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Abstract 17 

How does the human brain encode visual object categories? Our understanding of this has advanced 18 

substantially with the development of multivariate decoding analyses. However, conventional 19 

electroencephalography (EEG) decoding predominantly use the “mean” neural activation within the 20 

analysis window to extract category information. Such temporal averaging overlooks the within-trial 21 

neural variability which is suggested to provide an additional channel for the encoding of information 22 

about the complexity and uncertainty of the sensory input. The richness of temporal variabilities, 23 

however, has not been systematically compared with the conventional “mean” activity. Here we 24 

compare the information content of 31 variability-sensitive features against the “mean” of activity, using 25 

three independent highly-varied datasets. In whole-trial decoding, the classical event-related potential 26 

(ERP) components of “P2a” and “P2b” provided information comparable to those provided by “Original 27 

Magnitude Data (OMD)” and “Wavelet Coefficients (WC)”, the two most informative variability-sensitive 28 

features. In time-resolved decoding, the “OMD” and “WC” outperformed all the other features 29 

(including “mean”), which were sensitive to limited and specific aspects of temporal variabilities, such as 30 

their phase or frequency. The information was more pronounced in Theta frequency band, previously 31 

suggested to support feed-forward visual processing. We concluded that the brain might encode the 32 

information in multiple aspects of neural variabilities simultaneously e.g. phase, amplitude and 33 

frequency rather than “mean” per se. In our active categorization dataset, we found that more effective 34 

decoding of the neural codes corresponds to better prediction of behavioral performance. Therefore, 35 
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the incorporation of temporal variabilities in time-resolved decoding can provide additional category 36 

information and improved prediction of behavior. 37 

Keywords 38 

object category processing; neural codes; multivariate pattern decoding; electroencephalography (EEG); 39 

feature extraction 40 

Introduction 41 

How does the brain encode information about visual object categories? This question has been studied 42 

for decades using different neural recording techniques including invasive neurophysiology (Hung et al., 43 

2005) and electrocorticography (ECoG; Majima et al., 2014; Watrous et al., 2015; Rupp et al., 2017; Lie 44 

et al., 2009; Miyakawa et al., 2018; Liu et al., 2009), as well as non-invasive neuroimaging methods such 45 

as functional Magnetic Resonance Imaging (fMRI; Haxby et al., 2001), magnetoencephalography (MEG; 46 

Contini et al., 2017; Carlson et al., 2013) and electroencephalography (EEG; Kaneshiro et al., 2015; 47 

Simanova et al., 2010) or a combination of them (Cichy et al., 2014). There has been great success in 48 

“reading-out” or “decoding” neural representations of semantic object categories from neuroimaging 49 

data. However, it is still unclear if the conventional decoding analyses effectively detect the complex 50 

neural codes. Critically, one potential source of neural codes, in high-temporal-resolution data (e.g. 51 

EEG), can be the “within-trial/window temporal variability” of EEG signals, which is generally ignored 52 

through temporal averaging in decoding. The use of such summarized “mean” activity, can hide the true 53 

spatiotemporal dynamics of neural processes such as object category encoding, which is still debated in 54 

cognitive neuroscience (Grootswagers et al., 2019; Majima et al., 2014; Karimi-Rouzbahani et al., 2017b; 55 

Isik et al., 2013; Cichy et al., 2014). Here, we quantitatively compare the information content and the 56 

temporal dynamics of a large set of features from EEG time series, each sensitive to a specific aspect of 57 

within-trial temporal variability. We then evaluate the relevance of these features by measuring how 58 

well each one predicts behavioral performance. 59 

 60 

Sensory neural codes are multiplexed structures containing information on different time scales and 61 

about different aspects of the sensory input (Panzeri et al., 2010; Wark et al., 2009; Gawne et al., 1996). 62 

Previous animal studies have shown that the brain does not only encode the sensory information in the 63 

neural firing rates (i.e. average number of neural spikes within specific time windows), but also in more 64 

complex patterns of neural activity such as millisecond-precise activity and phase (Kayser et al., 2009; 65 

Victor, 2000; Montemurro et al., 2008). It was shown that stimulus contrast was represented by latency 66 

coding at a temporal precision of ~10 ms, whereas the stimulus orientation and the spatial frequency 67 

were encoded at a coarser temporal precision (30 ms and 100 ms, respectively; Victor, 2000). It was 68 

shown that spike rates on 5-10-ms timescales carried complementary information to the phase of firing 69 

relative to low-frequency (1-8 Hz) LFPs about epoch of naturalistic movie (Montemurro et al., 2008). 70 

Therefore, the temporal patterns/variabilities of neural activity are enriched platforms of neural codes. 71 

 72 

Recent computational and experimental studies have proposed that neural variability, provides a 73 

separate and additional channel to the “mean” activity, for the encoding of general aspects of the 74 

sensory information e.g. its “uncertainty” and “complexity” (Orbán et al., 2016; Garrett et al., 2020). 75 
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Specifically, uncertainty about the stimulus features (e.g. orientations of lines in the image) was directly 76 

linked to neural variability in monkeys’ visual area (Orbán et al., 2016) and human EEG (Kosciessa et al., 77 

2021): wider inferred range of possible feature combinations in the input stimulus corresponded to 78 

wider distribution of neural responses. This could be applied to both within- and across-trial variability 79 

(Orbán et al., 2016). Moreover, temporal variability was directly related to the complexity of input 80 

images: higher neural variability for house (i.e. more varied) vs. face (i.e. less varied) images (Garrett et 81 

al., 2020) and provided a reliable measure of perceptual performance in behavior (Waschke et al., 82 

2019). The uncertainty- and complexity-dependent modulation of neural variability, which is linked to 83 

the category of input information, has been suggested to facilitate neural energy saving, adaptive and 84 

effective encoding of the sensory inputs in changing environments (Garrett et al., 2020; Waschke et al., 85 

2021). 86 

 87 

Despite the richness of information encoded by neural variabilities, the unclear transformation of such 88 

neuronal codes into EEG activity has led to divergent approaches used for decoding information from 89 

EEG. For example, the information in neural firing rates might appear in phase patterns rather than 90 

amplitude of EEG oscillations (Ng et al., 2013). Generally, three families of features have been extracted 91 

from EEG time series to detect neural codes from temporal variabilities (Waschke et al., 2021): variance-92 

, frequency- and information theory-based features, each detecting specific aspects of variability. In 93 

whole-trial decoding, components of event-related potentials (ERPs) such as N1, P1, P2a and P2b, which 94 

quantify time-specific variabilities of within-trial activation, have provided significant information about 95 

object categories (separately and in combination; Chan et al., 2011; Wang et al., 2012; Qin et al., 2016). 96 

Others successfully decoded information from more complex variance- and frequency-based features 97 

such as signal phase (Behroozi et al., 2016; Watrous et al., 2015; Torabi et al., 2017; Wang et al., 2018; 98 

Voloh et al., 2020), signal power across frequency bands (Rupp et al., 2017; Miyakawa et al., 2018; 99 

Majima et al., 2014; Miyakawa et al., 2018), time-frequency Wavelet coefficients (Hatamimajoumerd 100 

and Talebpour, 2019; Taghizadeh-Sarabi et al., 2015), inter-electrode temporal correlations (Karimi-101 

Rouzbahani et al., 2017a) and information-based features (e.g. entropy; Joshi et al., 2018; Torabi et al., 102 

2017; Stam, 2005). Therefore, the neural codes are generally detected from EEG activity using a wide 103 

range of features sensitive to temporal variability. 104 

 105 

While insightful, previous studies have also posed new questions about the relative richness, temporal 106 

dynamics and the behavioral relevance of different features of neural variability. First, can the features 107 

sensitive to temporal variabilities, provide additional category information to the conventional “mean” 108 

feature? While several of the above studies have compared multiple features (Chan et al., 2011; 109 

Taghizadeh-Sarabi et al., 2015; Torabi et al., 2016), none of them compared their results against the 110 

conventional “mean” activity, which is the dominant feature, especially in time-resolved decoding 111 

(Grootswagers et al., 2017). This comparison will not only validate the richness of each feature of neural 112 

variability but will also show if the mean activity detects a large portion of the neural codes produced by 113 

the brain. We predicted that the informative neural variabilities, if properly decoded, should provide 114 

additional information to the “mean” activity, which overlooks the temporal variability within the 115 

analysis window. 116 

 117 
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Second, do the features sensitive to temporal variabilities evolve over similar time windows to the 118 

“mean” feature? Among all the studies mentioned above, only a few investigated the temporal 119 

dynamics of features, other than the “mean” in time-resolved decoding (Majima et al., 2014; Stewart et 120 

al., 2014; Karimi-Rouzbahani et al., 2017a), where the temporal evolution of information encoding is 121 

studied (Grootswagers et al., 2017). As distinct aspects of sensory information (e.g. contrast vs. spatial 122 

frequency) are represented on different temporal scales (Victor, 2000; Montemurro et al., 2008) and 123 

different variability features are potentially sensitive to distinct aspects of variability, we might see 124 

differential temporal dynamics for different features. 125 

 126 

Third, do the features sensitive to temporal variabilities explain the behavioral recognition performance 127 

more accurately than the “mean” feature? One important question, which was not covered in the above 128 

studies, was whether the extracted information was behaviorally relevant or was it just epiphenomenal 129 

to the experimental conditions. One way of validating the relevance of the extracted neural codes is to 130 

check if they could predict the relevant behavior (Williams et al., 2007; Grootswagers et al., 2018; 131 

Woolgar et al., 2019). We previously found that the decoding accuracies obtained from “mean” signal 132 

activations could predict the behavioral recognition performance (Ritchie, et al., 2015). However, it 133 

remains unknown whether (if at all) the information obtained from temporal variabilities can explain 134 

more variance of the behavioral performance. Our prediction was that, as the more informative features 135 

access more of the potentially overlooked neural codes, they should also explain the behavioral 136 

performance more accurately. 137 

 138 

In this study, we address the above questions, to provide additional insights about what aspects of 139 

neural variabilities might reflect the neural codes more thoroughly and how we can extract them most 140 

effectively using multivariate decoding analyses.  141 

 142 

Methods 143 

The datasets used in this study and the code are available online at https://osf.io/wbvpn/. All the open-144 

source scripts used in this study were compared against other implementations of identical algorithms 145 

in simulations and used only if they produced identical results. All open-source implementation scripts 146 

of similar algorithms produced identical results in our simulations. To evaluate different 147 

implementations, we tested them using 1000 random (normally distributed with unit variance and zero 148 

mean) time series each including 1000 samples.  149 

 150 

Overview of datasets 151 

We chose three previously published EEG datasets in this study, which differed across a wide range of 152 

parameters including the recording set-up (e.g. amplifier, number of electrodes, preprocessing steps, 153 

etc.), characteristics of the image-set (e.g. number of categories and exemplars within each category, 154 

colorfulness of images, etc.), and task (e.g. presentation length, order and the participants’ task; Table 155 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://osf.io/wbvpn/
https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


1). All three datasets previously successfully provided object category information using multivariate 156 

analyses. 157 

 158 

Dataset 1. We have previously collected Dataset 1 while participants were briefly (i.e. 50 ms) 159 

presented with gray-scale images from four synthetically-generated 3D object categories (Karimi-160 

