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ABSTRACT Classification over data streams is a crucial task of explosive social stream mining and

computing. Efficient learning techniques provide high-quality services in the aspect of content distribution

and event browsing. Due to the concept drift and concept evolution in data streams, the classification

performance degrades drastically over time. Many existing methods utilize supervised and unsupervised

learning strategies. However, supervised strategies require labeled emerging records to update the classifiers,

which is unfeasible to work in the practical social stream applications. Although unsupervised strategies are

popularly applied to detect concept evolution, it takes tremendous run-time computation cost to run online

clustering. To this end, in this paper, we address these major challenges of social stream classification by

proposing an efficient incremental semi-supervised classification method named CODES (Classification

Over Drifting and Evolving Stream). The proposed CODES method consists of an efficient incremental

semi-supervised learning module and a dynamic novelty threshold update module. Thus, in the drifting

and evolving social streams, CODES is able to provide: 1) semi-supervised learning ability to eliminate

dependency on the labels of emerging records; 2) fast incremental learning with real-time update ability

to tackle concept drift; 3) efficient novel class detection ability to tackle concept evolution. Extensive

experiments are conducted on several real-world datasets. The results indicate a higher performance than

several state-of-the-art methods. CODES achieves efficient learning performance over drifting and evolving

social streams, which improves practical significance in the real-world social stream applications.

INDEX TERMS Social stream, incremental learning, semi-supervised learning, extreme learning machine.

I. INTRODUCTION

In this era of explosive information distribution, social

media platforms release feeds of up-to-date information and

user-generated content to the timeline of users. The key to

enhance the stickiness of content subscribers is to improve

the quality of content distribution and event browsing quality,

in which social stream classification plays a critical role to

identify the topic of each event or record.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shirui Pan .

A major issue of the social stream classification problem

is concept drift and evolution [1]. Concept drift occurs when

the emerging social records have drifted content centroids.

Concept evolution indicates class label space changes when

records with new topics emerge in the social stream. Training

classifiers within a fixed and known label space leads to

dramatic performance degradation over time. Thus, social

stream classification urges incremental update mechanism

and novelty detection method to provide the abilities of

both dynamic adaption to content changes and novel class

detection.
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Many researchers have studied the problems of concept

drift and evolution. However, most of these existing methods

are studied under the assumption that the emerging records

are labeled [2]–[4], so that they can participate the iterative or

incremental training procedure. In the practical applications,

the emerging records are lack of label information. Further-

more, as the volume of feeds data and user-generated social

data keeps proliferating, it is unfeasible to label the records

manually.

Then unsupervised learning methods are applied to avoid

dependency on record labels [5]–[7]. However, in the

real-world social stream applications, the instance-based

unsupervised learning methods invoke tremendous online

computation to realize clustering the records without labels.

The extremely high computation cost cannot meet the require-

ment of real-time social stream analysis.

Therefore, designing an efficient social stream

classification faces the following thriving challenges:

1) emerging records have no training labels, which requires a

semi-supervised learning method to eliminate dependency on

social record labels; 2) the centroids of classes keep drifting

over time, which requires an incremental learning method

with real-time update strategy; 3) records of novel classes

emerge, which requires an efficient novel class detection

method.

In this paper, to address these challenges simultaneously,

we propose a social stream classification method CODES

(Classification Over Drifting and Evolving Stream), which

consists of: 1) an incremental semi-supervised classification

module based on an extremely fast learning method named

Extreme LearningMachine (ELM) [8], [9]; 2) and an efficient

novel class detection module.

To the best of our knowledge, this is the first paper to

address the problem of concept drift and evolution in social

streams using incremental semi-supervised extreme learning

machine to provide real-time learning ability. To summarize,

our contributions are as follows.

1) Following the principle of stream data management,

we propose an ensemble based supervised algorithm as

a baseline method.

2) We propose an incremental semi-supervised social

stream method CODES, which requires no labeling

information of emerging records, and efficiently han-

dles both concept drift and evolution with real-time

update ability.

3) The performance of CODES is verified in a simulated

application of social stream classification using several

real-world datasets. The results indicate a higher learn-

ing ability against state-of-the-art rival methods.

The remainder of the paper is organized as follows.

Section II studies recent related work. Section III presents

problem definitions and ELM theories. Section IV proposes

the ensemble based supervised learning method. Section V

proposes our incremental semi-supervised learning algo-

rithm. We present and discuss our experimental results in

Section VI, and draw conclusions in Section VII.

