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Abstract

We study the determination of specialized codes under bounded
rationality, and its implications for organizations. Agents may de-
crease communication costs by designing codes that �t their own en-
vironment, using for example more precise words for more frequent
events. Bounded rationality imposes sharply decreasing returns to
scope, since when similarly skilled agents in di¤erent services must
communicate with one another they must share common codes, which
in turn degrades communication within each service. Thus the de-
cision of whether to segregate services or integrate them trades o¤
the synergies that result from better coordination between services
against the loss due to the need for a common, more vague, code
than the one that would optimize communication within services. Al-
ternatively, more skilled �translators�may be used to allow separate
services to appropriate the synergies while keeping their own codes.
A decrease in diagnosis costs leads to increasing integration among
services and to the substitution of hierarchies for common codes, as
common codes allow for the direct interaction among agents in dif-
ferent services. When adoption decisions are decentralized and non
contractible, the common code will be ine¢ ciently biased towards the
needs of early adopters and there will be too little commonality of
codes.
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1 Introduction

The treatment of communication costs in economics is, at best, sketchy.
Communication is generally deemed to consist in the incentive compatible
revelation of some signal at no cost. In reality, agents appear to spend a
large portion of their waking hours engaging in communication. Why is it
costly to communicate with others? What are the implications of changes
in communication costs for the organization of economic activity? How can
we study these changes? In his classic book The Limits of Organization
Arrow (1994) observed that organizations deal with the complexity of the
environment by creating specialized codes. In this paper, we build on this
observation to provide a theory of how agents establish specialized codes that
respond to their own environment to communicate with each other, and how
these codes constrain them and the way they organize their activities.
A natural language, such as English, is a general code: it is �exible, as

it can be adapted to a wide range of situations. Subsets of agents dealing
repeatedly with particular subsets of problems can design specialized codes
that �t their special needs. These specialized codes reduce the cost of commu-
nicating information, by allowing the use of words that summarize complex
information. Of course, agents are boundedly rational and cannot learn as
many terms as problems they confront. Thus the problem of the code design
is to allocate concepts or tasks to words under the constraints on rationality
of agents.
Examples of such specialized codes in organizations are widespread. In

some instances, organizations explicitly decide to create a code to facilitate
communication. For example, when several �rms come together in a common
project, they usually create a Project Management Dictionary (Blankevoort
1986).1 More generally, di¤erent accounting systems,2 human resource data-
bases and other organizational data bases are di¤erent codes, in the sense
that they map di¤erently the primitive objects in the environment (money

1One such case is the SEMATECH consortium, where all domestic US manufacturers
of semiconductors and the US government came together in an e¤ort to engineer the
recovery of the US semiconductor industry. In order to bridge the di¤erences between
all the di¤erent company cultures the consortimum decided to �compile a dictionary of
common techical terms and accronyms. Before this attempt at standardization, many �rms
prided themselves on having unique names for things." (Browning, Meyer and Shetler,
1995: 125).

2For example, the New York State O¢ ce of the Controler�s manual mandates
the coding of certain income �ows into New York State as Taxes, of others oth-
ers as Fees, of others as licenses, of others as Commissions. See the Accounting
System User Procedures Manual of the O¢ ce of the Comptroller of NY State at:
http://www.osc.state.ny.us/agencies/accmanual/actcodes/31180.htm.
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�ows in the accounting example) into words.3

Our analysis begins by proposing a simple model of a code. A code is a
partition of the space of signals. Such partition is designed to achieve the
maximum possible precision in communication, subject to the constraints
imposed by the agents� bounded rationality. In particular, agents aim to
communicate their information so as to minimize the extra e¤ort involved
in exactly �guring out what the agent communicating the message meant.
In creating the code agents take into account the fact that some signals are
generated more frequently than others.
We then characterize the solution of this problem. In particular, we show

that the optimal code allocates precise words to frequent events and more
vague words to unusual events, and that the more imprecise words are used
less often, even though they make allusion to a wider array of events. We also
show that a given code is more valuable the more unequal the distribution
of events it makes reference to, since in that case the precision of the words
can be more tightly linked to the characteristics of the environment.
Up to this point, our analysis focuses on the use of a common code to

facilitate communication among agents facing the same distribution of events.
In reality, agents who deal with di¤erent sets of tasks or problems must
sometimes communicate with one another. A code that would be ideal for a
salesman dealing with high end customers, i.e. one having words describing
di¤erent sociological types of wealthy customers, is inadequate for a salesman
dealing with low-end customers. If both agents have to communicate with
a common superior, or if they must deal with each other or each other�s
customers, then a less specialized code may be preferred. In fact, as we show,
bounded rationality implies that whenever two agents facing di¤erent sets of
events must communicate with the same third agent (such as a superior, for
example), and such agent is not more skilled than them, a common code will
be chosen, rather than separate or partially common codes (�dialects�).
The need for a common code thus introduces an important source of di-

minishing returns to scope in organizations. Having agents who deal with
di¤erent activities communicate with each other reduces the precision of the
specialized codes that agents are allowed to use in their activity. The orga-
nization thus faces a choice: it can group agents together improving coordi-
nation at the cost of a decrease in the precision of the code, or it can keep
them separate to enjoy the bene�ts of separate codes.
In adopting a common code among di¤erent services which deal with

3Accounting scholars have long recognized that accounting is an information system,
but the emphasis up to now has been (like in economics) on agency information costs,
rather than on the coding costs (see Watts and Zimmerman, 1990) for a review
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di¤erent events, the organization must trade-o¤ the improved coordination
between services that results from the common code against the degradation
of the within-service communication that results. Common codes will be
preferred when the between-services improvements o¤set the within-service
losses. In particular, we show that if the two services face similar tasks,
a common code is not too costly. Even when the two original codes are
relatively di¤erent, the commonality will be justi�ed if the synergies are
su¢ ciently big. Also, the lower the diagnosis cost the more likely that the
loss caused by receiving an imprecise signal is less important than the synergy
gain that results from the improved ability to communicate.
Rather than incurring the loss of a common code, an organization may

choose to hire a more skilled agent, that is, an agent able to acquire richer
codes, and utilize her as a specialized �translator.� While this decreases the
communication loss required to acquire the integration synergies among the
di¤erent units, it incurs the cost of an extra agent and some extra information
costs.
Under which circumnstances is each of these three simple organizational

arrangements (separate, non-communicating units that cannot capture across-
unit synergies; units with their own codes that communicate through a spe-
cialized translator; and units sharing a common code and able to commu-
nicate horizontally without translator) preferred? As information costs de-
crease, we expect to observe two types of changes: �rst, an increase in in-
tegration among previously non-communicating units; second, within units
that were communicating hierarchically, a move towards a more centralized
system of information sharing, in the form of a centralized code, together
with more decentralized communication. The reason for this second predic-
tion is that a reduction in diagnosis costs, i.e. a reduction in the cost of
identifying a problem and matching it with its solution, increases the value
of a common code. The introduction of a common code reduces the �trans-
lation�role of hierarchy, by facilitating �horizontal�communication. Thus we
expect to observe, following reductions in information costs, the substitution
of hierarchies for common codes and horizontal communcation.
After studying the e¢ ciency aspects of the choice of common codes, we

discuss the constrained adoption decisions that result when agents indepen-
dently choose their codes. We show that if the adoption decisions are se-
quential, common codes are chosen when they are optimal, but they are inef-
�ciently biased towards the needs of those agents who adopt �rst. Codes can
also be considered as speci�c investments, as a consequence, when services
can separately choose their codes and adoption costs are non contractible,
there exists too little commonality of codes and too much fragmentation.
Communication between di¤erent organizations is (ine¢ ciently) worse than
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within each given organization, as organizations do not internalize the bene-
�ts that adopting a common code brings to other organizations. This result
provides a rationale for the �nding4 that coordination tends to be better
within a particular organization than between organizations, even when the
objective content of the jobs of those coordinating is similar.

We conclude the paper by studying the empirical evidence on the theory
in two ways. First, we look at some systematic evidence on the impact of
the drop in information costs on the internal organization of �rms. Second,
we present two detailed case studies, which aim to provide some detailed
insights on the link between information costs and common codes, the link
between common code and decentralization and �nally the con�icts generated
by decentralized code adoption.
The paper is structured as follows. Section 2 introduces the model of

coding that will be used in the rest of the paper. Section 3 focuses on coding
when the organization is considered in isolation. We begin by providing a
general characterization of optimal codes when there are only two agents.
We then discuss how the value of a code depends on the type of problem the
organization faces and we analyze the marginal bene�t of increasing the com-
plexity of the code. We then extend the analysis to situations in which there
are more than two agents. Section 4 considers multiple organizations and
asks whether the two organizations should have common or separate codes.
We also consider the bene�t of integrating the two organizations. Section 5
introduces strategic consideration in code adoption. We show that in a non-
cooperative equilibrium sequential code adoption leads to a �rst-mover ad-
vantage and to ine¢ cient distortions. We also discuss the possibility that the
codes that are arise in equilibrium are ine¢ ciently heterogeneous. Section 6
discusses the empirical evidence.Section 7 reviews the existing literature and
concludes.

