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Abstract

We consider the problem of coded communication, where in each time frame, the transmitter is either silent

or transmits a codeword from a given (randomly selected) codebook. The task of the decoder is to decide whether

transmission has taken place, and if so, to decode the message. We derive the optimum detection/decoding rule

in the sense of the best trade-off among the probabilities of decoding error, false alarm, and misdetection. For

this detection/decoding rule, we then derive single-letter characterizations of the exact exponential rates of these

probabilities for the average code in the ensemble. It is shown that previously proposed decoders are in general

strictly sub-optimal.

Index Terms

Joint detection/decoding, error exponent, false alarm, misdetection, random coding, synchronization.

I. INTRODUCTION

In the classical communication scenario studied in information theory, the decoder knows a-priori that

a codeword is presently transmitted, and it is only required to decode it to one of the possible messages.

However, in other scenarios, it might happen that for some of the time, the receiver does not observe

channel output which corresponds to one of the possible codewords, but instead observes ‘pure noise’. For

example, the encoder may be ‘silent’ (non-transmitting) part of the time, because, e.g., it has no messages

ready to be conveyed, or because, for some reason, it cannot currently transmit (it might be defective). In

other cases, an interferer (or a jammer) may be present, which disrupts communication only part of the
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time, but when this does occur, the channel output is completely dominated by the interferer. In all these

examples, it might be of interest for the decoder to become aware of this special event. In continuation to

our previous examples, the reception of pure noise may indicate that the transmitter should be repaired,

or that other physical channel should be used, since the current one has detrimental interference. In other

applications, it might be required from security motivations to be certain, with high probability, that one

of the legal codewords in the codebook is transmitted. An additional central motivation, which we discuss

below in more detail, is asynchronous communication.

In the above scenarios, the receiver has to be able to reliably detect the existence of the message,

and only then decode it. The traditional approach has been to separate the problems of detection and

coding/decoding, and to use a special pattern of letters to mark the beginning of a message transmission.

The transmission of this pattern is, however, an undesired overhead.

This problem of joint detection/decoding belongs to a larger class of hypothesis testing problems, in

which after performing the test, another task should be performed, depending on the chosen hypothesis.

For example, in [17], [18], the problem of joint hypothesis testing and Bayesian estimation was considered,

and in [15] the subsequent task is lossless source coding. A common theme for all the problems in this

class, is that separately optimizing the detection and the task is sub-optimal, and so, joint optimization is

beneficial.

In addition, joint detection/decoding is related to the message-wise unequal error protection (UEP)

problem [2], in which one of the messages requires special attention, and should be more protected than

all the other messages. In our case, the rejection region plays a role that is analogous to the role of the

decision region of the preferred codeword in the UEP problem, but the difference is that in the UEP

problem, the codeword of the protected message is under the control of the system designer. However, as

we discuss in Section VII, a considerable part of our results is also suitable for the UEP problem.

As mentioned earlier, one of the motivations for the problem described above is the intimately related,

long-standing, problem of synchronization, which has been studied extensively in the communications

community throughout several decades (see, e.g., [1], [9], [10], [12], [20], and references therein, for a

non-exhaustive sample of earlier works). In the synchronization problem, the receiver has to perform three

tasks1: (i) to decide on the existence of a codeword, (ii) to locate the starting time instant of the message,

and (iii) to decode it. Here too, the traditional approach is to separate the problems of synchronization

and coding/decoding.

Recently, a model was proposed to study the fundamental limits of asynchronous communication [4],

1In practical communication systems, the receiver usually also needs to acquire symbol and carrier synchronization [9]. In our simplified
discrete time, discrete input/output alphabet model, we assume, as in [26], [27] that such synchronization is not needed, or previously obtained
by some other mechanisms.
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[5], [24], [25], which includes tasks (ii) and (iii) above. In this model, it is known that a codeword of

block length n will be transmitted, but the starting time of the codeword is only known to lie within a

time window of A = enτ symbols, where τ ≥ 0, is termed the asynchronism exponent. In all other time

points, the transmitter is idle, and the receiver observes pure noise. A sequential decoder was proposed

in order to locate the codeword and then decode it. In this line of research, the goal is to characterize the

region of achievable rates and asynchronism exponents. 2

In an other line of research, [26], [27], performing tasks (i) and (iii) above is considered, as a simplified

model for the synchronization problem, namely, assuming that task (ii), of properly locating the codeword,

is possible without affecting other figures of merit of the system. According to this model, which is termed

slotted asynchronism, a transmission can start only at time instants that are integer multiples of the slot

length, which is also the block length. Thus, in each slot (or block), the transmitter is either entirely

silent, or it transmits a codeword corresponding to one of M possible messages. In the silent mode, it is

assumed that the transmitter repetitively feeds the channel by a special channel input symbol denoted by

‘0’ (indeed, in the case of a continuous input alphabet, it is natural to assign a zero input signal), and

then the channel output vector is thought of as ‘pure noise’. The decoder in turn has to decide whether a

message has been sent or the received channel output vector is pure noise. In case it decides in favor of

the former, it then has to decode the message. It may be easily observed that this model for asynchronism

and the problem of detecting the existence of a codeword discussed above are essentially the same. Thus,

henceforth we treat the problems on the same footing.