II. RELATED WORK

Social stream classification has been extensively studied.

In earlier studies, some researchers perform supervised

learning methods to classify social records. Support Vector

Machine (SVM) [10] is used as classifier to learn the analyzed

social features in the social streams [3]. Naive Bayes Model

is applied for event identification from social media feeds [2].

MuENL [4] applies regularized SVMs and two update strate-

gies. But the tree-structured detector causes a high computa-

tion cost. Furthermore, emerging records in the social stream

have no label information for further supervised learning,

and detection of concept drifting and evolving. Applying

supervised learning strategy requires labeling each record

before update manually, which is not feasible in practice.

Thus, unsupervised learning techniques are then applied

intuitively for this real-world application scenario.

ECSMiner [1] applies k-Means clustering method to identify

outliers to realize novel class by time constraints for delayed

classification. Topic modeling problem is studied in [5],

which applies clustering method to group documents into

clusters based on document similarity and co-occurrence

term patterns. Augmented class is proposed in [6] based on

the assumption of the availability of an unlabeled dataset.

In [7], completely-random trees are applied as the unsuper-

vised learning basis. In order to better represent a category

of stream data, a metric named prototype is proposed [11]

instead of cluster centroid, along with a deep neural network

and update mechanism. However, these instance-based unsu-

pervised learning consumes tremendous online computation,

so that they cannot provide real-time social stream learning

ability.

To address the issue of concept drift and evolution, some

researchers have proposed several solutions. Han, et al.

in [12] continuously update the training dataset with samples

of novel classes. But this method requires large number of

parameters and extra storage space. In [13], [14], outputs of

a convolutional neural network [15] are utilized to detect

novel classes from training set. But the novelty threshold

have to be decided manually as a hyper-parameter. In [16],

the novel class detection ability is improved by a proposed

temperature scaling function. Completely-random trees are

applied in [17] to ensemble an instance-based learner and

a label-based learner. In [18], another ensemble framework

is proposed using genetic algorithm optimization techniques.

A framework SAND is proposed in [19] to detect concept

drift by a change detection mechanism. But a small number

of labeled data is still required to update the classifier. The

detection method is exhaustive invoked, which causes high

computation cost. The authors further improve the framework

in [20] by selectively invoking the detection module using

dynamic programming.

Some studies focus on other problems of learning over

data streams. In [21], a class-based ensemble technique is

proposed to distinguish between a recurring class and a novel

one. In [22], matrix sketches is applied by measuring the

distances in the global sketch. In [23], the event detection
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problem is explored by constructing a clustering system on

a large stream with a dynamic update mechanism. In [24],

the personal life event prediction problem is explored to pre-

dict users’ next personal life event based on their historically

reported data. In [25], the changes of influential spreaders

interests during event evolution are studied. A user-interest

model-based event evolution model is proposed considering

both user interest distribution and short text data in social net-

works. In [26], the feature-level changes in data streams are

also studied by proposing a dynamic feature mask clustering

method.

Different from these related work, in this paper, we focus

on solving the social stream classification problem by a

incremental semi-supervised learning method, which simul-

taneously provides the abilities of semi-supervised learning

for feasibility in real-world application environment, incre-

mental and extremely fast update for concept drifting, and

efficient novel class detection for class evolution.

III. PRELIMINARIES

A. PROBLEM DEFINITION

In the social stream classification problem, each record in

the social stream will be assigned to an event topic. The

identification process can be considered as a classification

problem. Thus, we first present the definition of a social

stream, followed by the definition of the social stream classi-

fication problem.

Definition 1 (Social Stream): Given a time-sequential data

stream of social records, a social stream S is noted as an infi-

nite sequence of content entries {r1, r2, . . . , ri, . . .}, in which

ri is a record of social media. Stream S arrives with time

stamps {t1, t2, . . . , ti, . . .}, and for any j < k , we have tj < tk .

In the scope of this paper, we introduce sliding window to

denote a finite collection of social records. Then, we define

record linkage task in event identification as a classification

problem.

Definition 2 (Social Stream Classification): Given a social

stream S, assuming there is a set SY ∈ S, each rYi ∈ SY is

related to a known event topic from label space L. For the set

SN = S \ SY , the problem of social stream classification is to

learn a function ϕ : SN → L using a classification algorithm,

so that each social record rNi ∈ SN will be assigned with an

event topic from L.