2 Codes and bounded rationality

Agents can improve the processing of information among them by designing
specialized codes. Of course, as Arrow (1974) points out, coding does not
avoid diminishing returns: since agents are boundedly rational they can only
learn a limited code. To capture this idea, we consider agents who can only
deal with a maximum number of words.

4See Simester and Knez (2002), which compares coordination with internal and with
external suppliers in the provision of similar parts by a high tech �rm. They �nd that co-
ordination with external suppliers involves slower reactions and less information exchange
on the product design than coordination with internal suppliers on similar pieces.

5



Consider an agent who receives a signal x 2 X and must communicate
it to another agent. For simplicity, assume that the set of signals X is �nite
and that every signal x has a strictly positive probability fx of occurring.
Agents are grouped in services. A service is a group of agents dealing with

the same distribution of task fx. To �x ideas, suppose the tasks are client
types, the individual who drew the task is a salesman, and the individual to
whom the type must be communicated an engineer. A code5 C is a partition
of the type space X into K disjoint subsets: W1; : : : ;WK .6 A particular
k 2 f0; : : : ; Kg can be thought of as a word and the corresponding subset
Wk as its meaning.

De�nition 1 A code is a partition of the set of signals X.

Words that are vague, in the sense that could be transmitted whenever
one of a wide set of events took place, communicate little information. To
�x ideas, think of the salesman communicating the geographical position of
the customers in the city for the engineer to place a visit. If his code is very
coarse, so that the words are vague, once the word is communicated (�the
customer is in the North�) the engineer who receives it must spend a lot of
time searching for the client. The search time depends on the size of area of
the city that is covered by this word.
More generally, beyond the geographical interpretation, if the engineer

receives a coarse message, he must spend a lot of time re�ning his under-
standing of the problem, i.e. diagnosing the problem or processing the infor-
mation on the problem. This diagnosis cost is higher the more imprecise is
the word.7 In particular, we assume throughout that, as the geographic ex-
ample suggest, the diagnosis cost is proportional to the number of underlining
events that are referred by the word.
Diagnosis costs incurred depend on what event is drawn and which code

is used. Suppose x is realized and C is such that x 2 Wk. The salesman then
transmits to the engineer the wordWk. After that, the engineer must further
diagnose the client need. Since the diagnosis cost is linear in the number of
events in that set, the diagnosis cost of x in a particular code C is

d(x; C) =  � ]Wk;

5We use the word �code� rather than language since grammar plays no role in this
problem.

6As will be clear, the fact that the subsets are disjoints could trivially be derived from
�rst principles.

7A further interpretation of this cost of receiving an imprecise message or word is
the mispeci�cation of the product that results when the engineer cannot �t precisely the
product to the customer needs. This mispeci�cation cost is, like the diagnosis cost, higher
the �broader�the word.
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where ] denotes the number of elements of a set. The expected cost of
diagnosis in code C is therefore

D(C) =
X
x2X

fxd(x; C):

We will use a very simple de�nition of the bounded rationality of the
agents: they can learn at most K � 2 words; on the other hand, there will
be no cost in increasing the number of words that the agents know as long
as this constraint is satis�ed. Therefore, there will be no possible trade-o¤
between diagnosis costs and the richness of the language, an interesting topic
that we leave for future research.
To summarize, a code is optimal if it minimizes the expected diagnosis

cost subject to the constraint that each agent knows no more than K words.
In the next section we derive some properties of optimal codes.

3 Communication within a Service

3.1 The structure of the optimal code

We begin by studying the optimal code when one agent needs to communicate
with a single other agent. The problem can be rewritten in a useful form by
introducing three additional pieces of notation. For every k, let nk =

]Wk

N
,

where N is the cardinality of X, and let pk =
P

x2Wk
fx. Therefore, nk can

be interpreted as the breadth of word k, that is the number of events that are
described by k, whereas pk can be seen as the familiarity of word k, which
is the probability that the event belongs to Wk: For example, if X is the set
of meteorological events that occur in the Netherlands, the word �drizzle�is
narrow (because it de�nes a very speci�c phenomenon) and familiar (because
it occurs all the time), �bad weather�is broad and familiar, �good weather�
is broad and (relatively) unfamiliar, and �hurricane� is both narrow and
unfamiliar.
With the new notation, the diagnosis cost of event x becomes d(x; C) =

nkN and the expected diagnosis cost of code C is

D(C) =
X
k

pknkN = N
X
k

pknk:

We use n and p to denote the respective vectors. Let A(n) be the set of
all p that are possible given n. Formally,

A(n) = fp 2 [0; 1]K j 9fW1; : : :WKg;
]Wk

N
= nk;

X
x2Wk

fx = pkg:
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As the number of codes is �nite A(n) is a �nite set for every n.
We can rede�ne the objective function as D(C) =

P
k pknk. Hence, the

optimal code problem becomes:

min
p;n

X
k

pknk (1)

s. t.

8<:
p 2 A(n);
nk 2 f0; 1K ; : : : ; 1g for all k;P

k nk = 1:

This is an integer problem, and in general it is di¢ cult to characterize
the solution completely. However, we can show that the solution has two
important properties. In order to describe them, we introduce another piece
of notation: for any event x and any code C let

p(x; C) = pk:x2Wk
:

Given an event x, p(x; C) is the familiarity of the word of code C that includes
event x. When there is not ambiguity, we will drop the code from the notation
and simply write p(x).

Proposition 1 In an optimal code, broader words describe less frequent events:
given any k and k0, if nk > nk0, x 2 Wk and x0 2 Wk0, then p(x) � p(x0).

Proof. In the solution (p; n), choose nk and nk0 such that nk > nk0 and
choose x 2 Wk and x0 2 Wk0. Exchanging x and x0 must (weakly) increase
the diagnosis cost. Therefore,

nkp(x
0) + nk0p(x)� (nkp(x) + nk0p(x0)) = (nk � nk0)(p(x0)� p(x)) � 0:

Hence, p(x0) � p(x).
Proposition 1 is a consequence of the fact that the objective function in

(1) is linear in p given n. Hence, if we hold the breadth of each single word
�xed, the best thing we can do to reduce expected diagnosis time is to put
the frequent events into narrow words and the rare ones into broad words.
See �gure 1 for a graphical illustration of the argument.
Proposition 1 also suggests that the problem of �nding the optimal code

can be separated into two steps.

1. Attribution of Meaning: For each possible n, re-order k in such a way
that n1 � n2 � � � � � nK . Put the n1 most frequent events in W1; put
the next n2 frequent events in W2; and so on up to the least frequent
NK event that go intoWK . This yields an expected diagnosis cost ~d(n),
which, by Proposition 1, is the lowest we can attain given n.
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Figure 1: Suppose code has one word for 1 and 2 and one word for 3, 4,
and 5. Swap events 2 and 3. Diagnosing 2 becomes more expensive, but
diagnosing 3 becomes cheaper. Because 3 is more frequent, the code is more
e¢ cient.

2. Choice of Word Breadth: Compare ~d(n) for all possible n and �nd the
highest.

This algorithm for �nding optimal codes turns out to be extremely useful,
and it is applied throughout the rest of the paper.
Step 1 of the algorithm is fully characterized by Proposition 1. Step 2

is less simple because it involves integer programming. We have a partial
characterization:8

Proposition 2 Unless integer constraints make it impossible, in an optimal
code broader words are less familiar. Formally, if nk � nk0, then pk0 + f~x �
pk�f~x where f~x is the lowest probability event in Wk. Furthermore, if nkN �
nk0N + 2; then pk0 � pk.

Proof. As the code is optimal by assumption, transferring word ~x from
Wk to Wk0 cannot lower costs. Hence, we must have�

nk �
1

N

�
(pk � f~x) +

�
nk0 +

1

N

�
(pk0 + f~x) � nkpk + nk0pk0

8Although Proposition 1 and Proposition 2 are closely related, neither of the two implies
the other directly.
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Figure 2: Transferring x � from w2 to w1 decreases diagnoisis costs.

