

Technical Report

Co-Design Tradeoffs for

High-Performance, Low-Power
Linear Algebra Architectures

Ardavan Pedram

 Andreas Gerstlauer
 Robert A. van de Geijn

UT-CERC-12-02

October 5, 2011

Computer Engineering Research Center
The University of Texas at Austin

1 University Station, C8800
Austin, Texas 78712-0323
Telephone: 512-471-8000
Fax: 512-471-8967
http://www.cerc.utexas.edu

Co-Design Tradeoffs for High-Performance, Low-Power Linear

Algebra Architectures

Ardavan Pedram, Andreas Gerstlauer, and Robert A. van de Geijn

The University of Texas at Austin

Austin, TX 78712

Abstract

As technology is reaching physical limits, reducing power consumption is the key issue on
our path to sustained performance. In this paper, we study fundamental tradeoffs and limits
in efficiency (as measured in energy per operation) that can be achieved for an important class
of kernels, namely the level-3 Basic Linear Algebra Sub-rountines (BLAS). It is well-accepted
that specialization is the key to efficiency. This paper establishes a baseline by studying gen-
eral matrix-matrix multiplication (GEMM) on a variety of custom and general-purpose CPU
and GPU architectures. Our analysis shows that orders of magnitude improvements in effi-
ciency are possible with relatively simple customizations and fine-tuning of memory hierarchy
configurations. We argue that these customizations can be generalized to perform other rep-
resentative linear algebra subroutines. In addition to indicating the sources of inefficiencies
in current CPUs and GPUs, our results show our prototype linear algebra processor (LAP),
double-precision GEMM (DGEMM) can achieve 600 GFLOPS consuming less than 25 Watts in
standard 45nm technology, which is up to 50× better than CPUs in terms of energy efficiency.

1 Introduction

We have arrived at a point in time when power consumption is becoming the limiting factor for
continued semiconductor technology scaling. While one could view this as a roadblock on the way
to exascale computing, we would like to view it as an opportunity. In particular, it is now likely
that a future chip may combine heterogeneous cores while having to cope with “dark silicon” [17].
By this, we mean that regions of a chip can be dedicated to highly-specialized functionality without
constituting wasted silicon. If only part of the chip can be powered at any given time, those regions
can simply be turned off when not in use. This allows us to propose cores that are highly customized
for inclusion in such heterogeneous chip multiprocessor designs.

Full custom, application-specific design of on-chip hardware accellerators can provide orders of
magnitude improvements in efficiencies for a wide variety of application domains [32, 78]. However,
full custom design is expensive in many aspects. Hence, the question is whether such concepts can be
applied to a broader class of other, more general applications to amortize the cost of custom design
by providing multiple functionalities. If in the future neither fine-grain, programmable computing
nor full custom design are feasible, can we design specialized, on-chip cores that maintain the
efficiency of full custom hardware while providing enough flexibility to execute whole classes of
coarse-grain operations?

In this paper, we aim to address these questions for the domain of matrix computations, which
are at the core of many applications in scientific, high-performance computing. It is well understood

1

that linear algebra problems can be efficiently reduced down to a canonical set of Basic Linear
Algebra Subroutines (BLAS), such as matrix-matrix and matrix-vector operations [53, 14, 13].
Highly efficient realization of matrix computations on existing general-purpose processors have
been studied extensively. Among the highest profile efforts is the currently fastest method for
(general) matrix-matrix multiplications (GEMM) [30]. This operation is the building block for
other matrix-matrix operations (level-3 BLAS) [39]. In [29], it is shown that this approach can
be specialized to yield high-performance implementations for all level-3 BLAS on a broad range of
processors.

However, rather than driving microarchitectural design, all these solutions react to any hard-
ware changes in order to exploit or work around any new architectural features. We pursue instead
the design of high-performance, low-power linear algebra processors that realize algorithms in spe-
cialized architectures. We examine how this can be achieved for GEMM, with an eye on keeping
the resulting architecture sufficiently flexible to compute all level-3 BLAS operations and to provide
facilities for operations supported by LAPACK, like LU factorization with pivoting, QR factoriza-
tion, and Cholesky factorization. Hence, although we focus our explanation on GEMM, we do so
with confidence that modest modifications to the design (e.g., addition of a scalar inversion and/or
square-root units with a modified floating point unit) will support all level-3 BLAS and operations
beyond.

The main questions when designing these accelerators are as follows: What are the upper limits
on performance/power ratios that can be achieved in current and future architectures? What is
the algorithm-architecture co-design of optimal accelerator cores? What are the parameters of the
memory hierarchy to achieve both high efficiency and high utilization? What are the sources of
under utilization and inefficiency in existing general purpose systems?

Previously [62], we introduced a custom micro-architecture design for a linear algebra core
(LAC). In this paper, we extend the LAC design with a more general memory hierarchy model
to evaluate different trade-offs in system design, including number of cores, bandwidth between
layers of memory hierarchy, and the memory sizes in each layer. The results of these analyses are
consolidated in a framework that can predict the utilization limits of current and future architec-
tures for matrix computations. Finally, we introduce a prototypical implementation to demonstrate
fundamental limits in achievable power consumption in current CPUs and GPUs as compared to
an ideal architecture.

Our analysis framework suggests that with careful algorithm/architecture co-design and the
addition of simple customizations, it should be possible to achieve efficiencies of 45 double- and
110 single-precision GFLOPS/W in 11-13 GFLOPS/mm2 with currently available components and
technologies as published in literature. This represents 50× improvement over current general-
purpose architectures and a one order of magnitude improvement over current GPUs.

The rest of the paper is organized as follows: In the next section we briefly discuss related
work. Next, Section 3 provides a review of the matrix processor core microarchitecture in our
design. In Section 4, we build the memory hierarchy around such cores, show the mapping of
matrix multiplication onto this system, and analyze the existing trade-offs in the design space
exploration. Section 5 presents performance characteristics of a realistic implementation based
on current technology in comparison to other, existing architectures. A summary and outlook on
future work is given in Section 6.

2

2 Related Work

Implementation of GEMM on traditional general-purpose architectures has received a lot of at-
tention. Modern CPUs exploit vector extension units [19, 20, 18, 43] for high performance matrix
computations [29, 2, 76]. However, general instruction handling overhead remains. Three main lim-
itations of conventional vector architectures are known to be due to the complexity of the central
register file [64], implementation difficulties of precise exception handling, and expensive on-chip
memory [42].

In recent years, GPUs have become a popular target for acceleration. Originally, GPUs were
specialized hardware for graphics processing that provided massive parallelism but were not a good
match for matrix computations [23]. More recently, GPUs have shifted back towards general-
purpose architectures. Such GPGPUs replicate a large number of SIMD processors on a sin-
gle shared-memory chip. GPGPUs can be effectively used for matrix computations [6, 74] with
throughputs of more than 300 GFLOPS for single-precision GEMM (SGEMM), utilizing around
30-60% of the theoretical peak performance. Since early GPGPUs only included a limited number
of double-precision units, their DGEMM performance is less than 100 GLFOPS (at utilizations
of 90-100%). In the latest GPGPUs, single-precision units can be configured as half the number
of double-precision units, achieving more than 600 or 300 GFLOPS at around 60% utilization,
respectively [59]. In all cases, however, achievable performance will drop for smaller matrix sizes
(e.g. matrix sizes less than 512).

Over the years, many other parallel architectures for high-performance computing have been
proposed and in most cases benchmarked using GEMM as a prototypical application. Systolic
arrays were popularized in the 80s [47, 49, 48]. Different optimizations and algorithms for matrix
multiplication and more complicated matrix computations are compared and implemented on both
1D [73, 68, 45] and 2D systolic arrays [31, 35, 68, 56]. In [38], the concept of a general systolic
array and a taxonomy of systolic array designs is presented.

With increasing memory walls, recent approaches have brought the computation units closer to
memory, including hierarchical clustering of such combined tiles [66, 41]. Despite such optimization,
utilizations for GEMM range from 60% down to less than 40% with increasing numbers of tiles.
Instead of a shared-memory hierarchy, the approach in [72] utilizes a dedicated network-on-chip in-
terconnect with associated routing flexibility and overhead. It only achieves around 40% utilization
for matrix multiplication. Finally, ClearSpeed CSX700 is an accelerator that specifically targets
scientific computing with BLAS and LAPACK library facilities. It delivers up to 75 DGEMM
GFLOPS at 78% of its theoretical peak [4].

As utilization numbers indicate in general-purposes cases, inherent characteristics of data paths
and interconnects coupled with associated instruction inefficiencies make it difficult to exploit fully
all available parallelism and locality. By contrast, while we will build on the SIMD and GPU
concept of massive parallelism, we aim to provide a natural extension that leverages the specifics
of matrix operations.

In the domain of custom design, recent FPGAs [61, 26] have moved towards Tera-FLOPS peak
performance, achieving both high performance and power efficiency. However, FPGAs offer limited
on-chip logic capacity, and at slow clock frequencies (100-300 MHz), they can reach high efficiencies
but peak performance is limited. According to FPGA vendors, an FPGA with 40nm technology can
achieve at most 100 GFLOPS performance at 7 GFLOPS/Watt of power efficiency [60]. Specialized
hardware realizations of GEMM and other BLAS routines on FPGAs have been explored, either as
dedicated hardware implementations [80, 79] or in combination with a flexible host architecture [50].

3

Such approaches show promising results (up to 99% utilization), but are limited by the performance
and size restrictions in FPGAs [51, 15, 44, 37].

Existing solutions for dedicated realization of matrix operations mostly focus on 1D and 2D
arrangements of processing elements [35]. In early FPGA designs with limited logic blocks on the
chip, most of the approaches targeted an array arrangement of PEs that pipelines the data in and
out of the PEs [46, 79]. Nowadays, with sufficient area on the chip, the design choice between
1D and 2D arrangement of PEs becomes again valid. There are three major benefits of a 2D
solution versus a 1D solution: scalability, addressing, and data movement. The 2D arrangement is
proven to be scalable with regard to the ratio of problem size to local store memory size for BLAS
level operations [16]. Furthermore, address computations and data accesses in local stores of PEs
becomes simpler with fewer calculations as compared to a 1D arrangement. This is especially true
for more complicated algorithms. Finally, with 2D arrangements, different types of interconnects
can be explored, yielding various types of algorithms for BLAS operations. Here, we focus on
matrix multiplication.