Rouzbahani et al., 2017a). The objects underwent systematic variations in scale, positional periphery, in-161 

depth rotation and lighting conditions, which made perception difficult, especially in extreme variation 162 

conditions. Randomly ordered stimuli were presented in consecutive pairs (Figure 1, top row). The 163 

participant’s task was unrelated to object categorization; they pressed one of two pre-determined 164 

buttons to indicate if the fixation dots, superimposed on the first and second stimuli, were the 165 

same/different color (2-alternative forced choice). 166 

 167 

Dataset 2. We have collected Dataset 2 in an active categorization experiment, in which 168 

participants pressed a button if the presented object image was from a target category (go/no-go), 169 

which was cued at the beginning of each block of 12 stimuli (Karimi-Rouzbahani et al., 2019; Figure 1, 170 

middle row). The object images, which were cropped from real photographs, were part of the well-171 

stablished benchmark image set for object recognition developed by Kiani et al., (2007). This image set 172 

has been previously used to extract object category information from both human and monkey brain 173 

using MEG (Cichy et al., 2014), fMRI (Cichy et al., 2014; Kriegeskorte et al., 2008) and single-cell 174 

electrophysiology (Kriegeskorte et al., 2008; Kiani et al., 2007). 175 

 176 

Dataset 3. We also used another dataset (Dataset 3) which was not collected in our lab. This 177 

dataset was collected by Kaneshiro et al., (2015) on 6 sessions for each participant, from which we used 178 

the first session only, as it could represent the whole dataset (the next sessions were repetition of the 179 

same stimuli to increase signal to noise ratio) and we preferred to avoid potential effect of extended 180 

familiarity with the stimuli on neural representations. The EEG data was collected during passive viewing 181 

(participants had no task but to keep fixating on the central fixation cross; Figure 1, bottom row) of 6 182 

categories of objects with stimuli chosen from Kiani et al. (2007) as explained above. We used a pre-183 

processed (i.e. band-pass-filtered in the range 0.03 to 50 Hz) version of the dataset which was available 184 

online1. 185 

                                                           
1 https://purl.stanford.edu/tc919dd5388 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://purl.stanford.edu/tc919dd5388
https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


 186 

All the three datasets were collected at a sampling rate of 1000 Hz. For Datasets 1 and 2, only the trials 187 

which led to correct responses by participants, were used in the analyses. Each dataset consisted of data 188 

from 10 participants. Each object category in each dataset included 12 exemplars. To make the three 189 

datasets as consistent as possible, we pre-processed them differently from their original papers. 190 

Specifically, the band-pass filtering range of Dataset 3 was 0.03 to 50 Hz, and we did not have access to 191 

the raw data to increase the upper cutting frequency to 200 Hz. Datasets 1 and 2 were band-pass-192 

filtered in the range from 0.03 to 200 Hz before the data was split into trials. We also applied 50 Hz 193 

notch filters to Datasets 1 and 2 to remove line noise. Next, we generated different versions of the data 194 

by band-pass filtering the data in Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), Beta (12-16 Hz), 195 

Gamma (16-200Hz) bands to see if there is any advantage for the suggested Theta or Delta frequency 196 

bands (Watrous et al., 2015; Behroozi et al., 2016; Wang et al., 2018). We used finite-impulse-response 197 

(FIR) filters with 12 dB roll-off per octave for band-pass filtering of Datasets 1 and 2 and when evaluating 198 

the sub-bands of the three datasets. All the filters were applied before splitting the data into trials.  199 

 200 

We did not remove artifacts (e.g. eye-related and movement-related) from the signals, as we and others 201 

have shown that sporadic artifacts have minimal effect in multivariate decoding (Grootswagers et al., 202 

 

Figure 1. Paradigms of the datasets used in this study. Dataset 1 (top row) presented two consecutive object images 
each with a fixation dot. Participants’ task was to indicate if the fixation dot was the same or different colors across the 

image pairs (passive task). Dataset 2 (middle row) presented objects from the target and non-target categories in 
sequences of 12 images. Participant’s task was to indicate, for each image, if it was from the target/non-target category 

(active task). Dataset 3 (bottom row), presented sequences of object images from 6 different categories. Participants 
did not have any specific tasks, except for looking at the center of the image (no overt task). See more details about the 

datasets in the relevant references provided in Table 1. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


2017). To increase signal to noise ratios in the analyses, each unique stimulus had been presented to the 203 

participants 3, 6 and 12 times in Datasets 1, 2 and 3, respectively. Trials were defined in the time 204 

window from 200 ms before to 1000 ms after the stimulus onset to cover most of the range of event-205 

related neural activations. The average pre-stimulus (-200 to 0 ms relative to the stimulus onset) signal 206 

amplitude was removed from each trial of the data. For more information about each dataset see Table 207 

1 and the references to their original publications. 208 

 209 

Table 1. Details of the three datasets used in this study. 210 

Dataset 
# 

electrodes 

Band-

pass 

filtering 

Notch 

filtering 

# 

object 

categories 

# stimulus 

repetition 

Stimulus 

presentation 

time 

Stimulus 

size 

(periphery) 

Task 
Participants’ 

accuracy 

Participants’ 
Age 

(median) 

Participants’ 
gender 

1 

Karimi-
Rouzbahani 

et al., 
2017a 

31 
0.03-200 

Hz 
50 Hz 4 3 50 ms 

2~13.5° 
(0.7~8.8°) 

Color 
matching 
(passive) 

%94.68 22.1 
7 male 

3 female 

2 

Karimi-
Rouzbahani 
et al., 2019 

31 
0.03-200 

Hz 
50 Hz 4 6 900 ms 8° × 8° (0) 

Object 
category 
detection 
(active) 

%94.65 26.4 
6 male 

4 female 

3 
Kaneshiro 

et al., 2015 
128 

0.03-50 
Hz 

No 6 12 500 ms 
7.0° × 6.5° 

(0) 
No task 

(fixation) 
N/A 30.5 

7 male 
3 female 

 211 

 212 

Features 213 

EEG signals are generated by inhibitory and excitatory post-synaptic potentials of cortical neurons. 214 

These potentials extend to the scalp surface and are recorded through electrodes as amplitudes of 215 

voltage in units of microvolts. Researchers have been using different aspects of these voltage recordings 216 

to obtain meaningful information about human brain processes. The main focus of this study is to 217 

compare the information content of features which are sensitive to temporal variabilities of neural 218 

activations against the “mean” of activity within the analysis window, which is conventionally used in 219 

decoding analysis (Grootswagers et al., 2017). Below we explain the mathematical formulas for each 220 

individual feature used in this study. We also provide brief information about potential underlying 221 

neural mechanisms which can lead to the information content provided by each feature.  222 

 223 

We classified the features into five classes based on their mathematical similarity to simplify the 224 

presentation of the results and their interpretations. The five classes consist of Moment, Complexity, 225 

ERP, Frequency-domain and Multi-valued features. However, the classification of the features is not 226 

strict and the features might be classified based on other criteria and definitions. For example, 227 

complexity itself has different definitions (Tononi et al., 1998), such as degree of randomness, or 228 

degrees of freedom in a large system of interacting elements. There are also recent studies which split 229 

the variability features into the three categories of variance-, frequency- and information theory-based 230 

categories (Waschke et al., 2021). Therefore, each definition may exclude or include some of our 231 

features in the class. It is of note that, we only used the features which were previously used to decode 232 

categories of evoked potentials from EEG signals through multivariate decoding analysis. Nonetheless, 233 
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there are definitely other features available, especially, those extracted from EEG time series collected 234 

during long-term monitoring of human neural representations in health and disorder (Fulcher and Jones, 235 

2017). In presenting the features’ formulas, we avoided repeating the terms from the first feature to the 236 

last one. Therefore, the reader might need to go back a few steps/features to find the definitions of the 237 

terms. Note that, in this study, the analyses are performed in either 1000 ms time windows (i.e. number 238 

of samples used for feature extraction: 𝑁 = 1000) in the whole-trial analysis or 50 ms time windows 239 

(𝑁 = 50) in time-resolved analysis. 240 

 241 

Moment features 242 

These features are the most straightforward and intuitive features from which we might be able to 243 

extract information about neural processes. Mean, Variance, Skewness and Kurtosis are the 1st to 4th 244 

moments of EEG time series and can provide information about the shape of the signals and their 245 

deviation from stationarity, which is the case in evoked potentials (Rasoulzadeh et al., 2016; Wong et al., 246 

2006). These moments have been shown to be able to differentiate visually evoked responses 247 

(Pouryzdian and Erfaninan, 2010; Alimardani et al., 2018). The 2nd to 4th moments are also categorized as 248 

variance-based features in recent studies (Waschke et al., 2021). 249 

 250 

Mean 251 

Mean amplitude of an EEG signal changes in proportion to the neural activation of the brain. It is by far 252 

the most common feature of the recorded neural activations used in analyzing brain states and cognitive 253 

processes both in univariate and multivariate analyses (Vidal et al., 2010; Hebart and Baker, 2017; 254 

Grootswagers et al., 2017; Karimi-Rouzbahani et al., 2019). In EEG, the brain activation is reflected as the 255 

amplitude of the recorded voltage across each electrode and the reference electrode at specific time 256 

points. To calculate the Mean feature, which is the first moment in statistics, the sample mean is 257 

calculated for each recorded EEG time series as: 258 �̅� = 1𝑁 ∑ 𝑥𝑡𝑁𝑡=1              (1) 259 

where �̅� is the mean of the 𝑁 time samples contained in the analysis window and 𝑥𝑡 refers to the 260 

amplitude of the recorded sample at time point 𝑡. 𝑁 can be as small as unity as in the case of time-261 

resolved EEG analysis (Grootswagers et al., 2017) or as large as it can cover the whole trial in whole-trial 262 

analysis. Accordingly, we set 𝑁 =1000 (i.e. 1000 ms) and 𝑁 = 50 (i.e. 50 ms) for the whole-trial and time-263 

resolved decoding analyses, respectively.  264 

 265 

Median 266 

Compared to the Mean feature, Median is less susceptible to outliers (e.g. spikes) in the time series, 267 

which might not come from neural activations but rather from artifacts caused by the recording 268 

hardware, preprocessing, eye-blinks, etc. Median is calculated as: 269 

𝑀𝑒𝑑𝑖𝑎𝑛(𝑋) = {𝑋 [𝑁2]                    𝑖𝑓 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛(𝑋[𝑁−12 ]+𝑋[𝑁+12 ])2     𝑖𝑓 𝑁 𝑖𝑠 𝑜𝑑𝑑}           (2) 270 
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where 𝑋 is the ordered values of samples in the time series 𝑥𝑡 for 𝑡 = 1, … , 𝑁. 271 

 272 

Variance 273 

Variance of an EEG signal is one simplest indicators showing how much the signal is deviated from 274 

stationarity i.e. deviated from its original baseline statistical properties (Wong et al., 2006). It is a 275 

measure of signal variabilities (within-trial here), has been shown to decline upon the stimulus onset 276 

potentially as a result of neural co-activation and has provided information about object categories in a 277 

recent EEG decoding study (Karimi-Rouzbahani et al., 2017a). Variance is calculated as: 278 𝜎2 = 1𝑁 ∑ (𝑥𝑡 − �̅�)2𝑁𝑡=1           (3) 279 

 280 

Skewness 281 

While Variance is silent about the direction of the deviation from the mean, Skewness, which is the third 282 

signal moment, measures the degree of asymmetry in the signal’s probability distribution. In symmetric 283 

distribution (i.e. when samples are symmetric around the mean) skewness is zero. Positive and negative 284 

skewness indicates right- and left-ward tailed distribution, respectively. As the visually evoked ERP 285 

responses usually tend to be asymmetrically deviated in either positive or negative direction, even after 286 

baseline correction (Mazaheri and Jensen, 2008), we assume that Skewness should provide information 287 

about the visual stimulus if each category modulates the deviation of the samples differentially. 288 

Skewness is calculated as: 289 𝛾1 = 1𝑁 ∑ (𝑥𝑡−�̅�𝜎 )3𝑁𝑡=1           (4) 290 

 291 

Kurtosis 292 

Kurtosis reflects the degree of “tailedness” or “flattedness” of the signal’s probability distribution.  293 

Accordingly, the more heaviness in the tails, the less value of the Kurtosis and vice versa. Based on 294 

previous studies, Kurtosis has provided distinct representations corresponding to different classes of 295 

visually evoked potentials (Alimardani et al., 2018; Pouryzdian and Erfaninan, 2010). We test to see if 296 