This inequality rewrites as

1

N
[(pk0 + f~x)� (pk � f~x)] + f~x(nk0 � nk) � 0; (2)

which proves the �rst statement in the proposition.
To prove the second statement, rewrite inequality (2) as

(pk0 � pk) + f~x
�
nk0 � nk +

2

N

�
� 0:

To understand Proposition 2, suppose there are a large number of events
with in�nitesimal probability (See Figure 2). The �rst part of the proposition
then says that broader words are less familiar: if nk � nk0, then pk0 � pk. To
see this, consider the costs and bene�ts of transferring an in�nitesimal event
x� from a broad word to a narrower word. Now, the event x� is captured by a
narrower word, and this is a certain bene�t. However, the broad word is now
less broad and the narrow word is less narrow. This is a bene�t if the broad
word is more familiar. But that would create a contradiction because the
initial code would be suboptimal. Hence, a broad word must be less familiar.
The intuition above is based on a marginal argument. To complete the

argument, we must account for the presence of integer constraints. There
may exist words that are both broader and (slightly) more familiar than
others because they only contain non-in�nitesimal words which �if moved �
would make another word both broader and more familiar. The last part of
the proposition puts an upper bound to the importance of integer constraints.
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If word k contains at least two events more than word k
0
, then k must be

less familiar than k
0
.

3.2 The value of a code

How does communication cost depend on the features of the underlying envi-
ronment? This section shows that the cost goes down when the distribution
of events is �unequal�.
To give a precise meaning to distributions inequality, take a distribution

p and assume without loss of generality that p is ordered in a nondecreasing
way: if x0 < x00, p (x0) < p (x00). We say that distribution ~p is more unequal
than p if for every x ~P (x) � P (x).9 Intuitively, a more unequal distribution
is one that puts even more probability on events that were already likely
to happen. With this de�nition, we can show that communications cost is
decreasing in inequality:

Proposition 3 If distribution ~p is more unequal than distribution p, the
minimal diagnosis cost with ~p is not greater than the minimal diagnosis cost
with p .

Proof. Let C be the optimal code for distribution p. Use the same code
for distribution ~p. The cost for distribution p is

P
k pknk while the cost for ~p

is
P

k ~pknk. By Proposition 1, word size is nondecreasing in k. Then,X
k

pknk = P1n1 + (P2 � P1)n2 + :::+ (Pk�1 � Pk�2)nk�1 + (1� Pk�1)nk

= P1 (n1 � n2) + P2 (n2 � n3) + :::+ Pk�1 (nk�1 � nk) + nk
� ~P1 (n1 � n2) + ~P2 (n2 � n3) + :::+ ~Pk�1 (nk�1 � nk) + nk
=

X
k

~pknk:

As
P

k ~pknk is not lower than the minimal diagnosis cost for ~p, the statement
is proven.

To understand the proposition, see �gure 3. An unequal distribution
means that there are few extremely likely events and a large number of rare
events. The optimal code involves narrow words for the likely events and
broad words for the others. This is a good situation from the viewpoint of
communication cost, because the organization is likely to end up with an
event that is represented by a narrow word. The worst-case scenario occurs
when all events are equiprobable. Then, words will divide the event space
into equiprobable sets, and this will impose a high communication cost.

9The new distribution ~p need not be nondecreasing in x
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Figure 3: The suboptimal equal sized word code in the panel below achieves the
same cost (1/3) as the code in the top panel. Since the words are not optimal
below, the lmore �unequal�distribution generates less costly communication.

The following is an immediate consequence of the proposition above:

Corollary 1 If distribution ~p is more unequal than distribution p; then mov-
ing from 0 to k words is more valuable in ~p. On the other hand moving from
k words to 1 words (perfect communication) is more valuable in p.

Proof. The �rst part of the argument follows from the previous proposi-
tion. The search costs with 1 word are 1 for both distributions. The search
cost is lower for the more unequal one for any n=2,. by the previous propo-
sition, thus the value of any given language of the �rst word is higher in
the more unequal one. On the other hand, in the limit diagnosis costs are
equal in both languages (0 in both), thus adding a su¢ ciently large number
of words is more valuable in the more equal language.

Two elements a¤ect the marginal value of enriching the code by a word.
First, each word is more precise when the distribution is more concentrated,
so that each word is more valuable in this case. On the other hand, if the
distribution is concentrated a few words added are su¢ cient to transmit the
bulk of the information necessary. Which e¤ect dominates? While there is
no general answer, the corollary shows that at least in the beginning adding
a new word is better for an unequal environment, while if the language is
already extremely rich, the marginal bene�t is higher for a more equal envi-
ronment.
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3.3 Code commonality among similarly skilled agents

Consider now a case in which between service communication is needed.
In particular, suppose that the salesman from region A and the salesman
from region B must communicate with the engineer e. In this case, the two
salesmen may use the same code, completely di¤erent codes, or they may use
�dialects�, that is codes with some common words and some di¤erent words
that refer speci�cally to the events that each one confronts. When is e going
to use the same code to get information from the two agent types?
The trade-o¤ between a common code and di¤erent codes or dialects

is as follows: when the same code is used, the precision of each salesman
information diagnosis goes down. Thus tailoring a code for each type of
agent may make communication more precise, as the codes are specialized to
the speci�c density of events confronted. However, the precision of the words
they can transmit is sharply limited by the fact that the engineer must learn
both codes.
Given the strict constraints on bounded rationality that we have assumed,

it can be shown, as the next proposition states formally, that the same code
will be used by both services. Intuitively, if the engineer must in any case
incur the costs of learning the extra word to communicate with the alternative
service, a more precise word that comes from the intersection of the one used
with one service and the one used with the other service will always improve
communication.

Proposition 4 Only a common code can be e¢ cient

Proof. We will show that a code that is not entirely common cannot be
e¢ cient because it is strictly dominated by another code.
Suppose that the code CA that e uses to communicate with A and the

code CB that he uses to communicate with B are not entirely common. Let
Wk be the narrowest noncommon word in the codes10. Suppose without loss
of generality that Wk 2 CA. Transform CB into ~CB as follows. Make Wk a
word of ~CB. Reduce all the words that contained what are now elements of
Wk. That is, W 2 ~CB if and only if W 2 W 0=(W 0 \Wk) for some W 0 2 CB
or W = Wk.
By construction, ~CB has one more word than CB but this word is common

to CA. Thus, the total number of words is unchanged and the new code is
feasible. Yet, for every event x, the length of the word in ~CB that contains x
is not larger than the length of the word in CB that contains x. Moreover, as
~CB contains one more word than CB, at least one event must be in a strictly
10That is k is an element of argmink#W~k subject to W~k 2 C1 [C2 and W~k =2 C1 \ C2.
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narrower word in ~CB than it was in CB. The new code is strictly more e¢ cient
than the older.

These three examples illustrate the proof:
Let CA = ff1; 4g; f2; 5g; f3; 6gg and CB = ff1; 2; 3g; f4; 5; 6gg. The nar-

rowest noncommon words are f1; 4g, f2; 5g, and f3; 6g. Take Wk = f1; 4g.
Then, ~CB = ff1; 4g; f2; 3g; f5; 6gg. Each event 1 through 6 is now repre-
sented by a shorter word. Diagnosis cost must go down. The total number
of words is still �ve: ~C = ff1; 4g; f2; 3g; f5; 6g; f2; 5g; f3; 6gg.
As a second, example, we show that CA and ~CB are still not e¢ cient.

Take f2; 5g as the narrowest noncommon word. The new code is ~C =
ff1; 4g; f2; 5g; f3g; f6g; f3; 6gg, still �ve words but obviously more e¢ cient.
A more complicated example is

CA = ff1; 2; 3g; f4; 5; 6g; f7; 8; 9; 10g; f11; 12; 13; 14; 15; 16gg
CB = ff1; 4; 7; 11g; f2; 5; 8; 12g; f3; 6; 9; 13g; f10; 14; 15; 16gg

Take f1; 2; 3g as the narrowest noncommon word. The new code for B is

~CB = ff1; 2; 3g; f4; 7; 11g; f5; 8; 12g; f6; 9; 13g; f10; 14; 15; 16gg (3)

Events f1; 2; 3; 4; 7; 11; 5; 8; 12; 6; 9; 13g are now represented by shorter words
and f10; 14; 15; 16g is unchanged.

Corollary 2 If both salesmen send the same number of messages to the en-
gineer, then propositions 1 and 2 apply as stated if one lets ~fx = 1

2
(fx + gx).

Note that an essential aspect of the proof is that all agents are similarly
bounded. An alternative that we will consider later on is for an organization
to avoid the need for common codes by hiring agents who may learn more
words and who use this skill to �translate�among di¤erent sets of agents.