A taxonomy of matrix multiplication algorithms on 2D grids of PEs and their interconnect
requirements is presented in [54]. The algorithms for matrix multiplication are based on three
basic classes: Cannon’s algorithms (roll-roll-multiply) [9, 57], Fox’s algorithm (broadcast-roll-
multiply) [24, 11, 21, 22, 54], and SUMMA (broadcast-broadcast-multiply) [5, 69]. Cannon’s al-
gorithm shifts the data in two of the three matrices circularly and keeps the third one stationary.
Required initial and final alignment of the input matrices needs extra cycles and adds control com-
plexity. In addition, a Taurus interconnect is needed to avoid data contention. Fox’s algorithms
and its improvements broadcast one of the matrices to overcome alignment requirements. However,
a shift operation is still required and such algorithms may show poor symmetry and sub-optimal
performance. Finally, the SUMMA algorithm does not need any initial or post-computation align-
ment. The broadcast is a simple and uniform, single communication primitive, and does not have
any bandwidth contention as in circular shifting. In addition, SUMMA is much easier to generalize
to non-square meshes of processing units.

The flexibility of the SUMMA algorithm has made it the most practical solution for distributed
memory systems [69] and FPGAs [15], and the SUMMA class of algorithms builds the basis for our
design. A broadcast operation is an efficient way of data movement to achieve high performance in
other BLAS and LAPACK operations. We will see that the cost and latency of broadcast operation
does not add extra overhead in our cores.

In most of the previous implementations of dedicated matrix multiplications on systolic arrays
and FPGAs, the memory hierarchy was not explored. To study scalability demands, we start by
building our system from an inner computation core that is a highly optimized matrix multiplier [62]
and build the memory hierarchy around it. In the process, partitioned and distributed memory
hierarchies and interconnects can be specifically designed to realize available locality and required
access patterns.

3 Design of The Linear Algebra Core (LAC)

In this section, we briefly review the design of a Linear Algebra Core (LAC) [62], as shown in
Figure 1. It consists of a 2D array of nr × nr processing elements (PEs), each of which has a
MAC unit with a local accumulator, local storage, simple distributed control, and bus interfaces to
communicate data within rows and columns. For illustrative purposes, we will focus our discussion
on the case of a mesh with nr × nr = 4 × 4 PEs.

4

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

`

MEM B

Addr1

Row Bus Write (RBW)

Column Bus Write (CBW)

A B

Controller

Column Bus

Read (CBR)

Row Bus

Read (RBR)

MAC
ACC_in

Accumulator

Cin

Memory Interface

Addr2

RF

MEM A

Figure 1: Core architecture. The highlighted PEs on the left illustrate the PEs that own the current
column of 4 × kc matrix A and the current row of kc × 4 matrix B for the second rank-1 update
(p = 1). It is illustrated how the roots (the PEs in second column and row) write elements of A
and B to the buses and the other PEs read them.

3.1 Basic Operation

In the following, we will use a special case of GEMM to demonstrate the basic operation of the
LAC. Let C, A, and B be 4 × 4, 4 × kc, and kc × 4 matrices, respectively. Then C += AB can be
computed as

0

B

@

γ0,0 · · · γ0,3

...
. . .

...
γ3,0 · · · γ3,3

1

C

A
+=

kc−1
X

i=0

0

B

@

α0,i

...
α3,i

1

C

A

`

βi,0 · · · βi,3

´

so that C is updated in the ith iteration with

γ0,0 + α0,iβi,0 · · · γ0,3 + α0,iβi,3
...

. . .
...

γ3,0 + α3,iβi,0 · · · γ3,3 + α3,iβi,3

. (1)

Each such update is known as a rank-1 update. In our discussions, upper case letters denote
(sub)matrices while Greek lower case letters denote scalars.

Let us assume that 4×kc matrix A and kc×4 matrix B are distributed to the array in a 2D cyclic
round-robin fashion, much like one distributes matrices on distributed memory architectures [33,
10]. In other words, αi,j and βi,j are assigned to PE (i mod 4, j mod 4). Also, element γi,j

of matrix C is assumed to reside in an accumulator of PE (i, j). Then a simple algorithm for
performing this special case of GEMM among the PEs is, for p = 0, . . . , kc − 1, to broadcast the
pth column of A within PE rows, the pth rows of B within PE columns, after which a local MAC
operation on each PE updates the local element of C.

5

3.2 PE Micro-Architecture

The prototypical rank-1 update given in (1) gives a clear indication of possible parallelism: all
updates to elements of C can be performed in parallel. We also note that elements of C are
repeatedly updated by a multiply-add operation. This suggests a natural top-level design for a
processor performing repeated rank-1 updates as a 2D mesh of PEs, depicted in Figure 1 (left).
Each PE (i, j) will update element γi,j .

Details of the PE-internal micro-architecture are shown in Figure 1 (right). At the core of each
PE is a MAC unit to perform the computations γi,j += αi,pβp,j . Each MAC unit has a local
accumulator register that holds the intermediate and final values of one inner dot product of the
result matrix C being updated. Apart from preloading accumulators with initial values of γ, all
accesses to elements of C are performed directly inside the MAC units, avoiding the need for any
register file or memory accesses. Pipelined units are employed that can achieve a throughput of
one MAC operation per cycle. Such throughputs can be achieved by postponing normalization of
results until the last accumulation [71]. Being able to leverage a fused MAC unit with delayed
normalization will also significantly decrease power consumption while increasing precision.

As outlined in Section 3.1, 4 × kc matrix A and the kc × 4 matrix B are stored distributed
among the PEs in local memories. It is well-understood for dense matrix operations [10, 33] that
communication is greatly simplified and its cost is reduced if it is arranged to be only within PE
rows and columns. When considering γi,j += αi,pβp,j , one notes that if αi,p is stored in the same
PE row as γi,j , it only needs to be communicated within that row. Similarly, if βp,j is stored in
the same column as γi,j , it only needs to be communicated within that PE column. This naturally
leads to the choice of a 2D round-robin assignment of elements, where αi,p is assigned to PE (i, p
mod nr) and βp,j to PE (p mod nr, j).

Each rank-1 update (fixed p, Eqn. 1) then requires simultaneous broadcasts of elements αi,p

from PE (i, p mod nr) within PE rows and of elements βp,j from PE (p mod nr, j) within PE
columns. This is illustrated for the p = 1 update in Figure 1. In our design, we connect PEs
by horizontal and vertical broadcast busses. The interconnect is realized in the form of simple,
data-only busses that do not require overhead for address decoding or complex control. PEs are
connected to horizontal and vertical data wires via separate read and write latches. This allows
for simultaneous, one-cycle broadcast of two elements αi,p and βp,j to all PEs in the same row and
column.

Column busses in the PE mesh are multiplexed to both perform column broadcasts and transfer
elements of A, B and C to/from external memory during initial preloading of input data and writing
back of results at the end of computation. For the latter purpose, PEs can internally read and
write column bus values from/to the MAC accumulator or local memory. In regular operation, row
and column busses carry αi,p and βp,j values that continuously drive PE-internal MAC inputs in
a pipelined fashion. Sending PEs (i, p mod nr) and (p mod nr, j) drive the busses in each row
and column with values out of their local memories, where diagonal PEs (i = j) simultaneously
load two values from local memory onto both busses. For simplicity and regularity, sending PEs
receive their own broadcast values back over the busses to feed MAC inputs. In such a setup, no
additional registers or control are necessary.

Alternatively, one can consider a setup in which all elements βp,j , p = 0, . . . , kc − 1 of B are
replicated among all PEs in each row j. This eliminates the need to broadcast these values across
columns. Instead, elements of B are always accessed locally through an additional register file1.

1We include a small, general register file that carries little additional overhead but provides the flexibility of

6

+=

xAi,p

C A B

C

x

x

+=

x+=

Accumulator

(Register Level)

Local Store

Level

On-chip

Memory

Ai,p in Local Store of PEs Bp,j Bp,j+1
Blocks of Ci,j
1-Stream Out

2-Current

3-Prefetch

+=

x

kc nr

mc kcnr

nr

n

Bp

Ap

Ci

Bp,j

Main Memory

Figure 2: Memory hierarchy while doing GEMM. In each of the top three layers of the pyramid,
the largest matrix is resident, while the other matrices are streamed from the next layer down.

Trading off storage for communication requirements, this setup avoids all column transfers, freeing
up column busses for prefetching of subsequent input data in parallel to performing computations
(see Section 4).

3.3 GEMM Algorithm

In designing a complete Linear Algebra Processor (LAP), we not only need to optimize the core,
but also describe how data can move and how computation can be blocked to take advantage of
multiple layers of memory. In order to analyze the efficiency attained by the core itself, we first need
to describe the multiple layers of blocking that are required. We do so with the aid of Figure 2. For
now it suffices to think of the LAP as consisting of one of the described cores plus on-chip memory.
Later, we will generalize this to one with multiple cores.

Assume the matrices A, B and C are stored in memory external to the LAP. We can observe
that C += AB can be broken down into a sequence of smaller matrix multiplications (rank-k
updates with k = kc in our discussion):

C +=
(

A0 · · · AK−1

)

B0
...

BK−1

=

K−1
∑

i=0

AiBi

so that the main operation to be mapped to the LAP becomes C += ApBp. This partitioning of
matrices is depicted in the bottom layer in Figure 2.

In the next higher layer (third from the top), we then focus on a single update C += ApBp.

If one partitions C =

C0
...

CM−1

and Ap =

A0,p

...
AM−1,p

, then each panel of C, Ci, must be

updated by Ci += Ai,pBp to compute C += ApBp.
Let us further look at a typical Ci += Ai,pBp. At this point, the mc × kc block Ai,p is loaded

into the local memories of the PEs using the previously described 2D round-robin distribution.

storing a number of intermediate values that can be (re)used as MAC inputs and can be read or written from/to
local memory. This will be beneficial in supporting other linear algebra operations in the future.

7

Partition Ci and Bp into panels of nr(= 4) columns:

Ci =
(

Ci,0 · · · Ci,N−1

)

and Bp =
(

Bp,0 · · · Bp,N−1

)

.

Now Ci += Ai,pBp requires the update Ci,j += Ai,pBp,j for all j. For each j, Bp,j is loaded into the
local memories of the PEs in a replicated column-wise fashion. The computation to be performed
is described by the second layer (from the top) of the pyramid, which is also magnified to its right.

Finally, Ai,p is partitioned into panels of four rows and Ci,j into squares of 4 × 4, which are
processed from top to bottom in a blocked, row-wise fashion across i. The multiplication of each
row panel of Ai,p with Bp,j to update the 4×4 block of Ci,j is accomplished by the individual cores
via the rank-1 updates described in Section 3. What is still required is for the 4 × 4 blocks Ci,j to
be brought in from main memory.

This blocking of the matrices facilitates reuse of data, which reduces the need for high bandwidth
between the memory banks of the PEs, the on-chip LAP memory and the LAP-external storage:
(1) fetching of a 4×4 block Ci,j is amortized over 4×4×kc MAC operations (4×4 of which can be
performed simultaneously); (2) fetching of a kc × 4 block Bp,j is amortized over mc × 4 × kc MAC
operations; and (3) fetching of a mc × kc block Ai,p is amortized over mc ×n× kc MAC operations.