Kurtosis plays a more generalized role in information coding e.g. coding of semantic aspects of visual 297 

information as well. It is the fourth standardized moment of the signal defined as: 298 𝐾𝑢𝑟𝑡 = 1𝑁 ∑ (𝑥𝑡−�̅�𝜎 )4𝑁𝑡=1            (5) 299 

 300 

Complexity features 301 

There can potentially be many cases in which simple moment statistics such as Mean, Median, Variance, 302 

Skewness and Kurtosis, which rely on distributional assumptions, provide equal values for distinct time 303 

series (e.g. series A: 10, 20, 10, 20, 10, 20, 10, 20 vs. series B: 20, 20, 20, 10, 20, 10, 10, 10) for both of 304 

which the five above-mentioned features provide equal results. Therefore, we need more complex and 305 

possibly nonlinear measures which can detect subtle but meaningful temporal patterns from time 306 

series. The analysis of nonlinear signal features has recently been growing, following the findings 307 

showing that EEG reflects weak but significant nonlinear structures (Stam, 2005; Stepien, 2002). 308 
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Importantly, many studies have shown that the complexity of EEG time series can significantly alter 309 

during cognitive tasks such as visual (Bizas et al., 1999) and working memory tasks (Sammer et al., 1999; 310 

Stam, 2000). Therefore, it was necessary to evaluate the information content of nonlinear features for 311 

our decoding of object categories. As mentioned above, the grouping of these nonlinear features as 312 

“complexity” here is not strict and the features included in this class are those which capture complex 313 

and nonlinear patterns across time series. Although the accurate detection of complex and nonlinear 314 

patterns generally need more time samples compared to linear patterns (Procaccia, 1988), it has been 315 

shown that nonlinear structures can be detected from short EEG time series as well (i.e. through fractal 316 

dimensions; Preißl et al., 1997). Nonetheless, we extract these features from both time-resolved (50 317 

samples) and whole-trial data (1000 samples) to ensure we do not miss potential information 318 

represented in longer temporal scales. 319 

 320 

Lempel-Ziv complexity (LZ Cmplx) 321 

Lempel-Ziv complexity measures the complexity of time series (Lempel et al., 1976). Basically, the 322 

algorithm counts the number of unique sub-sequences within a larger binary sequence. Accordingly, a 323 

sequence of samples with a certain regularity does not lead to a large LZ complexity. However, the 324 

complexity generally grows with the length of the sequence and its irregularity. In other words, it 325 

measures the generation rate of new patterns along a digital sequence. In a comparative work, it was 326 

shown that, compared to many other frequency metrics of time series (e.g. noise power, stochastic 327 

variability, etc.), LZ complexity has the unique feature of providing a scalar estimate of the bandwidth of 328 

time series and the harmonic variability in quasi-periodic signals (Aboy et al., 2006). It is widely used in 329 

biomedical signal processing and has provided successful results in the decoding of visual stimuli from 330 

neural responses in primary visual cortices (Szczepański et al., 2003). We used the code by Quang Thai2 331 

implemented based on “exhaustive complexity” which is considered to provide the lower limit of the 332 

complexity as explained by Lempel et al. (1976). We used the signal median as a threshold to convert 333 

the signals into binary sequences for the calculation of LZ complexity. The LZ complexity provided a 334 

single value for each signal time series. 335 

 336 

Fractal dimension 337 

In signal processing, fractal is an indexing technique which provides statistical information about the 338 

complexity of time series. A higher fractal value indicates more complexity for a sequence as reflected in 339 

more nesting of repetitive sub-sequences at all scales. Fractal dimensions are widely used to measure 340 

two important attributes: self-similarity and the shape of irregularity. A growing set of studies  have 341 

been using fractal analyses for the extraction of information about semantic object categories (such as 342 

living and non-living categories of visual objects; Ahmadi-Pajouh et al., 2018; Torabi et al., 2017) as well 343 

as simple checkerboard patterns (Namazi et al., 2018) from visually evoked potentials. In this study, we 344 

implemented two of the common methods for the calculation of fractal dimensions of EEG time series, 345 

                                                           
2 https://www.mathworks.com/matlabcentral/fileexchange/38211-calc_lz_complexity 
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which have been previously used to extract information about object categories as explained below. We 346 

used the implementations by Jesús Monge Álvarez3 for fractal analysis. 347 

 348 

 Higuchi’s fractal dimension (Higuchi FD) 349 

In this method (Higuchi et al., 1988), a set of sub-sequences 𝑥𝑘𝑚 is generated in which 𝑘 and 𝑚 refer to 350 

the step size and initial value, respectively. Then, the length of this fractal dimension is calculated as: 351 

𝐿𝑘𝑚 = {[∑ |𝑥(𝑚+𝑖𝑘)−𝑥(𝑚+(𝑖−1).𝑘)|[𝑁−𝑚𝑘 ]𝑖=1 ] 𝑁−1[𝑁−𝑚𝑘 ].𝑘}𝑘         (6) 352 

where 
𝑁−1[𝑁−𝑚𝑘 ].𝑘 is the normalization factor. The length of the fractal curve at step size of 𝑘 is 353 

calculated by averaging 𝑘 sets of 𝐿𝑘𝑚. Finally, the resultant average will be proportional to 𝑘−𝐷 354 

where 𝐷 is the fractal dimension. We set the free parameter of 𝑘 equal to half the length of signal time 355 
series in the current study. 356 

 357 

 Katz’s fractal dimension (Katz FD) 358 

We also calculated fractal dimension using the Katz’s method (Katz, 1988) as it showed a significant 359 

amount of information about object categories in a previous study (Torabi et al., 2017). The fractal 360 

dimension (𝐷) is calculated as: 361 𝐷 = 𝑙𝑜𝑔10(𝐿𝑎)𝑙𝑜𝑔10(𝑑𝑎) = 𝑙𝑜𝑔10𝑟𝑙𝑜𝑔10(𝑑𝐿)+𝑙𝑜𝑔10𝑟         (7) 362 

where 𝐿 and 𝑎  refer to the sum and average of the consecutive signal samples, respectively. Also 𝑑 363 

refers to the maximum distance between first sample and 𝑖𝑡ℎ sample of the signal which has the 364 

maximum distance from first sample as: 365 𝐿 =  ∑ |𝑥𝑖 − 𝑥𝑖−1|𝑁𝑖=2           (8) 366 𝑑 = 𝑚𝑎𝑥(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(1, 𝑖))         (9) 367 𝑟 = 𝐿/𝑎           (10) 368 

 369 

Hurst exponent (Hurst Exp) 370 

Hurst exponent is widely used to measure the long-term memory in time-dependent random variables 371 

such as biological time series (Racine, 2011). In other words, it measures the degree of interdependence 372 

across samples in the time series and operates like an autocorrelation function over time. Hurst values 373 

between 0.5 and 1 suggest consecutive appearance of high signal values on large time scales while 374 

values between 0 and 0.5 suggest frequent switching between high and low signal values. Values around 375 

                                                           
3 https://ww2.mathworks.cn/matlabcentral/fileexchange/50290-higuchi-and-katz-fractal-dimension-measures 
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0.5 suggest no specific patterns among samples of a time series. It is defined as an asymptotic behavior 376 

of a rescaled range as a function of the time span of the time series defined as:  377 

𝐸 [max(𝑧1,𝑧2,…,𝑧𝑁)−min (𝑧1,𝑧2,…,𝑧𝑁)√ 1𝑁 ∑ (𝑥𝑡−�̅�)2𝑁𝑡=1 ] = 𝐶. 𝑁𝐻 𝑎𝑠 𝑁→∞      (11) 378 

          379 𝑧𝑡 = ∑ 𝑦𝑖𝑡𝑖=1  ; 𝑡 = 1, … , 𝑁         (12) 380 𝑦𝑡 = 𝑥𝑡 − �̅�           (13) 381 

where 𝐸 is the expected value, 𝐶 is a constant and 𝐻 is the Hurst exponent (Racine, 2011). We used the 382 

open-source implementation of the algorithm4, which has also been used previously for the decoding of 383 

object category information in EEG (Torabi et al., 2017). 384 

 385 

Entropy 386 

Entropy can measure the perturbation in time series (Waschke et al., 2021). A higher value for entropy 387 

suggests a higher irregularity in the given time series. Precise calculation of entropy usually requires 388 

considerable number of samples and is also sensitive to noise. Here we used two methods for the 389 

calculation of entropy, each of which has its advantages over the other. 390 

 391 

 Approximate entropy (Apprx Ent) 392 

Approximate entropy was initially developed to be used for medical data analysis (Pincus and Huang, 393 

1992), such as heart rate, and then was extended to other areas such as brain data analysis. It has the 394 

advantage of requiring a low computational power which makes it perfect for real-time applications on 395 

low sample sizes (<50). However, the quality of this entropy method is impaired on lower lengths of the 396 

data. This metric detects changes in episodic behavior which are not represented by peak occurrences 397 

or amplitudes (Pincus and Huang, 1992). We used an open-source code5 for calculating approximate 398 

entropy. We set the embedded dimension and the tolerance parameters to 2 and 20% of the standard 399 

deviation of the data respectively, to roughly follow a previous study (Shourie et al., 2014) which 400 

compared approximate entropy in visually evoked potentials and found differential effects across artist 401 

vs. non-artist participants when looking at paintings. 402 

 403 

 Sample entropy (Sample Ent) 404 

Sample entropy, which is a refinement of the approximate entropy, is frequently used to calculate 405 

regularity of biological signals (Richman et al., 2000). Basically, it is the negative natural logarithm of the 406 

conditional probability that two sequences (subset of samples), which are similar for 𝑚 points remain 407 

                                                           
4 https://www.mathworks.com/matlabcentral/fileexchange/9842-hurst-exponent  
 
5 https://www.mathworks.com/matlabcentral/fileexchange/32427-fast-approximate-entropy  
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similar at the next point. A lower sample entropy also reflects a higher self-similarity in the time series. It 408 

has two main advantages to the approximate entropy: it is less sensitive to the length of the data and is 409 

simpler to implement. However, it does not focus on self-similar patterns in the data. We used the 410 

Matlab “entropy” function for the extraction of this feature, which has already provided category 411 

information in a previous study (Torabi et al., 2017). See (Richman et al., 2000; Subha et al., 2010) for 412 

the details of the algorithm. 413 

 414 

Autocorrelation (Autocorr) 415 

Autocorrelation determines the degree of similarity between the samples of a given time series and a 416 

time-lagged version of the same series. It detect periodic patterns in signals, which is an integral part of 417 

EEG time series. Therefore, following recent successful attempts in decoding neural information using 418 

the autocorrelation function from EEG signals (Wairagkar et al., 2016), we evaluated the information 419 

content of the autocorrelation function in decoding visual object categories. As neural activations reflect 420 

many repetitive patterns across time, the autocorrelation function can quantify the information 421 

contents of those repetitive patterns. Autocorrelation is calculated as: 422 𝑅(𝜏) = 1(𝑁−𝜏)𝜎2 ∑ (𝑥𝑡 − �̅�)(𝑥𝑡+𝜏 − �̅�)𝑁−𝜏𝑡=1         (14) 423 

 424 

where 𝜏 indicates the number of lags in samples of the shifted signal. A positive value for 425 

autocorrelation indicates a strong relationship between the original time series and its shifted version, 426 

whereas a negative autocorrelation refers to an opposite pattern between them. Zero autocorrelation 427 

indicates no relationship between the original time series and its shifted version. In this study, we 428 

extracted autocorrelations for 30 consecutive lags ([𝜏=1, 2, . . ., 30]) used their average in classification. 429 

Please note that each lag refers to 1 ms as the data was sampled at 1000 Hz. 430 

 431 

Hjorth parameters 432 

Hjorth parameters are descriptors of statistical properties of signals introduced by Hjorth (1970). These 433 

parameters are widely used in EEG signal analysis for feature extraction across a wide set of applications 434 

including visual recognition (Joshi et al., 2018; Torabi et al., 2017). These features consist of Activity, 435 