3.4 Codes with two words

In the rest of the paper, we use our characterization of the optimal codes to
discuss organizational choices when communication is important. To simplify
our analysis, we restrict our attention to two-word codes. Doing this does
still allow us to study issues such as the commonality of codes, since we know
from the previous section that agents choose either fully common codes (when
those in A and B communicate with one another) or separate codes (when
they do not). For simplicity, we assume that there is a continuous set of
events.
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Suppose that a salesman deals with consumers x 2 [0; 1] drawn from a
distributions with density f(x) = (1 � b) + 2bx with b 2 [�1; 1] and must
transmit his information about the characteristics/identity of the customer
to an engineer using a two word code. The distribution is given of x is given
by

F (x) = (1� b)x+ bx2 with b 2 [�1; 1]
The optimal two-word code is

S = min
x
F (x)x+ (1� F (x)) (1� x)

with �rst order conditions

f (x)x� f (x) (1� x) + F (x)� (1� F (x)) = 0

The solution is11

x̂ =
1

6b

�
3b� 2 +

p
(3b2 + 4)

�
and the optimal diagnostic costs are12

D�(b) =
8 + 36 b2 � (4 + 3 b2)

3
2

54 b2
:

In what follows, we start to explore the organizational implications of the
need for a common code to support communication. If agents must employ a
common code when communicating to the same third party, the organization
must determine whether the bene�t from having them communicate with
each other outweights the loss in precision that is required by the need for
a common code. This is the question that we deal with next. We have
presented the model in this section as a model of communications between
two agents. It is obvious that all the results still hold true if there are multiple
agents that need to communicate with each other, as long as all the agents
who need to transmit information to others face the same probability of
events.
11The diagnostic cost S is not convex in x. However, its derivative is a second degree

polynomial, of which it is possible to show that it is negative on [0; x̂) and positive on
(x̂; 1].
12The function D�(b) is a concave symmetric function, which reaches its maximum,

equal to 0.5 at b = 0.
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4 Codes and Organization

The previous section studied communication in exogenously given organiza-
tions. This section endogenizes the organizational structure and looks at how
the need to achieve optimal communication shapes the organization. We will
ask who should communicate with whom and what code they should use.
We develop a simple model with two services, A and B. Each of them

is composed of one salesman and one engineer. We shall study communica-
tion and coordination among the two services. We focus on three possible
organizational forms: (1) Separation (the two services use di¤erent codes);
(2) Integration (the two services share the same code); and (3) Translation
(there exists a hierarchical structure supplying an interface between the ser-
vices). This section determines the circumstances under which each form is
optimal. For expositional reasons, it is best to focus �rst on the comparison
between the two pure forms (1) and (2), and then introduce the third form

4.1 Integration or separation?

In order to generate a need for coordination, there must be a potential syn-
ergy among the two services, which we model as follows. Customers arrive
randomly, and there may be excessive load in one service and excessive ca-
pacity in the other. If that happens, the two services bene�t from diverting
some business from the overburdened service to the other. Formally, suppose
that salesmen from services A and B deal with consumers from two di¤erent
distributions FA and FB,

FA(x) = (1� b)x+ bx2;
FB(x) = (1 + b)x� bx2:

with b 2 [�1; 1] measuring the similarity between the two distributions. The
respective densities are

fA(x) = (1� b) + 2bx;
fB(x) = (1 + b)� 2bx:

Each engineer has the ability to attend to the needs of at most one client.
Salesmen bring sales leads randomly to each engineer. The arrival process is
as follows (see Figure 4):

y =

8<:
0 with probability p,
1 with probability (1� 2p),
2 with probability p,
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where p belongs to the interval [0; 1=2]. This arrival process captures the
e¤ect of the variability in the expected number of clients of each type. If p is
low, then each salesman is likely to �nd one client per period of each type.
When p is high, although on average still 1 client is arriving, it is quite likely
that either none or 2 will arrive.

Figure 4: Synergies exist when there is excess demand on one service and
excess capacity in the other.

We study the two possible organizations of these services: one where the
salesmen from service A only communicate sales leads to engineers in A; a
second, where a salesman from A may communicate sales leads to either
engineer. Thus p measures the importance of the synergy between the two
services: a high p means that the services are likely to need to share clients,
while a low p means that each service is likely to have its capacity fully
utilized. Should services communicate with each other, even at the expense
of a common code?
Consider an integrated organization �rst. This requires that a salesman

from service A explain to an engineer in B the needs of his customer. As we
know from section 2, this requires in turn the use of a common code.
What are the diagnosis costs in this case? To obtain the common lan-

guage, we use Corollary 2, which says that the common language is the one
that would be chosen when the density of tasks is the average of the two. In
this case, the average problem density

fx = 1=2((1� b) + 2bx) + 1=2((1 + b)� 2bx) = 1;

i.e. a uniform density. The optimal code in this case has two equally impre-
cise words, with each word identifying the sales lead as coming from one half
of the distribution, x� = 1=2. Let the per-client diagnosis costs be � 2 (1; 2)
to ensure positive pro�ts, and the output that can be obtained when a client�s
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problem is solved be 1. The total bene�ts attained by both agents in this
case is:

�(p; bjCj) = 2(1� p(1� p))(1�
�

2
):

Next examine a separated organization. The two services use di¤erent
codes. Service A selects a code with cut-o¤

x�A =
3b� 2 + (4 + 3b2)1=2

6b
;

and by symmetry service B adopts x�B = 1 � x�A. The expected diagnosis
cost in either service is

D�(b) =
8 + 36 b2 � (4 + 3 b2)

3
2

54 b2
:

Note that because we have assumed � > 1, it will not be pro�table for the
salesman of service A to send a problem to the engineer of service B in the
absence of a common code, as the diagnosis cost will be higher than the
revenue that can be generated.
In either service, the expected pro�t is

�(p; bjCs) = 2(1� p)(1� �D�(b));

where D�(b) is as de�ned above.
Should the organization be separated or integrated? The choice depends

on the inequality:

2(1� p(1� p))(1� �
2
) � 2(1� p)(1� �D�(b)) (4)

The following proposition13 characterizes this choice:

Proposition 5 An integrated organization is superior to a separated orga-
nization if the coordination gain is larger than the communication loss, that
is:

1� p(1� p)
1� p >

1� �D�(b)

1� �=2 (5)

Therefore, an integrated organization is more advantageous when:

� the synergy parameter p increases;
13It is easy to check that there exist parameter values that lead to each one of these

choices.
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� the diagnosis cost � decreases;

� the underlying distribution of tasks becomes less unequal (b becomes
closer to 0).

Proof. To prove the �rst past, just rearrange the �rst part rearrange (4).
For the comparative statics de�ne14

V (b; �; p) = 2(1� p(1� p))(1� �
2
)� 2(1� p)(1� �D�(b)) (6)

Taking derivatives of this expression, we obtain

@V=@� = �(1� p)(1� 2D�(b))� p2 < 0;

since the diagnosis cost D�(b) is bounded above by 1=2, i.e. the cost incurred
when words are equal length.
We also have

@V=@p = �(1� 2D�(b)) + 4p(1� �=2) > 0

since � < 2 is required for positive pro�ts.
Finally,

@V=@b = 2� (1� p) @D
�(b)

@b
< 0

since @D�(b)=@b < 0.

The role of synergy is clear. The higher the probability that the two
services bene�t from communicating, the greater the advantage of being able
to communicate. Instead, the diagnosis cost operates through a di¤erent
channel. The lower �, the less important it is to use the most appropriate
code. This reduces the loss in terms of communication cost that occurs when
a common code is adopted and it leads to an integrated organization. Finally,
also the shape of the distribution a¤ects the reduction in communication cost
due to separation. This reduction is large when the distribution is unequal.
Conversely, shifting to a common code is least costly when the distribution
is �at (b = 0).

14One should still check that one of the two organizations is not better than the other
for all values of the parameters. This can be seen for instance by setting � = 1:5 and
p = 0:25. Then, V considered as a function of b is a concave function, which is positive on
(�0: 684; 0: 684) and negative outside this interval.
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4.2 When is a hierarchy useful?

We know consider the third organization form, which is more complex than
the other two because it includes a �fth agent who provides translation among
the two services. Each service adopts a separate code. When inter-service
communication is needed, the translator steps in. For instance, if salesman
A has two customers, he will communicate to the translator the type of the
customer in the code used in service A. The translator will search for x,
and then he will transmit the information to engineer B in the code used in
service B.
There is �xed cost � of hiring the translator. However, we assume that

the translator is faster than regular engineers when it comes to diagnosis,
since when he gets a �small word�he can translate it without search. For
simplicity we make the extreme assumption that the translator�s � is zero.
The qualitative results here go through even if the cost is positive as long as
it is lower than those of the engineers.

