polynomialoverGF (2m):

m−1∑
j=0

δjx
2j

, δj ∈ GF (2m) . (4)

It is called an affine function if it is the sum of a linear function and of a constant one.

2. In the second one,F is uniquely represented as a polynomial inm variables with
coefficients inVm (that can be identified toGF (2m)):

F (x1, · · · , xm) =
∑

u∈Vm

δ(u)

 m∏
j=1

xj
uj

 .

This polynomial is called the algebraic normal form ofF .

The way to obtain one representation from the other is the following: changex into the
expression

∑m
j=1 xjα

j−1, whereα is a primitive element ofGF (2m). We have:

F (x1, ..., xm) = F (
m∑

j=1

xjα
j−1)

=
2m−1∑
i=0

δi

 m∑
j=1

xjα
j−1

i

=
2m−1∑
i=0

δi

 m∑
j=1

xjα
j−1


∑m−1

s=0
is2s

=
∑

u∈Vm

δ(u)

 m∏
j=1

xj
uj

 .
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The algebraic degree ofF is the degree of the polynomialF (x1, ..., xm). It can be expressed
by means of the exponents ofF (x).

Definition 3 Let j be any integer in the range[0, 2m − 1]. Consider the binary expansion
of j :

j =
m−1∑
s=o

js2s , js ∈ {0, 1} .

The2-weightw2(j) of j is the number of nonzero coefficientsjs, i.e. w2(j) =
∑m−1

s=0 js .

Definition 4 Let F (x) be a polynomial given by expression (3).F (x) has2-degreeD if
D is the maximum2-weight of its exponents:

D = max { w2(j) : 0 ≤ j ≤ 2m − 1, δj 6= 0 }. (5)

The algebraic degree ofF is then equal to the2-degree ofF (x).
It is well known that the algebraic degree of a bent function onVm is at mostm2 (cf. [33]).

The following statement gives us also a bound on the algebraic degree of an AB function.

Theorem 1 LetF be any function onGF (2m). If F is AB, then the algebraic degree ofF
is less than or equal to(m + 1)/2.

Proof:

F (x1, ..., xm) =
∑

u∈GF (2m)

δ(u) x1
u1 · · ·xm

um .

For any nonzerob ∈ Vm define the Boolean functionf :

f(x1, ..., xm) =
∑

u∈GF (2m)

〈δ(u), b〉 x1
u1 · · ·xm

um .

It is clear that for anyb the degree off is at most equal to the algebraic degree ofF (x),
and there existsb for which these degrees are equal. Therefore the algebraic degree ofF is
bounded by(m + 1)/2 if and only if, for any nonzerob ∈ Vm, the Boolean function〈b, F 〉
has degree less than or equal to(m + 1)/2.

Let g be the Möbius transform off . That is for allu ∈ Vm,

g(u) =
∑

v∈Vm, v¹u

f(v) ,

this sum being computed inGF (2), and wherev ¹ u, for binary vectorsv = (v1, . . . , vm)
andu = (u1, . . . , um), means that the conditionvi = 1 impliesui = 1. One says thatthe
binary vectoru covers the binary vectorv. Let wt(u) denote the Hamming weight ofu,
i.e. the number of its nonzero symbols. The algebraic normal form of the Boolean function
f is equal to (cf. Th. 1, p. 372 in [29]):
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f(x1, ..., xm) =
∑

u∈Vm

g(u)

(
m∏

i=1

xui
i

)
,

this sum being computed inGF (2). Therefore, to prove the theorem, we have to prove that
for anyu, such thatwt(u) > (m + 1)/2, the value ofg(u) equals zero. Now denote bŷf
the Walsh transform off :

f̂(u) =
∑

v∈Vm

f(v) (−1)〈u,v〉 ,

the sum being computed inZ. Using the inverse transform, we have

f(v) = 2−m
∑

w∈Vm

f̂(w)(−1)〈v,w〉,

and then

g(u) = 2−m
∑
v¹u

∑
w∈Vm

f̂(w) (−1)〈v,w〉 [mod 2]

= 2−m
∑

w∈Vm

f̂(w)

∑
v¹u

(−1)〈v,w〉

 [mod 2].

The setEu = {v ∈ Vm | v ¹ u} is a vector subspace ofVm. Its dimension iswt(u). We

know that for any subspaceE of Vm and any wordw, the sum
∑
v∈E

(−1)〈v,w〉 is nonzero if

and only ifw belongs to the orthogonal ofE, that is the linear space

{w ∈ Vm | ∀v ∈ E, 〈v, w〉 = 0} ,

in which case its value is equal to the cardinality|E| of E. The orthogonal spaceEu
⊥ is

equal toEu+1 whereu + 1 = (u1 + 1, . . . , um + 1). So

g(u) = 2wt(u)−m
∑

w∈Eu+1

f̂(w) [mod 2]. (6)

Let fχ = (−1)f . SinceF is AB, for anyw, the value atw of the Walsh transform offχ is

equal either to0 or to±2
m+1

2 , by definition. But we havefχ = 1− 2f , sincef is Boolean.
The Walsh transform of the constant function1 is equal to2m∆0, where∆0(w) is the Dirac
symbol:∆0(w) = 1 if w = 0 and0 otherwise. Thus, the value atw of the Walsh transform
of fχ is equal to2m∆0(w)− 2f̂ . We deduce that, for anyw, the valuef̂(w) is divisible by

2
m−1

2 . In accordance with (6), we can deduce thatg(u) = 0 whenwt(u) > (m + 1)/2.
Note that another proof of this property can be found in [8, Lemma 3].

Theorem 1 permits to give another argument of the fact that the power functionx2m−2 is
not AB, since its algebraic degree ism− 1, and to eliminate some possible values oft, for
which a functionF (x) = xt cannot be AB.
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Theorem 2 Letg, s andm be any integers, whereg, s ≥ 2, gs < m, andm is odd. Lett
be any integer,1 < t < 2m− 1, which can be presented in the ringZ2m−1 in the following
form:

1 + 2s + 22s + · · ·+ 2gs. (7)

Assume the following conditions:

gcd(s, m) = 1, andm ≡ 1 (mod g + 1) . (8)

ThenF (x) = xt is not AB.

The proof is based on the following statement, which gives the exact value of the2-weight
of t−1 for all the numberst of the form above.

Lemma 1 Let g, s andm be any integers, whereg ≥ 1, s ≥ 2 andgs < m, and lett be
any integer,1 < t < 2m − 1, which can be presented in the ringZ2m−1 in the form (7). If
m is such thatm ≡ 1 (mod g + 1) and ifgcd(s, m) = 1, then the numberst and2m − 1
are mutually prime andw2(t−1) = (gm + 1)/(g + 1).

Proof: Setu := (m− 1)/(g + 1).
Then we have (equality means congruence modulo2m − 1):

−1 = t
1− 2s

2s(g+1) − 1

= t
2us(g+1)+s − 2s

2s(g+1) − 1

= t 2s 2us(g+1) − 1
2s(g+1) − 1

= t 2s
(
1 + 2s(g+1) + 22s(g+1) + ... + 2(u−1)s(g+1)

)
.

Sincegcd(s, m) = 1, the numbers(g + 1)s andm are co-prime and any two numbers
i(g + 1)s and j(g + 1)s are pairwise non-congruent modulom for distinct i, j < m.
Thus w2(−1/t) = u, and consequentlyw2(1/t) = m − u = (gm + 1)/(g + 1).

Proof of Theorem 2: . According to Lemma 1, under the conditions of the theorem, the
numbert−1 has always2-weight (gm + 1)/(g + 1) which is more than(m + 1)/2 for
g ≥ 2. Now if F (x) = xt is AB, then, according to Proposition 1,F−1(x) = xt−1

is also
AB. But then, the2-degree ofxt−1

exceeds the upper bound of Theorem 1 and therefore
xt can not be AB.

This lemma shows thatthe bound of Theorem 1 is tight.Indeed, for the caseg = 1, the
function F (x) = xt = x1+2s

, which is bijective and AB for anys prime tom, has an
inverseF (x) = xt−1

(which is also AB by Proposition 1), wherew2(t−1) = (m + 1)/2.
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2.3. AB mappings of Nonprime Lengths

Assumen = 2m − 1 is not a prime number. For any proper divisorg of n, denote byMg

the set of all the multiples ofg in [0, n].

Theorem 3 Let

F (x) =
n∑

i=0

δix
i

be any polynomial overGF (2m) such that the conditionδi 6= 0 impliesi ∈ Mg, where
g is an arbitrary divisor ofn = 2m − 1. ThenF (x) is neither a permutation nor an AB
function.