B. BRIEF OF EXTREME LEARNING MACHINE

Extreme Learning Machine (ELM) [8], [9] achieves

extremely fast learning speed and good generalization per-

formance. Many variants of ELM have been developed

aiming at different training strategies and scenarios, e.g.,

graph data learning [27], online sequential learning [28],

medical data learning [29], kernelized learning [30], [31],

text classification [32], distributed learning based on

MapReduce [33]–[35].

An ELM network consists of three layers of neurons.

Given n input layer nodes, the hidden layer maps the input

FIGURE 1. Network structure of extreme learning machine.

samples from the n-dimensional input data space first into the

L-dimensional ELM feature mapping space, and then into the

m-dimensional output data space. Figure 1 presents the ELM

network structure.

In order to achieve extremely fast learning speed, ELM

generates parameters of the single hidden layer randomly to

avoid iteratively tuning. As a generalized feedforward neural

network, given N arbitrary samples (xi, ti) ∈ Rn×m, ELM is

mathematically modeled as

L
∑

i=1

βi G(wi, bi, x) = β h(x) (1)

where L is the number of hidden layer nodes, wi =

[wi1,wi2, . . . ,win]
T is the input weight vector from input

nodes to the ith hidden node, bi is the bias of ith hidden

node, β i is the output weight from the ith hidden node to the

output node. G(wi, bi, x) is the activation function to generate

mapping neurons, which can be any nonlinear piecewise

continuous functions [36].

The ELM feature mapping denoted as H is calculated as

H =







G(w1, b1, x1) · · · G(wL , bL , x1)
... · · ·

...

G(w1, b1, xN ) · · · G(wL , bL , xN )







N×L

(2)

ELM aims to minimize the training error and the norm of

the output weights, that is

Minimize: ‖Hβ − T‖2 and ‖β‖ (3)

Therefore, the output weight β can be calculated as

β = H†T (4)

where H† is the Moore-Penrose Inverse of H.

To gain better stability and generalization performance,

the output function of ELM can be rewritten as

f(x) = h(x)β = h(x)HT

(

I

C
+ HHT

)−1

T (5)
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In the case that the number of training samples is much

larger than the dimensionality of the feature space, to reduce

calculation cost, the output function can also be rewritten as

f(x) = h(x)β = h(x)

(

I

C
+ HTH

)−1

HTT (6)

IV. THE ENSEMBLE BASED SUPERVISED METHOD

In this section, we first propose an ensemble based supervised

learning algorithm as the baseline method. The ensemble

based method maintains an ensemble of n classifiers, and

utilizes update strategy to avoid performance degradation

caused by concept drift. Each time the sliding window slides,

we first use the records in the current sliding window to

evaluate the classifiers. If the performance of any classifier

does not meet the criterion, this classifier will be replaced by

a new classifier trained using emerging records.

The key features of this baseline method are as follows.

1) The sliding step size is set to the size of the sliding

window, so that more stream elements can participate

the learning phase in a batch.

2) The ensemble strategy combined with mechanisms

such as voting theory improves the overall classifica-

tion performance.

3) Lazy update strategy is applied. Whether the classifiers

should be updated is determined by some evaluation

criteria of classification performance.

FIGURE 2. The ensemble based method.

The flow chart of the ensemble based method is presented

in Figure 2. We assume that initial n classifiers have already

been trained, namely cl1, cl2, . . . cln, in the initiate phase.

With the current sliding window, all the elements are tested

by each of the n ensemble classifiers. For each classifier cli,

we calculate its error rate as the evaluation criterion of clas-

sifiers elimination.

Definition 3 (Error Rate η): For a social stream record ri
and a classifier clj, if ri is correctly classified by classifier clj,

we set flag
ri
clj

= 0, otherwise, flag
ri
clj

= 1. Thus, for s records

in the current sliding window, the error rate of classifier clj is

ηj =
6s
i=1flag

ri
clj

s
(7)

If the error rate ηj of a classifier clj is higher than the

threshold εη, this classifier cli will be eliminated. Then a

new classifier is trained using all the records in the current

sliding window to replace cli. If all the error rates are lower

than εη, we keep all these n classifiers without update. Then

the sliding window continues to slide.