This approach is very similar to how GEMM is mapped to a general purpose architecture [30].
There, Ai,p is stored in the L2 cache, Bp,j is kept in the L1 cache, and the equivalent of the 4 × 4
block of C is kept in registers. The explanation shows that there is symmetry in the problem: one
could have exchanged the roles of Ap and Bp, leading to an alternative, but very similar, approach.
Note that the description is not yet complete, since it assumes that, for example, C fits in the on-
chip memory. Even larger matrices can be accommodated by adding additional layers of blocking,
as will be described later (see Section 4.2.3).

3.4 Core Architecture

With an understanding of LAC operation, the basic core design, and how matrix multiplication
can be blocked, we can now investigate specific core implementations including tradeoffs between
the size of the local store and the bandwidth between the on-chip memory and the core (we will
consider external memory later). In our subsequent discussion, 4× 4, the size of the submatrices of
C, is generalized to nr × nr. Furthermore, in accordance with the blocking at the upper memory
levels, we assume that each core locally stores a larger mc × kc block of Ai,p, a nr × nr subblock of
Ci,j and a kc × nr panel of Bp,j (replicated across PEs).

The local memory requirements for the core are that matrices Ai,p and Bp,j must be stored in
the aggregate memories of the PEs. To avoid power and area waste of a dual ported SRAM, we
decided to separate the local stores for Ai,p and Bp,j in the PEs. A single ported SRAM keeps
elements of Ai,p with one access every nr cycles. Since the size of Bp,j is small, we can keep copies of
B in all PEs of the same column. This avoids extra column bus transactions and allows overlapping
of computation with data movement in and out of the core. As a result, the second SRAM is dual
ported and is much smaller compared to the first one. In each cycle, an element of B is read from
this SRAM to feed the local MAC unit in each PE. This strategy reduces the aggregate local store
size and power consumption in each PE.

The goal is to overlap computation of the current submatrix of Ci,j with the prefetching of the
next such submatrix. This setup can achieve over 90% of peak performance. Thus, the size of the
local store, aggregated over all PEs, is given by mc × kc elements for Ai,p, and by 2× kc × nr × nr

elements for the current and next Bp,j and Bp+1,j . In total, the local memory must be able to

8

0 4 8 12 16 20 24 28 32 36 40
0

10

20

30

40

50

60

70

80

90

100

Local Memory [KBytes/PE]

U
t
i
l
i
z
a
t
i
o
n

[
P
e
r
c
e
n
t

o
f

P
e
a
k
]

8 B/cycle nr=4

4 B/cycle nr=4

3 B/cycle nr=4

2 B/cycle nr=4

1 B/cycle nr=4

8 B/cycle nr=8

4 B/cycle nr=8

3 B/cycle nr=8

2 B/cycle nr=8

1 B/cycle nr=8

Figure 3: Estimated core performance as a function of the bandwidth between LAC and on-chip
memory, and the size of local memory with nr = 4 and nr = 8, mc = kc, and n = 512.

hold mckc + 2kcn
2
r = (mc + 2n2

r)kc single or double precision floating point numbers. Note that
the nr ×nr submatrix of Ci,j is always in the accumulators and never stored. However, concurrent
prefetching and streaming out of the next and previous such submatrix, respectively, occupies two
additional entries in the register file of each PE. Together with a register each for internal transfers
of locally replicated βp,j , every PE requires a register file of size 4 (a size of 3, rounded up to the
next power of two).

To analyze performance, let us assume an effective bandwidth of x elements/cycle and focus
on one computation Ci += Ai,pBp. Reading Ai,p requires mckc/x cycles. Reading and writing the
elements of Ci and reading the elements of Bp requires (2mcn + kcn)/x cycles. Finally, computing
Ci += Ai,pBp assuming peak performance requires (mckcn)/n2

r cycles. Overlapping the communi-
cation of Ci and Bp with the computation of Ci gives us an estimate for computing Ci += Ai,pBp

of
mckc

x
+ max

(

(2mc + kc)n

x
,
mcnkc

n2
r

)

cycles.

Given that at theoretical peak this computation would take (mckcn)/n2
r cycles, the attained core

utilization can easily be estimated as the fraction of the two. Notice that the complete computation
C += AB requires loops around this “inner kernel” for one Ci. Thus, it is this kernel that dictates
the performance of the overall matrix multiplication.

To achieve peak performance, the prefetching of the next block of A, Ai,p+1 should also be
overlapped with the computations using the current block of Ai,p resulting in full overlapping of
communications with computation. In such a scenario, each PE requires a bigger local memory
for storing the current and prefetching of the next block of A. Thus, the size of the local store,
aggregated over all PEs, will become 2mckc +2kcn

2
r = 2(mc +n2

r)kc. This extra memory is effective
if there is enough bandwidth to bring data to the cores.

9

0 5 10 15 20
0

5

10

15

20

25

Local Memory [KBytes/PE]

P
e
a
k

B
a
n
d
W
i
d
t
h

[
b
y
t
e
s
/
c
y
c
l
e
]

n
r
=4

n
r
=8

Figure 4: Core Performance vs. bandwidth between LAC and on-chip memory for peak performance
with nr = 4 and nr = 8, mc = kc, and n = 512.

3.5 Core-Level Exploration

Figure 3 reports performance of a single core as a function of the size of the local memory and the
bandwidth to the on-chip memory. Here we use nr ∈ {4, 8}, mc = kc (the submatrix Ai,p is square),
and n = 512 (which is relatively small). This graph clearly shows that a trade-off can be made
between bandwidth and the size of the local memory, which in itself is a function of the kernel size
(kc, mc, and nr). The graph also shows under what conditions we can achieve 100% utilization.

The tradeoff between the needed bandwidth per core and local store per PE is shown in Figure 4.
The curve shows the relation between the bandwidth and local store size needed to maintain peak
performance. It (and the equation that generated it) shows that by doubling the size of the cores
while fixing the local store size, the bandwidth demand doubles and performance quadruples. This
suggests that making nr as large as possible is more efficient. However, nr cannot grow arbitrarily:
(1) when nr becomes too large, the intra-core broadcast require repeaters, which adds overhead;
(2) exploiting task-level parallelism and achieving high utilization is easier with a larger number
of smaller cores; and (2) with our choice of nr = 4, the number of MAC units in each core is
comparable to modern GPUs, allowing us to more easily provide a fair comparison.

4 Linear Algebra Processor

In the previous section, we showed how a LAC can easily compute with data that already resides in
on-chip memory. The question is now how to compose the GEMM C += AB for general (larger)
matrices from the computations that can occur on a (larger) Linear Algebra Processor (LAP) that
is composed of multiple cores. The key is to amortize the cost of moving data in and out of the
cores and the LAP. We describe that in this section again with the aid of Figure 2. This framework
will allow us to generally study tradeoffs in the memory hierarchy built around the execution cores.

10

+=

xAi,p

C
x

LAC 1

Memory

On-Chip

Memory
n

Bp

Ap

Ci+2

Bp,j

+= xAi+1,p+= xAi+2,p+=

Ci
Ci+1

LAC 0

Memory

LAC 2

Memory

Figure 5: Memory hierarchy with multiple cores in a LAP system.

4.1 LAP Architecture

We further translate the insights about the hierarchical implementation of GEMM into a prac-
tical implementation of a LAP system. We investigate a simple system architecture that follows
traditional GPU and multi-processor styles in which multiple cores are integrated on a single chip
together with a shared on-chip L2 memory. The shared memory can in turn be banked or parti-
tioned with corresponding clustering of cores. In doing so, we derive formulas for the size of the
shared on-chip memory and the required bandwidth between the LAP and external memory, all in
relation to the number and size of the LAP cores themselves (see Section 3.4).

Figure 5 shows the use of the memory hierarchy for a larger matrix multiplication distributed
across multiple cores. As discussed previously, each core locally stores a mc × kc (or 2mc × kc

to allow for prefetching to achieve peak performance) block of Ai,p , a n2
r subblock of Ci,j and

a kc × nr panel of Bp,j (replicated across PEs), where different row blocks and panels of A and
C are assigned to different cores. Bigger panels and blocks A, B and C are then stored at the
next higher level of the memory hierarchy. Since elements of C are both read and written, we aim
to keep them as close as possible to the execution units. Hence, the shared on-chip memory is
mainly dedicated to storing a complete n× n block of matrix C. In addition, we need to share the
current kc × n row panel of B among the cores. With S cores in the LAP system and space for
prefetching of blocks and panels of A and B, the total size of the on-chip shared memory therefore
becomes n2 + S ×mc × kc + 2kc × n. This on-chip memory size does not reflect full overlapping of
computations with communication in the chip level.

The intra-chip bandwidth required between cores and the on-chip memory for optimal per-
formance can be computed as: S × mc × n elements of C have to be fed into the cores and the
results collected back in Smcnkc/Sn2

r cycles, and kc × n elements of B have to be broadcast to
all cores in mckcn/n2

r cycles. With this, the maximum bandwidth required for the shared, on-chip

memory becomes 2S×nr2

kc
+ n2

r

mc
. Extrapolating from the analysis presented in Section 3.4 with n/mc

row panels and subblocks evenly distributed across S parallel cores, and again assuming a limited
memory bandwidth of y elements/cycle, a whole C += ApBp computation including fetching of S
mc × kc blocks of Ai,p will require the following number of cycles:

n

Smc

(

Smckc

y
+ max

(

(2Smc + kc)n

y
,
Smcnkc

Sn2
r

))

.

When computation dominates (the second term in the “max” dominates) the peak performance
is independent of mc, i.e. independent of the granularity at which C and the A panel are split into
row chunks. Thus, mc can be chosen to optimize memory bandwidth and the size of local store.

11

Core
Local Memory size
[Words/PE]

Intra-core BW
[Words/Cycle]

Core-chip BW
[Words/Cycle]

partial overlap (n2
r)(mckc/n2

r + 2kc) nr(1 + (2
kc

+ 1
mc

)) (2
kc

+ 1
mc

)n2
r

full overlap (n2
r)(2mckc/n2

r + 2kc) nr(1 + (2
kc

+ 1
mc

+ 1
n
)) (2

kc
+ 1

mc
+ 1

n
)n2

r

Chip
Memory Size
[Words]

Intra-chip
[Words/Cycle]

Off-chip BW
[Words/Cycle]

partial overlap n2 + Smckc + 2kcn (2S
kc

+ 1(S)
mc

)n2
r

2Sn2
r

n

full overlap 2n2 + Smckc + 2kcn (2S
kc

+ 1(S)
mc

+ S
n
)n2

r
4Sn2

r

n

Table 1: Bandwidth and memory requirements of different layers of memory hierarchy based on
problem breakdown and hardware parameters.