Proof: By hypothesis, there exists a polynomialG(x) such thatF (x) = G(xg). Recall
thatα is a primitive element ofGF (2m). Let u = n/g andβ = αu. We haveβ 6= 1 and
F (βx) = G(βgxg) = G(xg) = F (x). ThusF is not a permutation.F is constant on each
set

{βix : i = 0, · · · , g − 1}; x ∈ GF (2m)? .

All these sets have the same cardinalityg and define a partition ofGF (2m)?; thus, the sum∑
x∈GF (2m)?

(−1)tr(bF (x))

is divisible byg. We deduce that for everyb, g is a divisor ofµF (0, b) ± 1. Note that
µF (0, b) = 0 impliesg = 1 which contradicts the hypothesis.

Suppose thatF is AB. ThenµF (0, b) is equal to±2
m+1

2 andg is a divisor of2
m+1

2 ± 1,
which is impossible since2

m+1
2 ± 1 and2m − 1 are co-prime.

Remark 2. The same arguments show that if a power functionF (x) = xt is AB on
GF (2m), thenF (x) is a permutation ofGF (2m). But it is easy to show more generally
that if F (x) = xt is APN onGF (2m), thengcd(t, 2m − 1) is equal to1 if m is odd and to
3 if m is even.

3. AB and APN Functions and Codes

3.1. Preliminary Results from Coding Theory

We use standard notation of the algebraic coding theory (see [29]). The(Hamming) weight
of any vectorx ∈ Vn is denoted bywt(x), and the(Hamming) distancebetween any two
vectorsx andy from Vn is denoted byd(x, y). Any linear subspace ofVn of dimension
k is called abinary linear codeC and is denoted by[n, k, d], whered is theminimum
Hamming distanceof C. For x = (x1, ..., xn) andy = (y1, ..., yn) from Vn we denote
〈x, y〉 = x1y1 + · · ·+xnyn a inner product inVn. Any linear[n, k, d] codeC is associated
with its dual [n, n− k, d⊥] code denoted byC⊥:
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C⊥ = {x ∈ Vn : 〈x, c〉 = 0, ∀ c ∈ C} .

Denote byνi the number of codewords ofC of weight i. The vector(ν0, ..., νn) is called
theweight enumeratorof C, and the polynomial

WC(x) =
n∑

i=0

νix
i

is called theweight polynomialof C. For any binary(r × n) matrixH define the linear
binary codeC of lengthn : C = {c ∈ Vn : cHτ = 0}, whereHτ is the transposed matrix
ofH. We say thatC is defined by theparity check matrixH.

Two binary codesC andC ′ with same parameters are calledequivalent, if they coincide,
up to the order of codewords, after some permutations of the positions ofC ′.

Identify a vectorc = (c0, ..., cn−1) of Vn with the polynomialc(x) = c0 + c1x +
· · · + cn−1x

n−1. A binary linear[n, k, d] code iscyclic, if it is an ideal of the ring
GF (2)[x]/(xn − 1), of the polynomials overGF (2) modulo(xn − 1). For any such code
C there exists a unique monic polynomialg(x), called thegenerator polynomial ofC,
such that any elementc(x) of C can be uniquely expressed in the form:c(x) = a(x)g(x).
Denote bymi(x) theminimal polynomialof αi overGF (2), whereα is aprimitive element
of GF (2m). For any binary cyclic codeC of length n = 2m − 1 we have: g(x) =
mi1(x) · · ·mis(x); we say thatC is defined by the setαij , j = 1, ..., s, called itszero’s
set. Whengcd(u, 2m − 1) = 1, αu is a primitive element too. Then the cyclic code
with zero’s set{αij , j = 1, ..., s}, is equivalent to the cyclic code whose zero’s set is
{(αu)ij , j = 1, ..., s}.

We need to define two classical families of binary cyclic codes. The cyclic code of length
2m − 1 whose zero’s set is

T =
d−1⋃
i=1

{ αi, α2i, . . . , α2m−1i mod n }

is calledthe narrow-sense primitive BCH code with designed distanced. Note that implicitly
αd 6∈ T . This code is a(d − 1)/2-error-correcting BCH code (see [29, p.201]). The
puncturedReed-Muller code of lengthn = 2m − 1 and orderr, denoted byR∗(m, r) (see
[29, p.383]), is the cyclic code with zero’s set

{αi : i = 1, ..., 2m − 2, 1 ≤ w2(i) ≤ m− r − 1},

wherew2(i) is the2-weight ofi (see Definition 3).
The interpretation of AB and APN functions in terms of coding theory is based on the

following result, which is actually due to Kasami ( Theorem 13 in [23]). We give here a
more general presentation, including codes of any dimension. For clarity and because we
will use these later, we also give the main elements of the proof.

Theorem 4 LetC be any linear[n, n− k, d] code with minimum distanced ≥ 3, where
n = 2m−1 andm is odd. Assume that the dual codeC⊥, of dimensionk, does not contain
the all-one vector1 = (1, ..., 1). Letη = (η0, ..., ηn) (resp.ν = (ν0, ..., νn)) be the weight
enumerator of the codeC⊥ (resp.C). Letw0 be the smallestw such that
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ηw + η2m−w 6= 0 , 0 < w < 2m−1 .

Thenk ≥ m and we have the following properties.
(i) If k ≥ 2m thenw0 satisfies

w0 ≤ 2m−1 − 2(m−1)/2 .

Moreover ifw0 is identical with its upper bound, thenν3 = ν4 = 0, k = 2m and the weight
distribution ofC⊥ is the same as the weight distribution of the dual of the2-error-correcting
BCH code, which is

Weight:w Number of words:ηw

0 1
2m−1 − 2(m−1)/2 (2m − 1)(2m−2 + 2(m−3)/2)

2m−1 (2m − 1)(2m−1 + 1)
2m−1 + 2(m−1)/2 (2m − 1)(2m−2 − 2(m−3)/2)

(ii) If m ≤ k < 2m, then the minimum distance ofC is at most four. Moreover when
w0 ≥ 2m−1 − 2(m−1)/2, one must have:

ν3 + ν4 ≤
(
(2m−1 − 1)(23m−3 − 2k+m−3)

)
/(3 · 2k−1) . (9)

Sketch of Proof: . The main part of the proof is obtained by means of the firstPless power
moments[28], actually the first four power moments of the weight distribution ofC (and
C⊥): ∑n

w=0 wηw = 2k−1n,

∑n
w=0 w2ηw = 2k−2n(n + 1),

∑n
w=0 w3ηw = 2k−3(n2(n + 3)− 3! ν3),∑n
w=0 w4ηw = 2k−4(n(n + 1)(n2 + 5n− 2) + 4! (ν4 − nν3)) .


(10)

We consider the numbersI` =
∑n

w=1(w − 2m−1)`ηw. Since for̀ even

(w − 2m−1)` = ((2m − w)− 2m−1)` ,

we have for any eveǹ:

I` =
n∑

w=1

(w − 2m−1)`ηw =
2m−1−1∑
w=w0

(w − 2m−1)`(ηw + η2m−w) . (11)
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Note that the codeword of weight zero is not taken in account in the sum above. Recall that
C does not contain the all-one codeword.

The values ofI2 andI4 are simply obtained by using the four power moments given by
(10). We replacen by 2m − 1 and obtain

I2 = 2k+m−2 − 22m−2 (12)

and

I4 = 2k+m−4(3 · 2m − 2)− 24m−4 + 3 · 2k−1(ν3 + ν4) . (13)

Now we consider

I4 − 2m−1I2 =
2m−1−1∑
w=w0

(w − 2m−1)2
(
(w − 2m−1)2 − 2m−1

)
(ηw + η2m−w) . (14)

Note that, if2m−1 − 2(m−1)/2 < w ≤ 2m−1 − 1, then thewth term above is less than or
equal to zero. From (12) and (13) we have

I4 − 2m−1I2 = (2m−1 − 1)(2k+m−3 − 23m−3) + 3 · 2k−1(ν3 + ν4) . (15)

Whenk < m, the value ofI2 is strictly negative which is impossible, proving thatC
cannot satisfy the hypothesis of the theorem.
(i) Suppose thatk ≥ 2m. Then, from (15), the value ofI4−2m−1I2 cannot be negative. In
the sum (14), the terms which correspond to the values ofw greater than2m−1−2(m−1)/2,
are negative. So the value ofw0 is at most2m−1 − 2(m−1)/2.