Proposition 6 Consider any b and p. If � is low enough, there exist 1 �
�min < �max � 2 such that the unique optimal organization is

integrated if � < �min
hierarchical if � 2 (�min; �max)
separated if � > �max

Proof. The expected payo¤ with translation is

�translate = 2(1� p)(1� �D�
translate(b)) + 2p

2
�
1� � ~D�

translate(b)
�
� �;

where

D�
translate(b) = F (x�translate)x

�
translate + (1� F (x�translate)) (1� x�translate) ;

~D�
translate(b) = F (x�translate) (1� x�translate) + (1� F (x�translate))x�translate;

and

x�translate = argmin
x
2(1�p) (F (x)x+ (1� F (x)) (1� x))+2p2 (F (x) (1� x) + (1� F (x))x) :

We compare it to the expected payo¤s in the other two forms:

�integrated = 2(1� p(1� p))
�
1� �

2

�
�separate = 2(1� p)(1� �D�(b))
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For a given b and p, let

�� = 2
p2

p2 + (1� 2D�(b)) (1� p)

This is the solution of

1� p(1� p)
1� p =

1� �D�(b)

1� �=2 ;

and it is the value of � for which �integrated = �separate.
A su¢ cient condition for �� 2 [1; 2] is that p � 0:213. To see this, note

that

D�(b) 2
�
22

27
� 7

54

p
7;
1

2

�
:

This means that

�� 2
"
2

p2

p2 +
�
1� 2(22

27
� 7

54

p
7)
�
(1� p)

; 2
p2

p2 +
�
1� 21

2

�
(1� p)

#
But

2
p2

p2 +
�
1� 21

2

�
(1� p)

= 2

and

2
p2

p2 +
�
1� 2(22

27
� 7

54

p
7)
�
(1� p)

� 1

if and only

p � � 7
54

p
7 +

17

54
+
1

54

r�
�1204 + 518

p
7
�
' 0:21

Now de�ne
�� = 2p2

�
1� �� ~D�(b)

�
:

If � = �� and � = ��,

�translate = �integrated = �separate:

If � = �� and � < ��, translation dominates the other two forms. If � > ��,
the optimal form cannot be separation. If � < ��, the optimal form cannot
be integration. These last three statements, combined with the observation
that �translate, �integrated, and �separate are all linear in � proves that the set of
��s for which translation is optimal is an interval that contains ��. To the left
of the interval, separation is optimal. To the right, integration is optimal.
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To understand the intuition for this proposition, refer to Figure 5 and
begin with the comparison between separation and translation. The latter
has a �xed cost � but makes inter-service communication possible. The net
bene�t is given by the probability of getting extra business minus the cost
of extra communication minus the �xed cost of hiring a translator. If the
diagnosis cost � is high, the cost of extra communication is high and the net
bene�t is likely to be low. So, translation is more likely to beat separation
when � is low.

Figure 5: Numerical simulation of optimal organizational structure and code
design. b=0.4 and � = 0:006:

Instead, translation is better than integration when the diagnosis cost �
is high. This is because translation saves on communication cost by allow-
ing services to keep e¢ cient service-speci�c codes. These savings are more
important when � is high.
If the �xed cost � of hiring a translator is low enough, there exists an

interval of � for which the hierarchical structure is optimal.

5 Strategic Code Adoption

The previous analysis abstracted from strategic considerations. We implicitly
assumed that codes are adopted in order to maximize total surplus. This
section�s goal is to consider the e¤ect of con�ict of interest in the choice of
organizational codes.
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Obviously, if there are complete contracts, the presence of multiple play-
ers would not prevent them from agreeing to select the surplus-maximizing
code and then make appropriate side payments. Instead we assume that
code adoption is non-contractible. Firms cannot sign contracts that commit
them to adopting a particular code because the outcome is di¢ cult to verify.
Outsiders cannot check that a �rm is indeed using a certain code for internal
communication unless they are given full access to the �rm (which no �rm
would agree to do).
We �rst examine sequential code adoption. We ask what are the incen-

tives for the �rm that moves �rst. Knowing that its decision a¤ect other
�rms�s code policies, what kind of code should the �rst mover choose? We
then analyze how free-riding a¤ects code adoption. We start from a situation
in which �rms have di¤erent codes but could adopt common codes if they
incur a �xed cost. Although adopting a common code is e¢ cient, we show
that the presence of externalities may prevent the move to a common code.

5.1 First-mover bias

As in the previous section, we assume that there are two services A and B.
However, now we identify the two services with two separate pro�t maximiz-
ing �rms: salesman A and engineer A belong to �rm A while the other two
agents make up �rm B. Timing is sequential. First, �rm A adopts a code.
Then, �rm B observes the code adopted by A and selects its own code.
The advantage of joint codes is that �rms can �trade�. We then need to

model contracting between �rms, and in particular bargaining power. We
assume that, when a salesman of �rm i o¤ers a problem to an engineer of
�rm j, the surplus that is created by the relationship goes in proportion a
to the salesman and 1 � a to the engineer (this is equivalent to assuming
that the salesman makes a take-it-or-leave-it o¤er with probability a). When
salesman i has one customer, he communicates only with his engineer. When
he has two customers, he will o¤er one of the two customers to the engineer of
the other �rm. The other engineer accepts if she has not received a customer
from her salesman.
For simplicity, and as in the previous section, we assume that the two

�rms have symmetric distribution functions FB (x) = 1 � FA (1� x). The
associated diagnosis cost for a customer drawn from salesman i is denoted
with si (x):

sA (x) = FA (x)x+ (1� FA (x)) (1� x)
sB (x) = FB (x)x+ (1� FB (x)) (1� x)

= (1� FA (1� x))x+ FA (1� x) (1� x)
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The expected payo¤ in a separate code is the same for each of the two
�rms:

(1� p) (1� �sA (xs))
where

sA (x
s) = argmin

x
sA (x) :

With a joint code, the payo¤s for A are then8>><>>:
1� �sA (x) with probability 1� 2p+ p (1� p)
(1 + a) (1� �sA (x)) with probability p2

(1� a) (1� �sB (x)) with probability p2

0 otherwise

while the payo¤s for 2 are8>><>>:
1� �sB (x) with probability 1� 2p+ p (1� p)
(1 + a) (1� �sB (x)) with probability p2

(1� a) (1� �sA (x)) with probability p2

0 otherwise

The expected payo¤ in a joint code with x for the two �rms is respectively

�JA (x) = 1� p+ p2 � �
��
1� p+ p2a

�
sA (x) + p

2 (1� a) sB (x)
�

�JB (x) = 1� p+ p2 � �
��
1� p+ p2a

�
sB (x) + p

2 (1� a) sA (x)
�

The �rst mover, �rm A, solves the following problem

max
�
�S; �JA (x)

�
subject to �JB (x) � �S:

In the solution, the participation constraint may or may not be binding.
Either x̂ is the solution to the unconstrained maximization problem or it is
the value such that the participation constraint is binding: �JB (x) = �

S. In
the former case we already know that x̂ > 1

2
. In the latter case, note that if

�JB
�
1
2

�
< �S a joint code cannot be optimal. Then assume that �JB

�
1
2

�
� �S.

But then there is an x > 1
2
such that �JB (x) = �S. Thus, whether the

participation constraint is binding or not, x̂ > 1
2
. In other words, a joint

code will be adopted, but it will be biased:

Proposition 7 If a joint code is strictly superior to a separate code, then a
joint code is adopted, and the �rst mover will adapt its code so that it �ts
better the needs of the second mover than the code it would have chosen in
isolation.
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Proof. To see the �rst part of the proposition, assume that a joint code
is strictly superior to a separate code form an e¢ ciency point of view. This
means that

�JA

�
1

2

�
= �JB

�
1

2

�
> �S:

But then, if �rm 1 sets x = 1
2
, the participation constraint of �rm 2 is satis�ed

and �rm 1�s expected payo¤ increases. If a joint code is strictly superior, a
joint code is adopted.
For the second part, assume that a joint code is strictly superior. Note

that

d

dx
�JA (x) = ��

��
1� p+ p2a

�
s0A (x) + p

2 (1� a) s0B (x)
�

= ��
��
1� p+ p2 (2a� 1)

�
s0A (x) + p

2 (1� a) (s0A (x) + s0B (x))
�

By symmetry,
s0A (x) + s

0
B (x) � 0

if and only if x � 1
2
. Also, it is easy to see that if x � 1

2
and, as we have

assumed, f is strictly increasing,

s0A (x) = 2f (x) (2x� 1) + 2F (x)� 1 < 0:

Hence, ,

if x � 1

2

d

dx
�JA (x) > 0: (7)

If the participation constraint is not binding, �rm 1 faces an uncon-
strained maximization problem over �JA (x). By (7), the optimal x is to
the right of 1

2
.

Suppose instead that the participation constraint is binding. Because a
joint code is strictly superior, there is an interval

�
1
2
� "; 1

2
+ "
�
with " > 0

such that for all the x in the interval �JB (x) � �S. But, by (7), this implies
that the optimal x is to the right of 1

2
.