Finally, the required bandwidth between the LAP and external memory can be estimated. The
bandwidth required for transfering the kc×n panels of Ap and Bp in the n2kc/Sn2

r cycles required to
process one such set of blocks, is 2Sn2

r/n2. Furthermore, assuming we were to amortize reading and
writing of n2 elements of C over the n3/Sn2

r cycles required to perform the whole computation for
all n/kc panels, the external bandwidth required would be the same as what is internally needed
to feed the cores, i.e. 2Sn2

r/n. All combined, the maximum bandwidth required at the LAP’s
memory interface can be estimated as 3Sn2

r/n for reading and Sn2
r/n for writing from/to external

memory. Conversely, if we assume an external memory bandwidth of z elements/cycle and overlap
computation with communication of A and B but not of C, the whole matrix multiplication will
take

2n2

z
+ max

(

2n2

z
,

n3

Sn2
r

)

cycles.

Overlapping transfers of C can be estimated in a similar fashion. Furthermore, given that at
theoretical peak this computation would take n3/Sn2

r cycles, the achievable utilization can be
estimated.

4.2 Chip-Level Exploration

The overall system design is an optimization and exploration problem that strives to minimize the
size of and bandwidth between layers of the memory hierarchy, while optimizing the performance
and utilization of the cores. Given specific restrictions, e.g. on memory bandwidth or input matrix
size, this yields the number of PEs in each core, the number of cores on a chip and the sizes and
organization of the different levels of the memory hierarchy.

Table 1 summarizes the bandwidth and sizes of different layers of the memory hierarchy. This
table shows the demands of the partially overlapped and the fully overlapped versions of the algo-
rithm as a function of the number of cores, block sizes, and matrix size when m = n = k. In the
core level analyses, the partially overlapped version assumes that bringing blocks of Ai,p to the core
is not overlapped with computation.At the chip level, partially overlapped versions assume that
transferring of matrix C to and from off-chip memory is not overlapped with computation.

The main design challenge is to understand the dependency of design parameters on each other
and their effects on power, area, and performance.In the following, we describe several explorations
of the design space and analyze the tradeoffs between parameters and the overall performance.
Later, we will merge the knowledge gained from these studies with power and area models to
explore the design space from a practical perspective.

12

0 2 4 6 8 10 12 14
0

50

100

150

On!Chip Memory [MBytes]

O
n
!
C
h
i
p

B
a
n
d
w
i
d
t
h

[
b
y
t
e
s
/
c
y
c
l
e
]

n=2048 n

r
=4 S=8

n=1024 n
r
=4 S=8

n=512 n
r
=4 S=8

n=2048 n
r
=8 S=2

n=1024 n
r
=8 S=2

n=512 n
r
=8 S=2

Figure 6: On-chip bandwidth vs. memory size for different core organizations, and problem sizes
for fixed number of total PEs, and mc = kc. The utilization in all cases is over 93%.

4.2.1 Memory size vs. bandwidth

Based on our analytical model, we can evaluate the trade-off between the size of the on-chip memory
and the intra-chip bandwidth between cores, and the on-chip memory, as shown in Figure 6. The
resulting utilization in all cases is over 90%. We explore this trade off for S = 8, nr = 4 and
S = 2, nr = 8 with a total number of PEs on the chip (S × n2

r) equal to 128 in both cases. We
can note that bandwidth demands grow exponentially as the size of available on-chip memory is
reduced. This graph also demonstrates that bigger but fewer cores on the chip demand much less
on-chip bandwidth. However, for a fixed problem size of C, bigger cores will require a bigger size of
the on-chip memory, leading to a tradeoff between on-chip memory size and bandwidth. This extra
space requirement is due to wider panels of A and B that must be stored in the shared memory.

4.2.2 Number of cores vs. on-chip bandwidth and memory size

We analyze the overall performance of the design when the number of cores is increased for different
on-chip memory sizes and on-chip memory bandwidths. The curves in Figure 7 show the percentage
of performance compared to a single 4 × 4 core for different numbers of cores and available on-
chip bandwidths. The graph contains four sets of four curves where each set has the same ratio
for the number of cores to available on-chip bandwidth S/BW, (indicated by same marker type).
We observe that for small memory sizes different points of the same set with the same S/BW
ratio all exhibit similar performance. Although the on-chip bandwidth is increased linearly with
the number of cores, there is no performance improvement. To achieve performance gains when
increasing the number of cores, the bandwidth has to grow superlinearly. However, as the size of
memory increases, there is more benefits in using more cores to gain performance even with linear
bandwidth increases.

For configurations with the same number of cores S, (indicated by the same line style or color)
we observe that, as the bandwidth increases, the curves reach a peak eventually. The point in each
curve with the smallest on-chip memory and peak performance is the optimal design point. Note
that such a point is on the optimal design curve in Figure 6, too. For example, for S=8 cores, a
bandwidth of 4 bytes or words/cycle, with an on-chip memory size of 13 Mbytes, and a bandwidth

13

0 2 4 6 8 10 12 14
0

200

400

600

800

1000

1200

1400

1600

On!chip Memory [MBytes]

R
e
l
a
t
i
v
e

P
e
r
f
o
r
m
a
n
c
e

[
p
e
r
c
e
n
t

o
f

s
i
n
g
l
e

c
o
r
e
]

 S=4 BW=1
 S=8 BW 2
 S=12 Bw=3
 S=16 BW=4
 S=4 BW=2
 S=8 BW=4
 S=12 Bw=6
 S=16 BW=8
 S=4 BW=4
 S=8 BW=8
 S=12 Bw=12
 S=16 BW=16
 S=4 BW=8
 S=8 BW=16
 S=12 Bw=24
 S=16 BW=32

Figure 7: LAP performance for different on-chip memory sizes, different number of cores, and
different total on-chip bandwidths with nr = 4 and s=4, 8, 12, 16.

of 8 bytes/cycle with an with on-chip memory size 2.5 MBytes are both optimal design points.
As mentioned above, the increase in bandwidth requirements needed for maintaining optimal

performance with an increase in the number of cores is exponential. This can be further studied by
finding the optimal points that have same on-chip memory size, but a different number of cores. For
example, to achieve peak performance with different number of cores S=4,8,16 at 2.5 MBytes on-
chip memory, the required bandwidth is 2, 8, 32. This shows the exponential growth in bandwidth
demand to maintain utilization when increasing the number of the cores.

4.2.3 On-chip memory size vs. off-chip bandwidth

Finally, we analyze the tradeoff between the size of the on-chip memory and the external, off-chip
bandwidth. We assume that the problem size and number of cores are fixed, and initially the
optimal local store size is allocated in the cores and PEs on the chip. Next, we shrink the available
on-chip memory and compute the external bandwidth demands to keep the performance over 90%.
The algorithmic solution to this problem is adding another layer of blocking as shown in Figure
8. The matrix dimension of the original problem size is is n and the new block size is ns. We call
this ratio d = n

ns
. After shrinking the available on-chip memory, the solution assumes that a single

(Figure 8-(a)) or k ≤ d (Figure 8-(b,c) k=d) sub-blocks of the original matrix C can fit on the new
on-chip memory. Then, the algorithm performs all operations and data movements necessary to
compute these k sub-blocks of C. The new off-chip bandwidth for the new smaller on-chip memory
and a sub-problem size k × (ns × ns) as part of the original n × n matrix multiplication can be
computed as

k((2)n2
s) + (k + 1)nns

kn2
sn

=
(2)k + (k + 1)d

kn
elements/cycle

Figure 9 shows the external bandwidth demands for three different problem sizes and how the in-
crease as the size of on-chip memory decreases. With growing original problem sizes n× n, for the
same on-chip memory size, the external bandwidth drops. We observe that as the original problem

14

C11

C11+=C11 x

x+=

On-chip

Memory n/2

Bp

Ap

Ci

Main

Memory C A B

+= x

x+=

n

Bp

Ap

Ci

C A B

a b

+= x

x+=

n/2

Ap

Ci c

BC A

Bp

Figure 8: Blocking algorithm to map a big problem on a small on-chip memory. a) blocking for
quarter size b,c)blocking for half size.

0 2 4 6 8 10 12 14 16 18
2

4

6

8

10

12

14

16

18

20

On!Chip Memory [MBytes]

E
x
t
e
r
n
a
l

B
a
n
d
w
i
d
t
h

[
b
y
t
e
/
c
y
c
l
e
]

N=2048

N=1024

N=512

Figure 9: External Bandwidth vs. Size of on-chip memory tradeoff for different original problem
sizes. All utilization numbers are over 92%.

size increases, the external off-chip bandwidth requirement for the same system configuration de-
creases slightly. Still, the similar bandwidth vs. on-chip memory size trade-off exists to maintain
high system utilization.

Figure 10 summarizes overall performance of a 1.4GHz LAP as a function of the size of the on-
chip memory (dictating the possible kernel size), the number of cores, and the external bandwidth
to the off-chip memory. Here we use nr = 4, mc = kc (the submatrix Ai,p is square) and n =
256, 512, 768 or 1024 as the dimension of matrix C (kernel size, which translates into a corresponding
on-chip memory size). As we increase the available core parallelism, the needed off-chip bandwidth
increases for the same problem size2. Also when problem size grows, with same off-chip bandwidth
we get better performance. This graph shows that a small L2 memory size, e.g. as is the case in
GPUs, which determines the possible on-chip problem size, limits the achievable peak utilization
(”exploitable parallelism”). Overall, with 16 cores, 5 Mbytes of shared on-chip memory and an
external bandwidth of 16B/cycle, we can achieve 600 GFLOPS.

4.3 Model Validation and Comparative Performance Prediction

The analytical models that we presented so far can help designers verify performance and utilization
of their architecture for class of matrix operations in the early stages of the design process. In this
section, we demonstrate the benefits and feasibility of our analytical models for early performance

2Note that the needed on-chip memory size also increases slightly due to additional storage required for prefetching
across more cores.

15

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

On!Chip Memory [Mbytes]

P
e
r
f
o
r
m
a
n
c
e

[
G
F
L
O
P
S
]

24 B/cycle, S=16

16 B/cycle, S=16

8 B/cycle, S=16

16 B/cycle, S=8

8 B/cycle, S=8

4 B/cycle, S=8

16 B/cycle, S=4

8 B/cycle , S=4

4 B/cycle, S=4

Figure 10: LAP performance as a function of external off-chip bandwidth and the size of on-chip
memory with nr = 4, mc = kc.

prediction by using them to discuss common sources of performance waste in existing architectures,
and we specifically study examples of state-of-the-art GPU and other accelerated architectures.