Assume thatw0 = 2m−1 − 2(m−1)/2. By replacingw0 by its value in (14), we obtain
I4 − 2m−1I2 ≤ 0. From (15), the only possibility isI4 − 2m−1I2 = 0. We deduce from
(15) thatk = 2m andν3 + ν4 = 0. ThereforeC⊥ has dimension2m andC has minimum
distance at least five. Moreover only three valuesηw are unknown. They correspond to the
following values ofw:

w = 2m−1 ± 2(m−1)/2 and w = 2m−1 .

Now we apply a classical result which can be found in [28]:letS be a subset of{1, 2, . . . , n}
containings elements. Then the weight distributions ofC⊥ andC are uniquely determined
byν1, ν2, . . . , νs−1 and theηi with i 6∈ S.

As ν1 = ν2 = ν3 = ν4 = 0 and the valuesηw are unknown for only three values ofw,
the weight enumerator ofC⊥ (and ofC) is unique. Since the2-error-correcting BCH code
satisfies our hypothesis, its weight polynomial is the solution.

(ii) If k = m thenI2 = 0, proving thatC⊥ has only one weightw = 2m−1 – i.e. the
codeC⊥ has the same weight distribution as the simplex code.

Assume thatm < k < 2m. If ν3 + ν4 = 0 we obtain from (13),

I4 = 2m−4(3 · 2m+k − 2k+1 − 23m) .

If k < 2m − 1 thenI4 < 0, a contradiction. On the other hand (ifk = 2m − 1), a code
[2m − 1, 2m − 2m, 5] does not exist [18] (see also [4]). So the minimum distance ofC is
at most four.
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Whenw0 ≥ 2m−1 − 2(m−1)/2, the value ofI4 − 2m−1I2 must be less than or equal to
zero (see (14)). We obtain the condition (9) onν3 + ν4 from (15), completing the proof.

Remark 3. Let’s explain what the hypotheses of Theorem 4 mean. First, the condition
d ≥ 3 means that any two columns of the parity check matrix ofC are distinct. Second,
the vector1 is not inC⊥ if and only if C contains some codewords of odd weight.

3.2. Coding Theory Point of View

Definition 5 Let C be a linear code of lengthn and denote by(η0, ..., ηn) the weight
enumerator of its dualC⊥. The setΩ = {j : ηj 6= 0, 1 ≤ j ≤ n} is said to be the
characteristic set ofC. The external distance ofC, denoted byθ, is the cardinality of
Ω: θ = card Ω.

Theorem 5 LetF be any polynomial of the form (3) such thatF (0) = 0 and letCF be the
[n = 2m − 1, k , d] code defined by the parity check matrix

HF =
(

1 α α2 . . . αn−1

F (1) F (α) F (α2) . . . F (αn−1)

)
, (16)

where each entry is viewed as a binary vector. Then:
(i) The codeCF is such that3 ≤ d ≤ 5.
(ii) F is APN if and only ifd = 5.
(iii) F is AB if and only if the characteristic set ofCF looks as follows

Ω = { 2m−1, 2m−1 ± 2(m−1)/2 } .

Proof: First note that, for any mappingF , the dimensionk of CF is such thatk ≥
2m − 1 − 2m. Since any two columns ofHF are distinct, we have thatd ≥ 3. Assume
thatd ≥ 6. As the existence of a linear[n, k, d] code implies the existence of a linear
[n− 1, k, d− 1] code, the codeCF with parameters[2m − 1, k, 6], k ≥ 2m − 1− 2m,
provides a linear[2m− 2, k, 5] code. But such a code does not exist by [18] (see also [4]).
Thus we should haved ≤ 5, completing the proof of(i).

Let c = (c0, ..., cn−1) be a binary vector. By the definition ofHF (see (16)),c belongs
to CF , if and only if it satisfies

n−1∑
i=0

ciα
i = 0 and

n−1∑
i=0

ciF (αi) = 0 . (17)

According to (17),CF has minimum weight3 or 4 if and only if there exist four distinct
elements, sayx, y, x′, y′, of GF (2m) such that

x + y + x′ + y′ = 0 and F (x) + F (y) + F (x′) + F (y′) = 0 . (18)

The minimum weight is3, if one of these elements is zero; otherwise it is4. The equation
(2) can be rewritten as follows:
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x + y = a and F (x) + F (y) = b , (19)

wherea 6= 0 andb are arbitrary elements ofGF (2m). Suppose that there exist two distinct
pairs(x, y) and(x′, y′) which satisfy (19). Of coursedistinct implies that we have here
four distinct elements ofGF (2m). The existence of such four elements, for somea andb,
is equivalent to the existence of four elements satisfying (18). So we have proved thatF is
APN if and only ifCF has minimum distanced ≥ 5. But from(i) we have, thatd ≤ 5. So
we have proved(ii).

Now setf(x) = 〈b, F (x)〉 + 〈a, x〉. Considering the elements ofGF (2m) as binary
vectors, we can see that the functionf is actually a linear combination of rows ofHF .
Hence the numbers

λa,b = card { αi | f(αi) = 1 }

are the weights of codewords ofC⊥F (i.e. the elements ofΩ). Assume thatF is AB,
i.e. µF (a, b) = 0 or ±2

m+1
2 . First µF (a, b) = 0 means thatλa,b = 2m−1 and therefore

2m−1 ∈ Ω. Similarly, the conditionµF (a, b) = ±2
m+1

2 means that

2λa,b = 2m ± 2
m+1

2 , i.e. λa,b = 2m−1 ± 2
m−1

2 ∈ Ω .

Thus, we have proved(iii). Note that in (1) the values ofµF (a, 0) are not considered. From
this point of view they correspond to the codewords ofC⊥F which are generated by the first
m rows ofHF . That is the codewords of thesimplex codewhich have weight2m−1.

Corollary 1 LetF be any polynomial (3). Then:
(i) If F is APN then the dimension ofCF is equal to2m − 2m− 1.
(ii) If F is APN thenC⊥F does not contain the all-one vector.
(iii) If F is AB thenF is APN.
(iv) If F is AB then the weight distribution ofC⊥F is unique and given by Theorem 4,(i).

Proof: (i) Let F be any APN function. In accordance with Theorem 5,CF is an[n, k, d]
code, withn = 2m − 1, d = 5 andk ≥ n − 2m. If k = n + 1 − 2m then we obtain a
linear [2m − 1, 2m − 2m, 5] code, which does not exist [18]. Therefore we should have
k = 2m − 1− 2m.
(ii) Assume thatF is APN. ThenCF contains some codewords of weight5. Since the
vector1 = (1, ..., 1) cannot be orthogonal to any codeword of odd weight,1 is not inC⊥F .
(iii) Assume thatF is AB. By definition, the dimension ofC⊥F is at most2m. Suppose
that it is less than2m. It means that there are at least oneβ 6= 0 and oneγ such that
〈β, F (x)〉 + 〈γ, x〉 = 0, for all x ∈ GF (2m). So µF (γ, β) = 2m, a contradiction.
Moreover the codeC⊥F has exactly three weights,2m−1 and 2m−1 ± 2(m−1)/2. This
implies that the sum in (14) is zero. Sincek = 2m, we deduce from (15):ν3 = ν4 = 0.
ThusF is APN.
(iv) Follows immediately from Theorem 4,(i).

For any binary codeC denote byρ its covering radius,
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ρ = max
x∈Vn

min
c∈C
{ d(x, c) } .

Proposition 4 LetF be any APN mapping. Then the covering radiusρ of CF is such that:
3 ≤ ρ ≤ 4 .

Proof: An e-error-correcting code is said to beperfectif its covering radius is equal toe.
It is well known that there are no binary perfect codes of lengthn ≥ 7 with distance5 (see
[29, p. 182]). SinceF is APN, the codeCF is a2-error-correcting code. Assuming that
CF is not a trivial perfect code of length5, its covering radiusρ is at least3.

Suppose now thatρ = 5 and consider any cosetD of CF of weight 5. According to
Corollary 1,(i), the dimension ofCF is 2m − 1 − 2m. Therefore the codeD ∪ CF is a
(linear) code[2m − 1, k, 5] with k = 2m − 2m. But such a code does not exist [18].

There is an interesting connection between AB functions and so called uniformly packed
codes. We will define these codes in the sense of [1] – see other definitions in [34], [19]
and [20].

Definition 6 [1] LetC be any binary code of lengthn, with minimum distanced = 2e + 1
and covering radiusρ. For anyx ∈ Vn denote byζj(x) the number of codewords ofC
at distancej from x. The codeC is calleduniformly packed, if there exist real numbers
h0, h1, ..., hρ such that for anyx ∈ Vn the following equality holds

ρ∑
j=0

hj ζj(x) = 1 .