Because code choice is non-contractible, the �rst mover only takes into
account its expected pro�t. This includes the cost of internal communication
and a portion of the cost of inter-�rm communication, but it does not take
into account the cost of internal communication for the follower. The �rst
mover minimizes his communication cost by selecting a code that �ts its
environment. The equilibrium code di¤ers from the e¢ cient code which �ts
the �average� environment that the two �rms face. The sel�shness of the
�rst-mover is limited only by the participation constraint of the follower.
Given that a common code is e¢ cient, the �rst mover must make sure that
the follower has su¢ cient incentive to adopt the common code.
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5.2 Free-riding and excessive code di¤erentiation

Let us begin from a situation in which �rms are endowed with separate
codes. A �rm that wants to switch to a di¤erent code must sustain a �xed
cost c. Suppose that the environment changes and it is now e¢ cient to have
a common code (even considering the switching cost). However, switching
costs are non-contractible: a �rm cannot make side payments to the other
for adopting a new code.
There are potentially three cases: both �rms keep separate code; one �rm

adopts the code of the other �rm; or both �rms adopt a joint code. Suppose
we are in a situation in which the e¢ cient solution is for one �rm to adopt
the other �rm�s code (which occurs for intermediate values of c).
Let us denote the situation in which �rm B adopts the code of �rm A with

the superscript SJ (as in �semi-joint�). The expected payo¤s are respectively

�SJA = 1� p+ p2 � �
��
1� p+ p2a

�
sA
�
xSA
�
+ p2 (1� a) sB

�
xSA
��

�SJB = 1� p+ p2 � �
��
1� p+ p2a

�
sB
�
xSA
�
+ p2 (1� a) sA

�
xSA
��

From an e¢ ciency point of view, SJ is optimal when

�SJA + �SJB � c � max
�
�SA + �

S
B; �

J
A + �

J
B � 2c

�
Note that if � is small enough and c is high enough, the above must be
satis�ed. Suppose thus that we are in the region in which SJ is e¢ cient.
We shall now examine adoption in a non-cooperative environment. Firm 2
switches to �rm 1�s code if

�SJB � c � �SB
Note however that �SJA > �SJB (because code xS is geared toward �rm 1�s
needs). Thus,

1

2

�
�SJA + �SJB � c

�
>
1

2

�
�SJA + �SJB

�
� c > 2�SJB � c

So, the fact that SJ is e¢ cient is no guarantee that 2 is willing to adopt it.

Proposition 8 If there is a cost c of adoption, there are circumstances in
which �rms keep separate codes when it would be more e¢ cient for one �rm
to switch to the other �rm�s code.

It is interesting to note that this result is still true if �rms share the cost
of adoption in equal parts. This is because �rm 2 still incurs the cost of
adopting a code that is suboptimal for internal communication. The �rm
that is supposed to switch code would generate a non-contractible positive
externality to the other �rm. In certain circumstances, �rms keep separate
codes when it is optimal for one �rm to adopt the other �rm�s code.
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6 Centralized Code, Decentralized Commu-
nication?: Evidence

Our model makes several predictions about the organizational implications of
codes. We will focus our analysis on the following three predictions, mostly
related to the e¤ects of a decrease in the cost of identifying a problem and
matching it with its solution, the diagnosis costs:

� A reduction in the diagnosis costs leads to increasing the links across
�rms and within previously separate units in a �rm by facilitating the
adoption of integrating mechanisms such as hierarchies and common
codes.

� Decreases in diagnosis costs in an organization already integrated re-
duce the �translation�role of hierarchy, by facilitating �horizontal�com-
munication �the substitution of codes for hierarchies.

� When agents adoption decisions are decentralized and adoption costs
non-contractible, we expect to �nd too little code commonality, as each
individual only enjoys part of the bene�ts that can be derived from a
move towards unifying codes; moreover, codes will be in this context
ine¢ ciently biased towards the needs of early adopters.

The next subsections explore the evidence on these issues in two ways.
First, we explore the evidence on the correlation between the drop in infor-
mation costs and decentralization. Although the patterns in this evidence
seem to go in a similar direction as the ones in the theory, the evidence is too
vague about the causal link to either reject or con�rm the theory. For this
reason, we also present two detailed case studies, which aim to provide some
detailed insights on the link between information costs and common codes,
the link between common code and decentralization and �nally the con�icts
generated by decentralized code adoption.

6.1 Information Technology and Decentralization

Historically, the information generated by each business unit of a �rm and
within each business unit by each function has been coded and processed sep-
arately, according to the needs of that business unit or function. This meant
that the di¤erent pieces of information where de�ned in di¤erent ways and
could not be aggregated in a simple way. For example the database company
Oracle had 70 incompatible databases for its human-resources department.
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This incompatibility of the codes made it impossible to answer simple queries,
such as how many employees were working at any time at the company.15

This state of a¤airs started to change during the mid 90s, as information
costs dropped and business seek to integrate their information. Within �rms,
this integration took the form particularly of company-wide Enterprise Re-
source Planning (ERP) systems (such as those produced by German company
SAP or Dutch company Baan) whose purpose was to integrate the informa-
tion in all the separate databases so as to treat it in a uni�ed way. Through
these systems, �rms have substituted �exible ways to code their data for
more rigid but uni�ed central databases.16 Between �rms, the increase in
the commonality of the information has taken place with the integration of
supplier and buyer networks using both Electronic Data Exchanges (EDI),
and other similar systems to link suppliers and buyers.17 These EDI systems
allow for the exchange of electronic data between suppliers and customers by
standardizing the format of the data exchanged. Again, in order to bene�t
from these networks, it is necessary for the individual �rms to treat data
in ways that are compatible with their suppliers ��improvements in coor-
dination through EDI are dependent on the willingness of an EDI partners
to invest in computer systems to improve its internal �ow of information�
(Hart and Saunders, 1997).
Since these information related changes have been widespread, our model

would lead us to expect that the reduction in information costs should be
accompanied by an increase in decentralization throughout the economy. Is
there any evidence that this is indeed the case?
The economics literature has only recently turned its attention to the in-

ternal organizational structure of �rms. But the robust �nding by a number
of authors working on micro-level data has been that the reduction in in-
formation costs is correlated with increasing decentralization. In particular,
Brynjolfsson and Hitt, (2000) were the �rst to �nd the increasing comple-
mentarity between IT and decentralization. Bresnahan, Brynjolfsson and

15 : �If anyone wanted to �nd out the exact number of Oracle employees, it would take
weeks of searching� and by the time the answer was found, it would already be out of
date." (�Timely Technology," The Economist, January 31, 2002.)
16In the words of a �noted American e-commerce expert�cited by The Economist, ERP

systems have replaced �fragmented unit silos with more integrated, but nonetheless re-
strictive enterprise silos�(�Timely Technology," The Economist, January 31st, 2002).
17Among these other related approaches are CPFR ( �Collaborative Planning, Forecast-

ing and Replenishment�) which involves deeper and more extensive electronic information
sharing and has been installed, for example, by Nabisco and used with Webmans�Food
markets (�Enterprise System," Financial Times, February 22, 1999); or web-based inte-
grated value chains, such as the one introduced by Safeway in the UK (�You�ll Never Walk
Alone," The Economist, June 24, 1999).
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Hitt (2002) �nd, using �rm-level data, that greater use of information tech-
nology is associated with broader job responsibilities for line workers, and
more decentralized decision-making. Caroli and Reenen (2001) also �nd, on
entirely di¤erent data, evidence that the degree of decentralization of author-
ity is complementary with the use of IT. Finally, Rajan and Wulf (2003), in
a panel study of the hierarchical structure of �rms, �nd that the span of the
CEO is increasing, in particular, through the disappearance in the role of the
COO. This could be a consequence of the increasing commonality of codes,
which makes the translation function of �rms obsolete.
This evidence suggests that indeed the drop in information costs led to

increasing integration in the codes of organizations. It also points to the ex-
istence of an empirical paradox between centralized information and decen-
tralized decision making. However, it is not clear that the causal mechanism
at play is the one identi�ed by the model, namely that the introduction of
the common code allows for the substitution of a key role of hierarchy, that
of �translation�and allows for direct horizontal communication between units
that otherwise would be �speaking a di¤erent language.� The following case
studies provide detailed evidence that this causal mechanism may indeed
have played an important role in the existence of a ink between reduction in
information costs and decentralization.18

6.2 Common Codes at Microsoft

The organizational changes undergone by the Microsoft Corporation starting
in the mid 90s o¤er an interesting case study of the trade-o¤s involved in the
adoption of a common code. According to Robert J. Herbold,.19 COO of
Microsoft at the time, Microsoft had in 1994 a completely decentralized set of
codes. In the �nance area, �the general managers of Microsoft�s business and
geographical units would sometimes decide to rede�ne or change, for their
own purposes, a key measure used in �nancial reporting ... because these sys-
tems were incompatible, each quarter, the company shipped countless sheets
of paper presenting the company�s and individual units��nancial results.�
The managers of the di¤erent units had all set up their own techniques of

18Garicano and Rossi-Hansberg (2003) study the impact of two other types of infor-
mation costs, communication costs and the cost of accessing knowledge, on organization
and inequality. They do not consider diagnosis costs. They �nd that decentralization
can result from drops in the cost of accessing knowledge, and that such changes can also
increase within worker class wage inequality.
19We rely heavily on the personal account of the COO of MS at the time, Robert J.