There are two common limitations in parallel architectures that restrict their performance and
efficiency. First, the core architectural and micro-architectural features can limit the accesses to
local register files and number of instructions executed in each cycle. Second, the memory hierarchy
organization that include sizes of layers and bandwidths between them might not be able to sustain
data movement from/to the computation cores.In the following, we assume that the cores are per-
fectly designed. The main metric affected by core-level design issues is the achievable peak efficiency
in terms of both energy spent per operation (GFLOPS/W) and achievable utilization. We have
shown how to design such ideal core in Section 3. A further study of core-level micro-architectural
tradeoffs is outside of the scope of this paper. Instead we focus on analysis of the memory hierarchy.
The main efficiency metric affected by the memory hierarchy trade-off is achievable utilization. In
the following we will specifically show how we can apply our analytical memory hierarchy model
to predict limitations in Nvidia’s Fermi and Clearspeed’s CSX architectures.

The Nvidia Fermi C2050 architecture has 14 cores with 16 double precision MAC units in each
core. The size of the onchip cache is 728 KBytes. The clock frequency is 1.15 GHz. Let us assume
that cores are designed to achieve up to peak performance. With 728 KBytes, the dimension of the
block of matrix C that fits in the onchip memory is ns = 256 filling 512 KBytes of onchip L2 cache.
Dividing the block C into row panels among the 14 cores results in mc = ns/S = 256/14 = 16.
Hence, the size of each row panel of C is mc×ns = 16×256. Thus, the parameters of the design are as
follows: mc = kc = 16, S = 14, ns = 256. Assuming full overlapping, the maximum required off-chip
bandwidth according to Table 1 is (4×14×42

256)×1.15GHz×8Bytes= 32GBytes/second, which is within
the 144 GBytes/ that Fermi offers. The on-chip required bandwidth is (2S

kc
+ S

mc
)n2

r = (2×14
16 + 14

16)42×

1.15GHz×8Bytes= 386GBytes/second, which is much more than the 230 GBytes/second that Fermi
offers. To calculate theoretically achievable utilization using such a configuration, we divide the
available bandwidth by the demanded bandwidth: 230/386 = 60%. In reality, implementations
of GEMM on C2050 achieve 58% [59] of peak performance. Hence, our model accurately predicts

16

that the on-chip bandwidth of Fermi does not overcome the needs of matrix multiplication. We can
over come this underutilization by increasing the on-chip bandwidth (see above), or by increase the
on-chip memory size. If the size of on-chip memory is doubled in the previous case, the required
on-chip bandwidth can drop to half or 200 GBytes/second using the solution in Figure 9-c.

We use the same methodology to analyze the Clearspeed CSX architecture. The CSX architec-
ture achieves up to 78% of peak performance for matrix multiplication [4]. The CSX architecture
has 128KBytes of on-chip memory. The block of C that fits on this memory is 64 × 128. Again,
we assume that this architecture has six 4× 4 optimal cores. Using the algorithm described in Fig-
ure 8, with d = 16, k = 2, the minimum off-chip bandwidth demand is 4.7 GBytes/second. With
an actual 4 Gbyte/s off-chip bandwidth, our predicted upper limit for achievable utilization for
this architecture is 83%. We can increase the utilization by increasing the size of on-chip memory.
If we double the size of memory it can fit 128 × 128 blocks of C. Using the same algorithm with
d = 8, k = 1, the minimum off-chip bandwidth drops to 3.375 GBytes/second that is less than
provided off-chip bandwidth by CSX architecture.

5 LAP Implementation

We have developed both simulation and analytical power and performance models of the LAP in
comparison with other architectures. The analytical performance model was presented in previous
sections, and we will describe our power model next. In addition, we validated the performance
model and LAP operation in general by developing a cycle-accurate LAP simulator. The simulator
is configurable in terms of PE pipeline stages, bus latencies, and memory and register file sizes.
Furthermore, by plugging in power consumption numbers for MAC units, memories, register files
and busses, our simulator is able to produce an accurate power profile of the overall execution.
We accurately modeled the cycle-by-cycle control and data movement for GEMM, and we verified
functional correctness of the produced results. The simulator provides a testbed for investigation
of other linear algebra operations.

5.1 Component Selection

To investigate and demonstrate the performance and power benefits of the LAP, we have studied
the feasibility of a LAP implementation in current bulk CMOS technology using publicly available
components and their characteristics as published in the literature.
State-of-the-art implementations of Fused Multiply Add (FMA) units use various optimization tech-
niques to reduce latency, area and power consumption [63]. Fused Multiply Accumulate (FMAC)
units with delayed normalization achieve a throughput of one accumulation per cycle [72, 71]and
save around 15% of total power [36]. The number of pipeline stages typically ranges between 5
and 9and the same FPMAC units can be reconfigured to perform either integer, single-, or double-
precision operations [67]. A precise and comprehensive study of different FMA units across a wide
range of both current and estimated future implementations, design points and technology nodes
was presented in [25]. For our analysis, we use the same data. We estimate that a single- and
double-precision FMAC unit occupies an area of 0.04mm2 and 0.01mm2, respectively. Further-
more, all recent literature reports similar power consumption estimates of around 8-10mW and
40-50mW (at ≈ 1GHz and 0.8V operation), respectively.

Our design utilizes around SRAM with no tags and no associativity. Given the sequential
nature of access patterns to 64-bit wide double-precision numbers, we carefully selected memories

17

Speed

[GHz]
Area
[mm2]

Memory

[mW]
FMAC
[mW]

PE
[mW]

PE
[W/mm2]

PE
[GFLOP/mm2]

PE
[GFLOP/W]

PE
[GFLOP2/W]

2.08 0.148 15.22 32.3 47.5 0.331 28.12 84.8 352.7
SP 1.32 0.146 9.66 13.4 23.1 0.168 18.07 107.5 283.8

0.98 0.144 7.17 8.7 15.9 0.120 13.56 113.0 221.5
0.50 0.144 3.66 3.3 7.0 0.059 6.94 117.9 117.9

1.81 0.181 13.25 105.5 118.7 0.670 19.92 29.7 107.5
DP 0.95 0.174 6.95 31.0 38.0 0.235 10.92 46.4 88.2

0.33 0.167 2.41 6.0 8.4 0.068 3.95 57.8 38.1
0.20 0.169 1.46 3.4 4.8 0.046 2.37 51.1 20.4

Table 2: 45nm scaled performance and area for a LAP PE with 16KBytes of dual-ported SRAM.

with one or two banks to minimize power consumption. Using CACTI [65] with low-power ITRS
models and aggressive interconnect projection, we obtained area estimates of around 0.13mm2 and
we calculated the dynamic power of the local SRAM at frequencies over 2.5 GHz to be around
13.5mW per port. For the overall system estimation (see Section 5.4), we project the dynamic
power results reported by CACTI to the target frequencies of the MAC units. According to the
CACTI results, leakage power is estimated to be negligible in relation to the dynamic power.
To estimate latencies and power consumption of row and column busses, we use data reported in

CACTI. Since we do not have any of the complex logic for bus arbitration and address decoding,
we only consider the power consumption of the bus wires themselves. With a nr × nr 2D array
of PEs, our design contains a total of 2 × nr 32-bit (single precision) or 64-bit (double-precision)
row and column busses. However, per PE we only have 2/nr of the power consumption of a single
bus. CACTI reports three different classes of wires (fast local, semi-global, and global) for different
layers of the memory hierarchy. For intra-core communication, we assume fast local wires. For
wires with 30% overhead, the distance between repeaters is a maximum of more than 1.62mm.
According to our area estimates, each PE will not be wider than 0.4 mm. Hence, for nr = 4,
broadcast bus will not require any overhead (no wire repeaters and even less power consumption)
compared to a point-to point connectivity. The wire model suggests that with any type of wire, we
can reach over 2.2 GHz or over 1.4GHz bus frequency on the broadcast bus for nr = 4,8 or nr = 16,
respectively. The area of the bus per PE is 0.023 mm2 and the worst case bus power is negligible.

Overall area, power and performance estimates for our PE design at various operating points
are summarized in Table 2. Running at a clock frequency of 1GHz, a 4× 4 LAP core is estimated
to achieve an efficiency of 110 single-precision or 45 double-precision GFLOPS/W. We stress that
the point of this section is not to present the ultimate design.

To find the best combination of components and the best operating frequency we used energy-
delay W/GFlops2 [28], as well as GFLOPS/W and GFLOPS/mm2 efficiency metrics. The best
design choice has a lower energy-delay value and maintains high efficiency. Figure 11-(left) shows
the power/throughput and the energy-delay for different PE frequencies. At 1.8 GHz there is no
much deduction in energy-delay while power/throughput increases significantly. At the left side of
the spectrum low frequency designs have high efficiency but with high energy-delay and low area
efficiency. A good tradeoff is achieved at a frequency of around 1 GHz, where energy-delay is still
decreasing and there is high area and power efficiency. Figure 11-(right) shows the trade-off between
area/throughput, power/throughput and energy-delay. Low frequency designs are on the right side
of spectrum. At 1 GHz, more than twice the area efficiency and energy-delay (0.1 mm2/GFlop and
10 mW/GFLOPS2) is achieved when compared to a design at 0.3 GHz. Also, compared to 1.8
GHz core, while having almost the same energy-delay, the power efficiency is 40% better.

18

5.2 Power Modeling of Architectures

We developed a general analytical power model that builds on existing component models (e.g.
for FPUs and memories) described in the previous section. The model is derived from methods
described in [55, 8] and we applied it to both our LAP and various existing architectures. Our
power model computes the total power as the sum of the dynamic power and idle power over all
components in the architecture.

Power = Pdyn + Pidle =
n

∑

i=1

(Pdyn,i) +
n

∑

i=1

(Pidle,i)

Pdyn,i = Pmax,i × activityi

Pidle,i = Pmax,i × ratio

Dynamic power is modeled as a maximal component power multiplied by the component’s activity
factor. We estimated activity of memory components based on access patterns for matrix multipli-
cations. Otherwise, we assume activity factors of one or zero depending on whether a component is
utilized during GEMM operations. For leakage and idling, we use a model derived from calibrations
that estimates idle power as a constant fraction of dynamic power ranging between 25% and 30%
depending on the technology used.

We calibrated our power model and its parameters against power and performance numbers
presented for the NVidia GTX280 Tesla GP-GPU running matrix multiplication [34, 77]. We used
the sizes of different GPU memory levels reported in [77] together with numbers from [34] and [3] to
match logic-level, FPU, CACTI and leakage parameters and factors in order to achieve consistent
results across published work and our model. We then applied this model to other architectures,
such as the NVidia GTX480 Fermi GP-GPU [1, 40] or the Intel Penryn [27] dual-core processor.
To the best of our knowledge, there are no detailed power models yet for these architectures. We
adapted our model to the architectural details as far as reported in literature using calibrated
numbers for basic components such as scalar logic, FPUs or various memory layers. In all cases, we
performed sanity checks to ensure that total power numbers match reported numbers in literature.