A special case of such codes, introduced in [34], corresponds to the caseρ = e + 1 and

h0 = h1 = · · · = he−1 = 1, he = he+1 = 1/`, (20)

where` is a positive integer.

Theorem 6 LetF be any polynomial (3), wherem is odd. ThenF is AB, if and only ifCF

is a uniformly packed code of lengthn = 2m − 1 with minimum distanced = 2e + 1 = 5
and covering radiusρ = e + 1 = 3.

Proof: LetF be any AB mapping. From Corollary 1,(iii) , F is APN. Moreover, according
to Theorem 5,CF has minimum distance5 and its characteristic set is

Ω = {(n + 1)/2, (n + 1)/2±
√

(n + 1)/2} .

So its external distanceθ is equal to3. Therefore by the well known Delsarte inequality
[12] (thatρ ≤ θ for any codeC), we haveρ ≤ 3. But from Proposition 4 we have:ρ ≥ 3,
and therefore,ρ = 3 = θ. Now we use the following result [2], [20]:a codeC is uniformly
packed, if and only if its covering radiusρ is equal to its external distanceθ. ThereforeCF

is a uniformly packed code withd = 2e + 1 = 5 andρ = e + 1 = 3.
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For the converse statement, first we recall two results. In [1] it was proved that the2-
error-correcting BCH code of lengthn = 2m − 1, wherem odd, is uniformly packed with
parameters (20), wherè= (n − 1)/6 and where the rootsξi, i = 1, 2, 3, of the Lloyd
polynomial are:

ξ1 =
n + 1

2
−

√
n + 1

2
, ξ2 =

n + 1
2

, ξ3 =
n + 1

2
+

√
n + 1

2
. (21)

Then in [20] it was proved that these codes are the only uniformly packed codes of length
n = 2m − 1, n ≥ 31, (m odd) withd = 2e + 1 = 5 andρ = e + 1 = 3. In fact, the
uniformly packed codes given in [20] differ from Definition 6, but it is easy to see (and
it was mentioned in [20], [2]), that uniformly packed codes with parameters (20) coincide
with uniformly packed codes in the sense of [20] whenλ + 1 = µ (see p. 23 in [20]).

SinceCF is linear, the values of the rootsξj , j = 1, 2, 3, give the values of nonzero
components of the weight enumerator of the dual codeC⊥F , which form the characteristic
setΩ of CF (see Definition 5). Then by Theorem 5,(iii) , we obtain thatF is AB.

According to Theorem 5, if the functionF is AB then the weight distribution ofCF is
unique, and equal to the weight distribution of the2-error-correcting BCH code. Now we
can say more: such a codeCF is completely regular.

Definition 7 A codeC is completely regular, if for any its cosetU ,

U = x + C = {x + c | c ∈ C} ,

the weight distribution ofU is uniquely defined by its minimum weight.

It is known that any uniformly packed code with parameters (20) is completely regular
[34, Theorem 4] (see also [20, p.23], where this property is proved for a more general class
of codes).

Corollary 2 Let F be any polynomial (3), wherem is odd. If F is AB, thenCF is a
completely regular code.

Thus, if F is AB, the weight polynomialWU (x) of any cosetU of CF is uniquely
defined by its minimum weights. Following [1], we will show how to write out the weight
polynomials of the cosets ofCF . The Lloyd’s type theorem for uniformly packed codes
asserts ([1], Theorem 1) that the existence of a uniformly packed codeC of lengthn with
parametershi, i = 0, 1, . . . , ρ, implies that the Lloyd polynomialLρ(x, n) of C,

Lρ(x, n) =
ρ∑

i=0

hi Pi(x, n) ,

hasρ distinct integral roots between0 andn. HerePk(x, n) is the Krawtchouk polynomial
of degreek:

Pk(x, n) =
k∑

j=0

(−1)k−j

(
n− x

j

)(
x

k − j

)
,
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where(
x

j

)
=

x(x− 1) · · · (x− j + 1)
j!

,

for any realx. Denote byξi the i-th root ofLρ(x, n), wherei = 1, . . . , ρ. Now suppose
that U is an arbitrary coset ofC of weight s: s = min {wt(c) : c ∈ U}. Denote by
η(s) = (ηs,0, ηs,1, ..., ηs,n) its weight enumerator. The firstρ values ofηs,j follow from
the definition of the uniformly packed code with parameters (20):

s =

 0, ..., e− 1 : ηs,j = 0, ∀ j ≤ e + 1, j 6= s andηs,s = 1 ,
e : ηs,j = 0, ∀ j < s ηs,s = 1 andηs,s+1 = `− 1 ,

e + 1 : ηs,j = 0, ∀ j < s andηs,s = ` .
(22)

Assuming that we know all the rootsξj of the Lloyd polynomial, we can write the weight
polynomialWs(x) of U in the following evident form (Theorem 2, [1]) :

Ws(x) =
|C|(1 + x)n

2n
+

ρ∑
j=1

τs,j(1 + x)n−ξj (1− x)ξj , (23)

whereρ constantsτs,j depend on the known coefficientsηs,j (see( 22)) ofWs(x) and are
therefore defined by the corresponding system of linear equations. Since the valueηs,s

uniquely defines the weight enumeratorη(s), any uniformly packed code withρ = e + 1 is
completely regular. For the casee = 2 andn = 2m − 1, m is odd, the weight polynomial
WC(x) = W0(x) of the codeC = CF looks as follows:

WC(x) = 1
2(n+1)2 (2(1 + x)n + nξ3(1 + x)ξ3−1(1− x)ξ3 +

+ n(n + 3)(1 + x)ξ2−1(1− x)ξ2 + nξ1(1 + x)ξ1−1(1− x)ξ1) ,

(24)

where the rootsξi are given by (21).

Corollary 3 Let F be any APN mapping. ThenF is AB if and only if the codeCF has
external distanceθ = 3.

Proof: First assume thatF is AB. According to Theorem 5, it implies that the weight
enumerator of the codeC⊥F , has exactly three nonzero components, i.e.CF has external
distanceθ = 3 (see Definition 5).

Now assume that the codeCF has minimum distance5 and external distance3. According
to Proposition 4,CF has covering radiusρ ≥ 3. But by the Delsarte inequality ,ρ ≤ θ and
thereforeρ = 3. Sinceρ = θ, the codeCF is uniformly packed and the statement follows
from Theorem 6 above.

3.3. APN Functions and Cyclic Codes

We consider only binary cyclic codes of lengthn = 2m − 1. In order to establish the
connection between the properties of APN (or AB) functions and cyclic codes, it is necessary
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to define these codes in terms of systems of equations. Any binary vectorc = (c0, ..., cn−1)
can be identified to itssupport, also called itsset of locators. This is the set

{ αi ∈ GF (2m)∗ | ci = 1, i = 0, 1, ..., n− 1} ,

whose cardinality iswt(c). Now we define thepower functionsof any vectorc of weight
w. Let {X1, . . . , Xw} be the set of locators ofc; the power functionsϕk(c) of c are :

ϕk(c) =
w∑

j=1

Xk
j , k ∈ [1, n] . (25)

Note thatϕn(c) is equal towt(c) modulo2.

Definition 8 Denote bycl(j) the 2-cyclotomic coset ofj modulon. Let T be a set of
integers from[0, n − 1], which is a union of some cosetscl(j). The binary cyclic code of
lengthn, with zeros set{ αk | k ∈ T }, is the set of all vectorsc such thatϕk(c) = 0 for
all k ∈ T . The setT is called the defining set ofC.

In this section we assume thatF (x) =
∑

δjx
j is a polynomial (3), such thatF (0) = 0.

We mentioned in Remark 1 that for the study of APN (or AB) functions we can add this
hypothesis without loss of generality. We will explain later why we are then in accordance
with the hypotheses of Theorem 4 (see the next lemma).

Now we can construct the codeCF with parity check matrixHF (see Theorem 5). Then
a vectorc = (c0, ..., cn−1) is in CF if and only if

n−1∑
i=0

ciα
i = 0 and

n−1∑
i=0

ciF (αi) = 0 .

We have clearly that
∑n−1

i=0 ciα
i = ϕ1(c) and

n−1∑
i=0

ciF (αi) =
n−1∑
i=0

ci

n∑
j=1

δjα
ij =

n∑
j=1

δj

n−1∑
i=0

ci(αi)j =
n∑

j=1

δjϕj(c) .