Algorithm 1 The Ensemble Based Method

Input: record stream S, a initial sliding window Winit of

size s, number of classifiers n, error rate

threshold εη

Output: assigned topics of emerging records

1 Rinit = {r1, . . . , rs | ri ∈ Winit };

2 Train n initial classifiers using Rinit ;

3 Wcurrent = Winit .slide(step = s);

4 while !S.end() do

5 Rcurrent = {ri | ri ∈ Wcurrent };

6 for i = 1 to n do

7 for j = 1 to s do

8 calculate the output Oi
j of record rj using cli;

9 calculate error rate ηi of cli;

10 if ηi > ε then

11 train a new classifier cl ′i using Rcurrent to

replace cli;

12 for i = 1 to s do

13 assign the topic label with the most votes to ri;

14 Wcurrent = Wcurrent .slide(step = s);

The procedure of the ensemble based method is described

as Algorithm 1. The algorithm accepts inputs of a feeds

stream S, a initial sliding window Winit , the sliding step

size s, the number of classifiers n, and the error rate thresh-

old εη, we first initiate n classifiers using the set Rinit , which

contains the s records in the initial sliding window Winit

(Lines 1,2). After the first slide (Line 3), for each classifier

cli (Lines 6-11), the outputs of each record rj in the current

sliding window Wcurrent are calculated (Lines 7, 8). Then

the error rate ηi of each classifier cli is calculated (Line 8).

If the error rate ηi of classifier cli is larger than threshold

εη, cli is eliminated and a new classifier is trained using all

the records Rcurrent in the current sliding window Wcurrent

(Line 11). With all the outputs of the s elements from the n

classifiers, voting mechanism is utilized to identify the event

topics with the most votes to each record (Lines 12, 13). The

whole procedure will be executed iteratively along with the

social stream over time (Line 14).

V. THE PROPOSED METHOD

In this section, we propose our method CODES (Classifi-

cation over Drifting and Evolving Stream), which consists

of a learning module and a novel class detection module.

CODES applies: 1) incremental learning strategy to learn

the emerging records in combination with historical learning
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experience; 2) semi-supervised learning strategy to provide

practical learning ability of the unlabeled emerging records in

the real-world social stream; 3) real-time update mechanism

based on an extreme fast learning method.

FIGURE 3. The incremental semi-supervised method CODES.

The major procedure of CODES is demonstrated

in Figure 3. The current classifier first calculate the output

digits of each emerging record ri in the current sliding

window. These emerging records are first utilized to incre-

mentally update the current classifier, whichwill be presented

in detail in the following Section V-A. Then CODES executes

novel class detection to determine whether the emerging

records belong to a novel class according to the output digits.

The novelty threshold is also updated utilizing the output

digits. This novel class detection module will be presented

in detail in Section V-B.

A. INCREMENTAL SEMI-SUPERVISED LEARNING

Aiming at the setting of training set containing both labeled

and unlabeled samples, the semi-supervised learning strategy

based on extreme learning machine is able to maintain the

ELM feature mapping space without label information of

emerging records in the social stream [36].

Given l labeled data {xi, ti}
l
i=1 and u unlabeled data {xi}

u
i=1,

the optimization problem of semi-supervised extreme learn-

ing machine is written as

minimize:
1

2
||β||2 +

1

2

N
∑

i=1

Ci||ξi||
2 +

λ

2
Tr(F)⊤LF

subject to: h(xi)β = t⊤i − ξ⊤
i , i = 1, . . . , l

f(xi) = h(xi)β, i = 1, . . . , l + u (8)

where L ∈ R(l+u)×(l+u) is the Laplacian matrix which is

generated by both labeled and unlabeled training samples.

F ∈ R(l+u)×m is the ELM output with its ith row equal

to f(xi) and Tr(F) denotes the trace of matrix F based on

manifold regularization framework. λ is a tradeoff parameter.

Therefore, the output weight β is calculated as

β = (IL + H⊤CH + λH⊤LH)−1H⊤CT (9)

when the number of samples N is larger than the number of

hidden layer nodes L, or

β = H⊤(IL + CHH⊤ + λLHH⊤)−1CT (10)

when L is larger than N .