!"!#$

!"#$

#$

#!$

!$!"%$ #$ #"%$ &$

'($)*+,-+./0$12345$

667&829:;'$

6<829:;'$

(.+*=0$>+?@0$

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

!" !'$" !'%" !'&" !'(" !'#"

))*%+,-./0"

1+,-./0"

234567"849:7"

Figure 11: Efficiency metrics of PE (left), and power efficiency and energy-delay vs. area efficiency
at different frequencies (right).

19

5.3 Power and Area Exploration

In this section, we use power and area models to study the design space that we created in
Section 4. We explore various trade-offs and how each design feature can affect the power and area
consumption of the whole system. We use analytical results from Section 4 and apply representative
power and area numbers to each point in the design space. This will allow us to evaluate how size
and bandwidth of different layers of the memory hierarchy affect the overall performance and
efficiency of the design.

At the core level, the goal is to have enough bandwidth and local store to maintain peak
performance (equivalent to Figure 4) . We select the size of the core to be nr = 4, and show the
core-level area and power consumptions. Figure 12-(left) illustrates the area of different components
within PE. With a local store size of 18 KByte, the local store occupies at most 2/3 of the PE,
which exhibits a a linear relation to the local store capacity size. The power/throughput ratio of
the PE, the local store, and the total leakage is shown in Figure 12-(right). The graph suggests
that with smaller local stores and even with higher bandwidths still less power is consumed in each
PE. The overall PE power consumption is dominated by the FPU. These graphs advocate smaller
local store sizes in terms of power and area consumption. However, there are three reasons that
force larger PE local stores. First, the power density increases if local store size is reduced, which
may limit the overall performance. Second, although decreasing the local store size does not affect
the core power consumption, the on-chip bandwidth will increase exponentially, which decreases
the utilization and also results in a significant increase of the total power consumption. Finally, for
algorithms like Cholesky factorization in which all the data is in-core, a bigger local store per PE
yields to the ability of handling bigger kernels and amortizing more of the irregular computations
over the available parallelism.

At the chip level, we estimate the effect of on-chip memory size on overall power and area
while maintaining peak performance (similar to Figure 9). For each on-chip memory size, there
are different options in terms of core configuration. We choose the biggest possible local store size
to minimize intra-chip traffic and hence power consumption. Here, the power consumption due to
external accesses is not included. Figure 13-(left) shows the area consumption of the cores and
on-chip memory. Figure 13-(right) shows that with our domain specific design of on-chip SRAM
memory almost all of the power of the chip is used by the eight cores and memory trade-offs are
negligible.

In order to get a better sense of memory trade-offs in more general systems, we performed the
same analysis using the NUCA [58] memory simulator of CACTI and replacing the SRAM design
by Nuca caches. Here, the effects of increased bandwidth with smaller memory sizes are seen more
realistically. In our LAP design, we use single-ported memory banks in low-power technology and
with low clock frequencies. In a Nuca cache based design, either multi-ported caches or high-
performance, high-power banks have to be used to maintain the same high bandwidths at small
memory sizes. We chose high-performance, high-power caches since they require less area and
power compared to multi-ported designs. As shown in Figure 14-(left), in all cases the on-chip
Nuca memory occupies more space than the computation cores do. Furthermore, a design with
small capacity, high bandwidth banks ends up occupying more space than a larger, slower on-chip
memory. Higher bandwidth also affects the power consumption of the system. Figure 14-(right)
shows that at lower capacities, on-chip Nuca memory consumes more power than the computation
cores. In other words, a design with larger simpler on-chip Nuca cache size is both more power and

20

!"

!#!$"

!#!%"

!#!&"

!#!'"

!#("

!#($"

!#(%"

!#(&"

!")" (!" ()" $!"

*
+,
-
".
/
/
0
$
1"

234-5"673+,"689,".:;<7,=1"

>?"

234-5"673+,"

@>A"

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

#!"

!" (" '!" '(" #!"

)
*+

,
-.

/
"

-0123"45067"4897":;<=57>?"

/@"

-0123">5067"

,/A"

/@"372B2C7"

Figure 12: Area of a single PE in a 4x4 core for different local store sizes (left), and leakage, local
store, and total power efficiency of a PE at in a 4x4 core at 45nm (right).

!"

!#"

!##"

#$!" !" !#"

%
&'
(
")
*
*
+
,
-"

./0123"4'*5&6"728'")496:';-"

%<<"05&';"

=123"

./>0123"

*'*5&6"

!"#$

#$

#!$

!"#$ #$ #!$

%
&'

(
)*

+
$

*,-./0$123456$7/82$91:6;2<=$

>??$-452<$

@./0$

*,A-./0$

123456$

Figure 13: Area (left) and power efficiency (right) of cores, on-chip memory and a total 128 MAC
unit system with S=8 4x4 cores, different on-chip SRAM memory sizes, and n=2048.

!"

!#"

!##"

!###"

#$!" !" !#"

%
&'
(
")
*
*
+
,
-"

./0123"4'*5&6"728'")496:';-"

%<<"05&';"

=123"

./>0123"

*'*5&6"

!"

#"

$"

%"

&"

'"

("

!)#" #" #!"

*
+,

-
./

0
"

/12345"6789:;"<4=7">6?;@7AB"

CDD"29:7A"

E345"

/1F2345"

8789:;"

Figure 14: Area (left) and power efficiency (right) of cores, on-chip memory and a total 128 MAC
unit system with S=8 4x4 cores, different on-chip Nuca memory sizes, and n=2048.

21

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

!#'$"

()*&+!",-./" ()*&+!"0(122" 34,"

50,6"

!
"#

$
%&

'
(
)

789:;.9;"7.<=-"3'"

789:;.9;"7.<=-"3&"

789:;.9;"7.<=-"3%"

)->;?@-"3&")3A"

)->;?@-"7.<=-"3&"

)->;?@-"7.<=-"3%"

43B"

0CBDEFGH;"C,B"

3&")3A"

0<.I.@"38JH<"

K9;-J-@",B"

L-JH:;-@"CHI-"

K9:;@?<M89"7.<=-"

A?:-:"

0=.@-N"2-O8@P""

C,B"

KNI-"7=HQ"

Figure 15: Normalized power breakdown of Nvidia Tesla GTX280 versus LAP at 65nm.

more area efficient.

5.4 Comparative Power and Performance Analysis

Figure 15, 16, and Figure 17 show a breakdown of performance-normalized power consumption for
current high-performance GP-GPU and multi-core architectures as compared to single- or double-
precision versions of a prototypical LAP with an equivalent number of cores (i.e. Shared Multipro-
cessors, SMs, in GPUs3) running at equivalent raw single FMAC performance (1.3GHz or 1.4GHz).
In the case of GPUs (Figures 15 and 16), we show efficiencies for both peak operation and when
running GEMM. Current GPUs run single- or double- precision GEMM (SGEMM or DGEMM)
at only around 60% of their theoretical peak FPU performance [6, 74, 59]. As the graphs show,
reduced utilization has a significant effect on achievable efficiencies, even when considering that
unneeded components, such as constant caches, texture caches, extra ALUs or special functional
units (SFUs) can be turned off. By contrast, the Intel Penryn dual-core processor and a LAP
with two 4 × 4 cores running at 1.4GHz, i.e. at around half of the Penryn’s 2.66GHz clock speed,
achieve near peak utilization at a moderate performance of 20 and 90 double- precision GFLOPS,
respectively (Figure 17).

Breakdowns show that traditional architectures include significant overhead. The only units
that are really useful for performing matrix multiplication are FPUs/execution units, shared mem-
ories/L1 caches, L2 caches and TLBs. In the GPUs, components like shared memories, instruction
caches or register files can consume up to 70% of the power, and in some cases the register file alone
contributes more than 30%. By eliminating instructions, associated cache power is removed from
the LAP. Similarly, register files are very small and shared memories are replaced by sequentially
accessed, partitioned SRAM with a maximum of 2 read/write ports. For the Penryn, we mainly
relied on the power breakdown presented in [27], where we assumed that GEMM utilizes all of the
core. In the graph, the SRAMs and MACs of the LAP are listed under the MMU and execution
unit categories. We conservatively added all of the miscellaneous and IO power consumption factors
to the LAP, which favors the Penryn in this comparison. We can observe that the Penryn uses
40% of the core power (over 5 W) in the Out of Order and Frontend units that do not exist in LAP

3In the GTX480, each SM provides 16-way double-precision or 32-way single-precision parallelism. Correspond-
ingly, we replace SMs with one or two 4× 4 double- or single-precision LAP cores, respectively.

22

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

!#'$"

!#("

!#($"

!#$"

)*+(,!"-."

/012"

)*+(,!"

-)344"

56."

7-.8"

)*+(,!"9."

/012"

)*+(,!"

9)344"

56."

79.8"

!
"#

$
%&

'
(
)

5%"*0:;<=0">1?@0""

-AB"

9>1?@0CD@1=0E"5%"

F>1?@0"5%"

G0HID;0="AIJ0"

>KLD;1L;"?1?@0"

*5M"

-?1J1="5KHI?"

65B"

M<D0D"

A.BD"

9>1?@0"5&"

-@1=0E"N0NK=O"

FEJ0">@I/"

Figure 16: Normalized power breakdown of Nvidia Fermi GTX480 versus LAP at 45nm.

architecture. Furthermore, with around 5 W the execution unit consumes one third of the core
power, which may be attributed to the fact that FPUs are fully IEEE-754 compatible and support
the full range of exception handling.

Overall, some of the major differences between traditional general-purpose designs and a spe-
cialized linear-algebra architecture lie in the memory architecture and the core execution unit
datapaths. The LAP has relatively large L1- and L2-equivalent PE and on-chip memories, compa-
rable in size to multi-core architectures but an order of magnitude bigger than in GPUs. This keeps
bandwidth between memory layers low. All memories are pure, banked SRAMs with no tagging or
cache consistency overhead. Consequently, memories are more power efficient and smaller than in
other architectures despite being larger. Shared on-chip memory can be partitioned among groups
of cores with each bank being only coupled with its set of cores. Note that we do not include ex-
ternal memory in our analysis. With system architectures increasingly integrating host processors
and accelerators on a single die, we can expect similar benefits to extend into other such memory
layers. Again, larger on-chip memories in the LAP help to decrease external memory bandwidth
and power consumption requirements.

For execution units and data paths, we can observe that unnecessary overheads are removed
by performing whole chains of operations in local accumulators without any register file moves
that become necessary in traditional SIMD arrangements. This is further confirmed by low GEMM
utilizations, which indicates that despite existing architectural features, idiosyncrasies of traditional
architectures make it difficult to keep a large number of FPUs busy. Overall, the 2D PE arrangement
with local, partitioned memory is scalable with exponential growth in compuation power for a linear
growth in interconnect and bus lengths. With relatively low overhead for specialized MAC units
and broadcast busses, we can envision such specialized data paths to be integrated into standard
processor pipelines for order of magnitude improved efficiency in a linear algebra computation
mode. Table 3 summarizes the differences discussed in this section.