Henceforthc is in CF if and only if

ϕ1(c) = 0 and
n∑

j=3

δjϕj(c) = 0 (26)

(note thatϕ2(c) = (ϕ1(c))2 = 0). Particularly ifc is such thatϕ1(c) = 0 andϕj(c) = 0
for all δj 6= 0, thenc is a codeword ofCF . Actually c is contained in a subcode ofCF

which is the binary cyclic code, which we denote byBF , whose zeros are all the elements
αj such thatδj 6= 0. Whenαn = 1 is not a zero ofBF , thenBF contains some codewords
of odd weight. It means that the all-one vector is not inB⊥F , implying thatC⊥F does not
contain the all-one vector. Note that1 is not a zero ofBF if and only if δn = 0. Thus we
have proved the following property.
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Lemma 2 Let F (x) be a polynomial (3), such thatF (0) = 0. Denote byIF the set of
exponentsj such thatδj 6= 0. Set

TF = { cl(1) } ∪ { cl(j) | j ∈ IF } .

Then the codeCF contains the binary cyclic codeBF of lengthn whose defining set isTF .
Whenδn = 0, the dual codeC⊥F does not contain the all-one vector.

So we can exhibit a large class of polynomials which cannot be APN.

Theorem 7 Notation is that of Lemma 2. Letg be any proper divisor ofm. LetΛg be the set
of all integerst, t ∈ [1, 2m−2], such thatt ≡ 2` (mod 2g−1) for somè , 0 ≤ ` ≤ g−1.
If F is such thatTF is a subset ofΛg, thenF is not APN (and therefore not AB).

Proof: By definition,TF is a union of2-cyclotomic cosets. SinceΛg is invariant under
the multiplication by2 modulon and containscl(1), TF can be a subset ofΛg.

Let C be the binary cyclic code of lengthn with defining setΛg. It is proved in [11], in a
more general context, that the minimum distance of such a code is three. Indeed, consider
the vectorc whose locators are{1, β, β + 1}, whereβ is any element ofGF (2g) \ {0, 1}.
Then for anyt ∈ Λg, t ≡ 2` (mod2g − 1), we have, that:

ϕt(c) = 1 + βt + (1 + β)t = 1 + β2`

+ (1 + β)2
`

= 0 ,

implying thatc is a codeword ofC. As TF is contained inΛg, C is contained in the cyclic
codeBF . From Lemma 2,BF is contained inCF , proving thatCF has minimum distance
three. In accordance with Theorem 5,(ii) , the functionF , cannot be APN, and, therefore,
F cannot be AB.

Example 1. For the casem = 9 andg = 3 let Λ3 be the set of all integerss, s ∈ [1, 510],
such thats modulo7 is a power of two. The setΛ3 is a union of some cyclotomic cosets
modulo511, whose set of representatives, sayR, is:

R =
{

1, 9, 11, 15, 23, 25, 29, 37, 39, 43, 51, 53, 57, 79,
85, 93, 95, 107, 109, 123, 127, 183, 191, 219, 239

}
.

Take anyF (x), given by (3), and consider the setIF of exponents corresponding to nonzero
coefficients. If for anyj ∈ IF some element of the cosetcl(j) belongs toR, thenF (x) is
not APN. For instance, the polynomialxt is not APN for anyt ∈ R.

3.4. The Quadratic Case

Denote byQm the set of all integerss, s ∈ {1, ..., 2m − 1}, whose2-weight is equal to
one or two. That is

Qm = { 2k + 2` | k and` in [0, m− 1] } . (27)

The polynomialF (x) is said to bequadraticif its algebraic degree is equal to2. It means
thatF (x) has the following form
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F (x) =
∑

j∈Qm

δjx
j , δj ∈ GF (2m) . (28)

Note that the associated Boolean functionf , f(x) = 〈b, F (x)〉 + 〈a, x〉 is quadratic (its
algebraic normal form is a polynomial of degree2 in m variables).

Proposition 5 Let F be a quadratic polynomial (28). Then the codeC⊥F is contained in
R∗(m, 2).

Proof: Recall that the codeR∗(m, r) (see Section 3) is defined by thoseαs, where the
integers, 1 ≤ s ≤ 2m− 2, is such that1 ≤ w2(s) ≤ m− r− 1. So the setQm is exactly
the defining set ofR∗(m, m− 3). On the other hand, the defining set ofR∗(m, m− 2) is
{cl(1)}. HenceCF is always contained inR∗(m, m− 2), sinceϕ1(c) = 0 for anyc ∈ CF

(see (26)).
Consider now the codeBF with defining setTF (see Lemma 2). By definition, the

polynomial F (x) is quadratic if and only ifTF is contained inQm, meaning that the
cyclic codeBF contains the codeR∗(m, m − 3). Then all the elementsαs satisfying
1 ≤ w2(s) ≤ m − 3 are zeros of the dual codeB⊥F , proving thatB⊥F is contained in
R∗(m, 2). So we have:

R∗(m, m− 3) ⊂ BF ⊂ CF =⇒ C⊥F ⊂ B⊥F ⊂ R∗(m, 2) .

WhenF is quadratic, there is an interesting expansion of Theorem 4.

Theorem 8 LetF be a quadratic polynomial (28). ThenF is AB if and only ifF is APN.
More generally this property holds whenF is such that the codeCF is equivalent to a

codeC whose dual is in the punctured Reed-Muller code of order two.

Proof: This result is directly obtained from the identities stated in the proof of Theorem 4.
Consider any linear codeC such thatC⊥ is inR∗(m, 2) and whose dimension is2m. The
weight distribution of the codeR∗(m, 2) is well-known (see [29], Chapter 15). In particular
whenm is odd, this code has no codewords of weightw such that 2m−1 − 2(m−1)/2 <
w < 2m−1. Therefore this property holds for any subcode ofR∗(m, 2).

Now the result is deduced from (14) and (15) (where notation is that of Theorem 4). If
ν3 = ν4 = 0, with k = 2m, we obtain

I4 − 2m−1I2 =
2m−1−2(m−1)/2∑

w=w0

(w − 2m−1)2((w − 2m−1)2 − 2m−1)(ηw + η2m−w) = 0 .

SinceC⊥ has no weightw such that 2m−1 − 2(m−1)/2 < w < 2m−1, there are no
negative terms in the sum above. This implies that all terms are zero, which means that
ηw + η2m−w = 0, for all w which are not in the set{ 2m−1 ± 2(m−1)/2, 2m−1 }.

We have already proved that any AB mapping is APN; on the other hand ifF is APN
then the dimension ofC⊥F equals2m (see Corollary 1). Now we assume thatF is APN
and that the codeCF is equivalent to a codeC whose dual is a subcode ofR∗(m, 2). Then
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the dual ofCF is equivalent toC⊥. The weight polynomial ofCF (resp.C⊥F ) is the same
as the weight polynomial ofC (resp. C⊥). SinceF is APN,C has minimum distance5
and, according to the proof above,C⊥ has only three weights,2m−1±2(m−1)/2 and2m−1.
SoF is AB. From Proposition 5, whenF is quadratic, the codeC⊥F is itself a subcode of
R∗(m, 2), completing the proof.

Corollary 4 Assume thatF (x) = xk. Suppose that there isj = 2` + 1 such thatjk =
2s(2r + 1) modulo2m − 1, for somes and somer.

Then ifF is APN,F is AB.

Proof: In this case the codeCF is a cyclic code with zerosα andαk (and their conjugates).
The transformation above carriesCF to the cyclic codeC whose zeros areαj andαjk.
Sincej is prime to2m − 1 it is a permutation which conserves the weight polynomials.

We can deduce that the codeCF is equivalent to a code which is in the Reed-Muller of
order two and apply the previous theorem.

Remark 4. (a)We have proved in Theorem 1 that the algebraic degree of any AB function is
upper bounded by(m+1)/2. On the other hand, there are few examples of APN functions
which are not AB. The numerical results induce a conjecture, thatany APN function is
always AB when its algebraic degree is strictly less than(m + 1)/2.
(b) An infinite class of quadratic AB mappings was given by Kasami (see Theorem 10 later).
It is strongly conjectured that,up to equivalence, there are no other quadratic mappings
which are AB.

To conclude this section, we are going to express the property for a quadratic functionF
to be AB, in terms of a system of equations overGF (2m). Recall thatF is APN if and
only if the codeCF has minimum distance5. WhenF is quadratic, we have a particular
situation: the codeCF contains codewords of weight4 if and only if it contains codewords
of weight3. We begin by proving this property.