Given a chunk of records, whichwill be viewed as the set of

the elements in the current sliding window, the output weight

βk+1 is calculated by a transition matrix Pk+1 as

βk+1 = βk + Pk+1H
T
k+1(Tk+1 − Hk+1βk ) (11)

where

Pk+1 = Pk − PkH
T
k+1(I + Hk+1PkH

T
k+1)

−1Hk+1Pk (12)

For convenience, we define a matrix

Q = IL + H⊤CH + λH⊤LH (13)

then Equation 9 can be rewritten as

β = Q⊤H⊤CT (14)

For the first chunk N0 of emerging records, the initial

output weight β0 can be calculated using 14. When the sec-

ond chunk N1 of records emerge in the sliding window,

the updated output weight β1 is calculated as

β1 = Q⊤
1

[

H0

H1

]⊤[

C0 0

0 C1

][

T0

T1

]

(15)

where

Q1 = IL +

[

H0

H1

]⊤[

C0 0

0 C1

][

H0

H1

]

+ λ

[

H0

H1

]⊤

LN0+N1

[

H0

H1

]

= IL + H⊤
0 C0H0 + H⊤

1 C1H1 + λH⊤
0 LN0

H0

+ λH⊤
1 LN1

H1

= Q0 + H⊤
1 (C1 + λLN1

)H1 (16)

Substituting 16 into 15, we have the final calculation equa-

tion of output weight matrix as

β1 = β0 + Q−1
1 H⊤

1 [C1T1 − (C1 + λLN1
)H1β0] (17)

According to this derivation, we have the general calcula-

tion of the (k + 1)th chunk of records as

Qk+1 = Qk + H⊤
k+1(Ck+1 + λLN1

)Hk+1 (18)

and the output weight

βk+1 = βk + Q−1
k+1H

⊤
k+1[Ck+1Tk+1

− (Ck+1 + λLNk+1
)Hk+1βk ] (19)

14028 VOLUME 8, 2020



X. Bi et al.: CODES: Efficient Incremental Semi-Supervised Classification Over Drifting and Evolving Social Streams

To simplify the equation, we define Pk+1 = Q−1
k+1, where

Pk+1 = Pk − PkH
T
k+1

(IL + (Ck+1 + λLNk+1
)Hk+1PkH

⊤
k+1)

−1

(Ck+1 + λLNk+1
)Hk+1Pk (20)

Thus, the (k + 1)th output weight matrix is finally

calculated as

βk+1 = βk + Pk+1H
⊤
k+1[Ck+1Tk+1

− (Ck+1 + λLNk+1
)Hk+1βk ] (21)

Algorithm 2 Incremental Semi-Supervised Learning of

CODES

Input: social stream S, a sliding window W of size s,

an initial record set Rinit
Output: updated output weight β of the classifier,

assigned topics of emerging records

1 init the incremental indicator k = 0;

2 randomly generate w and bias b;

3 generate initial mapping matrix Hk of Rinit ;

4 Wcurrent = Winit .slide(step = s);

5 while !S.end() do

6 Rcurrent = {ri | ri ∈ Wcurrent };

/* Label the emerging records: */

7 for i = 1 to s do

8 calculate output of ri as Oi ;

9 assign argmax(Oi) as the topic label to record ri;

/* Update the classifier: */

10 calculate matrix Hk+1 ;

11 calculate matrix Pk+1;

12 calculate output weight βkC1 ;

/* The stream continues: */

13 Wcurrent = Wcurrent .slide(step = s);

14 k = k + 1;

Algorithm 2 describes the pseudocode of CODES. The

initial classifier is first trained (Line 2) using the initial record

set Rinit (Line 3). After the initiate phase, the sliding window

starts to slide with a step size of s (Line 4). We update the

current chunk set by the emerging records in the current

sliding window (Line 6). Then, for each record ri in the

Rcurrent (Lines 7-9), we first calculate the output Oi (Line 8)

and assign a topic label to ri (Line 9). Then we update the

classifier (Lines 10-12) by calculating the (k + 1)th feature

mapping matrix Hk+1, transitive matrix Pk+1, and output

weight matrix βk+1. The whole procedure of CODES is

executed iteratively along with the social stream over time

(Line 13). In each round of sliding, the indicator k is incre-

mented by one (Line 14).

B. NOVEL CLASS DETECTION

Traditional classification problems assume a fixed label space

of all the training samples, testing samples, and even input

instances in the practical applications. However, this assump-

tion is unpractical in the social stream learning tasks. New

hot topics and trending events keep emerging over time in the

social stream.

To solve this concept evolution problem, in this section,

a novel class detection method is proposed. Whether a record

r in the social stream belongs to a novel class or a class known

a priori depends on two measurements: 1) the topic novelty

of r ; 2) principles of distinguishing between a novel class and

known classes according to the topic novelty of r .