23

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

(#&"

(#'"

)*+,-+"

./011"

23)"

4.)5"
!
"#

$
%&

'
(
)

666"

7,8+9*+:"

0;*<"

11="

>?@"

2$"

A6"

1B@<"

1CA."

Figure 17: Normalized power breakdown of Intel dual-core Penryn versus LAP at 45nm.

Power Waste Sources CPUs GPUs LAP

Instruction Pipeline ICache, Out of Order, ICache, In order, No Instructions
Branch Prediction NA

Execution Unit 1D SIMD+RF 2D SIMD+RF 2D+Local SRAM/FPU

Register File & Move Many Ported Multiple Ported 8 Entry Single Ported

On-chip Memory Big Cache Small Cache Big SRAM
Organization Strong Coherency Weak Coherency Tightly Coupled Banks

Multi-Thread Support SMT Blocked MT Not Supported

BW/FPU Ratio High High Low (Enough)

Memory Size/ FPU Ratio High Low (Inadequate) High

Table 3: Comparison between main design choices in the studied platforms.

5.5 Summary Comparison

We compare overall efficiency and inverse energy-delay [28] of single- and double-precision real-
izations of our design against other systems. Figure 18 shows an analysis of core- and chip-level
efficiencies for studied architectures and a LAP in which we vary the number of cores to match
the throughput in existing architectures. Our LAP with 30 single- or 15 double-precision cores
and 5Mbytes of on-chip memory achieves a GEMM performance of 1200 and 600 GFLOPS at a
utilization of 90% in an area of 115 mm2 or 120 mm2, respectively. By comparison, the dual-core
CPU achieves 22 GFLOPS in 100mm2 and the GTX480 runs SGEMM/DGEMM with 780/390
GFLOPS and 58% utilization using 15 SMs in total 500mm2 chip area.

Finally, Table 4 summarizes key metrics for various systems running GEMM as a representa-
tive matrix computation. For this table, we extended the analysis presented in [41] by including
estimates for our LAP design, the 80-tile network-on-chip architecture from [72], the Power7 pro-
cessor [75], the Cell processor [52], Intel Penryn [27], Intel Core i7-960 [12], CSX700 [4], Altera
Stratix IV [60], and the NVidia Fermi GPU (GTX480) [40] all scaled to 45nm technology and to
GEMM utilizations.

We note that for a single-precision LAP at around 1.4GHz clock frequency, the estimated
performance/power ratio is an order of magnitude better than GPUs. The double-precision LAP

24

0.1

1

10

100

GTX480

SGEMM

LAP-30 (SP)

(same

Flops)

GTX480

DGEMM

LAP-15 (DP)

(same

Flops)

GTX280

SGEMM

LAP-15 (SP)

(same

Flops)

Penryn(DP)

DGEMM

LAP-2 (DP)
G

F
L

O
P

S
/W

Core Chip

Figure 18: Comparison of efficiencies for single- and double-precision GEMM between NVidia Tesla
GTX280, NVidia Fermi GTX480, Intel Penry and a LAP of equivalent throughput.

Architecture
GFLOPS

s

W

mm2

GFLOPS

mm2

GFLOPS

W

GFLOPS
2

W
Utilization

Cell 200 0.3 1.5 5.0 1000 88%
Nvidia GTX280 410 0.3 0.8 2.6 1066 66%
Rigel 850 0.3 3.2 10.7 9095 40%
80-Tile @0.8V 175 0.2 1.2 6.6 1155 38%
80-Tile @1.07V 380 0.7 2.66 3.8 1444 38%
Nvidia GTX480 780 0.2 0.9 4.5 3510 58%
Core i7-960 96 0.4 0.50 1.14 109.44 95%
Altera Stratix IV 200 0.02 0.1 7 1400 90+%
LAP (SP) 1200 0.2 6-11 30-55 66000 90+%

Intel Quad-Core 40 0.5 0.4 0.8 32 95%
Intel Penryn 20 0.4 0.2 0.6 12 95%
IBM Power7 230 0.5 0.5 1.0 230 95%
Nvidia GTX480 390 0.2 0.4 2.2 858 58%
Core i7-960 48 0.4 0.25 0.57 27.36 95%
Altera Stratix IV 100 0.02 0.05 3.5 350 90+%
ClearSpeed CSX700 75 0.02 0.2 12.5 937.7 78+%
LAP (DP) 600 0.2 3-5 15-25 15000 90+%

Table 4: 45nm scaled performance and area of various systems running GEMM.

design shows around 30 times better efficiency compared to CPUs. The power density is also
significantly lower as most of the LAP area is used for local store. The performance/area ratio
of our LAP is in all cases equal to or better than other processors. Finally, the inverse of energy
delay of LAP is at least an order of magnitude better that all other designs. All in all, with a
double-precision LAP we can get up to 32 times better performance in the same area as a complex
conventional core but using almost the same power.

6 Conclusions and Outlook

This paper provides initial evidence regarding the benefits of customized architectures for linear
algebra computations. As had been postulated [32], one to two orders of magnitude improvement
in power and performance density can be achieved. We now discuss possible extensions.

For example, Figures 3 and 10 clearly show the tradeoff between the sizes of the local and
onchip memories, and their corresponding bandwidth to onchip and offchip memory. One question

25

that remains is the careful optimization of this tradeoff across the multi-dimensioanl power, perfor-
mance, utilization and area design space. Using a combination of simulations and further physical
prototyping, we plan to address these questions in our future work. Similarly, the choice of the
size of the PE array, nr = 4 is arbitrary: it allows our discussion to be more concrete. A natural
study will be how to utilize more PEs yet. As nr grows, the busses that connect the rows and
columns of PEs units will likely become a limiting factor. This could be overcome by pipelining
the communication between PEs or by further extending interconnect into a flat on-chip network
(NoC) of PEs that can be dynamically configured and partitioned into clusters of cores of variable
sizes.

So far, we modeled the power consumption for our design and its competitors. The next step is
to further expand our analysis to the area and complexity breakdown for these architectures. This
will help designers take into account both area and power budgets as one of the main concerns in
the future is the power density. We also plan to extend our cycle accurate simulator into a full
LAP system simulator and, if possible, integrate it to other muli-core simulators to study detailed
design tradeoffs both at the core and chip level. This integration will allow cycle-accurate modeling
of dynamic power consumption of different design choices.

The GEMM operation is in and by itself important. It indirectly enables high performance for
the level-3 Basic Linear Algebra Subprograms (BLAS) [13, 39] as well as most important operations
in packages like LAPACK [7] and libflame [70]. We started out research by initially designing a
LAP for Cholesky factorization, an operation that requires the square root and inversion of scalars.
As such, our LAP simulator is already able to simulate both matrix multiplication and Cholesky
factorization. It is well-understood that an approach that works for an operation like Cholesky
factorization also works for GEMM and level-3 BLAS. Additional evidence that the LAP given in
this paper can be extended to other such operations can be found in [29], in which the techniques
on which our GEMM is based are extended to all level-3 BLAS. The conclusion, which we will
pursue in future work, is that with the addition of a square-root unit, a scalar inversion unit, and
some future ability to further program the control unit, the LAP architecture can be generalized
to accommodate this class of operations.

26

References

[1] Fermi computer architecture white paper. Technical report, NVIDIA, 2009.

[2] Intel R© Math Kernel Library. User’s Guide 314774-009US, Intel, 2009.

[3] Samsung DDR3 SDRAM:High-Performance, Energy-Efficient Memory for Today’s Green Computing
Platforms. Technical report, SAMSUNG Green Memory, March 2009.

[4] CSX700 Floating Point Processor. Datasheet 06-PD-1425 Rev 1, ClearSpeed Technology Ltd, 2011.

[5] R. C. Agarwal, F. G. Gustavson, and M. Zubair. A high-performance matrix-multiplication algorithm on
a distributed-memory parallel computer, using overlapped communication. IBM J. Res. Dev., 38:673–
681, November 1994.

[6] V. Allada, T. Benjegerdes, and B. Bode. Performance analysis of memory transfers and GEMM sub-
routines on NVIDIA Tesla GPU cluster. CLUSTER ’09, pages 1 – 9, 2009.

[7] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. D. Croz, S. Hammarling,
A. Greenbaum, A. McKenney, and D. Sorensen. LAPACK Users’ guide (third ed.). Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1999.

[8] D. Brooks et al. Wattch: a framework for architectural-level power analysis and optimizations. ISCA,
2000., pages 83 – 94, 2000.

[9] L. E. Cannon. A cellular computer to implement the kalman filter algorithm. PhD thesis, Bozeman,
MT, USA, 1969. AAI7010025.

[10] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear algebra library for
distributed memory concurrent computers. In Proceedings of the Fourth Symposium on the Frontiers of
Massively Parallel Computation, pages 120–127. IEEE Comput. Soc. Press, 1992.

[11] J. Choi, D. W. Walker, and J. J. Dongarra. Pumma: Parallel universal matrix multiplication algorithms
on distributed memory concurrent computers. Concurrency: Practice and Experience, 6(7):543–570,
1994.

[12] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai. Single-chip heterogeneous computing: Does the future
include custom logic, FPGAs, and GPGPUs? In Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO ’43, pages 225–236, Washington, DC, USA,
2010. IEEE Computer Society.

[13] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A set of level 3 basic linear algebra subprograms.
ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[14] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of FORTRAN basic
linear algebra subprograms. ACM Trans. Math. Soft., 14(1):1–17, March 1988.

[15] Y. Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydadjiev. 64-bit floating-point fpga matrix multi-
plication. In Proceedings of the 2005 ACM/SIGDA 13th international symposium on Field-programmable
gate arrays, FPGA ’05, pages 86–95, New York, NY, USA, 2005. ACM.

[16] V. Eijkhout. Introduction to High Performance Scientific Computing. www.lulu.com, 2011.

[17] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark silicon and the end of
multicore scaling. In 38th annual international symposium on Computer architecture, ISCA ’11, pages
365–376. ACM, 2011.

[18] R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt, I. Hernandez, T. Juan, G. Lowney,
M. Mattina, and A. Seznec. Tarantula: a vector extension to the alpha architecture. Computer Archi-
tecture, 2002. Proceedings. 29th Annual International Symposium on, pages 281 – 292, 2002.

27

[19] R. Espasa, M. Valero, and J. E. Smith. Out-of-order vector architectures. In Proceedings of the 30th
annual ACM/IEEE international symposium on Microarchitecture, MICRO 30, pages 160–170, Wash-
ington, DC, USA, 1997. IEEE Computer Society.