Lemma 3 LetF be a quadratic polynomial. ThenF is AB if and only if the codeCF does
not contain any codeword of weight three.

Proof: WhenF is AB, thenF is APN, implying thatCF has minimum distance five. So
CF cannot contain any codeword of weight three.

For the converse statement we will use the terminology of Section 3.3. Letc ∈ CF of
weight three whose support, denoted bysupp(c), is the set{X1, X2, X3}. By definition,
if c ∈ CF then

φ1(c) = X1 + X2 + X3 = 0

(see (25) and (26)). By adding “0” to the locators set ofc, we obtain a linear subspace of
GF (2m) of dimension2. Similarly, the support of anyc′ ∈ CF of weight4 is an affine
subspace ofGF (2m) of dimension2. Its support is a coset ofsupp(c) ∪ {0}, for somec
satisfyingφ1(c) = 0:

supp(c′) = {ν} ∪ {ν + X| X ∈ supp(c)} , ν ∈ GF (2m) . (29)
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TakeF (x) =
∑

j∈I δjx
j whereI ⊆ Qm andδj 6= 0. Let c′ be a codeword of weight4 of

CF . Recall thatc′ ∈ CF if and only if

ϕ1(c′) = 0 and
∑
j∈I

δj ϕj(c′) = 0 .

Obviouslyϕ1(c′) = ϕ1(c). Moreover for anyj ∈ Qm, wherej = 2k + 2`, we obtain,
using (29),

ϕj(c′) = ν2k+2`

+
3∑

i=1

(ν + Xi)2
k+2`

= ν2k+2`

+
3∑

i=1

(
ν2k+2`

+ ν2k

(Xi)2
`

+ ν2`

(Xi)2
k

+ (Xi)2
k+2`

)
=

3∑
i=1

(Xi)2
k+2`

= ϕj(c),

since
∑3

i=1(Xi)2
s

= 0 for any s. Thus we have proved that there isc′ ∈ CF , with
wt(c′) = 4, if and only if there isc ∈ CF with wt(c) = 3, completing the proof.

Theorem 9 LetF be a quadratic polynomial of the form (28). ThenF is AB if and only if
for anyk, k ∈ [1, n − 1], and for anyν, ν ∈ GF (2m) \ {0, 1}, the following unequality
holds: ∑

j∈Qm,j=2s+2`,s>`

δj αjk(ν2s

+ ν2`

) 6= 0 . (30)

Proof: In accordance with Lemma 3, any quadratic polynomialF is AB if and only if
CF does not contain any codeword whose support can be identified with a linear subspace
of GF (2m) of dimension2. Let V be the set of such subspaces. The cardinality ofV is
well-known to be(2m − 1)(2m−1 − 1)/3. There are2m−1 − 1 elements ofV of the type

{ 0, 1, ν, ν + 1 } , ν ∈ GF (2m) \ {0, 1} ,

By shifting, for a fixedν, we obtain2m − 1 subspaces of the type.

{ 0, αk, αkν, αk(ν + 1) } , k ∈ [0, n− 1]. (31)

We obtain at all(2m − 1)(2m−1 − 1) subspaces, where each subspace occurs three times.
So any element ofV has the form (31) for someν, corresponding to a codeword that we
will denote bycν,k.

Let j ∈ Qm. Sinceϕ1(cν,k) = 0, by definition, we haveϕj(cν,k) = 0 for all j = 2s.
Moreover if j = 2s + 2`, s > `, we have

ϕj(cν,k) = αkj + (αkν)j + (αk(ν + 1))j = αkj
(
ν2s

+ ν2`
)

. (32)
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Now we express the fact, thatCF does not contain any codewordcν,k. According to (26),
we must have∑

j∈Qm

δjϕj(cν,k) 6= 0 , ν ∈ GF (2m) \ {0, 1}, andk ∈ [0, n− 1] .

Sinceϕ1(cν,k) = 0 and by using (32), we conclude that the condition above is equivalent
to (30), completing the proof.

Example 2. Suppose thatF (x) = δxj , j = 2s + 2` ands > `. Then (30) is satisfied if
and only ifs− ` is prime withm. Indeed we must have

δαkj(ν2s

+ ν2`

) 6= 0

for all ν and for allk. Sinceν2s

+ν2`

= (ν2s−`

+ν)2
`

, it is possible only if the polynomial
x2s−`

+ x has only0 and1 as roots inGF (2m). We have again a well known result:if
t = 2i + 1, if m is odd andi andm are co-prime, then the functionF (x) = xt is AB(see
Theorem 10 later).

3.5. AB Functions and Cyclic Codes with Two Zeros

In this section we suppose thatF (x) is a power polynomial overGF (2m), F (x) = xt

where the2-cyclotomic cosetcl(t) has the cardinalitym (if it is not satisfied, thenF is not
APN according to Corollary 1). The codeCF is the binary cyclic code whose zeros areα,
αt and their conjugates. This code is obviously equivalent to any codeC whose zeros are
αj andαjt, wherejt is computed modulon, for anyj which is co-prime withn. Actually
we consider now binary cyclic codes with two zerosαr andαs (and their conjugates). Such
a codeCr,s has the parity check matrix:

Hr,s =
(

1 αr α2r . . . α(n−1)r

1 αs α2s . . . α(n−1)s

)
.

Although the functionF is the most simple here, the problem of finding such functions
which are APN (furthermore, which are AB) remains anhard open problem. The known
AB functions are due to Kasami.

Theorem 10 [23],[24] (i) LetF (x) = x2i+1, wheregcd(i, m) = 1. ThenF is AB.(ii) Let
r = 2j + 1 ands = 23j + 1, wheregcd(j, m) = 1. Then the codeCr,s is equivalent to the

codeC1,r−1s, where the functionF (x) = xr−1s = xt(j), t(j) = 22j − 2j + 1, is AB.

Remark 5. Note that, in Theorem 10,23j + 1 is viewed modulon; we obtain there all the
functions defined forj ∈ [1, (m− 1)/2] andgcd(j, m) = 1. Our conjecture is thatfor all
class of codes{ Cr,s }, wherer = 2i + 1 ands = 2j + 1, this is the only situation where
the minimum distance is five.

The only known class of APN functions, which are not AB, is the class of functions
F (x) = x−1. These functions correspond to the so-called Melas codes, i.e. the codes
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C1,−1 of length2m − 1, wherem is odd. The weights of the corresponding dual codes
were determined by Lachaud and Wolfmann [25].

Actually, taking into account the equivalent cyclic codes, the result of Kasami provides a
larger class of AB functions. In the following example we consider the length127, which
is the last length for which any AB function of the typeF (x) = xt belongs to a known
class.
Example 3. Consider codes of length127. Since127 is prime, all the integers1, 2, .., 126
are partitioned into126/7 = 18 cosets. These cosets form a multiplicative group, sayG7,
of order18 under multiplication modulo127: cl(i)cl(j) = cl(ij) (the cosetcl(3) is a
generator of this group). It means that there are

(
18
2

)
different choices of unordered pairs

{r, s} and each such choice defines a codeCr,s. Under the action ofG7, all these codes are
partitioned into9 orbitsOt = {C3i,t·3i : i = 0, 1, ...17}, consisting of all codes equivalent
to C1,t.

From Kasami’s results (Theorem 10 above) we have three AB functionsF (x) = xt(j),
t(j) = 22j − 2j + 1 andj ∈ {1, 2, 3}:

t(1) = 3 , t(2) = 13 , t(3) = 57 ,

which correspond to the codesC1,t for t = 3, 13 and23 (indeed,57 belongs tocl(23)).
We have also the three quadratic AB functions:F (x) = x2i+1, 1 ≤ i ≤ 3. Since the
first functions of both types coincide (indeed,t(1) = 21 + 1), it gives five AB functions
F (x) = xt corresponding to five codesC1,t : t ∈ {3, 5, 9, 13, 23 }. It is clear that the
orbit Ot, corresponding to the codeC1,t, contains also a codeC1,t−1 . Indeed, the code
Cs,ts for s = t−1, which is in factCs,1, is equivalent to the codeC1,t, ensuring that the
functionF (x) = xs = xt−1

is AB too. We have the following five inverse valuess = t−1:

t 3 5 9 13 23

s 43 27 15 11 29 .