In [26], [27], three figures of merit were defined in order to judge performance: (i) the probability of

false alarm (FA) - i.e., deciding that a message has been sent when actually, the transmitter was silent

and the channel output was pure noise, (ii) the probability of misdetection (MD) - that is, deciding that

the transmitter was silent when it actually transmitted some message, and (iii) the probability of decoding

error (DE) - namely, not deciding on the correct message sent. Wang [26] and Wang et al. [27] have

posed the problem of characterizing the best achievable region of the error exponents associated with

these three probabilities for a given discrete memoryless channel (DMC). It was stated in [27] that this

general problem is open, and so, the focus both in [26], [27] was directed to the narrower problem of

trading off the FA exponent and the MD exponent when the DE exponent constraint is completely relaxed,

that is, there is no demand on exponential decay rate of the DE probability, only that it decreases to zero

as the block length increases. Upper and lower bounds on the maximum achievable FA exponent for a

given MD exponent were derived in these works. In the extreme case where the MD exponent constraint

is omitted (set to zero), these bounds coincide, and so, the characterization of the best achievable FA

2It should be remarked that the rate in these work is measured in a non-standard way, as the reaction delay of the decoder, until it decides
on a codeword.
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exponent is exact. As a side note, we remark the maximal FA exponent is related to the asynchronism

exponent discussed above, since if a FA exponent of τ is achieved for a given rate R, the loosely speaking,

a asynchronism level of A = enτ is possible to accommodate, with a vanishing error probability. In this

sense, our results, as well as [26], [27] may be partially compared with [4], [5], [24], [25].3

In this paper, we first derive, for a given code, the optimum detection-decoding rule that minimizes the

DE probability subject to given constraints on the FA and the MD probabilities. This detection-decoding

rule turns out to be significantly different from the one in the achievability parts of [26], [27] (cf. the

discussion in Section III) In particular, denoting the codewords by {xm}, the channel output vector by

y (all of length n), and the channel conditional probability by W (y|xm), then according to this rule, a

transmission is detected iff

enα ·
M∑
m=1

W (y|xm) + max
1≤m≤M

W (y|xm) ≤ enβ ·W (y|0) (1)

where 0 is the all-zero channel input vector, and α and β are chosen to meet the MD and FA constraints.

Of course, whenever the received y passes this test, the maximum likelihood (ML) decoder is applied,

assuming that all messages are equiprobable a-priori. The performance of this optimum detector/decoder

is analyzed under the random coding regime of fixed composition codes, and the achievable trade-off

between the three error exponents is given in full generality, that is, not merely in the margin where at

least one of the exponents vanishes. It should be pointed out that our analysis technique, which is based

on type class enumeration (see, e.g., [14], [23] and references therein), provides the exact random coding

exponents, not just bounds. These relationships between the random coding exponents and the parameters

α and β can, in principle, be inverted (in a certain domain) in order to find the assignments of α and β

needed to satisfy given constraints on the exponents of the FA and the MD probabilities. For the sake of

fairness, on the other hand, it should also be made clear that since we consider only the random coding

regime, these are merely achievability results, with no converse bounds pertaining to optimal codes.

The outline of the paper is as follows. In Section II, we establish some notation conventions, provide

some preliminaries, and also formulate the problem. In Section III, we derive the optimum detector/decoder

and discuss some of its properties. In Section IV, we present our main theorem, which is about single-

letter formulas for the various error exponents. In Section V, we prove this theorem, and in Section VI

we provide numerical examples of the results obtained, as well as numerical comparison with the results

of [26]. Finally, in Section VII, we provide directions for future research. In Appendix A, we discuss

computational aspects of the various exponent functions derived in this paper.

3Nonetheless, we do not pursue this direction here, mainly because the models are different, and in [4], [5], [24], [25], no special attention
is given for error exponents.



5

II. NOTATION CONVENTIONS, PRELIMINARIES AND PROBLEM FORMULATION

A. Notation Conventions and Preliminaries

Throughout the paper, random variables will be denoted by capital letters, specific values they may take

will be denoted by the corresponding lower case letters, and their alphabets, similarly as other sets, will

be denoted by calligraphic letters. Random vectors and their realizations will be denoted, respectively, by

capital letters and the corresponding lower case letters, both in the bold face font. Their alphabets will

be superscripted by their dimensions. For example, the random vector X = (X1, . . . , Xn), (n - positive

integer) may take a specific vector value x = (x1, . . . , xn) in X n, the n-th order Cartesian power of X ,

which is the alphabet of each component of this vector.

For a given vector x, let Q̂X denote4 the empirical distribution, that is, the vector {Q̂X(x), x ∈ X},

where Q̂X(x) is the relative frequency of the letter x in the vector x. Let TP denote the type class associated

with P , that is, the set of all sequences {x} for which Q̂X = P . Similarly, for a pair of vectors (x,y),

the empirical joint distribution will be denoted by Q̂XY , or simply Q̂, for short. Conditional empirical

distributions will be denoted by Q̂X|Y and Q̂Y |X , the Y -marginal by Q̂Y , etc. Accordingly, the empirical

mutual information induced by (x,y) will be denoted by I(Q̂XY ) or I(Q̂), the divergence between Q̂X and

P = {P (x), x ∈ X} - by D(Q̂X‖P ), and the conditional divergence between the empirical conditional

distribution Q̂Y |X and the channel W = {W (y|x) x ∈ X , y ∈ Y}, will be denoted by D(Q̂Y |X‖W |Q̂X),

that is,

D(Q̂Y |X‖W |Q̂X) ,
∑
x∈X

Q̂X(x)
∑
y∈Y

Q̂Y |X(y|x) log
Q̂Y |X(y|x)

W (y|x)
, (2)

and so on. The joint distribution induced by Q̂X and Q̂Y |X will be denoted by Q̂X × Q̂Y |X , and a similar

notation will be used when the roles of X and Y are switched. The marginal of X , induced by Q̂Y and

Q̂X|Y will be denoted by (Q̂Y × Q̂X|Y )X , and so on. Similar notation conventions will apply, of course,

to generic distributions QXY , QX , QY , QY |X , and QX|Y , which are not necessarily empirical distributions

(without “hats”).