1) NOVELTY METRIC

The final outcomes of original ELM, which are distributed

in the interval [0, 1] by the sigmoid function, do not sum to

one. Although this distribution has no effect on the decision

of output class label using argmax operation, the performance

decreases when the outcomes are utilized as an absolute met-

ric directly. Therefore, we evaluate the classification output

of r according to the softmax value. Each logit of a corre-

sponding class i ∈ L is calculated as

zi =
eoi

∑m
j=1 e

oj
(22)

where eoi is the exponential (e-power) of the outcome proba-

bility oi of class i,
∑m

j=1 e
oj is the sum of exponential values

of all the classes. Then wemeasure the class novelty of record

r using the maximum logit as

Pr = max
i∈L

(zri ) (23)

2) DISTINGUISHING PRINCIPLE

The distinguishing principle is formulated by our defined

novelty threshold.

Definition 4 (Novelty Threshold ε): Given an emerging

record r and its output vector of the classifier Or =

{o1, o2, · · · , om}, where m is the current number of classes,

a novelty threshold ε is utilized as a criterion for novel class

detection. ri is considered as an instance of a novel class if

softmax(Or ) < ε.

According to the concept of concept evolution, whether a

record should be assigned to a novel class should be deter-

mined by two spaces: 1) the current classification outcome

space; 2) the known class label space. By evaluating the

ELM outcomes with a range of float, we calculate the novelty

threshold statistically as

ε = min
i∈L

({Pi + σi}) (24)

whereL is the current class label space,Pi is themean novelty

value of all the samples belonging to class i ∈ L, σi is the

standard deviation of class i.

Pi and σi are respectively calculated as

Pi = mean{zki , k = 1, · · · ,Ni} =
1

Ni

Ni
∑

k=1

zki (25)
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σi =

√

√

√

√

1

Ni

Ni
∑

k=1

(zki − Pi) (26)

where zki is the logit of the kth sample to the class i, Ni is the

sample number of class i.

3) DETECTION METHOD

Based on the calculations of novelty metric and novelty

threshold, the procedure of novel class detection is described

as Algorithm 3.

Algorithm 3 Novel Class Detection of CODES

Input: a new chunk of records Nnew, the classifier C ,

current threshold ε, label space L

Output: class labels of Nnew, updated threshold ε′

/* Generate output labels: */

1 Generate outputs ONnew
of Nnew from C ;

2 foreach record r ∈ Nnew do

3 calculate Pr = max i∈L(z
r
i );

4 if Pr < ε then

5 add r to the buffer of novel class;

6 else

7 assign argmax(Or ) as the result label;

/* Update the classifier: */

8 update output weight β of C using Algorithm 2;

/* Update the threshold: */

9 foreach i ∈ L do

10 calculate Pi
′
using Nnew by equation 25;

11 calculate σ ′
i using Nnew by equation 26;

12 update ε′
i = Pi

′
+ σ ′

i ;

13 update ε = mini∈L{ε′
i};

Given the current classifier C and threshold ε, and a new

chunk of records Nnew generated by the current sliding win-

dow over the social stream, our novel class detection method

first generates the outputs ofNnew using the current classifier

C (Line 1). For each record r in the Nnew, we determine the

class label according to the softmax value of the output Or

and the current threshold ε (Lines 2-7). If the softmax value

is smaller than the threshold ε, we assign r to the novel class

temporarily (Line 5); otherwise, we assign the corresponding

class with the maximum outcome probability as the output

label of r (Line 7).

As to the records in buffer of temporary novel class,

an unsupervised learning method can be utilized to auto-

matically decide how many different topics do these records

involve. Semantic labels or topics should be assigned man-

ually, since there is no prior knowledge of these emerging

social records, which is beyond the discussion scope of this

paper.

As the incremental semi-supervised learning continues,

we update both the current classifier C and threshold ε

according to the outputs ONnew
of Nnew. The classifier C

is updated using Algorithm 2 (Line 8). The threshold ε is

updated (Line 13) after average output scores Pi and standard

deviations σi are updated (Lines 10-12).

VI. EXPERIMENTS

In this section, we first introduce our experiments setup. Then

we present the evaluation results of classification perfor-

mance and novel class detection performance, respectively.

A. EXPERIMENTS SETUP

1) DATASETS

We obtain the dataset of social stream from a Twitter cor-

pus1 using our modified data fetching scripts. After filtering

out a number of invalid tweets, we have a Twitter dataset

of 3600 tweets under four topic labels. Each tweet record is

assigned one topic label.