Herbold in Harvard Business Review, January 2000. All the quotes below proceed directly
from his account.
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�nancial reporting, stressing what they believed were the important compo-
nents. The situation in the human resources �eld was the same: there was
no consistent, between units, way to keep track of human resources, with
eighteen HR-related databases. �When asked about head counts, managers
answers usually were, to put it charitably, poetic.�
An advantage of such a situation was that managers could measure ex-

actly what they needed to measure. In Herbold�s words: � Some would de-
velop �nancial information systems tailored to their particular needs. Others
would analyze their �nancial performance in a way meant to re�ect the en-
vironment of their country of operation. There was nothing seditious about
this.�On the other hand, between unit communication was compromised,
since lots of di¤erent measures had to be understood by top managers, and
di¤erent measures often needed to be reconciled.
The company decided to move towards �common codes�in those two areas.

Among the main advantages of these moves, according to Herbold, were, �rst
that business unit performances could be easily compared to one another, and
second, that all managers could easily make sense of that information.
Paradoxically, this centralizing move provided �bene�ts usually associ-

ated with decentralization� as managers had instant access to information
and could operate on it directly. �Giving managers instant access to company
information accelerates decision making.�
Inside the organization the cost and bene�ts of the adoption of common

codes within these two areas di¤ered, in ways similar to the ones discussed
in section 5. For example, the German Country Manager refused to go along
with the common code, least his unit lost the unique �t of its own code
to the German problems. In the words of that country manager: �We put
years into the development of our own information systems because those
systems uniquely capture the nuances of the German Business. Those nuances
are important. Germany certainly shouldn�t be characterizes as just another
European country.� 20 The fact that the adoption decision was centralized,
however, reduced the scope of these individual concerns to either bias the
code or delay its introduction.21

20Obviously, it is hard to interpret this compaints as arguing that the move is e¢ cient
but not in the interest of managers �we only know that the center thought the codes were
ine¢ ciently di¤erent while the country managers think that the codes are just appropri-
ately adapted to the di¤erent circumnstances of the country environments.
21This is not to say it eliminates such concerns. Herbold himself points out that a pre-

vious similar e¤ort in Procter and Gamble failed when the CEO refused to overrule a sim-
ilarly recalcitrant division manager who wanted to preserve the previous, non-integrated,
systems.
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6.3 A common code for the B-2 Bomber

Advances in information technology allowed the design of the �stealth�B -2
bomber by Northrop, Boeing, Vaught (a division of LTV) and General Elec-
tric to be the ��rst major aeropsace program to rely on a single engineering
database to coordinate the activities of the major subcontractos on a large-
scale design and development project�(Argyres, 1999:163). 22 A key element
in this program was the �B-2 Product De�nition System�. This was essen-
tially a common code, a �technical �grammar�by which engineers and others
conveyed information to each other. This grammar was established through a
highly-developed and highly standardized data formation and modeling pro-
cedures of the system, which laid down well-de�ned rules for communicating
complex information inherent in the part design�(Argyres, 1999: 171). These
rules included tight de�nition of 14 part families and �agreed upon modeling
rules for de�ning lines, arcs, surfaces etc.� (Argyres 1999:169).
The use of the grammar had two consequences. First, it allowed for

designers proceeding from di¤erent companies to participate jointly in the
design. In previous projects, the di¢ culty of cross-company communication
had meant all designers, with the exception of those fo the the motors (which
are a relatively stand-alone component requiring little coordination) had be-
longed to the same �rm.23 Thus the existence of a common code allowed
integration of several teams where before there was none possible.
Moreover, this integration happened with little need for the hierarchical

coordination, since among the main consequences of the creation of a rela-
tively rigid, unifying codes was an increase in decentralized decision making
and the reduction in the need for a hierarchy vis-a-vis previous projects:
�the technical grammar de�ned by the B-2 systems established a social con-
vention which limited the need for a single hierarchical authority." (Argyres
1999: 173). By reducing the need for the coordinating role of the managers,
this code provided for a larger scope for horizontal communication.
Of course, unlike in the Microsoft case just discussed, the decision on

which code to adopt was largely decentralized and so individual strategic
considerations of the type discussed in Section 5 played a more important
role here. First, the B-2 project provides some evidence that there may be
excessive code variety. Boeing and Vaught were unenthusiastic during the
negotiations leading to the creation of a centralized database. A Boeing
engineer argued explained that �we were developing our own system CATIA
[...] We knew we wouldn�t be using CATIA if we had to be compatible

22The account that follows draws heavily on a detailed cased study by Argyres (1999).
23Argyres, personal communication to the authors.
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with this huge, monolithic database�(Argyres, 1999:166). That the common
approach was probably, in spite of the resistence, optimal is seen by the fact
that the Air Force �arguably concerned with achieving the e¢ cient outcome
in this context- was willing to pick up the training costs incurred by Boeing
and Vaught (Argyres, 1999: 166). Not only the adoption was hard to attain,
but it was also, as the theory suggests, biased towards the needs of the early
adopter, Northrop. Rather than generating a common code, which would
presumably �t the needs of all players, they all adopted the one of Northrop
(Argyres, 1999:167).

7 Conclusions and Literature

This paper has presented an intitial step towards a joint theory of organi-
zaiton and codes. We review here brie�y existing literature on codes and
conclude with what we view as our main contributions to the study of this
problem
In his celebrated book on the limits of organization, Arrow (1974) dis-

cusses the endogenous development of codes within organizations. He also
identi�es a trade-o¤ between having generally understood codes that allow
for wide communication and designing specialized codes that �t the needs
of a particular organization. In this paper, we have aimed to develop some
of Arrow�s ideas in a formal setup and to explore the properties of optimal
codes and the terms of the trade-o¤ between generality and specialization.
Information theory (Shannon, 1948) deals with optimal codes as well but

with a di¤erent focus. The main constraint there is channel capacity. A code
is chosen to minimize the cost of transmitting information. Instead, here the
cost of transmission is not taken into account. The main constraint is the
ability of agents to learn codes.
Marschak and Radner�s (1972) team theory studies decision making when

there are several agents with a common goal but limited communication.
While our paper shares the team-theoretical emphasis on communication
problems rather than incentive issues, it di¤ers from Marschak and Radner
in that it allows for endogenous communication protocols (at the cost of
downplaying the decision-theoretic aspect).
Crémer (1993) presents a bounded rationality analysis of corporate cul-

ture. He argues that �corporate culture is the stock of knowledge shared by
members of the corporation, but not by the general population from which
they are drawn�, and suggests that this knowledge stock is formed by three
pieces: a shared knowledge of facts, a common code, and a shared knowl-

32



edge of rules of behavior. He then goes on to study, within a team theoretic
framework, the bene�ts of shared knowledge. The model does not study the
issue of codes or the communication costs of achieving the shared knowledge.
Radner (1993) and other authors (see Van Zandt, 1999 for a survey) study

organization from the viewpoint of information processing. The key bounded
rationality assumption is that agents have limited computation capacity. The
analysis focus on the properties of optimal information processing hierarchies.
Within the information processing literature, the work that is closest to ours
is Bolton and Dewatripont (1994). They allow agents in an information
processing hierarchy to achieve returns to specialization and they consider a
more general communication cost structure. This leads to an organization
theory built on the trade-o¤ between communication costs and returns to
specialization. Our paper is complementary to the information processing
literature in that it explores similar issues but from the point of view of
codes.
Garicano (2000) studies the problem of matching problems with solutions

when codes do not exist, so that problems cannot be labeled at all. In that
case, agents who draw a problem and look for a solution must ask other
agents until they �nd someone who knows the solution. He shows that the
optimal organization of knowledge is a knowledge-hierarchy, in which agents
closer to the production �oor deal with the most common and easier problems
and shield the experts from these problems, so that these experts can focus
on the exceptions.
Wernerfelt (2003) is similar to ours in that it considers codes that are

enacted to minimize communication costs within an organization. But the
focus is di¤erent: in his paper, the codes are designed in a decentralized way
and the paper focuses on the existence of multiple equilibrium codes due
to independent decision making. Instead our approach focuses on how the
environment in which the organization operates determines the optimal code
and the level of commonality with the codes of other organizations.
Battigalli and Maggi (2002) construct a model of language and its asso-