Mobility and Complexity as defined below. As the Activity parameter is equivalent to the signal Variance, 436 

which we already explained, we do not repeat it. 437 

 438 

 Hjorth complexity (Hjorth Cmp) 439 

It determines the variation in time series’ frequency by quantifying the similarity between the signal and 440 

a pure sine wave leading to a value of 1 in case of perfect match. In other words, values around 1 441 

suggest lower complexity for a signal. It is calculated as: 442 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑑𝑥𝑡𝑑𝑡 )𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥𝑡)          (15) 443 
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 444 

 Hjorth mobility (Hjorth Mob) 445 

It determines the proportion of standard deviation of the power spectrum as is calculated below, where 446 𝑣𝑎𝑟 refers to the signal variance. 447 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = √𝑣𝑎𝑟(𝑑𝑥𝑡𝑑𝑡 )𝑣𝑎𝑟(𝑥𝑡)           (16) 448 

where 𝑣𝑎𝑟 refers to the variance. 449 

 450 

ERP components (N1, P1, P2a and P2b) 451 

An ERP is a measured brain response to a specific cognitive, sensory or motor event that provides an 452 

approach to studying the correlation between the event and neural processing. According to the latency 453 

and amplitude, ERP is split into specific sub-windows called components. Here, we extracted ERP 454 

components by calculating mean of signals in specific time windows to obtain the P1 (80 to 120 ms), N1 455 

(120 to 200 ms), P2a (150 to 220 ms) and P2b (200 to 275 ms) components, which were shown 456 

previously to provide significant amounts of information about visual object and face processing in 457 

univariate (Rossion et al., 2000; Rousselett et al., 2007) and multivariate analyses (Chan et al., 2011; 458 

Jadidi et al., 2016; Wang et al., 2012). As these components are calculated in limited and specific time 459 

windows, in the whole-trial analysis, they reflect “Mean” of activity in their specific time windows, 460 

rather than the whole post-stimulus window. They will be also absent from time-resolved analyses by 461 

definition. 462 

 463 

Frequency-domain features 464 

Neural variability is commonly analyzed in frequency domain by calculating spectral power across 465 

frequency bands. Specifically, as data transformation from time to frequency domain is almost lossless 466 

using Fourier transform, oscillatory power basically reflects frequency-specific variance (with the total 467 

power reflecting the overall variance of the time series (Waschke et al., 2021)). Motivated by previous 468 

studies showing signatures of object categories in the frequency domain (Behroozi et al., 2016; Rupp et 469 

al., 2017; Iranmanesh and Rodriguez-Villegas, 2017; Joshi et al., 2018; Jadidi et al., 2016) and the 470 

representation of temporal codes of visual information in the frequency domain (Eckhorn et al., 1988), 471 

we also extracted frequency-domain features to see if they could provide additional category-related 472 

information to time-domain features. It is of note that, while the whole-trial analysis allows us to 473 

compare our results with previous studies, the evoked EEG potentials are generally nonstationary (i.e. 474 

their statistical properties change along the trial), and potentially dominated by low-frequency 475 

components. Therefore, the use of time-resolved analysis, which looks at more stationary sub-windows 476 

of the signal (e.g. 50 samples here), will allow us to detect subtle high-frequency patterns of neural 477 

codes.  478 

 479 
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Signal power (Signal Pw) 480 

Power spectrum density (PSD) represents the intensity or the distribution of the signal power into its 481 

constituent frequency components. This feature was motivated by previous studies showing 482 

associations between aspects of visual perception and power in certain frequency bands (Rupp et al., 483 

2017; Behroozi et al., 2016; Majima et al., 2014). According to the Fourier analysis, signals can be broken 484 

into its constituent frequency components or a spectrum of frequencies in a specific frequency range. 485 

Here, we calculated signal power using the PSD as in (17). 486 �̃�𝑥𝑥(𝑤) = (𝑡)2𝑇 |∑ 𝑥𝑛𝑒−𝑖𝑤𝑛𝑡𝑁𝑛=1 |2
        (17) 487 

where 𝑥𝑛 = 𝑥𝑛𝑡 is signal sampled at a rate of 𝑇 = 1
𝑡 and 𝑤 is the frequency at which the signal power 488 

is calculated. As signal power is a relatively broad term, including the whole power spectrum of the 489 

signal, we also extracted a few more parameters from the signal frequency representation to see what 490 

specific features in the frequency domain (if any) can provide information about object categories. 491 

 492 

Mean frequency (Mean Freq) 493 

Motivated by the successful application of mean and median frequencies in the analysis of EEG signals 494 

and their relationship to signal components in the time domain (Intrilligator and Polich, 1995; 495 

Abootalebi et al., 2009), we extracted these two features from the signal power spectrum to obtain a 496 

more detailed insight into the neural dynamics of category representations. Mean frequency is the 497 

average of the frequency components available in a signal. Assume a signal consisting of two frequency 498 

components of 𝑓1 and 𝑓2. The Mean frequency of this signal is 𝑓𝑚𝑒𝑎𝑛 = 𝑓1+𝑓22 . Generally, the mean 499 

normalized (by the intensity) frequency is calculated using the following formula: 500 𝑓𝑚𝑒𝑎𝑛 = ∑ 𝑙𝑖𝑓𝑖𝑛𝑖=0∑ 𝑙𝑖𝑛𝑖=0            (18) 501 

where 𝑛 is the number of splits of the PSD, 𝑓𝑖 and 𝑙𝑖 are the frequency and the intensity of the PSD in its 502 𝑖𝑡ℎ slot, respectively. It was calculated using Matlab “meanfreq” function. 503 

 504 

Median frequency (Med Freq) 505 

Median frequency is the median normalized frequency of the power spectrum of a time-domain signal. 506 

It is calculated similarly to the signal median in the time domain, however, here the values are the 507 

power intensity in different frequency bins of the PSD. This feature was calculated using Matlab 508 

“medfreq” function.  509 

 510 

Power and Phase at median frequency (Pw MdFrq and Phs MdFrq) 511 

Interestingly, apart from the median frequency itself, which reflects the frequency aspect of the power 512 

spectrum, the power and phase of the signal at the median frequency have also been shown to be 513 

informative about aspects of human perception (Joshi et al., 2018; Jadidi et al., 2016). Therefore, we 514 

also calculated the power and phase of the frequency-domain signals at the median frequency as 515 

features. 516 
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 517 

Average frequency (Avg Freq) 518 

Evoked potentials show a few number of positive and negative peaks after the stimulus onset, and they 519 

might show deviation in the positive or negative directions depending on the information content 520 

(Mazaheri and Jensen, 2008). Therefore, we also evaluated the Average (zero-crossing) frequency of the 521 

ERPs by counting the number of times the signal swapped signs during the trial. Note that each trial is 522 

baselined according to the average amplitude of the same trial in the last 200 ms immediately before 523 

the stimulus onset. We calculated the average frequency on the post-stimulus time window. 524 

 525 

Spectral edge frequency (SEF 95%) 526 

SEF is a common feature used in monitoring the depth of anesthesia and stages of sleep using EEG 527 

(Iranmanesh and Rodriguez-Villegas, 2017). It measures the frequency which covers X percent of the 528 

PSD. X is usually set between 75% to 95%. Here we set X to 95%. Therefore, this reflects the frequency 529 

observed in a signal which covers 95% of a signal power spectrum.  530 

 531 

Multi-valued features 532 

The main hypothesis of the present study is that, we can potentially obtain more information about 533 

object categories as well as behavior if we take into account the temporal variability of neural activity 534 

within the analysis window (i.e. trial) rather than averaging the samples as in conventional decoding 535 

analyses. While the above variability-sensitive features return a single value from each individual time 536 

series (analysis window), a more flexible feature would allow as many informative patterns to be 537 

detected from an individual time series. Therefore, we extracted other features, which provide more 538 

than one value per analysis window, so that we can select the most informative values from across 539 

electrodes and time points simultaneously (see Dimensionality reduction below). We also included the 540 

Original Magnitude Data as our reference feature, so that we know how much (if at all) our feature 541 

extraction and selection procedures improved decoding. 542 

 543 

Inter-electrode correlation (Cross Corr) 544 

Following up on recent studies, which have successfully used inter-area correlation in decoding object 545 

category information from EEG activations (Majima et al., 2014; Karimi-Rouzbahani et al., 2017a; 546 

Tafreshi et al., 2019), we extracted inter-electrode correlation to measure the similarity between pairs 547 

of signals, here, from different pairs of electrodes. This feature of correlated variability, quantifies co-548 

variability of neural activations across pairs of electrodes. Although closer electrodes tend to provide 549 

more similar (and therefore correlated) activation, compared to further electrodes (Hacker et al., 2017), 550 

the inter-electrode correlation can detect correlations which are functionally relevant and are not 551 

explained by the distance (Karimi-Rouzbahani et al., 2017a). This feature detects similarities in temporal 552 

patterns of fluctuations across time between pairs of signals, which . It is calculated as: 553 𝑅𝑥𝑦 = 1𝑁𝜎𝑥𝜎𝑦 ∑ (𝑥𝑡 − �̅�)(𝑦𝑡 − �̅�)𝑁𝑡=1         (19) 554 
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where 𝑥 and 𝑦 refer to the signals obtained from electrodes 𝑥 and 𝑦, respectively. We calculated the 555 

cross-correlation between each electrode and all the other electrodes to form a cross-correlation 556 

matrix. Accordingly, we initially obtained all the unique possible pairwise inter-electrode correlations 557 

(465, 465 and 8128 unique values for Datasets 1, 2 and 3, respectively), which were then reduced in 558 

dimension using PCA to the equal number of dimensions obtained for single-valued features. 559 

 560 

Wavelet transform (Wavelet)  561 

Recent studies have shown remarkable success in decoding of object categories using the Wavelet 562 

transformation of the EEG time series (Taghizadeh-Sarabi et al., 2015; Torabi et al., 2017). Considering 563 

the time- and frequency-dependent nature of ERPs, Wavelet transform seems to be a very reasonable 564 

choice as it provides a time-frequency representation of signal components. It determines the primary 565 

frequency components and their temporal position in time series. The transformation passes the signal 566 

time series through digital filters (Guo et al., 2009; equation (20)), using the convolution operator, each 567 

of which adjusted to extract a specific frequency (scale) at a specific time as in (20): 568 𝑦𝑛 = (𝑥 ∗ 𝑔) = ∑ 𝑥𝑘𝑔𝑛−𝑘+∞𝑘=−∞          (20) 569 

 570 

where 𝑔 is the digital filter and ∗ is the convolution operator. This filtering procedure is repeated for 571 

several rounds (levels) filtering low- (approximations) and high-frequency (details) components of the 572 

signal to provide more fine-grained information about the constituent components of the signal. This 573 

can lead to coefficients which can potentially discriminate signals evoked by different conditions. 574 

Following up on a previous study (Taghizadeh-Sarabi et al., 2015), and to make the number of Wavelet 575 

features comparable in number to signal samples, we used detail coefficients at five levels 𝐷1, … , 𝐷5 as 576 

well as the approximate coefficients at level 5, 𝐴5. This led to 1015 and 57 features in the whole-trial 577 

and in the 50 ms sliding time windows, respectively. We used the “Symlet2” basis function for our 578 

Wavelet transformations as implemented in Matlab. 579 

 580 

Hilbert transform (Hilb Amp and Hilb Phs) 581 

Hilbert transform provides amplitude and phase information about the signal and has recently shown 582 

successful results in decoding visual letter information from ERPs (Wang et al., 2018). The phase 583 

component of the Hilbert transform can qualitatively provide the spatial information obtained from the 584 

Wavelet transform leading to their similarity evaluating neuronal synchrony (Le Van Quyen et al., 2001). 585 

However, it is still unclear which method can detect category-relevant information from the 586 

nonstationary ERP components more effectively. Hilbert transform is described as a mapping function 587 

that receives a real signal 𝑥𝑡 (as defined above), and upon convolution with the function 
1𝜋𝑡, produces 588 

another function of a real variable 𝐻(𝑥)(𝑡) as: 589 𝐻(𝑥)(𝑡) = 1𝑛 ∫ 𝑥𝜏𝑡−𝜏+∞−∞ 𝑑𝜏         (21) 590 