We also fetch RSS feeds from IBM DeveloperWorks2 and

ABC News.3 Each semi-structured document in the feeds

is composed of several elements of title, author, summary,

publish information, etc. We use the article channels as the

event topics. Each of these two datasets consists of 3600 feeds

entries. Each record is categorized into one of six event

topics. IBM and ABC both publish content feed in the

format of an XML file. Each XML file contains several

content entries. The records have to be transformed into a

representation space before taken as inputs to the classifiers.

XML files contain not only semantic information, but also

structural information. Thus, in our experiments, we utilize

our previously proposed Distribution based Structured Vec-

tor Model (DSVM) [37] to further strengthen the ability of

representation.

Finally, all the records of these three datasets are further

mapped into embeddings using pretrained word2vec4 model.

2) RIVAL METHODS

We choose four state-of-the-art methods of stream classifica-

tion as our rival methods, including two highly-cited classical

methods and two deep learning based methods.

1) ECSMiner [1], which detects novel classes using an

ensemble of k-Means clustering.

2) SAND [20], which improves ECSMiner by applying

semi-supervised learning methods.

3) HG-CNN [14], which implements a deep convolu-

tional neural network for novel class detection.

4) ODIN-CNN [16], which is an improvement over

HG-CNN.

All the methods are realized using MATLAB R2018b,

Python 3.6. The deep learning based methods are imple-

mented using Keras 2.2.0 with TensorFlow 1.8.0 as backend.

Experiments are conducted on a PC with Intel Core i7 8700K

1http://www.sananalytics.com/lab/twitter-sentiment/
2http://www.ibm.com/developerworks
3http://abcnews.go.com
4https://code.google.com/archive/p/word2vec/
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CPU, NVIDIA GeForce GTX 1080 Ti GPU, 32GB RAM,

and 64-bit Windows 10 as operating system.

3) EVALUATION SETUP

We evaluate our algorithms in two different scenarios.

1) Classification performance evaluation, which focus on

concept drift. The influences of four hyper-parameters

are observed, including the number of hidden layer

nodes L, the number of ensemble n, the error rate

threshold εη, and the size of sliding window s.

2) Novel class detection evaluation, which focuses on

novel class detection. We simulate the streaming data

environment to evaluate the performance of novel class

detection.

Two evaluation metrics are used. Training time is used to

evaluate the learning efficiency. F-measure (F1) is defined as

the harmonic mean of the accuracy and recall.

FIGURE 4. F1 evaluation of the hidden nodes number.

B. CLASSIFICATION PERFORMANCE EVALUATION

1) NUMBER OF HIDDEN LAYER NODES

This set of experiments evaluates the influence of hidden

nodes number. The results presented in Figure 4 indicate

that both the ensemble based method and CODES have the

maximum F1 value when their networks contains around

100 hidden nodes. Thus, we set the number of hidden layer

nodes to 100 in the following experiments.

2) NUMBER OF ENSEMBLE CLASSIFIERS

The ensemble based method maintains n classifiers as an

ensemble. Since ensemble number has no influence on train-

ing time, we evaluate the influence of the ensemble number n

on F1 performance. The ensemble number ranges from 20 to

70 with a step size of 10. The results are presented in Figure 5.

FIGURE 5. F1 evaluation of the ensemble number.

The result demonstrates that although training more clas-

sifiers costs more learning time, a larger number of ensemble

classifiers leads to a better classification performance. The

F1 performance stops increasing when the ensemble number

grows to 40. Thus, we set the ensemble number n to 40 in our

following experiments.

3) ERROR RATE THRESHOLD

In this set of experiments, we evaluate the influence of error

rate threshold εη on F1 performance. The error rate threshold

increases from 0.4 to 0.9 with a step size of 0.1. The results

are presented in Figure 6.

FIGURE 6. F1 evaluation of the error rate threhold.

The results demonstrate that as the threshold grows,

the F1 values increases as well. A larger error rate threshold

indicates a more strict criterion. To avoid frequent updates in

the ensemble based method, we set the error rate εη to 0.7 in

our following experiments.

4) SIZE OF SLIDING WINDOWS

In this set of experiments, we evaluate the influence of

the sliding window size s on both training time and
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FIGURE 7. Evaluation of the sliding window size.