The probability of an event A will be denoted by Pr{A}, and the expectation operator will be denoted

by E{·}. Whenever there is room for ambiguity, the underlying probability distribution will appear as

a subscript, e.g., EQ{·}. Logarithms and exponents will be understood to be taken to the natural base,

unless specified otherwise. The indicator function will be denoted by I(·). Sets will normally be denoted

by calligraphic letters. The complement of a set A will be denoted by A. The notation [t]+ will stand for

max{t, 0}. For two positive sequences, {an} and {bn}, the notation an
·

= bn will mean asymptotic

equivalence in the exponential scale, that is, limn→∞
1
n

log(an
bn

) = 0. Similarly, an
·
≤ bn will mean

4In our notation, we do not index Q̂X by x because the underlying sequence x will be clear from the context.
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lim supn→∞
1
n

log(an
bn

) ≤ 0, and so on. Throughout the sequel, we will make frequent use of the fact that∑kn
i=1 an(i)

·
= max1≤i≤kn an(i) as long as {an(i)} are positive and kn

·
= 1. Accordingly, for kn sequences

of positive random variables {An(i)}, all defined on a common probability space, and a deterministic

sequence bn,

Pr

{
kn∑
i=1

An(i) ≥ bn

}
·

= Pr

{
max

1≤i≤kn
An(i) ≥ bn

}

= Pr
kn⋃
i=1

{An(i) ≥ bn}

·
=

kn∑
i=1

Pr {An(i) ≥ bn}

·
= max

1≤i≤kn
Pr {An(i) ≥ bn} , (3)

provided that b′n
·

= bn implies Pr{An(i) ≥ b′n}
·

= Pr{An(i) ≥ bn}.5 In simple words, summations and

maximizations are equivalent and can be both “pulled out outside” Pr{·} without changing the exponential

order, as long as kn
·

= 1. By the same token,

Pr

{
kn∑
i=1

An(i) ≤ bn

}
·

= Pr

{
max

1≤i≤kn
An(i) ≤ bn

}

= Pr
kn⋂
i=1

{An(i) ≤ bn}. (4)

Another fact that will be used extensively is that for a given set of M pairwise independent events {Ai}Mi=1,

Pr

{
M⋃
i=1

Ai

}
·

= min

{
1,

M∑
i=1

Pr{Ai}

}
. (5)

The right-hand side (r.h.s.) is obviously the union bound, which holds true even if the events are not

pairwise independent. On the other hand, when multiplied by a factor of 1/2, the r.h.s. becomes a lower

bound to Pr{
⋃M
i=1Ai}, provided that {Ai} are pairwise independent [21, Lemma A.2], [22, Lemma 1].

B. Problem Formulation

Consider a DMC, characterized by a finite input alphabet X , a finite output alphabet Y and a given matrix

of single-letter transition probabilities {W (y|x), x ∈ X , y ∈ Y}. It is further assumed that X contains

a special symbol denoted by ‘0’, which designates the channel input in the absence of transmission. We

shall denote Q0(y) = W (y|x = 0).

5Consider the case where bn
·
= ebn (b being a constant, independent of n) and the exponent of Pr{An(i) ≥ ebn} is a continuous function

of b.
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We assume an ensemble of random codes, where each codeword is selected independently at random,

uniformly within a type class TP .6 Therefore, all the joint types Q considered henceforth have QX = P .

In addition, we define the set QP as the collection of all {QX|Y } such that (QY ×QX|Y )X = P , and again,

all joint types Q considered in this paper will satisfy QX|Y ∈ QP . Let C = {x1,x2 . . . ,xM}, xm ∈ X n,

m = 1, . . . ,M , M = enR (R being the coding rate in nats per channel use), denote the (randomly chosen)

code, which is revealed to both the encoder and the decoder.

A detector/decoder, is a partition of Yn into M + 1 regions, denoted R0,R1, . . . ,RM . If y ∈ Rm,

m = 1, 2, . . . ,M , then the decoder decodes the message to be m. If y ∈ R0, then the decoder declares

that nothing has been transmitted, that is, x = 0 and then y is “pure noise”.

For the given detector/decoder, the probability of false alarm (FA) is defined as

PFA , Q0(R0) =
M∑
m=1

Q0(Rm), (6)

the probability of misdetection (MD) is defined as

PMD ,
1

M

M∑
m=1

W (R0|xm), (7)

and the probability of inclusive error (IE) is defined as

PIE =
1

M

M∑
m=1

W (Rm|xm) =
1

M

M∑
m=1

∑
k 6=m

W (Rk|xm), (8)

where the inner summation at the right-most side includes k = 0. Thus, the IE event is the total error

event, namely, of not deciding on the correct codeword transmitted.7 The probability of decoding to an

erroneous codeword, excluding the rejection region, is termed the exclusive error (EE) and is defined as

PEE , PIE − PMD. (9)

For a given code C, we are interested in achievable trade-offs between PFA, PMD and PIE. Consider the

following problem:

minimize PIE

subject to PFA ≤ εFA

PMD ≤ εMD (10)

6We do not restrict the input type P to assign zero probability to the silent symbol ′0′, so this symbol can also be used for communication.
The error exponents derived in the remaining of the paper assume a given input type P , and one can consider, as a special case, a type
which assigns zero probability to ′0′, like in the binary symmetric channel example in [26, Section 2.4.1] and [27].

7The inclusion of terms such as k = 0 is conventional in related problems. For example, in Forney’s error/erasure setting [8], one of the
events defined and analyzed is the total error event, which is comprised of a union of an undetected error event and an erasure event.
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where εFA and εMD are given prescribed quantities, and it is assumed that these two constraints are not

contradictory. Indeed, there is some tension between PMD and PFA as they are related via the Neyman-

Pearson lemma. For a given εFA, the minimum achievable MD probability is positive, in general. It is

assumed then that the prescribed value of εMD is not smaller than this minimum. In the problem under

consideration, it makes sense to relax the tension between the two constraints to a certain extent, in order

to allow some freedom to minimize PIE under these constraints.

Our goal is to find the optimum detector/decoder for the problem (10), and then analyze the random

coding exponents associated with the resulting error probabilities. The choice of PIE, rather than PEE, as

the objective to minimize, enables the derivation of the optimal decoder in Lemma 1 to follow. However,

in some cases, both problems lead to the same optimal decoder (cf. the discussion in Section 3). In any

case, for the optimal detector/decoder, the random coding exponent of PEE is also of interest.