 591 
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where 𝐻(𝑥)(𝑡) is a frequency-domain representation of the signal 𝑥𝑡, which has simply shifted all the 592 

components of the input signal by 
𝜋2. Accordingly, it produces one amplitude and one phase component 593 

per samples in the time series. In the current study, Hilbert transform was applied on 1000 and 50 594 

samples in the whole-trial and time-resolved analysis, respectively. We used the amplitude and phase 595 

components separately to discriminate object categories in the analyses.  596 

 597 

Amplitude- and Phase-locking (Amp Lock and Phs Lock) 598 

Although inter-electrode correlated variability (Cross Corr), which is interpreted as inter-area 599 

connectivity, have successfully provided object category information (Majima et al., 2014; Karimi-600 

Rouzbahani et al., 2017a), previous studies suggested that neural communication is realized through 601 

amplitude- and phase-locking/coupling (Bruns et al., 2000; Siegel et al., 2012; Engel et al., 2013). More 602 

recently, researchers have quantitatively shown that amplitude- and phase-locking detect distinct 603 

signatures of neural communication across time and space from neural activity (Siems and Siegel, 2020; 604 

Mostame and Sadaghiani, 2020). Therefore, in line with recent studies, which successfully decoded 605 

object categories using inter-area correlated variability as neural codes (Tafreshi et al., 2019), we 606 

extracted amplitude- and phase-locking as two major connectivity features which might contain object 607 

category information as well. Briefly, amplitude-locking refers to the coupling between the envelopes of 608 

two signals (electrodes) and reflects the correlation of activation amplitude. To estimate the amplitude 609 

locking between two signals, we extracted the envelopes of the two signals using Hilbert transform 610 

(Gabor, 1946; explained below), then estimated the Pearson correlation between the two resulting 611 

envelopes as amplitude locking. 612 

 613 

Phase locking, on the other hand, refers to the coupling between the phases of two signals and 614 

measures the synchronization of rhythmic oscillation cycles. To measure phase locking we used one of 615 

the simplest implementations, the phase locking value (PLV), which includes minimal mathematical 616 

assumptions (Bastos and Schoffellen, 2016) calculated as below: 617 𝑃𝐿𝑉 = 1𝑁 |∑ 𝑒𝛥𝛷𝑖𝑁𝑖=1 |                       (22) 618 

where 𝑁 is the number of trials and 𝛥𝛷 is the phase difference between the signals to electrode pairs. 619 

As we used multivariate decoding without any trial-averaging, 𝑁 was equal to 1 here. The calculation of 620 

amplitude and phase locking was performed on all electrode pairs leading to 465 and 8128 unique 621 

numbers for the 31- (Datasets 1 and 2) and 128-electrode (Dataset 3) datasets before dimension 622 

reduction was performed. 623 

 624 

Original magnitude data (Orig Mag) 625 

We also used the post-stimulus original magnitude data (i.e. 1000 or 50 samples for the whole-trial and 626 

sliding time windows, respectively) to decode object category information without any feature 627 

extraction. This provided a reference to compare the information content of the Mean and variability 628 

features to see if the former provided any extra information.  629 

 630 
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Multivariate decoding 631 

We used multivariate decoding to extract information about object categories from our EEG datasets. 632 

Basically, multivariate decoding, which has been dominating neuroimaging studies recently (Haynes et 633 

al., 2015; Grootswagers et al., 2017; Hebart and Baker, 2018), measures the cross-condition 634 

dissimilarity/contrast to quantify information content in neural representations. We used linear 635 

discriminant analysis (LDA) classifiers in multivariate analysis to measure the information content across 636 

all possible pairs of object categories within each dataset. Specifically, we trained and tested the 637 

classifiers on e.g. animal vs. car, animal vs. face, animal vs. plane, car vs. plane, face vs. car and plane vs. 638 

face categories, then averaged the 6 decoding results and reported them for each participant. The LDA 639 

classifier has been shown to be robust when decoding object categories from M/EEG (Grootswagers et 640 

al., 2017; Grootswagers et al., 2019), has provided higher decoding accuracies than Euclidean distance 641 

and Correlation based decoding methods (Carlson et al., 2013) and was around 30 times faster to train 642 

in our initial analyses compared to the more complex classifier of Support-Vector Machine (SVM). We 643 

ran our initial analysis and found similar results for the LDA and SVM, and used LDA to save the time. We 644 

used a 10-fold cross-validation procedure in which we trained the classifier on 90% of the data and 645 

tested it on the left-out 10% of the data, repeating the procedure 10 times until all trials from the pair of 646 

categories participate once in the training and once in the testing of the classifiers. We repeated the 647 

decoding across all possible pairs of categories within each dataset, which were 6, 6 and 15 pairs for 648 

Datasets 1, 2 and 3, which consisted of 4, 4 and 6 object categories, respectively. Finally, we averaged 649 

the results across all combinations and reported them as the average decoding for each participant. 650 

 651 

In the whole-trial analyses, we extracted the above-mentioned features from the 1000 data samples 652 

after the stimulus onset (i.e. from 1 to 1000 ms). In the time-resolved analyses, on the other hand, we 653 

extracted the features from 50 ms sliding time windows in steps of 5 ms across the time course of the 654 

trial (-200 to 1000 ms relative to the stimulus onset time). Therefore, in time-resolved analyses, the 655 

decoding rates at each time point reflect the results for the 50 ms window around the time point, from -656 

25 to +24 ms relative to the time point. Time-resolved analyses allowed us to evaluate the evolution of 657 

object category information across time as captured by different features.  658 

 659 

Dimensionality reduction 660 

The multi-valued features (e.g. inter-electrode correlation, wavelet, Hilbert amplitude and phase, 661 

Amplitude and Phase locking and Original magnitude data) resulted in more than a single feature value 662 

per trial per sliding time window. This could provide higher decoding values compared to the decoding 663 

values obtained from single-valued features merely because of including a higher number of features. 664 

Moreover, when the features outnumber the observations (i.e. trials here), the classification algorithm 665 

can over-fit to the data (Duda et al., 2012). Therefore, to obtain comparable decoding accuracies across 666 

single-valued and multi-valued features and to avoid potential over-fitting of classifier to the data we 667 

used principle component analysis (PCA) to reduce the dimension of the data in multi-valued features. 668 

Accordingly, we reduced the number of the values in the multi-valued features to one per time window 669 

per trial, which equaled the number of values for the single-valued features. To avoid potential leakage 670 

of information from testing to training (Pulini et al., 2019), we applied the PCA algorithm on the training 671 

data (folds) only and used the training PCA parameters (i.e. eigen vectors and means) for both training 672 
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and testing sets for dimension reduction in each cross-validation run separately. We only applied the 673 

dimension-reduction procedure on the multi-valued features. Note that, we did not reduce the 674 

dimension of the neural space (columns in the dimension-reduced data matrix) to below the number of 675 

electrodes “𝑒” (opposite to Hatamimajoumerd et al., 2019) as we were interested in qualitatively 676 

comparing our results with the vast literature currently using multivariate decoding with all sensors 677 

(Grootswagers et al., 2017; Karimi-Rouzbahani et al., 2018; Hebart and Baker 2017). Also, we did not aim 678 

at finding more than one feature per trial, per time window, as we wanted to compare the results of 679 

multi-valued features with those of single-valued features, which only had a single value per trial, per 680 

time window. 681 

 682 

One critical point here is that, we applied the PCA on the concatenated data from all electrodes and 683 

values obtained from each individual feature (e.g. wavelet coefficients in Wavelet), within each analysis 684 

window (e.g. 50 ms in time-resolved decoding). Therefore, for the multi-valued features, the “e” 685 

selected dimensions were the most informative spatial and temporal patterns detected across both 686 

electrodes and time samples. Therefore, it could be the case that, within a given time window, two of 687 

the selected dimensions were from the same electrode (i.e. because two elements from the same 688 

electrode were more informative than the other electrode), which would lead to some electrodes not 689 

having any representatives among the selected dimensions. This is in contrast to the single-valued 690 

features (e.g. Mean) from which we only obtained one value per analysis window per electrode, limiting 691 

the features to only the spatial patterns within the analysis window, rather than both spatial and 692 

temporal patterns. 693 

 694 

Statistical analyses 695 

Bayes factor analysis 696 

As in our previous studies (Grootswagers et al., 2019; Robinson et al., 2019), to determine the evidence 697 

for the null and the alternative hypotheses, we used Bayes analyses as implemented by Bart Krekelberg  698 

based on Rouder et al. (2012). We used standard rules of thumb for interpreting levels of evidence (Lee 699 

and Wagenmakers, 2014; Dienes, 2014): Bayes factors of >10 and <1/10 were interpreted as strong 700 

evidence for the alternative and null hypotheses, respectively, and >3 and <1/3 were interpreted as 701 

moderate evidence for the alternative and null hypotheses, respectively. We considered the Bayes 702 

factors which fell between 3 and 1/3 as suggesting insufficient evidence either way. 703 

 704 

In the whole-trial decoding analyses, we asked whether there was a difference between the decoding 705 

values obtained from all possible pairs of features and also across frequency bands within every feature. 706 

Accordingly, we performed the Bayes factor analysis and calculated the Bayes factors as the probability 707 

of the data under alternative (i.e. difference) relative to the null (i.e. no difference) hypothesis between 708 

all possible pairs of features and also across frequency bands within every feature and dataset 709 

separately. The same procedure was used to evaluate evidence for difference (i.e. alternative 710 

hypothesis) or no difference (i.e. null hypothesis) in the maximum and average decoding accuracies, the 711 

time of maximum and above-chance decoding accuracies across features for each dataset separately. 712 
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 713 

We also evaluated evidence for the alternative of above-chance decoding accuracy vs. the null 714 

hypothesis of no difference from chance. For that purpose, we performed Bayes factor analysis between 715 

the distribution of actual accuracies obtained and a set of 1000 accuracies obtained from random 716 

permutation of class labels across the same pair of conditions (null distribution) on every time point (or 717 

only once for the whole-trial analysis), for each feature and dataset separately. No correction for 718 

multiple comparisons was performed when using Bayes factors as they are much more conservative 719 

than frequentist analysis in providing false claims with confidence (Gelman and Tuerlinckx, 2000; 720 

Gelman et al., 2012). The reason for the less susceptibility of Bayesian analysis compared to classical 721 

statistics, is the use of priors, which if chosen properly (here using the data-driven approach developed 722 

by Rouder et al. (2012)), significantly reduce the chance of making type I (false positive) errors. 723 

 724 

The priors for all Bayes factor analyses were determined based on Jeffrey-Zellner-Siow priors (Jeffreys, 725 

1961; Zellner and Siow, 1980) which are from the Cauchy distribution based on the effect size that is 726 

initially calculated in the algorithm (Rouder et al., 2012). The priors are data-driven and have been 727 

shown to be invariant with respect to linear transformations of measurement units (Rouder et al., 2012), 728 

which reduces the chance of being biased towards the null or alternative hypotheses. 729 

 730 

Random permutation testing  731 

To evaluate the significance of correlations between decoding accuracies and behavioral reaction times, 732 

we calculated the percentage of the actual correlations that were higher (when positive) or lower (when 733 

negative) than a set of 1000 randomly generated correlations. These random correlations were 734 

generated by randomizing the order of participants’ data in the behavioral reaction time vector (null 735 

distribution) for every time point and feature separately. The true correlation was considered significant 736 

if it surpassed 95% of the randomly generated correlations in the null distribution in either positive or 737 

negative directions (p < 0.05) and the p-values were corrected for multiple comparisons across time 738 

using Matlab mafdr function which works based on fix rejection region (Storey, 2002). 739 