F1 performance. The size of sliding window increases from

20 to 70 with a step size of 10.

Figure 7 demonstrates the influence of sliding window

size on training time and F1 performance. When the size of

sliding window is larger than 60, the ensemble based method

takes less training time than the CODES method. As to the

ensemble based method, the lazy update strategy reduces the

frequency of classifier retraining. In other words, a larger

sliding window size leads to less classifier updates. On the

other hand, as to CODES, relatively more complex matrix

operations takes more training time. Thus, when the size of

sliding window is larger than 60, the ensemble based method

has a higher training speed than CODES.

In the aspect of F1 performance, all the methods

achieve higher performance as the sliding window increases.

Although CODES outperforms the ensemble based method

in all the parameter settings, we notice that the gap between

CODES and the ensemble based method is decreasing as

the sliding window size increases. The reason is that when

the sliding window size is relatively small, the algorithm

learns from a mall number of training samples, so that the

contribution of the ensemble strategy is very limited. It is

intuitive that more training samples leads to better learning

performance at the cost of more training time.

C. EVALUATION OF NOVEL CLASS DETECTION

In this set of experiments, we simulate the real-world social

stream environment to evaluate the novel class detection per-

formance. We control the emergence of records and classes

by assuming that:

FIGURE 8. Comparison of update time.

1) all the emerging records are unlabeled;

2) the novel classes do not emerge in the initial phase.

The experiments are initiated with 600 labeled records out

of total 3600 records. Then we increase the training records

without labels to evaluate both training time and classification

performance. The sliding window size is set to 60, so that

the sliding windows slides 50 times in total. All the records

emerge in the social stream are selected uniformly at random.

The emergence of novel classes are controlled manually.

In each dataset, we randomly choose two classes as the novel

classes. The emergence of the records belonging to these two

novel class started from the 20th and 40th slide of the sliding

window, respectively.

We first compare training time among all the methods in

this simulated social stream application with novel classes.
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FIGURE 9. Comparison of F1 performance: two novel classes emerge at 20 and 40, respectively.

TABLE 1. Accuracy and recall of novel class classification.

We focus on the update time of each incremental learning or

classifier retraining. The results presented in Figure 8 indicate

that our CODES method has a significant advantage over all

the rival methods, especially the deep learning based meth-

ods HG-CNN and ODIN-CNN. The extremely fast learning

speed of ELM has a great contribution to realizing real-time

update and incremental learning ability of CODES.

We also compare F1 performance among all the methods.

We observe the results along with the sliding window. The

results presented in Figure 9 indicate that: 1) all the methods

have an overall tendency of increasing F1 values over time;

2) the performance drops when the novel classes emerge

in the stream; 3) the performance decay of CODES and

deep learning is less during the emergence of novel classes;

4) our CODES method and deep learning methods notably

outperform ECSMiner and SAND all through the simulated

stream; 5) our CODES method has a slight advantage over

the deep learning methods both during the emergence of the

novel classes and all through the stream.

Finally, we focus on the novel class detection performance

by evaluating accuracy and recall of only the records belong-

ing to the novel classes. Accuracy indicates the proportion

of the correctly classified novel-class records to the records

which are classified as novel classes. Recall indicates the

proportion of the correctly classified novel-class records to

the records which actually belong to novel classes.

Table 1 presents the comparison results with standard devi-

ation. The accuracy performance is significantly higher than

the recall performance. In other words, all these methods

are confident of their output as long as they classify the

records as novel classes, but struggle to identify the novel

classes as many as possible. On the other hand, as to the

overall performance of novel class detection, our proposed

CODES and deep learning based methods outperform tradi-

tional methods significantly in the aspect of both accuracy

and recall performance.

VII. CONCLUSION

In this paper, we address the problem of concept drift and evo-

lution, which is themajor issue of social stream classification.

In order to eliminate dependency on the labeling informa-

tion of emerging records for practical applications, and pro-

vide incremental learning ability, we propose an incremental

semi-supervised learning method CODES, which consists of

a classification module and a novel class detection module.

The classification module provides fast incremental update

mechanism to tackle concept drift. The novel class detec-

tion module efficiently detects novel class to tackle concept

evolution. Extensive experiments are conducted on several

real-world datasets. The results indicate that our method

CODES achieves a higher performance of both incremental

learning and novel class detection without labeling infor-

mation of emerging records. The proposed method provides

practical significance in real-time social stream learning

applications.
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