Therefore, we obtain ten AB functionsF (x) = xt of Kasami type, which correspond to the
codesC1,t of Kasami type and belong to five orbitsOt, for t ∈ {3, 5, 9, 13, 23}. The only
one short orbitO63 (which consists of9 codes) corresponds to the mentioned above Melas
code (and give APN functions). The three remaining orbitsOt, for t ∈ {7, 19, 21}, consist
of codes with minimum distance four. Actually, form = 7 all AB functionsF (x) = xt

are of Kasami type. This property holds also form = 5, but not form = 9, where the
functionF (x) = x19 is AB and appears as the first example of AB function, which is not
of Kasami type, but corresponds to the conjecture of Welsh.

There are recent works on the classification of codesCr,s via their minimum distances.
By using the Weil bound for the number of zeroes of the polynomial of two variables, Janwa
et al. [22] characterized several classes of codesC1,t whose minimum distance is at most
four. We formulate their main result.

Theorem 11 [22] For any fixedt satisfyingt ≡ 3 (mod 4) andt > 3, there is no infinite
family of codesC1,t with minimum distance5.

Roughly speaking, the work [22] strengthens the conjecture that APN functions are ex-
ceptional. A fortiori this conjecture holds for AB functions. It is important to notice that
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the approach, used in [22], is not connected with the weight enumerators of the duals of the
codesC1,t, i.e. with the AB property of codes.

On the other hand in [11], the authors focus on the characterization of cyclic codes with
minimum distance3. They introduce some tools that we use now for two results related
with two conjectures, already mentioned in Remark 6. In both cases, we characterize a
large class of codes with minimum distance at least4. For the generality we consider any
value ofm, even or odd.

Proposition 6 LetCr,s be a binary cyclic code of lengthn = 2m−1, wherem is any integer,
r = 2i+1ands = 2j+1,0 < i < j < m. For evenmassume thatgcd(2i+1, 2m−1) = 1.
If further gcd(j + i, m) = gcd(j − i, m) = 1, then the codeCr,s has minimum distance at
least four. Otherwise,Cr,s has minimum distance three.

Proof: First notice that for the proof we need the conditiongcd(2i + 1, 2m − 1) = 1.
However this is always satisfied whenm is odd. Indeed let us define for anyi, 0 < i < m:
g = gcd(2i + 1, 2m − 1), u = gcd(i, m) andh = gcd(2i, m). The condition

g | 2m − 1 andg | 22i − 1

implies thatg divides2h − 1. For oddm we haveu = h; thusg divides2u − 1 and2u − 1
divides2i−1. Thereforeg divides2i−1, implying thatg divides(2i+1)+(2i−1) = 2i+1,
which is possible only forg = 1.

Sincegcd(2i + 1, 2m − 1) = 1, any two columns of the parity check matrix ofCr,s are
distinct, meaning that there is no codeword of weight2. As we know, the codeCr,s has
minimum distance three, if and only if there is a solution(X, Y ) of the following system
of equations:

Y 2i+1 + X2i+1 + 1 = 0
Y 2j+1 + X2j+1 + 1 = 0

(33)

whereX andY are inGF (2m) \ {0, 1} andX 6= Y . We can expressY by means ofX,
using the first equation of (33). Note that the conditiongcd(2i + 1, 2m − 1) = 1 implies
that this correspondence is one-to-one.

Thus solving (33) is equivalent to solving the following equation with only one indeter-
minate:

(X2i+1 + 1)
2j+1
2i+1 + X2j+1 + 1 = 0 .

or equivalently

(X2i+1 + 1)2
j+1 + (X2j+1 + 1)2

i+1 = 0 ,

which, by expanding the preceding, might be rewritten as:

X2j(2i+1) + X2i+1 + X2i(2j+1) + X2j+1 = 0 .

The polynomial above, sayP (X), can be simply factorized:
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P (X) = (X2i+j

+ X)(X2j

+ X2i

) = (X2i+j

+ X)(X2j−i

+ X)2
i

.

We have proved that the codeCr,s has minimum distance three, if and only ifP (X) has
at least one root inGF (2m) \ {0, 1}. However, the roots ofP (X) are the elements of the
fieldsGF (2j+i) andGF (2j−i). Hence we can conclude thatCr,s has minimum distance
three, if and only ifgcd(j + i, m) > 1 or gcd(j − i, m) > 1; otherwise the codeCr,s has
minimum distance four or five.

Consider again the codesC1,t. It is clear that such a code cannot contain a codeword of
weight2 (see Theorem 5). Suppose that it contains a codeword of weight3. That means
that, up to a shift, the system{

Y + X + 1 = 0
Y t + Xt + 1 = 0

has at least one solution(X, Y ) in GF (2m) \ {0, 1}, whereX 6= Y . It is equivalent to say
that the polynomial

Ut(X) = 1 + Xt + (1 + X)t (34)

has at least one root inGF (2m) \ {0, 1}. Moreover if we know the factorization ofUt(X),
we can state a necessary and sufficient condition for the codeC1,t to have minimum distance
three (as we made above in Proposition 6). In [11], the authors obtained such a condition
for anyt = 2u ± (2v − 1), wherev andu are any positive integers,1 ≤ v < u ≤ m.

Theorem 12 [11] Let C1,t be a binary cyclic code of lengthn = 2m − 1, wherem is any
integer, and lett = 2u± (2v − 1), whereu, v (1 ≤ v < u ≤ m) are arbitrary integers. Let

g1 =
{

gcd(m, u), if t = 2u + 2v − 1,
gcd(m, u− v), if t = 2u − 2v + 1,

(35)

andg2 = gcd(m, v). Then the codeC1,t has minimum distance at least four, if and only if
g1 = g2 = 1, and in all other cases the minimum distance is equal to three.

Example 4. As an illustration of the previous theorem, we consider the cyclic codesC1,t

for the casest = 2i + 1 andt = 2i + 3. For the caset = 2i + 1 we have immediately that
Ut(X) = X2i

+ X. The polynomialUt(X) has roots inGF (2m) \ {0, 1} if and only if
gcd(m, i) = 1. Whent = 2i + 3 we obtain

Ut(X) = 1 + X2i+3 + (1 + X)2
i+3

= X2i+2 + X2i+1 + X2i

+ X3 + X2 + X

= (X2i

+ X)(X2 + X + 1) .

So the set of roots ofUt(X) is the union of the fieldsGF (22) andGF (2i). The polynomial
Ut(X) has no root inGF (2m) \ {0, 1} if and only if gcd(i, m) = 1 andm odd.
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4. Bent Functions and AB Functions

This section is devoted to the study of the properties of some Boolean functionγF associated
to the functionF and whose definition follows.

Definition 9 For any functionF from Vm to itself, we denote byδF the integer-valued
function onVm

2 whose value at(a, b) is the number of solutions inVm of the equation
F (x)+F (x+a) = b. We denote byγF the Boolean function onVm

2 whose value at(a, b)
is 1 if a 6= 0 andδF (a, b) 6= 0.

Example 5. TakeF (x) = x2i+1, wherei is co-prime withm. Then for any vectorsa and
b, a 6= 0, γF (a, b) is equal to 1 if and only if there existsx such thatax2i

+a2i

x+a2i+1 = b
or, equivalently(x

a

)2i

+
x

a
=

b

a2i+1
+ 1.

Therefore, we have:γF (a, b) = tr

(
b

a2i+1

)
(with 1

0 = 0).

Example 6. Take nowF (x) = x2m−2, then for any nonzero vectorsa andb, γF (a, b) is

equal to 1 if and only if there existsx 6= 0, a, such that
1
x

+
1

x + a
= b (or, equivalently:(x

a

)2

+
x

a
=

1
ab

). Therefore, we have:

γF (a, b) = tr

(
1
ab

)
+ 1 + ∆0(a) + ∆0(b) + ∆0(a)∆0(b) + ∆0(ab + 1).

Open Question: what is the functionγF whereF (x) = x22i−2i+1 (with gcd(i, m) = 1)?

4.1. Properties of the FunctionγF

Now we will characterize the APN and AB functions by means of the functionsγF . In
the proof of the next theorem, we will need the following lemma. In the sequel,∆0(a, b)
denotes the Dirac symbol at(a, b), whose value is1 if (a, b) = (0, 0) and0 otherwise.

Lemma 4 For any APN functionF , the Walsh transform of the function(γF )χ = (−1)γF

is equal to22m∆0 − (µF )2 + 2m.

Proof: SinceF is APN, δF is equal to2m∆0 + 2 γF , according to Definition 1. Since
γF is Boolean,(γF )χ is equal to1− 2γF , that is1− δF + 2m∆0.