III. THE OPTIMUM DETECTOR/DECODER

Let us define the following detector/decoder:

R∗0 =

{
y : a ·

M∑
m=1

W (y|xm) + max
m

W (y|xm) ≤ b ·Q0(y)

}
(11)

R∗m = R∗0
⋂{

y : W (y|xm) > max
k 6=m

W (y|xk)
}
, m = 1, 2, . . . ,M, (12)

where ties are broken arbitrarily, and where a ≥ 0 and b ≥ 0 are deterministic constants. The following

lemma establishes the optimality of the decision rule R∗ = {R∗0,R∗1, . . . ,R∗M} in the sense of the trade-off

among the probabilities PMD, PFA and PIE. It tells us that there is no other decision rule that simultaneously

yields strictly smaller error probabilities of all three kinds.

Lemma 1. Let R∗ = {R∗0,R∗1, . . . ,R∗M} be as above and let R = {R0,R1, . . . ,RM} be any another

partition of Yn into M + 1 regions. If

Q0(R0) ≤ Q0(R∗0) (13)

and
1

M

M∑
m=1

W (R0|xm) ≤ 1

M

M∑
m=1

W (R∗0|xm), (14)

then
1

M

M∑
m=1

W (R∗m|xm) ≤ 1

M

M∑
m=1

W (Rm|xm). (15)

Proof: We begin from the obvious observation that for a given choice of R0, the optimum choice of
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the other decision regions is always:

Rm = R0

⋂{
y : W (y|xm) > max

k 6=m
W (y|xk)

}
, m = 1, 2, . . . ,M. (16)

In other words, once a transmission has been detected, the best decoding rule is the ML decoding rule.

Similarly as in classical hypothesis testing theory, this is true because the probability of correct decoding,

PCD =
1

M

M∑
m=1

∑
y∈Rm

W (y|xm), (17)

is upper bounded by

PCD ≤
1

M

M∑
m=1

∑
y∈Rm

max
k
W (y|xk) =

1

M

∑
y∈R0

max
m

W (y|xm) (18)

and this bound is achieved by (16). Thus, upon adopting (16) for a given choice of R0, it remains to

prove that the choice R∗0 satisfies the assertion of the lemma.

The proof of this fact is similar to the proof of the Neyman-Pearson lemma. Let R∗0 be as above and

let R0 be another, competing rejection region. First, observe that for every y ∈ Yn

[I{y ∈ R∗0} − I{y ∈ R0}] ·

[
b ·Q0(y)− a ·

M∑
m=1

W (y|xm)−max
m

W (y|xm)

]
≥ 0. (19)

This is true because, by definition of R∗0, the two factors of the product at the left-hand side (l.h.s.) are

either both non-positive or both non-negative. Thus, taking the summation over all y ∈ Yn, we have:

0 ≤
∑
y∈Yn

[I{y ∈ R∗0} − I{y ∈ R0}] ·

[
b ·Q0(y)− a ·

M∑
m=1

W (y|xm)−max
m

W (y|xm)

]

= b · [Q0(R∗0)−Q0(R0)]− a ·

[
M∑
m=1

W (R∗0|xm)−
M∑
m=1

W (R0|xm)

]
−∑

y∈R∗0

max
m

W (y|xm)−
∑
y∈R0

max
m

W (y|xm)

 (20)

which yields ∑
y∈R∗0

max
m

W (y|xm)−
∑
y∈R0

max
m

W (y|xm)

≤ b · [Q0(R∗0)−Q0(R0)]− a ·

[
M∑
m=1

W (R∗0|xm)−
M∑
m=1

W (R0|xm)

]

= b · [Q0(R0)−Q0(R∗0)] + a ·

[
M∑
m=1

W (R0|xm)−
M∑
m=1

W (R∗0|xm)

]
(21)
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Since a ≥ 0 and b ≥ 0, it follows that

Q0(R0) ≤ Q0(R∗0) (22)

and
1

M

M∑
m=1

W (R0|xm) ≤ 1

M

M∑
m=1

W (R∗0|xm) (23)

together imply that ∑
y∈R∗0

max
m

W (y|xm) ≤
∑
y∈R0

max
m

W (y|xm) (24)

or equivalently, ∑
y∈R∗0

max
m

W (y|xm) ≥
∑
y∈R0

max
m

W (y|xm), (25)

which in turn yields

1

M

M∑
m=1

W (R∗m|xm) = 1− 1

M

∑
y∈R∗0

max
m

W (y|xm)

≤ 1− 1

M

∑
y∈R0

max
m

W (y|xm)

=
1

M

M∑
m=1

W (Rm|xm). (26)

This completes the proof of Lemma 1.

Discussion. At this point, few comments are in order.

1) The detector/decoder derived in Lemma 1 is optimal for any given code C, namely, the optimality is

exact for all n, and not merely asymptotic. As mentioned earlier, in this work, we analyze the ensemble

performance. Specifically, let P̄IE, P̄EE, P̄FA, and P̄MD denote the corresponding ensemble averages of PIE,

PEE, PFA, and PMD, respectively. We will assess the random coding exponents of these three probabilities.

The constants a and b can be thought of as Lagrange multipliers that are tuned to meet the given FA and

MD constraints. For these Lagrange multipliers to have an impact on error exponents, we let them be

exponential functions of n, that is, a = enα and b = enβ , where α and β are real numbers, independent

of n. The rejection region is then of the form

R∗0 =

{
y : enα

M∑
m=1

W (y|xm) + max
m

W (y|xm) ≤ enβQ0(y)

}
. (27)

By the same token, we may impose exponential constraints on the FA and MD probabilities, that is,

εFA = e−nEFA and εMD = e−nEMD , where EFA ≥ 0 and EMD ≥ 0 are given numbers, independent of n.
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2) The detection/rejection rule defined by (27) involves a linear combination of maxmW (y|xm) and∑M
m=1 W (y|xm), or equivalently, the overall output distribution induced by the code

QC(y) ,
1

M

M∑
m=1

W (y|xm). (28)

In this context, the intuition behind the optimality of this detection rule is not trivial (at least for the

authors of this article). It is instructive, nonetheless, to examine some special cases. The first observation

is that for α ≥ 0, the term enα
∑M

m=1W (y|xm) dominates the term maxmW (y|xm), and so, the rejection

region is essentially equivalent to

R′0 =

{
y : enα

M∑
m=1

W (y|xm) ≤ enβQ0(y)

}
=
{
y : en(α+R)QC(y) ≤ enβQ0(y)

}
, (29)

which is exactly the Neyman-Pearson test between QC(y) and Q0(y). This means that asymptotically,

α ≥ 0 corresponds to a regime of full tension between the FA and the MD constraints (see Section II-B).