 740 

Results 741 

To check the information content of different features of the EEG activity about object categories, we 742 

performed multivariate pattern decoding on both the whole-trial as well as time-resolved data. The 743 

whole-trial analysis was aimed at providing results comparable to previous studies most of which 744 

performed whole-trial analysis. The time-resolved analysis, however, was the main focus of the present 745 

study and allowed us to check the information and temporal dynamics of variability-based neural codes 746 

as captured by different features. In figures 2 and 3, we only present a summary of the results with 747 

emphasis on the comparison between the time-specific ERP components, the most informative features 748 

detecting neural variability (i.e. Wavelet and Orig Mag), and the conventional Mean feature, which 749 

ignores potential information in neural variabilities. The complete comparison between the 32 features 750 

are provided in Supplementary materials, but briefly explained in the manuscript. 751 
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 752 

Can the features sensitive to temporal variabilities, provide additional category 753 

information to the conventional “mean” feature? 754 

 755 

To answer the first question, we compared decoding accuracies in the whole-trial time span (0 to 1000 756 

ms relative to stimulus onset) across all features and for each dataset separately (see the complete 757 

results in Supplementary Figures 1 and 2 and summary results in Figure 2, black bars). There was not 758 

enough (BF>3) evidence for above-chance decoding for majority of features (e.g. moment features, 759 

complexity and frequency-domain features, Supplementary Figure 1; black bars and their Bayesian 760 

analyses). However, consistently across the three datasets, there was moderate (3<BF<10) or strong 761 

(BF>10) evidence for above-chance decoding for all ERP components (N1, P1, P2a and P2b), Wavelet 762 

coefficients (Wavelet) and Original magnitude data (Orig Mag), which were either targeted at specific 763 

time windows within the trial (i.e. ERPs) or could detect temporal variabilities within the trial (i.e. 764 

Wavelet and Orig Mag; Figure 2A; black bars).  765 

 766 

Importantly, in all three datasets, there was moderate (3<BF<10) or strong (BF>10) evidence that ERP 767 

components of N1 and P2a provided higher decoding values than the Mean (Figure 2B; black boxes in 768 

Bayes matrices). There was also strong evidence (BF>10), that the Wavelet and Orig Mag features 769 

outperformed the Mean feature in datasets 2 and 3 (Figure 2B; blue boxes in Bayes matrices). This 770 

shows that simply using the earlier ERP components of N1 and P2a can provide more information than 771 

using the Mean activity across the whole trial. This was predictable, as the Mean across the whole trial 772 

simply ignores within-trial temporally specific information. Interestingly, even ERPs were outperformed 773 

by Wavelet and Orig Mag features in Dataset 3 (but not the opposite across the 3 datasets; Figure 2B; 774 

violet boxes in Bayes matrices). This suggests that, even further targeting the most informative elements 775 

(i.e. Wavelet), and/or data samples (i.e. Orig Mag) within the trial can lead to improved decoding. Note 776 

that, the Wavelet and Orig Mag features provided the most informative temporal patterns/samples 777 

upon the dimension reduction procedure applied on their extracted features (see Methods).  778 

 779 

Following previous observations about the advantage of Delta (Watrous et al., 2015; Behroozi et al., 780 

2016) and Theta (Wang et al., 2018) frequency bands, we compared the information content in the 781 

Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), Beta (12-16 Hz), Gamma (16-200Hz) and Broad 782 

frequency bands. We predicted the domination of Theta frequency band, following suggestions about 783 

the domination of Theta frequency band in feed-forward visual processing (Bastos et al., 2015). For our 784 

top-performing ERP, Wavelet and Orig Mag features, we saw consistent domination of Theta followed 785 

by the Alpha frequency band (Figure 2A). Interestingly, for the ERP components, the decoding in Theta 786 

band even outperformed the Broad band (BF>3 for P2b), which contained the whole frequency 787 

spectrum. Note that, as opposed to previous suggestions (Karakaş et al., 2000), the domination of the 788 

Theta frequency band in ERP components could not be trivially predicted by their timing relative to the 789 

stimulus onset. If this was the case here, the P2b component (200 to 275 ms) should have elicited its 790 

maximum information in the Delta (0.5 to 4Hz) and Theta (4-8 Hz), rather than the Theta and Alpha  (8-791 

12 Hz) frequency bands. For the Mean feature, on the other hand, the Delta band provided the highest 792 
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information level, comparable to the level of the Broad-band activity. This confirms that Broad-band 793 

whole-trial Mean activity, reflects the general trend of the signal (low-frequency component). 794 

 795 

Together, we observed that the features which are targeted at informative windows of the trial (ERP 796 

components), and those sensitive to informative temporal variabilities (Wavelet and Orig Mag) could 797 

provide additional category information to the conventionally used Mean of activity. We observed that 798 

Theta frequency band, which has been suggested to support feed-forward information flow, is also 799 

dominant in our datasets, which are potentially dominated by feed-forward processing of visual 800 

information during object perception. Next, we will compare the temporal dynamics of information 801 

encoding across our features.  802 

 803 

 804 

 805 

 806 

 807 
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Figure 2. Whole-trial decoding of object categories in the three datasets across the Broad-band and different 
frequency bands (A) with their Bayesian analyses (B). The results are only presented for features of Mean, ERP 
components, Wavelet and Orig Mag. For full results including other features see Supplementary Figures 1 and 
2. (A) The black horizontal dashed lines on the top panels refer to chance-level decoding. Thick bars show the 
average decoding across participants (error bars Standard Error across participants). Bayes Factors are shown 

in the bottom panel of each graph: Filled circles show moderate/strong evidence for either hypothesis and 
empty circles indicate insufficient evidence. They show the results of Bayes factor analysis when evaluating the 
difference from chance-level decoding. (B) Top panel Bayes matrices compare the decoding results within each 

frequency band, across features separated by datasets. Bottom panel Bayes matrices compare decoding 
results across different frequency bands and dataset separately. Colors indicate different levels of evidence for 

existing difference (moderate 3<BF<10, Orange; strong BF>10, Yellow), no difference (moderate 0.1<BF<0.3, 
light blue; strong BF<0.1, dark blue) or insufficient evidence (1<BF<3 green; 0.3<BF<1 Cyan) for either 

hypotheses. For example, for Dataset 1, there is strong evidence for higher decoding values for the N1 feature 
in the Theta and Alpha band than in Gamma band as indicated by the red box. 
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 809 

Do the features sensitive to temporal variabilities evolve over similar time windows to the 810 

“mean” feature? 811 

 812 

One main insight that EEG decoding can provide is to reveal the temporal dynamics of cognitive 813 

processes. However, the Mean activity, which has dominated the literature (Grootswagers et al., 2017), 814 

might hide or distort the true temporal dynamics as it ignores potentially informative temporal 815 

variabilities (codes) within the analysis window. Therefore, we systematically compared the information 816 

content of a large set of features which are sensitive to temporal variabilities using time-resolved 817 

decoding (50 ms sliding time windows in steps of 5 ms; see the rationale for choosing the 50 ms 818 

windows in Supplementary Figure 3A). By definition, we do not have the time-resolved decoding results 819 

for the ERP components here. 820 

 821 

Before presenting the time-resolved decoding results, to validate the results and suggestions made 822 

about our whole-trial decoding (Figure 2), we performed two complementary analyses. First, we 823 

checked to see if the advantage of the Theta- to Broad-band decoding in the whole-trial analysis (Figure 824 

2), could generalize to time-resolved decoding: we observed the same effect in the (variability-sensitive) 825 

Wavelet feature (in many time points especially for Dataset 2; BF>3), but not in the (variability-826 

insensitive) Mean feature (Supplementary Figure 3B). This could possibly be explained by the smoothing 827 

(low-pass filtering) effect of the Mean feature making both Theta- and Broad-band data look like low-828 

frequency data. Next, we utilized the spatiotemporal specificity of classifier weights and time-resolved 829 

decoding to see if Theta-band information would show a feed-forward trend on the scalp to support our 830 

earlier suggestion. Visual inspection suggests information spread from posterior to anterior parts of the 831 

scalp (Supplementary Figure 4), supporting the role of Theta-band activity in feed-forward processing. 832 

Despite these observations, we used Broad-band signals in the following analyses to be able to compare 833 

our results with previous studies, which generally used the Broad-band activity.  834 

 835 

Time-resolved decoding analyses showed that for all features, including the complexity features, which 836 

were suggested to need large sample sizes (Procaccia, 2000), there was moderate (3<BF<10) or strong 837 

(BF>10) evidence for above-chance decoding at some time points consistently across the three datasets 838 

(Supplementary Figures 5A). However, all features showed distinct temporal dynamics to each other and 839 

across datasets. The between-dataset dissimilarities, could be driven by many dataset-specific factors, 840 

including duration of image presentation (Carlson et al., 2013). However, there were also similarities 841 

between the temporal dynamics of different features. For example, the time points of first strong 842 

(BF>10) evidence for above-chance decoding ranged from 75 ms to 195 ms (Supplementary Figure 5A 843 

and E) and the decoding values reached their maxima in the range between 150 ms to 220 ms 844 

(Supplementary Figures 5A and D) across features. This is consistent with many decoding studies 845 

showing the temporal dynamics of visual processing in the brain (Isik et al., 2013; Cichy et al., 2014; 846 

Karimi-Rouzbahani et al., 2021b). There was no feature which consistently preceded or followed other 847 

features, to suggest the existence of very early or late neural codes (Supplementary Figures 5D and E). 848 

There was more information decoded from features of Mean, Median, Variance, and several multi-849 
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valued features, especially Wavelet and Orig Mag, compared to other features across the three datasets 850 

(Supplementary Figures 5A). The mentioned features dominated other features in terms of both average 851 

and maximum decoding accuracies (Supplementary Figures 5B and C). A complementary analysis 852 

suggested that there is a potential overlap between the neural codes that different features detected 853 

(Supplementary Figure 6). 854 

 855 

We then directly compared of the Mean and the most informative variability-sensitive features (Wavelet 856 

and Orig Mag). Consistently across the datasets, there was moderate (3<BF<10) or strong (BF>10) 857 

evidence for higher decoding obtained by Wavelet and Orig Mag compared to the Mean feature on time 858 

points before 200 ms post-stimulus onset (Figure 3A). After 200 ms, this advantage sustained (Dataset 859 

3), disappeared (Dataset 1) or turned into disadvantage (Dataset 2). Except for few very short 860 

continuous intervals, during which Wavelet provided higher decoding values compared to Orig Mag, the 861 

two features provided almost the same results (Figure 3; yellow dots on bottom panels). Comparing the 862 

parameters of the decoding curves, we found moderate (3<BF<10) or strong (BF>10) evidence for higher 863 

maximum decoding for the Wavelet and Orig Mag features than the Mean feature in Datasets 1 and 3 864 

(Figure 3B). There was also moderate (3<BF<10) evidence for higher maximum decoding accuracy for 865 

Wavelet vs. Orig Mag (Figure 3B). There was also strong (BF>10) evidence for higher average decoding 866 

accuracy for the Wavelet and Orig Mag features over the Mean feature in Dataset 3 (Figure 3C). There 867 

was also moderate (3<BF<10) evidence for higher maximum decoding for Wavelet vs. Orig Mag in 868 

Datasets 2 and 3. These results show that the Wavelet feature provides the highest maximum (in 869 

Dataset 3) and average (in Datasets 2 and 3) decoding accuracies among the three features followed by 870 

the Orig Mag feature. The measures of maximum and average decoding accuracies were calculated in 871 

the post-stimulus onset (0-1000 ms) for each participant separately. We also compared the timing 872 

parameters of the decoding curves (i.e. the time to the first above-chance and maximum decoding 873 

relative to stimulus onset) obtained for the three features (Figure 3D and E), but found insufficient 874 

evidence (0.3<BF<3) for their difference.  875 

 876 

Together, these results suggest that the inclusion of temporal variabilities of activity can provide 877 

additional information about object categories, to what is conventionally obtained from the Mean of 878 

activity. Note that, the advantage of Wavelet and Orig Mag features cannot be explained by the 879 

size/dimensionality of the feature space, as the number of dimensions were equalized across features. 880 