[20] R. Espasa, M. Valero, and J. E. Smith. Vector architectures: past, present and future. In Proceedings
of the 12th international conference on Supercomputing, ICS ’98, pages 425–432, New York, NY, USA,
1998. ACM.

[21] R. Falgout, A. Skjellum, S. Smith, and C. Still. The multicomputer toolbox approach to concurrent
blas and lacs. In Scalable High Performance Computing Conference, 1992. SHPCC-92. Proceedings.,
pages 121 –128, apr 1992.

[22] R. D. Falgout, A. Skjellum, S. G. Smith, and C. H. Still. The multicomputer toolbox approach to
concurrent blas. In Proc. Scalable High Performance Computing Conf. (SHPCC, pages 121–128. IEEE
Press, 1993.

[23] K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding the efficiency of gpu algorithms for
matrix-matrix multiplication. HWWS ’04:ACM SIGGRAPH/EUROGRAPHICS, Aug 2004.

[24] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W. Walker. Solving
problems on concurrent processors. Vol. 1: General techniques and regular problems. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

[25] S. Galal and M. Horowitz. Energy-efficient floating point unit design. IEEE Transactions on Computers,
PP(99):1 – 1, 2010.

[26] O. Garreau and J. Lo. Scaling up to teraflops performance with the virtex-7 family and high-level
synthesis. Xilinx White Paper: Virtex-7 FPGA, February 2011.

[27] V. George, S. Jahagirdar, C. Tong, et al. Penryn: 45-nm next generation intel R© coreTM 2 processor.
IEEE Asian Solid-State Circuits Conference, Jan 2008.

[28] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose microprocessors. Solid-State
Circuits, IEEE Journal of, 31(9):1277 –1284, sep 1996.

[29] K. Goto and R. van de Geijn. High-performance implementation of the level-3 BLAS. ACM Trans.
Math. Softw., 35(1):1–14, 2008.

[30] K. Goto and R. A. van de Geijn. Anatomy of a high-performance matrix multiplication. ACM Trans.
Math. Soft., 34(3):12, May 2008. Article 12, 25 pages.

[31] A. Gupta and V. Kumar. Scalability of parallel algorithms for matrix multiplication. Parallel Processing,
1993. ICPP 1993. International Conference on, 3:115 – 123, 1993.

[32] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. Lee, S. Richardson, C. Kozyrakis,
and M. Horowitz. Understanding sources of inefficiency in general-purpose chips. ISCA ’10, Jun 2010.

[33] B. A. Hendrickson and D. E. Womble. The Torus-Wrap mapping for dense matrix calculations on
massively parallel computers. SIAM J. Sci. Stat. Comput., 15(5):1201–1226, 1994.

[34] S. Hong and H. Kim. An integrated GPU power and performance model. ISCA ’10: Proceedings of the
37th annual international symposium on Computer architecture, Jun 2010.

[35] H. Jagadish and T. Kailath. A family of new efficient arrays for matrix multiplication. Computers,
IEEE Transactions on, 38(1):149 – 155, 1989.

[36] S. Jain, V. Erraguntla, S. Vangal, Y. Hoskote, N. Borkar, T. Mandepudi, and V. Karthik. A 90mw/gflop
3.4ghz reconfigurable fused/continuous multiply-accumulator for floating-point and integer operands in
65nm. VLSID ’10., pages 252–257, 2010.

[37] J.-W. Jang, S. Choi, and V. Prasanna. Energy- and time-efficient matrix multiplication on fpgas. Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, 13(11):1305 – 1319, 2005.

28

[38] K. Johnson, A. Hurson, and B. Shirazi. General-purpose systolic arrays. Computer, 26(11):20 – 31,
1993.

[39] B. K̊agström, P. Ling, and C. V. Loan. GEMM-based level 3 BLAS: High performance model imple-
mentations and performance evaluation benchmark. ACM Trans. Math. Soft., 24(3):268–302, 1998.

[40] D. Kanter. Inside Fermi: Nvidia’s HPC push. Technical report, Real World Technologies, September
2009.

[41] J. Kelm, D. Johnson, M. Johnson, N. Crago, W. Tuohy, A. Mahesri, S. Lumetta, M. Frank, and S. Patel.
Rigel: an architecture and scalable programming interface for a 1000-core accelerator. ISCA ’09, Jun
2009.

[42] C. Kozyrakis and D. Patterson. Overcoming the limitations of conventional vector processors. Computer
Architecture, 2003. Proceedings. 30th Annual International Symposium on, pages 399 – 409, 2003.

[43] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper, and K. Asanovic. The vector-
thread architecture. Computer Architecture, 2004. Proceedings. 31st Annual International Symposium
on, pages 52 – 63, 2004.

[44] V. Kumar, S. Joshi, S. Patkar, and H. Narayanan. Fpga based high performance double-precision matrix
multiplication. VLSI Design, 2009 22nd International Conference on, pages 341 – 346, 2009.

[45] V. Kumar and Y. Tsai. Synthesizing optimal family of linear systolic arrays for matrix computations.
Systolic Arrays, 1988., Proceedings of the International Conference on, pages 51 – 60, 1988.

[46] V. Kumar and Y. Tsai. On synthesizing optimal family of linear systolic arrays for matrix multiplication.
Computers, IEEE Transactions on, 40(6):770 – 774, 1991.

[47] H. Kung. Why systolic architectures? Computer, 15(1):37 – 46, 1982.

[48] S. Kung. Vlsi array processors. ASSP Magazine, IEEE, 2(3):4 – 22, jul 1985.

[49] H. Kungt. Systolic arrays (for vlsi). Sparse matrix proceedings, Jan 1979.

[50] G. Kuzmanov and W. van Oijen. Floating-point matrix multiplication in a polymorphic processor.
ICFPT 2007, pages 249 – 252, 2007.

[51] M. Langhammer. High performance matrix multiply using fused datapath operators. Signals, Systems
and Computers, 2008 42nd Asilomar Conference on, pages 153 – 159, 2008.

[52] F. Lauginiger et al. Performance of a multicore matrix multiplication library. STMCS 2007,, Jan 2007.

[53] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra subprograms for
Fortran usage. ACM Trans. Math. Soft., 5(3):308–323, Sept. 1979.

[54] J. Li. A poly-algorithm for parallel dense matrix multiplication on two-dimensional process grid topolo-
gies. Citeseer, Jan 1996.

[55] S. Li et al. Mcpat: An integrated power, area, and timing modeling framework for multicore and
manycore architectures. MICRO-42., 2009.

[56] T. Lippert, N. Petkov, P. Palazzari, and K. Schilling. Hyper-systolic matrix multiplication. Parallel
Computing, Jan 2001.

[57] K. K. Mathur and S. L. Johnsson. Multiplication of matrices of arbitrary shape on a data parallel
computer. Parallel Computing, 20(7):919 – 951, 1994.

[58] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Architecting efficient interconnects for large
caches with cacti 6.0. IEEE Micro, 28:69–79, January 2008.

[59] R. Nath et al. An improved MAGMA GEMM for Fermi GPUs. Technical report, LAPACK WN #227,
2010.

29

[60] M. Parker. High-performance floating-point implementation using FPGAs. In MILCOM, 2009.

[61] M. Parker. Achieving teraflops performance with 28nm fpgas. EDA Tech Forum, December 2010.

[62] A. Pedram, A. Gerstlauer, and R. van de Geijn. A high-performance, low-power linear algebra core.
In 22nd International Conference on Application-specific Systems, Architectures and Processors, ASAP
’11, pages 35–41. IEEE, 2011.

[63] E. Quinnell, E. Swartzlander, and C. Lemonds. Floating-point fused multiply-add architectures. ACSSC
2007, pages 331 – 337, 2007.

[64] S. Rixner, W. Dally, B. Khailany, P. Mattson, U. Kapasi, and J. Owens. Register organization for media
processing. High-Performance Computer Architecture, 2000. HPCA-6. Proceedings. Sixth International
Symposium on, pages 375 – 386, 2000.

[65] T. Shyamkumar et al. CACTI:5.0 an integrated cache timing, power, and area model. Technical Report
HPL-2007-167, HP Laboratories Palo Alto, 2007.

[66] C. Takahashi, M. Sato, D. Takahashi, T. Boku, A. Ukawa, H. Nakamura, H. Aoki, H. Sawamoto, and
N. Sukegawa. Design and power performance evaluation of on-chip memory processor with arithmetic
accelerators. IWIA2008, pages 51 – 57, 2008.

[67] D. Tan, C. Lemonds, and M. Schulte. Low-power multiple-precision iterative floating-point multiplier
with simd support. IEEE Transactions on Computers, 58(2):175 – 187, 2009.

[68] R. Urquhart and D. Wood. Systolic matrix and vector multiplication methods for signal processing.
Communications, Radar and Signal Processing, IEE Proceedings F, 131(6):623 – 631, 1984.

[69] R. van de Geijn and J. Watts. SUMMA: Scalable universal matrix multiplication algorithm. Concur-
rency: Practice and Experience, 9(4):255–274, April 1997.

[70] F. G. Van Zee. libflame: The Complete Reference. www.lulu.com, 2009.

[71] S. Vangal, Y. Hoskote, N. Borkar, and A. Alvandpour. A 6.2-gflops floating-point multiply-accumulator
with conditional normalization. IEEE Journal of Solid-State Circuits, 41(10):2314–2323, 2006.

[72] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, A. Singh, T. Jacob, S. Jain,
V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar, and S. Borkar. An 80-tile sub-100-w teraflops
processor in 65-nm cmos. IEEE Journal of Solid-State Circuits, 43(1):29 – 41, 2008.

[73] P. Varman and I. Ramakrishnan. Synthesis of an optimal family of matrix multiplication algorithms on
linear arrays. Computers, IEEE Transactions on, C-35(11):989 –996, nov. 1986.

[74] V. Volkov and J. Demmel. Benchmarking gpus to tune dense linear algebra. SC 2008, pages 1 – 11,
2008.

[75] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter. Architecting
for power management: The IBM R© POWER7TM approach. HPCA 2010, pages 1 – 11, 2010.

[76] R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software. In Proceedings of SC’98,
1998.

[77] H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. Demystifying gpu microarchitec-
ture through microbenchmarking. Performance Analysis of Systems & Software (ISPASS), 2010 IEEE
International Symposium on, pages 235 – 246, 2010.

[78] N. Zhang and R. W. Broderson. The cost of flexibility in systems on a chip design for signal processing
applications. Technical report, University of California, Berkeley, 2002.

[79] L. Zhuo and V. Prasanna. Scalable and modular algorithms for floating-point matrix multiplication on
reconfigurable computing systems. IEEE Transactions on Parallel and Distributed Systems, 18(4):433
– 448, 2007.

[80] P. Zicari et al. A matrix product accelerator for field programmable systems on chip. Microprocessors
and Microsystems 32, 2008.

30