In this case, EFA and EMD are related via the Neyman-Pearson lemma. Indeed, the detection-rejection rule

(29) depends only on one degree of freedom, which is the difference α−β, and hence so are the FA and

MD error exponents associated with it. Notice, however, that for finite block length, the error probabilities

depend on the value of α and not just on the difference α−β. At the other extreme, where enα � 1, and

the term maxmW (y|xm) dominates, the detection rule becomes equivalent to

R′′0 =
{
y : max

m
W (y|xm) ≤ enβQ0(y)

}
. (30)

In this case, the silent mode is essentially treated as corresponding to yet another codeword - x0 = 0,

although it still has a special stature due to the factor enβ . The factor enβ may thought of as providing an

unequal protection for the special ‘silent codeword’, compared to all other codewords in the codebook.

However, for β = 0, this ‘silent codeword’ is just an additional codeword with no special standing, and

the decoding is completely ordinary. The interesting range is therefore the range where α is negative, but

not too small, where both QC(y) and maxmW (y|xm) play a considerable role.

3) It is interesting to compare the resulting optimal detector/decoder for α = 0 with detector/decoder

pairs proposed in [26] (and [27]). In [26, Chapter 4] both the ensemble of independent identically

distributed (i.i.d.) codebooks over a distribution P , and the ensemble of fixed composition codebooks

over a distribution P are considered. For i.i.d. codebooks, the detector proposed in [26] is simply a

Neyman-Pearson test between Q0 and (P × W )Y . The weakness of this approach is that for a given

codebook, the single-letter output marginal (of each Yi, for 1 ≤ i ≤ n) might be different from (P ×W )Y

(especially at low rates), and this leads to a mismatched Neyman-Pearson test. When averaging over all
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codebooks in the ensemble, this degrades the achievable exponents. Indeed, the optimal detector/decoder

R∗ with α ≥ 0 proposed here for fixed composition ensemble of codes, is similar in form to the optimal

detector/decoder of [26] for i.i.d. codebooks. However, the substantial difference is that it corresponds to

a Neyman-Pearson test between the overall output distribution induced by the code QC (cf. (28)) and Q0.

In contrast, the decoder proposed in [26] for fixed composition codes (which were introduced in order to

improve performance) is a non-optimal typicality detector, which is based on unions of conditional type

classes centered around the codewords in the codebook. The non-optimal decoder may clearly degrade

the resulting exponents compared to the optimal detector/decoder, as we shall see in a numerical example

in Section VI.

4) Consider the following related problem

minimize PEE

subject to PFA ≤ εFA

PMD ≤ εMD (31)

and let R∗∗ be the optimal detector/decoder for the problem (31). Now, as PIE = PEE + PMD, it may be

easily verified that when PMD = εMD for the optimal detector/decoder R∗ (of the problem (10)), then R∗

is also the optimal detector/decoder for the problem (31). However, when PMD < εMD for R∗, then R∗∗

is different, since it easy to check that for the problem 31, the constraint PMD ≤ εMD for R∗∗ must be

achieved with equality. To gain some intuition why (31) is more complicated than (10), notice that in

(10) the two probabilities PMD and PIE (which are both conditioned on the event that one of the codewords

was sent) increase with the expansion of R0. On the other hand, PFA, which is conditioned on the all-zero

sequence, decreases with the expansion of R0. The fact that all probabilities which are conditioned on the

same event have a similar trend with respect to an expansion of R0 is crucial to the proof of Lemma 1.

Indeed, in contrast, in (10), both PMD and PEE behave oppositely as R0 is expanded (the former increases,

while the later decreases). Therefore, asymptotic analysis of PEE for R∗ is interesting, especially in the

range where R∗∗ is equivalent to R∗ and hence optimal for PEE as well.

IV. PERFORMANCE

In this section, we present our main theorem, which provides exact single-letter characterizations for

all exponents as functions of the coding rate R, and given α and β. Following comment no. 2 in the

discussion at the end Section III, we assume throughout that α ≤ 0.
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We first need some definitions. Let

d(x, y) , ln

[
Q0(y)

W (y|x)

]
, x ∈ X , y ∈ Y (32)

and denote D(Q) , EQd(X, Y ).

For a given output distribution QY = {QY (y), y ∈ Y} define

R(∆;QY ) , min
QX|Y ∈QP :D(Q)≤∆

I(Q) (33)

as well as

S(∆;QY ) , inf
QX|Y ∈QP :D(Q)>∆

D(QY |X‖W |P ). (34)

Also, let R1(QY ) and D1(QY ) denote I(Q∗) and D(Q∗), where Q∗ minimizes I(Q) + D(Q) subject

to the constraint QX = P , and

R0(α, β;QY ) ,

 R1(QY ) +D1(QY ) + β − α −β < D1(QY )

R(−β;QY ) otherwise
. (35)

Let Er(R) be the ordinary random coding exponent function for fixed composition codes, i.e.,

Er(R) = min
Q

{
D(QY |X‖W |P ) + [I(Q)−R]+

}
(36)

where Q = P ×QY |X here, and in all the other expressions of exponents which follow.