Importantly, however, the decoding of information from temporal variabilities did not lead to different 881 

temporal dynamics of information decoding. This can be explained by either the common cognitive 882 

processes producing the decoded neural codes (i.e. object categorization), the overlap between the 883 

information (neural codes) detected by our features or a combination of both.  884 

 885 
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Figure 3. Time-resolved decoding of object categories from the three datasets for 3 of the target features (A) 
and their extracted timing and amplitude parameters (B-E). (A) Top section in each panel shows the decoding 

accuracies across time and the bottom section shows the Bayes factor evidence for the difference of the 
decoding accuracy compared to chance-level decoding. The solid lines show the average decoding across 

participants and the shaded area the Standard Error across participants. The horizontal dashed lines on the 
top panel refer to chance-level decoding. Filled circles in the Bayes Factors show moderate/strong evidence 

for either difference or no difference from chance-level or across features and empty circles indicate 
insufficient evidence for either hypotheses. (B) Timing and amplitude parameters extracted from the time-
resolved accuracies in (A). (B-E) Left: the maximum and average decoding accuracies, the time of maximum 
and the first above-chance decoding. The horizontal dashed lines refer to chance-level decoding. Thick bars 
show the average across participants (error bars Standard Error across participants). Bottom section on (B) 

and (C) show the Bayes factor evidence for the difference of the decoding accuracy compared to chance-level 
decoding. (B-E) Right: matrices compare the parameters obtained from different features. Different levels of 
evidence for existing difference (moderate 3<BF<10, Orange; strong BF>10, Yellow), no difference (moderate 
0.1<BF<0.3, light blue; strong BF<0.1, dark blue) or insufficient evidence (1<BF<3 green; 0.3<BF<1 Cyan) for 
either hypotheses. Filled circles in the Bayes Factors show moderate/strong evidence for either hypothesis 

and empty circles indicate insufficient evidence. Single and double stars indicate moderate and strong 
evidence for difference between the parameters obtained from decoding curves of the three features. 
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  887 

Do the features sensitive to temporal variabilities explain the behavioral recognition 888 

performance more accurately than the “mean” feature? 889 

 890 

Although we observed an advantage for the features which were sensitive to temporal variability (e.g. 891 

Wavelet) over other, more summarized, features (e.g. Mean), this can all be a by-product of more 892 

flexibility (e.g. inclusion of both temporal and spatial codes) in the former over the latter, and not read 893 

out by down-stream neurons that support behavior. To validate the behavioral relevance of the 894 

detected neural codes, we calculated the correlation between the decoding accuracies of features and 895 

the reaction times of participants (Vidaurre et al., 2019; Ritchie et al., 2015). Participants’ reaction times 896 

in object recognition have been previously shown to be predictable from decoding accuracy (Ritchie et 897 

al., 2015). We expected to observe negative correlations between the features’ decoding accuracies and 898 

participants’ reaction times in the post-stimulus span (Ritchie et al., 2015). This suggests that greater 899 

separability between neural representations of categories might lead to with categorizing them faster in 900 

behavior; supporting that the decoded neural codes might be used by neurons which drive behavior. We 901 

only used Dataset 2 in this analysis, as it was the only dataset with an active object detection task; 902 

therefore relevant reaction times were available. The (Spearman’s rank-order) correlations were 903 

calculated across the time course of the trials between the 10-dimensional vector of neural decoding 904 

accuracies obtained on every time point and the 10-dimensional vector of behavioral reaction times, 905 

both obtained from the group of 10 participants (Cichy et al., 2014). This resulted in a single correlation 906 

value for each time point for the whole group of participants. 907 

 908 

All features, except Katz FD, showed negative trends after the stimulus onset (Figure 4A). The 909 

correlations showed more sustained negative values for the multi-valued vs. single-valued features 910 

(p<0.05). There was also larger negative peaks (generally < -0.5) for multi-valued features especially 911 

Wavelet, compared to other features (generally > -0.5). Specifically, while higher-order moment features 912 

(i.e. Variance, Skewness and Kurtosis) as well as many complexity features showed earlier negative 913 

peaks at around 150 ms, Mean, Median, frequency-domain features and multi-valued features showed 914 

later negative peaks after 300 ms. Therefore, the multi-valued features, especially Wavelet, which were 915 

sensitive to temporal variabilities of the signals, showed the most sustained and significant correlations 916 

to behavior. 917 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


 918 

  

Figure 4. Correlation between the decoding accuracies and behavioral reaction times for Dataset 2 (other 
datasets did not have an active object recognition/detection task). (A) Top section in each panel shows the 

(Spearman’s) correlation coefficient obtained from correlating the decoding values and the reaction times for 
each feature separately. Correlation curves were obtained from the data of all participants. Bottom section 

shows positively or negatively significant (P<0.05; filled circles) or non-significant (p>0.05; empty circles) 
correlations as evaluated by random permutation of the variables in correlation. (B) Correlation between each 

of the amplitude and timing parameters of time-resolved decoding (i.e. maximum and average decoding 
accuracy and time of first and maximum decoding) with the average time-resolved correlations calculated from 

(A) for the set of N=28 features. The slant line shows the best linear fit to the distribution of the data. 
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 919 

Visual inspection suggests that features which provided a higher decoding accuracy (e.g. Wavelet, Figure 920 

3), did also better at predicting behavioral performance (e.g. Wavelet, Figure 4). To quantitatively see if 921 

such a relationship exists, we calculated the correlation between parameters of the decoding curves 922 

(introduced in Figure 3B-D) and the “average correlation to behavior” achieved by the same features 923 

(Figure 4A). Specifically, we used the “average” and “maximum” decoding accuracies, which we 924 

hypothesized to predict “average correlation to behavior”, and the “time of first above-chance” and 925 

“maximum” decoding accuracies (used as control variables here), which we hypothesized not to predict 926 

“average correlation to behavior”. To obtain the parameter of “average correlation to behavior”, we 927 

simply averaged the correlation to behavior in the post-stimulus time span for each feature separately 928 

(Figure 4A). Results showed that (Figure 4B), while the temporal parameters of “time of first above-929 

chance” and “maximum” decoding (our control parameters) failed to predict the level of average 930 

correlation to behavior (r=0.24, p=0.21, and r=0.17, p=0.38, respectively), the parameters of “maximum” 931 

and “average” decoding accuracies significantly (r=-0.69 and r=-0.71 respectively, with p<0.0001; 932 

Pearson’s correlation) predicted the average correlation to behavior. Note the difference between the 933 

“Spearman’s correlation to behavior” calculated in Figure 4A and the correlations reported in Figure 4B. 934 

While the former is obtained by correlating the time-resolved decoding rates and corresponding 935 

reaction times across participants, the latter is calculated by correlating the post-stimulus average of the 936 

former correlations and their corresponding decoding parameters across features, rather than 937 

participants. This result suggests that the more effective the decoding of the neural codes, the better 938 

the prediction of behavior. Note that, this is not a trivial result; higher decoding values for the more 939 

informative features do not necessarily lead to higher correlation to behavior, as “correlation” 940 

normalizes the absolute values of input variables. 941 

 942 

Discussion 943 

 944 

Temporal variability of neural activity has been suggested to provide an additional channel to the 945 

“mean” of activity for the encoding of several aspects of the input sensory information. This includes 946 

complexity (Garrett et al., 2020), uncertainty (Orbán et al., 2016) and variance (Hermundstad et al., 947 

2014) of the input information. It is suggested that the brain optimizes the neuronal activation and 948 

variability to avoid over-activation (energy loss) for simple, familiar and less informative categories of 949 

sensory inputs. For example, face images, which have less variable compositional features, evoked less 950 

variable responses in fMRI, compared to house images, which were more varied, even in a passive 951 

viewing task (Garrett et al., 2020). This automatic and adaptive modulation of neural variability can 952 

result in more effective and accurate encoding of the sensory inputs in changing environments e.g. by 953 

suppressing uninformative neuronal activation for less varied (more familiar) stimuli such as face vs. 954 

house images (Garrett et al., 2020). Despite the recent evidence about the richness of information in 955 

temporal variability, which is modulated by the category of the sensory input (Garrett et al., 2020; 956 

Orbán et al., 2016; Waschke et al., 2021), majority of EEG studies still ignore variability in decoding. 957 

Specifically, they generally either extract variability (e.g. entropy and power) from the whole-trial 958 

activity (e.g. for brain-computer interface (BCI)) or use the simple “mean” (average) magnitude data 959 
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within sub-windows of the trial (e.g. for time-resolved decoding; Grootswagers et al., 2017). The former 960 

can miss the informative within-trial variabilities/fluctuations of the trial in the highly dynamical and 961 

non-stationary evoked potentials. The latter, on the other hand, may overlook the informative 962 

variabilities within the sliding time windows as a result of temporal averaging.  963 

 964 

Here, we quantified the advantage of the features sensitive to temporal variabilities over the 965 

conventional “mean” activity. In whole-trial analysis, we observed that, the features, which targeted 966 

informative sub-windows/samples of the trial (e.g. ERP components, Wavelet coefficients (Wavelet) and 967 

Original magnitude data (Orig Mag)), could provide more category information than the Mean feature, 968 

which ignored temporal variabilities. Interestingly, ERP components (N1, P2a and P2b) provided 969 

comparable results to that obtained by informative samples (Orig Mag) or Wavelet transformation 970 

(except for Dataset 3). That could be the reason for the remarkable decoding results achieved in 971 

previous studies which used ERPs (Wang et al., 2012; Qin et al., 2016) and Wavelet (Taghizadeh-Sarabi 972 

et al., 2015). These results also proposes that, we might not need to apply complex transformations (e.g. 973 

Wavelet) on the data in whole-trial analysis (Taghizadeh-Sarabi et al., 2015), as comparable results can 974 

be obtained using simple ERP components or original magnitude data. However, inclusion of more 975 

dimensions of the features in decoding or combining them (Karimi Rouzbahani et al., 2011; Qin et al., 976 

2016) could potentially provide higher decoding accuracies for multi-valued (e.g. Wavelet; Taghizadeh-977 

Sarabi et al., 2015) than ERP features (i.e. we equalized the dimensions across features here). 978 

 979 

The Wavelet and Original magnitude data not only outperformed all the variability-sensitive features, 980 

but also the conventional Mean feature. Importantly, while features such as Hilbert phase and 981 

amplitude, Phase- and Amplitude-locking and Inter-electrode correlations, also had access to all the 982 

samples within the sliding analysis window, they failed to provide information comparable to Wavelet 983 

and Orig Mag features. The reason for the success of the Original magnitude data, seems to be that it 984 

basically makes no assumptions about the shape/pattern of the potential neural codes, as opposed to 985 

Hilbert phase (Hilb Phs), amplitude (Hilb Amp), and correlated variability (Cross Corr) each of which are 986 

sensitive ot one specific aspect of neural variability (i.e. phase, amplitude, correlation). The reason for 987 

success of the Wavelet feature, on the other hand, seems to be its reasonable balance between 988 

flexibility in detecting potential neural codes contained in the amplitude, phase and frequency/scale and 989 

a relatively lower susceptibility to noise as a result of filtering applied on different frequency bands (Guo 990 

et al., 2009). Together, these observations support the idea that neural codes are complex structures 991 

reflected in multiple aspects of EEG data e.g. amplitude, phase and frequency/scale (Panzeri et al., 2010; 992 

Waschke et al., 2021). 993 

 994 

The advantage of Theta- over Broad-band in our data (Supplementary Figures 1 and 3) is consistent with 995 

previous monkey studies suggesting that Theta and Gamma frequency bands played major roles in feed-996 

forward processing of visual information in the brain (Bastos et al., 2015), which also seemed dominant 997 

here (Supplementary Figure 4). One potential reason for the encoding of feed-forward information in 998 

the Theta band can be that bottom-up sensory signals transfer information about ongoing experiences, 999 

which might need to be stored in long-term memory for future use (Zheng and Colgin, 2015). Long-term 1000 
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memories are suggested to be encoded by enhanced long-lasting synaptic connections. The optimal 1001 

patterns of activity which can cause such changes in synaptic weights were suggested to be successive 1002 