ciated costs, and they use it to develop a theory of contract incompleteness.
Their language is a code with the purpose of legal veri�cation which is built
by combining primitive sentences and logical connectives (AND, OR, NOT,
etc...). A contract uses the available language to partition the set of events
and associate it to the parties�obligations. This paper shares Battigalli and
Maggi�s aim to take into explicit account the cost of using language to par-
tition the set of events. However, the area of application of our model is
di¤erent. We are interested in organizational structure rather than contract
incompleteness. Also, the building blocks of our language di¤er substantially
from Battigalli and Maggi.
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Thus none of the previous literature studies the relations between the
organizational code and its environment, nor the consequences that the con-
straints on individual�s ability to learn words imposed on organizational de-
sign. Our focus on the organizational consequencs of codes has alowed us, for
example, to discuss the decision of whether to segregate services or integrate
services, or the use of specialized translators that allow, at a cost, the codes
of units facing di¤erent environment to be preserved to some extent. This
analysis has proved useful in providing insights on the e¤ects of decreases
in information costs on organizational design, as we argued in Section 6. In
particular, we have shown that when diagnosis is less costly, organizations
tend to more common codes, and to more horizontal communication as a
result. Finally, we have explored independent individual adoption decisions,
and have shown that two biases may be present when they are costly and
non-contratible: too little code commonality, and codes that are ine¢ ciently
biased towards the needs of early adopters.
Beyond the substantive results we have obtained, we see the contribution

of this paper as pointing out ways to think about and formulate a central
problem to economic organization. We trust that future work will advance
on the study of codes in organizations.

References

[1] Argyres, Nicholas S. �The Impact of Information Technology on Co-
ordination: Evidence from the B-2 "Stealth" Bomber.� Organization
Science,Vol. 10 (2), pp. 162-180, 1999.

[2] Kenneth J. Arrow. The Limits of Organization. Norton, New York, 1974.

[3] Pierpaolo Battigalli and Giovanni Maggi. �Rigidity, discretion, and the
costs of writing contracts." American Economic Review 92(4): 798�817,
2002.

[4] Blankevoort, P. J. �Contradictory e¤ects of a project management dic-
tionary." International Journal of Project Management, Vol. 4 (4), pp.
236-238, 1986.

[5] Patrick Bolton and Mathias Dewatripont. �The �rm as a communication
network.", 104(4): 809�839, 1994.

[6] Bresnahan Timothy F., Erik Brynjolfsson, and Lorin M. Hitt, �Informa-
tion Technology, Workplace Organization, and the Demand for Skilled

34



Labor: Firm-Level Evidence.�Quarterly Journal of Economics, Vol. 117,
February 2002.

[7] Brynjolfsson, Eric, and Loren Hitt. �Beyond Computation: Information
Technology, Organizational Transformation and Business Performance.�
Journal of Economic Perspectives, Vol. 14 (4), pp. 23-48.

[8] Browning, Larry D., Janice M. Beyer, Judy C. Shetler. �Building Coop-
eration in a Competitive Industry: SEMATECH and the Semiconductor
Industry." The Academy of Management Journal, Vol. 38, No. 1. (Feb,
1995), pp. 113-151.

[9] Crémer, Jacques. �Corporate Culture: Cognitive Aspects,� Industrial
and Corporate Change, 3, 2, pp. 351-386, 1993,

[10] Garicano, Luis. �Hierarchies and the Organization of Knowledge in Pro-
duction.� Journal of Political Economy, Vol. 108, No. 5, pp. 874-904,
October 2000.

[11] Garicano, Luis and Esteban Rossi-Hansberg. �Organization and Inequal-
ity in a Knowledge Economy.�Mimeo, 2003.

[12] Hart, Paul and Carol Saunders, �Power and Trust: Critical Factors in
the Adoption and Use of Electronic Data Interchange.�Organization
Science, Vol. 8 (1), pp. 23-42, 1997.

[13] Jakob Marschak and Roy Radner. Economic Theory of Teams. Yale
University Press, New Haven, Connecticut, 1972.

[14] Rajan, Raghuram G. and Julie Wulf. �The Flattening Firm: Evidence
from Panel Data on the Changing Nature of Corporate Hierarchies.�,
Working Paper, Wharton School University of Pennsylvania, 2002.

[15] Roy Radner. �The organization of decentralized information process-
ing." Econometrica 61(5): 1109�1146, 1993.

[16] Claude E. Shannon. �A mathematical theory of communication." Bell
System Technology Journal 27: 379�423, 1948.

[17] Simester, Duncan and Knez, Marc, �Direct and Indirect Bargaining
Costs and the Scope of the Firm,�Journal of Business, 75(2):283-304,
April, 2002.

35



[18] Timothy P. Van Zandt. �Decentralized information processing in the
theory of organizations. " In Contemporary Economic Issues, Vol. 4:
Economic Design and Behavior (ed. Murat Sertel), MacMillan, London,
1999.

A Appendix

A.1 Assigning agents to codes: Span and range of a
code

We have shown in Section 3.3 that all di¤erent agents dealing with one par-
ticular engeneer must share a code. The question that naturally follows is
which agents should then communicate to share a code. Suppose that there
are a number of boundedly rational engineers, and that salesman should be
assumed to them to minimize communication loss. When should many agents
ahare the same codes? When should only a few do it? What determines this
division?
Suppose in particular there are two engineers, eA and eB, and a continuum

of salesmen.24 Each salesman has a linear density function characterized by
the parameter b 2 [�1; 1]. The distribution of salesmen is g (b). Each sales-
man and each engineer can learn a maximum of two words. The solution of
the problem is to divide the salesmen into two subsets, SA and SB. Sales-
men in Si know the same language as engineer ei. Moreover, in the optimal
solution SA = [0; b�] and SB = (b�; 1], where b� 2 (�1; 1).
Let the span of engineer i be the proportion of salesmen that she serves:

F (b�) for eA and 1 � F (b�) for eB. Let the range of engineer i be the
proportion of salesman types that the engineer communicates to: 1 + b� for
eA and 1� b� for eB.

Proposition 9 Suppose that g (b) is increasing and linear. In the opti-
mal organization, cA (b�) = cB (b

�). Furthermore, the span of engineer A
is smaller than the span of engineer B and the range of engineer A is greater
than the range of engineer B.

Proof. Given b� the problem for language A is

cA (b
�) = min

xA
F (xA; b < b

�)xA + (1� F (xA; b < b�)) (1� xA)

24Dealing with N engineers can be done identically and the solution has the same char-
acteristics as the one discussed below.
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and for language B its is

cB (b
�) = min

xB
F (xB; b > b

�)xB + (1� F (xB; b > b�)) (1� xB)

where

F (xA; b < b
�) =

1

G (b�)

Z b�

0

F (xA; b) g (b) db

F (xB; b > b
�) =

1

1�G (b�)

Z 1

b�
F (xB; b) g (b) db

The problem for b� is then

minG (b�) cA (b
�) + (1�G (b�)) cB (b�)

Consider

	(b�) =
d

db�
(G (b�) cA (b

�) + (1�G (b�)) cB (b�))

Note that

cA (b
�) =

2xA (b
�)� 1

G (b�)

Z b�

0

F (xA (b
�) ; b) g (b) db+ (1� xA (b�))

cb (b
�) =

2xB (b
�)� 1

1�G (b�)

Z 1

b�
F (xB (b

�) ; b) g (b) db+ (1� xB (b�))

d

db�
G (b�) cA (b

�) =
d

db�

�
(2xA (b

�)� 1)
Z b�

0

F (xA (b
�) ; b) g (b) db+G (b�) (1� xA (b�))

�
= (2xA (b

�)� 1)F (xA (b�) ; b�) g (b�) + g (b�) (1� xA (b�))

d

db�
(1�G (b�)) cB (b�) =

d

db�

�
(2xB (b

�)� 1)
Z 1

b�
F (xB (b

�) ; b) g (b) db+ (1�G (b�)) (1� xB (b�))
�

= � (2xB (b�)� 1)F (xB (b�) ; b�) g (b�)� g (b�) (1� xB (b�))

	 (b�) = g (b�) ((2xA (b
�)� 1)F (xA (b�) ; b�)� (2xB (b�)� 1)F (xB (b�) ; b�) + (xB (b�)� xA (b�)))

= g (b�) (cA (b
�)� cB (b�))

Thus, the optimum is when

cA (b
�) = cB (b

�)
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It is easy to see that [TO PROVE]

cA (0) < cB (0)

because
E [bjb > 0] > �E [bjb < 0]

Note that
� (b�) = cA (b

�)� cB (b�)
is nondecreasing in b� [TO PROVE]:
Then the unique value of b� for which � (b�) = 0 is to the right of 0, which

proves the statement.
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