For the FA exponent, define the following functions

EA(R) , min
QY |X :D(Q)≤−β+α+[R−I(Q)]+

{
D(QY ||Q0) + [I(Q)−R]+

}
, (37)

EB(R) , min
QY |X :D(Q)≤−β

{
D(QY ||Q0) + [I(Q)−R]+

}
, (38)

and

EFA(R) , min {EA(R), EB(R)} . (39)

For the MD exponent, define

EMD(R) , inf
QY :R0(α,β;QY )>R

S(−β;QY ). (40)
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For the decoding error exponents, define8

E ′′2 (R) , min
QY

{
S(α− β;QY ) + [R(α− β;QY )−R]+

}
, (41)

E ′3(R) , min
QY |X :D(Q)≤−β

{
D(QY |X ||W |P ) + [I(Q)−R]+

}
, (42)

and

E ′′3 (R) , min
QY

{
S(−β;QY ) + [R(−β;QY )−R]+

}
. (43)

as well as

EEE(R) , min {E ′′2 (R), E ′3(R), E ′′3 (R)} , (44)

and

EIE(R) , min {Er(R), EMD(R)} . (45)

Theorem 2. Let W be a DMC and let R∗ be defined as in Section II-B. Let the codewords of C =

{x1, . . . ,xM}, M = enR, be selected independently at random under the uniform distribution across a

given type class TP . Then, the asymptotic exponents associated with P̄FA, P̄MD, P̄EE, and P̄IE are given,

respectively, by EFA(R), EMD(R), EEE(R), and EIE(R), as defined in eqs. (39), (40), (44) and (45).

Discussion. Before delving into the proof of the theorem in Section V, we make a few comments:

1) Eq. (45) follows from a simple application of the union bound, since the inclusive decoding error

event is defined to include the misdetection event.

2) As discussed in Section III, for α ≥ 0, depend only on the difference α − β, and thus can be

computed by replacing α→ 0 and β → β − α.

3) As mentioned previously, for any given rate R, one should tune the parameters α and β to meet

prescribed constraints on EMD and EFA. However, observing eq. (45), and recalling that α = 0 provides

the maximal EMD for any given EFA (cf. comment 2 in Section III), it is evident that any strictly negative

value of α may be replaced by α = 0 and both EMD and EIE may only improve. Nonetheless, choosing

α < 0 may be still interesting if one is interested in increasing EEE (perhaps at the price of decreasing

EMD and EIE). Of course, for an actual finite block length decoder, even positive values of α may be used,

in order to optimally fine-tune the error probabilities obtained (where as mentioned, asymptotically, the

error exponents only depend on α− β) . Notice that when α = 0, a slight simplification in the exponents

expressions is possible. In this case EFA(R) = EA(R) and EIE(R) = min{E ′3(R), E ′′3 (R)}.

4) It is straightforward to observe that for a given EMD > 0 (and EFA > 0), there is no rate loss in terms

8The subscripts 2 and 3 of the following exponents are related to derivations in the proof (cf. Section V-C). There is also an E1(R)
exponent, but it is not needed for the final minimization, and thus omitted here.
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of the maximum achievable information rate for which the average probability of the inclusive decoding

error still tends to zero, that is, the smallest rate R for which EIE = 0, for given EMD and EFA. This is easily

seen from eq. (45). Since EMD > 0 is given, and since Er(R)→ 0 as R approaches I(P ×W ), then it is

clear that beyond a certain rate R, we have EIE = Er(R), and hence EIE also vanishes at R = I(P ×W ).

Of course, if P is chosen to be the capacity-achieving input distribution, then the capacity is still achieved

in this setting.

5) Notice that by definition EEE(R) ≥ Er(R). Now, for a given rate R, let Q∗Y |X be the minimizer of

the objective function of Er(R) (in eq. (36)). If D(Q∗Y |X) ≤ −β then eqs. (42) and (44) imply (see also

Appendix A-C) that for this rate EEE(R) = Er(R). In other cases EEE(R) may be strictly larger than Er(R)

(but always EIE(R) ≤ Er(R)).

6) The achievable exponents derived in [26, Theorem 4.2] for an ensemble of fixed composition codes

of input type P with EIE = 0, have a form similar to the optimal exponents for α = 0. For example, for

a given EMD, the achievable FA exponent is given by

EFA(R) = min
QY |X :D(QY |X ||W |P )≤EMD

{
D(QY ||Q0) + [I(Q)−R]+

}
. (46)

The only difference from EFA(R) = EA(R) is the domain of the minimization, which for EA(R), depends

also on Q0(y) (via D(Q)) and not only on the channel W .

7) As mentioned in the Introduction, in many practical systems, the problem of transmission detection

and decoding is performed separately, using a pattern that marks the beginning of transmission (also called

training approach). The allowed block length n is divided into two parts of lengths γn and (1− γ)n, for

some γ ∈ (0, 1). In the first part, a training word of γn letters is transmitted, identical for all possible

messages. Then, in the second part, an ordinary codebook of block length (1−γ)n is used. At the receiver,

the existence of a message is detected solely on the basis of the first γn output letters, and if transmission

is detected, then an ordinary decoder is used for the remaining (1− γ)n output letters. As is well known,

in order to obtain an exponential decrease in the FA and MD probabilities, one must choose γ to be

strictly positive. In turn, this means that effective block length of the decoder is (1−γ)n, which is strictly

less than n, and so this separation approach decreases the error exponent (see also [7, Appendix I] for the

related problem of training for channel estimation). In light of eq. (45), it is evident that at least for large

rates, such that EMD(R) > Er(R), the inclusive decoding error exponent for optimal detector/decoder is not

reduced, compared to ordinary decoding. This implies that the training approach is in general sub-optimal

(see also [25], [26] for observations in the same spirit).