Theta cycles which carry contents in fast Gamma rhythms (~100 Hz; Larson et al., 1986). While direct 1003 

correspondence between invasive vs. non-invasive neural data remains unclear (Ng et al., 2013), this 1004 

study provides additional evidence for the major role of Theta frequency band in human visual 1005 

perception (Wang et al., 2012; Qin et al., 2016; Jadidi et al., 2016; Taghizadeh-Sarabi et al., 2015; Torabi 1006 

et al., 2017). It also suggests that BCI community might benefit from concentrating on specific frequency 1007 

bands relevant to the cognitive or sensory processing undergoing in the brain; i.e. investigating the 1008 

Theta band when stimulating the visual system.  1009 

 1010 

One critical question for cognitive neuroscience has been whether (if at all) neuroimaging data can 1011 

explain behavior (Williams et al., 2007; Ritchie et al., 2015; Woolgar et al., 2019; Karimi-Rouzbahani et 1012 

al., 2019; Karimi-Rouzbahani et al., 2021a). We extended this question by asking whether more optimal 1013 

decoding of object category information, can lead to better prediction of behavioral performance. We 1014 

showed in our Dataset 2 that, this can be the case. Critically, here we observed for the same dataset 1015 

that, there seems to be a linear relationship between the obtainable decoding accuracy and the 1016 

explanatory power of the features. It implies that in order to bring neuroimaging observations closer to 1017 

behavior, we might need to work on how we can read out the neural codes more effectively.  1018 

 1019 

It has been suggested that neural variability is not only modulated by sensory information (as focused 1020 

on here), but also by other top-down cognitive processes such as attention, expectation, memory and 1021 

task demands (Waschke et al. 2021). For example, attention decreased low-frequency neural 1022 

variabilities/power (2-10 Hz; which is referred to as “desynchronization”) while increasing high-1023 

frequency neural variabilities/power (Wyart and Tallon-Baudry, 2009). Therefore, in the future, it will be 1024 

interesting to know which features best detect the modulation of neural variability in other cognitive 1025 

tasks. Moreover, it is interesting to know how (if at all) a combination of the features used in this study 1026 

could provide any additional information about object categories and/or behavior. In other words, 1027 

although all of the individual features evaluated here covered some variance of category object 1028 

information, to detect the neural information more effectively, it might be helpful to combine multiple 1029 

features using supervised and un-supervised methods (Karimi Rouzbahani et al., 2011; Qin et al., 2016). 1030 

 1031 

The cross-dataset, large-scale analysis methods implemented in this study aligns with the growing trend 1032 

towards meta-analysis in cognitive neuroscience. Recent studies have also adopted and compared 1033 

several datasets to facilitate forming more rigorous conclusions about how the brain performs different 1034 

cognitive processes such as sustained attention (Langner et al., 2013) or working memory (Adam et al., 1035 

2020). Our results provide evidence supporting the idea that neural variability seems to be an additional 1036 

channel for information encoding in EEG, which should not be simply ignored. 1037 

 1038 
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Hamid Karimi-Rouzbahani et al., “Temporal variabilities provide additional category-related information in object 

category decoding: a systematic comparison between informative EEG features”.
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Supplementary Figure 1

Whole-trial decoding of object categories
from the three datasets using 32 features
in different frequency bands (for Bayesian
evidence analyses see Supplementary
Figure 2). Decoding of category
information using the 32 features in the 6
frequency bands. The black horizontal
dashed lines on the top panel refer to
chance-level decoding. Thick bars show
the average decoding across participants
(error bars Standard Error across
participants). Bayes Factors are shown in
the bottom panel of each graph: Filled
circles show moderate/strong evidence for
either hypothesis and empty circles
indicate insufficient evidence. They show
the results of Bayes factor analysis when
evaluating the difference from chance-
level decoding.
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Supplementary Figure 2

(A) Bayes factor matrices comparing whole-trial decoding results across different frequency bands and
dataset separately. Matrices show different levels of evidence for existing difference (moderate
3<BF<10, Orange; strong BF>10, Yellow), no difference (moderate 0.1<BF<0.3, light blue; strong BF<0.1,
dark blue) or insufficient evidence (1<BF<3 green; 0.3<BF<1 Cyan) for either hypotheses. Black and red
boxes indicate moderate or strong evidence for higher decoding values for specific features mentioned
and compared in the text. For example, for Dataset 1, there is insufficient evidence for difference
between decoding values of most features in the Gamma band as indicated by the light blue color in
most cells. However, there is moderate or strong evidence that Mean and Median features are different
from N1 and P1 as indicated by yellow color and the decoding accuracies in Supplementary Figure 1. (B)
Bayes factor matrices comparing whole-trial decoding results within each frequency band, across
features separated by datasets. Black and red boxes indicate moderate or strong evidence for higher
decoding values for specific features mentioned and compared in the text.
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Evidence for difference

Evidence for no difference

Supplementary Figure 3

We selected the window length of 50 ms for our
time-resolved analyses because it was neither too
long to hide the true temporal dynamics of
information processing in the brain, nor too short to
avoid the proper calculation of features (e.g.
complexity and multi-valued). To assure that we did
not miss the true obtainable dynamic range
(amplitude) of accuracies, we compared category
decoding obtained from time windows of 5 (i.e.
which was the case in most previous studies all of
which relied on signals’ mean (Grootswagers et al.,
2017; Karimi-Rouzbahani et al., 2017b) and 100 ms
with that used here from 50 ms time windows.
Consistently across the three datasets, results
showed that the highest decoding accuracies were
obtained from the 50 ms time windows, both in
terms of maximum and average decoding accuracy
after the stimulus onset. Interestingly, lengthening
the time windows decreased the maximum decoding
but increased the decoding accuracies in the later
stages of the processing (i.e. from 200 ms onwards;
probably after initial hard-wired processing of visual
stimuli). This may suggest that later stages of
category processing (probably involving
feedback/recurrent processing; which are activated
by the longer presentation time in datasets 2 and 3),
take longer processing times, therefore captured
better using longer time windows.

(A) Comparison of decoding accuracies using different
length for the sliding time window. The bottom
section shows the Bayes factor evidence for the
difference between the 50 ms window and the other
two window lengths. (B) Comparison of decoding
accuracies using different frequency bands for the
Mean (top) and Wavelet (bottom) features. Each
column shows the results for one dataset. Top section
in each panel shows the decoding accuracies across
time and the horizontal dashed lines on the top panel
refer to chance-level decoding. Filled circles in the
Bayes Factors show moderate/strong evidence for
either difference or no difference between the
decoding curves and empty circles indicate
insufficient evidence for either hypotheses. Thick
lines show the average decoding accuracy across
participants (error bars Standard Error across
participants).
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Supplementary Figure 4

Classifier weights in decoding. These topographic classifier maps were
obtained from classifier weight values provided by the LDA classifiers used in
decoding. The weight values have different scales for different datasets
based on the nature of the data. Therefore, we normalized them for
presentation within each dataset for clearer presentation. Hot colors show
higher and cold colors reflect lower weights.

To see if that the Theta frequency band supports feed-forward flow of

information in our datasets, we also calculated spatial maps of classifier weights

on the head for the conventionally used Mean feature in the Theta frequency

band. These classifier weights reflect how much information each electrode

provides about object categories at different time points. The categorical object

information initially appeared ~50 or ~100 ms after the stimulus onset in all three

datasets predominantly in the occipital areas. This was followed in later time

windows (~100 ms to ~150 ms) by the information appearing in both the occipital

(all datasets), occipito-temporal (all datasets), central (Dataset 1) as well as

frontal electrodes (all datasets). Finally, from around ~300 ms onwards, the

object category information seemed to be dominantly represented in occipital

and frontal (Datasets 1 and 3) areas or only the frontal (Dataset 2) area. These

results seem to support feed-forward flow of information through the ventral and

dorsal visual streams as well as from occipital to frontal brain areas during the

trial. However, based on the limited spatial resolution of EEG and the

susceptibility of classifier weights to artefacts (Haufe et al., 2014), we should be

careful not to over-interpret these spatiotemporal maps.
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Supplementary Figure 5

A
Time-resolved decoding of object categories from the
three datasets using 28 features and Bayesian
evidence analyses. Each row shows the results of one
type of feature (i.e. moment, complexity, frequency-
domain and multi-valued features from top to
bottom, respectively). Curves show the average
decoding across participants. Each column shows the
results for one dataset. Top section in each panel
shows the decoding accuracies across time and the
bottom section shows the Bayes factor evidence for
the difference of the decoding accuracy compared to
chance-level decoding. The horizontal dashed lines on
the top panel refer to chance-level decoding. Filled
circles in the Bayes Factors show moderate/strong
evidence for either difference or no difference from
chance-level decoding and empty circles indicate
insufficient evidence for either hypotheses.
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Timing and amplitude parameters
extracted from the time-resolved
accuracies of each feature and each
dataset and their Bayesian evidence
analyses. (B-E) Left: the maximum and
average decoding accuracies, the time of
maximum and the first above-chance
decoding. Thick bars show the average
across participants (error bars Standard
Error across participants). Bottom
section on B and C show the Bayes
factor evidence for the difference of the
decoding accuracy compared to chance-
level decoding; Right: matrices compare
the right parameters obtained from
different features. Different levels of
evidence for existing difference
(moderate 3<BF<10, Orange; strong
BF>10, Yellow), no difference (moderate
0.1<BF<0.3, light blue; strong BF<0.1,
dark blue) or insufficient evidence
(1<BF<3 green; 0.3<BF<1 Cyan) for
either hypotheses. Black and red boxes
show moderate or strong evidence for
higher decoding values for specific
features compared other sets of features
as explained in the text. The horizontal
dashed lines on the left panels of (B) and
(D) refer to chance-level decoding. Filled
circles in the Bayes Factors show
moderate/strong evidence for either
hypothesis and empty circles indicate
insufficient evidence.
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A

B

The temporal dynamics of different features seem to reflect a similar
decoding pattern in the sense that the most informative features can lead to
both a higher maximum decoding and a more sustained decoding pattern
along the trial and vice versa. This suggests that there might be a general
advantage for the more vs. less informative features which is reflected both in
their maxima as well as their sustained decoding patterns. Alternatively, it can
be the case that there is no relationship between the maxima and the average
decoding across features, suggesting that each feature might detect different
neural codes. To test this question, we calculated the correlation between the
average and maximum decoding values for all features, which showed highly
correlated results (r > 0.9; p < 0.01; Supplementary Figure 6A). This suggests
that, all features followed a generally similar pattern of decoding with more
informative features providing higher decoding maxima and a more sustained
level of information decoding.

There has been no consensus yet about whether the time of the maximum or
the first above-chance decoding reflects the speed of category processing in
the brain (Grootswagers et al., 2017; Ritchie et al., 2015). Hence, we
calculated the correlation of these temporal parameters across features to
see if they both possibly reflect the dynamics of the same processing
mechanism in the brain. The time of first above-chance and maximum
decoding correlated in Datasets 2 and 3 but not Dataset 1 (r=0.67, r=0.51 and
r=0.07 respectively for Datasets 1, 2 and 3; Supplementary Figure 6B). Lack of
significant correlation for Dataset 1 can be explained by the lower decoding
values in Dataset 1 compared to the other datasets making the correlations
noisier. Therefore, features that reached their above-chance decoding earlier
also reached their maximum decoding earlier leading to the suggestion that
they both reflect the temporal dynamics of the same cognitive processes with
some delay.
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Correlation between the pairs of amplitude (A) and timing (B) parameters of the

time-resolved decoding (i.e. maximum and average decoding accuracy and time

of first and maximum decoding) for the set of N=28 individual features. The slant

line shows the best linear fit to the distribution of the correlation data.

Supplementary Figure 6
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