Now the Walsh transform of the constant function1 is22m∆0 and that of∆0 is the constant
function1. Hence, the Walsh transform of the function(γF )χ is equal to22m∆0− δ̂F +2m.

It is well known thatδ̂F is equal to(µF )2 (cf. for instance [10]) . So, the Walsh
transform of the function(γF )χ is equal to22m∆0 − (µF )2 + 2m, completing the proof.
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In the next theorem, we calldual of a bent Boolean functionf on Vm (cf. definition in
Section 2.2) the Boolean functioñf such that̂fχ = 2m f̃χ. It is a bent function too.

Theorem 13 LetF be a function fromVm to itself. Then the following properties hold:

(i) F is APN if and only if the Boolean functionγF has weight22m−1 − 2m−1.
(ii) F is AB if and only ifγF is bent.
(iii) If F is an APN function, then the functionb → γF (a, b) is balanced for any
nonzero vectora – i.e. it takes equally often the values1 and0.
(iv) If F is an APN permutation, then the functiona → γF (a, b) is balanced for
any nonzero vectorb.
(v) If F is AB, then the functioñγF is the Boolean function whose value at(a, b) is
1 if and only ifb 6= 0 andµF (a, b) 6= 0.

Proof: (i) Obviously, adding all the values ofδF (a, b), b ∈ Vm, being same as counting

all the elements ofVm, the sum
∑

b∈Vm

δF (a, b), computed inZ, is equal to2m, for anya.

Therefore∑
a∈Vm

∗, b∈Vm

δF (a, b) = 22m − 2m. (36)

On the other hand,F is APN if and only if∑
a∈Vm

∗, b∈Vm

δF (a, b) = 2
∑

a∈Vm
∗, b∈Vm

γF (a, b).

So,F is APN if and only if the sum
∑

a,b∈Vm

γF (a, b), computed inZ, is equal to22m−1 −

2m−1.
(ii) According to(i), we may without loss of generality assume thatF is APN. Indeed,
if F is AB, then it is APN and ifγF is bent, then its weight is22m−1 ± 2m−1, that is
22m−1 − 2m−1 since it is bounded by22m−1. By definition,γF is bent if and only if the
Walsh transform of the function(γF )χ is equal to±2m, for everya, b. In fact, according
to Parseval’s relation, the sum of the squares of the values of the Walsh transform of the
function(γF )χ is equal to24m. So,γF is bent if and only if, for any(a, b) different from
(0, 0), the value at(a, b) of the Walsh transform of the function(γF )χ is equal to±2m.
According to Lemma 4, the Walsh transform of the function(γF )χ is equal to:

22m ∆0 − (µF )2 + 2m. (37)

We deduce thatγF is bent if and only if, for any(a, b) different from(0, 0), (µF )2 (a, b) is
equal to0 or to2m+1, that is ifF is AB.
(iii) The sum

∑
b∈Vm

δF (a, b) is equal to2m and it is also equal to2
∑

b∈Vm
γF (a, b) since

F is APN.
(iv) If F is a permutation, we can apply(iii) to its inverse and deduce(iv), sinceγF−1(a, b) =
γF (b, a).
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(v) The proof is a direct consequence of (37):̃γF equals 1 if and only if the Walsh transform
of the function(γF )χ is equal to−2m, i.e. if and only ifµF equals±2

m+1
2 .

Remark 6.
1. We know that any bent function onVm

2 has algebraic degree at mostm (see Definition
4). So, whenF is AB, γF has algebraic degree at mostm. That is not true for APN
functions (considerF : x→ x2m−2).
2. WhenF is an AB power function, the bent functionγF has the form described by H.
Dobbertin in [14] under the name of triple-construction.

Corollary 5 Under the hypothesis of Proposition 3,F is AB if and only ifF1 ◦F−1
2 is AB.

Proof: γF1◦F−1
2

(a, b) is equal to 1 if and only ifa 6= 0 and if there exists(x, y) in Vm×Vm

such thatF2(x)+F2(y) = a andF1(x)+F1(y) = b. Thus,γF1◦F−1
2

is equal toγF ◦L−1,

whereL = (L1, L2). The functionγF1◦F−1
2

is therefore bent if and only ifγF is bent.

4.2. The quadratic case revisited

We have already seen that any quadratic APN mapping is AB. We can deduce it also from
Theorem 13 and say more, whenF is a permutation. Recall thatF is quadratic if and only
if the function fromVm × Vm to Vm:

ϕF (x, y) = F (0) + F (x) + F (y) + F (x + y)

is bilinear. Let us show that there exists then a unique permutationG onVm, such that, for
anya andb:

γF (a, b) = 〈G(a), b〉.

For any nonzero vectora, F (x)+F (x+a) is equal toϕF (x, a)+F (0)+F (a). Therefore,
the setEa = {F (x) + F (x + a) : x ∈ Vm} is an affine subspace ofVm. SinceF is
a permutation,Ea does not contain0. SinceF is APN, Ea has cardinality2m−1 and
so is an hyperplane. Therefore, there exists a unique vectorG(a) such thatEa = {y ∈
Vm| 〈G(a), y〉 = 1}. CompleteG by settingG(0) = 0. We haveγF (a, b) = 〈G(a), b〉 for
any vectorsa andb. SinceF is a permutation, the functiona → γF (a, b) is balanced for
any nonzerob, which means thatG is a permutation. We know that, for every permutation
G, the function(a, b)→ 〈G(a), b〉 is bent (cf. [13]). Thus,F is AB.

This result is more generally valid for any permutationF such that any spaceEa is a flat.
Thus, it is true if, for anyb, the Boolean function〈b, F (x)〉 is partially bent (cf. [7]): we
know that, under this condition, for any nonzeroa andb, the function〈b, F (x)+F (x+a)〉
is either balanced or constant. According to [29], Chapter 13, Lemma 6, this implies that
any spaceEa is an hyperplane.
Notice that the rather natural conjecture that, for any AB functionF and any nonzerob,
the function〈b, F (x)〉 is partially bent is false: for any nonzerob, the function〈b, F (x)〉
would have degree at most(m− 1)/2 and we know that there exist AB functionsF whose
algebraic degree is(m + 1)/2.
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We give now a sufficient condition forF (x) to be AB.

Proposition 7 LetF (x) be a function fromVm to itself. A sufficient condition forF (x) to
be AB is that, for any nonzerob in Vm, the Boolean function〈b, F (x)〉 is the restriction to
Vm of a bent function onVm+1, i.e. there exists a Boolean functionfb(x) onVm such that
the Boolean function:(x, ε)→ 〈b, F (x)〉+ εfb(x) is bent onVm ×GF (2).

Proof: We have

∑
x∈GF (2m)

(−1)〈b,F (x)〉+〈a,x〉 =
1
2

 ∑
(x,ε)∈GF (2m)×GF (2)

(−1)〈b,F (x)〉+εfb(x)+〈a,x〉

+
∑

(x,ε)∈GF (2m)×GF (2)

(−1)〈b,F (x)〉+εfb(x)+〈a,x〉+ε

 .

Since the function〈b, F (x)〉+ εfb(x) is bent, for anya, these two last sums are both equal
to±2

m+1
2 ; their mean is then equal to±2

m+1
2 or to0.

Notice thatfb must be balanced for anyb 6= 0, according to the properties of bent functions,
and that it is impossible thatfb(x) = 〈b, f(x)〉 wheref(x) is a function fromVm to Vm:
the functionF (x) + εf(x) from Vm ×GF (2) to Vm would be bent, a contradiction since
the dimension ofVm ×GF (2) is not twice as great as that ofVm.
Remark 7. (a) Let F be any quadratic AB function, then it satisfies the hypothesis of
Proposition 7: for anyb 6= 0, 〈b, F (x)〉 is an element of the Reed-Muller code of order 2;
the symplectic form associated to〈b, F (x)〉 has the form〈Lb(x), y〉, whereLb is linear (cf.
[29], Chapter 15);F being AB,Lb has a kernelEb of dimension1; let c /∈ Im(Lb)

⋃
Eb
⊥

(such an element always exists sinceIm(Lb) andEb
⊥ are linear hyperplanes) then it is a

simple matter to check that the function

〈b, F (x)〉+ ε 〈c, x〉

has a nondegenerate associated symplectic form, i.e. is bent.
(b) IdentifyVm toGF (2m) and take as inner product〈x, y〉 = tr(xy), wheretr is the trace
function fromGF (2m) toGF (2). If F is a power permutation onGF (2m), i.e. F (x) = xr

with gcd(r, 2m − 1) = 1, then it is enough to show the existence offb for oneb 6= 0 only.
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