8) In some applications of sparse communication, it is required to maximize the FA exponent, since

noise is present almost the entire communication time. Thus, it is of interest to maximize EFA(R) under
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the assumption that EMD(R) = 0 (more precisely, a small strictly positive constant, so that PMD → 0 as

n→ 0). As stated in comment 3, choosing α = 0 provides the optimal trade-off between the FA and MD

exponents, so the designer need only find the maximal β such that EMD(R) = 0, and then calculate the

resulting EFA(R). Some insight may be obtained by analyzing the extreme case of R = 0. For zero rate,

notice that

EMD(0) = inf
Q:D(Q)>−β

D(Q‖P ×W ) (47)

where Q = P ×QY |X and

EFA(0) = EA(0)

= min
QY |X :D(Q)≤−β

{D(QY ||Q0) + I(Q)}

= min
Q:D(Q)≤−β

D(Q||P ×Q0). (48)

Now, let us ignore, for a moment, the constraints on β in EMD(0) and EFA(0). For any given δ ≥ 0, recall

that the minimizer of

min
Q:D(Q||P×Q0)≤δ

D(Q||P ×W ) (49)

is given by

Qλ(x, y) ∝ P (x) ·
(
W λ(y|x) ·Q1−λ

0 (y)
)

(50)

where λ ∈ [0, 1] is chosen to satisfy the constraint on the divergence, and Qλ sums to 1 over X ×Y (see,

e.g. [6, Chapter 11]. Now, using continuity arguments, as λ traces the interval [0, 1], if

β = D(Qλ) (51)

is chosen, then the exponents achieved are

EMD(0) = D(Qλ‖P ×W ) (52)

and

EFA(0) = D(Qλ‖P ×Q0). (53)

Specifically, for EMD(0) = 0 we get

EFA,max(0) = D(P ×W‖P ×Q0). (54)

Moreover, let x∗ ∈ X be the input letter which maximizes D(Q(·|x)||Q0), and choose the input type to
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assign P (x∗) = 1. Then,

EFA,max(0) = D(W (·|x∗)‖Q0). (55)

This recovers the synchronization threshold derived in [5].

9) While the exponent expressions in Theorem 2 are relatively compact, one may wonder if and

how they can be computed efficiently. In Appendix A we discuss aspects of the computation of these

exponents, by revealing their similarity to the ordinary random coding exponent. It is shown there that

all the optimization problems involved, except for EMD(R), are in fact convex optimization problems and

thus can be computed efficiently [3]. The computation of EMD(R), which is more complex, is also briefly

discussed in Appendix A.

V. PROOF OF THEOREM 2

First, observe that, as mentioned in the above discussion, since the inclusive decoding error event

includes the misdetection event, then PIE is lower bounded by max{PODE, PIE} and upper bounded by

PODE + PIE, where PODE is the probability of error associated with ordinary ML decoding, without the

decision region R0. This readily yields eq. (45). It remains then to establish the single-letter formulas of

the FA, MD and EE exponents, i.e., eqs. (39), (40) and (44). Accordingly, this section is divided into

three subsections, each one devoted to the analysis of one of these exponents.

A. The False Alarm Error Exponent

Let y be given and consider {Xm} as random. Then,

P̄FA(y) , Pr

{
enα ·

M∑
m=1

W (y|Xm) + max
m

W (y|Xm) > enβQ0(y)

}
(56)

·
= Pr

{
enα ·

M∑
m=1

W (y|Xm) > enβQ0(y)

}
+

Pr
{

max
m

W (y|Xm) > enβQ0(y)
}

(57)

= Pr

{
M∑
m=1

W (y|Xm) > en(β−α)Q0(y)

}
+

Pr
{

max
m

W (y|Xm) > enβQ0(y)
}

(58)

, A(y) +B(y), (59)

where we have used (3). It is sufficient now to show that A , E{A(Y)} ·= e−nEA and B , E{B(Y)} ·=

e−nEB . Now, for a given y, let N(Q̂|y) be the number of codewords in C, whose joint empirical distribution
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with y is Q̂ = {Q̂(x, y), x ∈ X , y ∈ Y} (with Q̂X = P ). Next, define

f(Q̂) ,
∑
x,y

Q̂(x, y) lnW (y|x) (60)

and

g(Q̂Y ) ,
∑

Q̂Y (y) lnQ0(y) + β − α (61)

as well as

u(Q̂) , g(Q̂Y )− f(Q̂) =
∑

x,y∈X×Y

Q̂(x, y) ln
Q0(y)

W (y|x)
+ β − α = D(Q̂) + β − α. (62)

We begin with the analysis of A(y),

A(y) , Pr

∑
Q̂X|Y

N(Q̂|y)enf(Q̂) > eng(Q̂Y )

 (63)

·
= Pr

{
max
Q̂X|Y

N(Q̂|y)enf(Q̂) > eng(Q̂Y )

}
(64)

= Pr
⋃
Q̂X|Y

{
N(Q̂|y)enf(Q̂) > eng(Q̂Y )

}
(65)

·
=

∑
Q̂X|Y

Pr
{
N(Q̂|y) > en[g(Q̂Y )−f(Q̂)

}
(66)

·
= max

Q̂X|Y

Pr
{
N(Q̂|y) > enu(Q̂)

}
, (67)

where we have used again eq. (3). Now, since N(Q̂|y) is a binomial random variable pertaining to

enR trials and probability of success of the exponential order of e−nI(Q̂), we have, similarly as in [14,

Subsection 6.3]

Pr{N(Q̂|y) ≥ enu(Q̂)} ·= exp
{
−en[u(Q̂)]+(n[I(Q̂)−R + [u(Q̂)]+]− 1)

}
, (68)

provided that for u(Q̂) > 0, I(Q̂)− R + u(Q̂) > 0 (otherwise, Pr{N(Q̂|y) ≥ enu(Q̂)} → 1).9 Therefore,

the exponential rate E(Q̂) of Pr{N(Q̂|y) ≥ enu(Q̂)} is as follows:

E(Q̂) =


[I(Q̂)−R]+ u(Q̂) ≤ 0

∞ u(Q̂) > 0, u(Q̂) > R− I(Q̂)

0 u(Q̂) > 0, u(Q̂) < R− I(Q̂)

(69)

9 Note also that Pr{N(Q̂|y) ≥ enu(Q̂)} = Pr{N(Q̂|y) ≥ en[u(Q̂)]+} since N(Q̂|y) is an integer valued random variable.
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=



I(Q̂)−R u(Q̂) ≤ 0, R ≤ I(Q̂)

0 u(Q̂) ≤ 0, R > I(Q̂)

∞ u(Q̂) > 0, u(Q̂) > R− I(Q̂)

0 u(Q̂) > 0, u(Q̂) ≤ R− I(Q̂)

(70)

=


[
I(Q̂)−R

]
+

u(Q̂) ≤
[
R− I(Q̂)

]
+

∞ u(Q̂) >
[
R− I(Q̂)

]
+

. (71)

Using the convention that the minimum over an empty set is infinity, we may succinctly write

min
Q̂X|Y ∈QP

E(Q̂) = min
Q̂X|Y ∈QP

{[
I(Q̂)−R

]
+

s.t. u(Q̂) ≤
[
R− I(Q̂)

]
+

}
(72)

= min
Q̂X|Y ∈QP

{[
I(Q̂)−R

]
+

s.t. D(Q̂) ≤ −β + α +
[
R− I(Q̂)

]
+

}
. (73)

For the overall exponent associated with A, we need to average over Y, which gives A ·
= e−nEA with

EA(R) = min
Q̂Y |X

{
D(Q̂Y ||Q0) +

[
I(Q̂)−R

]
+

s.t. D(Q̂) ≤ −β + α +
[
R− I(Q̂)

]
+

}
. (74)

Moving on to the analysis of B(y), we have

B(y) , Pr
{

max
m

W (y|Xm) > enβQ0(y)
}

(75)

= Pr
M⋃
m=1

{
W (y|Xm) > enβQ0(y)

}
(76)

·
= min

{
1,M · Pr{W (y|X1) > enβQ0(y)}

}
, (77)

where in the last line, we have used (5). Now,

Pr{W (y|X1) > enβQ0(y)} ·= e−nI0(Q̂Y ), (78)

where

I0(Q̂Y ) , min
Q̂X|Y

{
I(Q̂) : D(Q̂) ≤ −β, Q̂X|Y ∈ QP

}
(79)

= R(−β; Q̂Y ). (80)

Thus, B ·
= e−nEB with

EB(R) , min
QY

{
D(QY ||Q0) + [R(−β;QY )−R]+

}
(81)
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= min
QY

{
D(QY ||Q0) +

[
min

QY |X :D(Q)≤−β,(P×QY |X)Y =QY

I(Q)−R
]

+

}
(82)

= min
QY

{
D(QY ||Q0) + min

QY |X :D(Q)≤−β,(P×QY |X)Y =QY

[I(Q)−R]+

}
(83)

= min
QY

min
QY |X :D(Q)≤−β,(P×QY |X)Y =QY

{
D(QY ||Q0) + [I(Q)−R]+

}
(84)

= min
QY |X :D(P×QY |X)≤−β

{
D(QY ||Q0) + [I(Q)−R]+

}
(85)

where Q = P ×QY |X .

B. The Misdetection Error Exponent

Without loss of generality, we will assume that X1 = x1 was transmitted. We first condition on x1 and

y, and use the fact that (X1,Y) are independent of {Xm}Mm=2:

P̄MD(x1,y) , Pr

{
enα

M∑
m=1

W (y|Xm) + max
m

W (y|Xm) ≤ enβQ0(y)

∣∣∣∣X1 = x1,Y = y

}
(86)

= Pr

{
enα

M∑
m=1

W (y|Xm)+

max{W (y|x1),max
m>1

W (y|Xm)} ≤ enβQ0(y)

∣∣∣∣X1 = x1,Y = y

}
(87)

·
= Pr

{
enα

[
W (y|x1) +

∑
m>1

W (y|Xm)

]

+W (y|x1) + max
m>1

W (y|Xm) ≤ enβQ0(y)

}
(88)

·
= Pr

{
en[α]+W (y|x1) + enα

∑
m>1

W (y|Xm) + max
m>1

W (y|Xm) ≤ enβQ0(y)

}
(89)

·
= Pr

{
en[α]+W (y|x1) < enβQ0(y),

enα
∑
m>1

W (y|Xm) + max
m>1

W (y|Xm) ≤ enβQ0(y)

}
(90)

= I
{
en[α]+W (y|x1) < enβQ0(y)

}
×

Pr

{
enα

∑
m>1

W (y|Xm) + max
m>1

W (y|Xm) ≤ enβQ0(y)

}
(91)

, C ·D. (92)

Using the identity

max
m>1

W (y|xm) ≡ max
Q̂X|Y

I{N(Q̂|y) ≥ 1} · enf(Q̂) (93)
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(where now N(Q̂|y) does not count x1), we now have

D = Pr

{
enα

∑
m>1

W (y|Xm) + max
m>1

W (y|Xm) ≤ enβQ0(y)

∣∣∣∣x1,y

}
(94)

= Pr

enα ∑
Q̂X|Y

N(Q̂|y)enf(Q̂) + max
Q̂X|Y

I{N(Q̂|y) ≥ 1} · enf(Q̂) ≤ en[g(Q̂Y )+α]

∣∣∣∣x1,y

 (95)

·
= Pr

enα ∑
Q̂X|Y

N(Q̂|y)enf(Q̂) +
∑
Q̂X|Y

I{N(Q̂|y) ≥ 1}enf(Q̂) ≤ en[g(Q̂Y )+α]

∣∣∣∣x1,y

 (96)

= Pr

∑
Q̂X|Y

[enαN(Q̂|y) + I{N(Q̂|y) ≥ 1}]enf(Q̂) ≤ en[g(Q̂Y )+α]

∣∣∣∣x1,y

 (97)

·
= Pr

{
max
Q̂X|Y

[enαN(Q̂|y) + I{N(Q̂|y) ≥ 1}]enf(Q̂) ≤ en[g(Q̂Y )+α]

∣∣∣∣x1,y

}
(98)

= Pr
⋂
Q̂X|Y

{
enαN(Q̂|y) + I{N(Q̂|y) ≥ 1} ≤ en[u(Q̂)+α]

∣∣∣∣x1,y

}
(99)

= Pr
⋂
Q̂X|Y

{
N(Q̂|y) ≤ env(Q̂)

∣∣∣∣x1,y

}
, (100)

where

v(Q̂) =

 u(Q̂) u(Q̂) + α > 0

−∞ u(Q̂) + α ≤ 0
(101)

Now, if there exists at least one Q̂X|Y ∈ QP for which I(Q̂) < R and R − I(Q̂) > v(Q̂), then this

Q̂X|Y alone is responsible for a double exponential decay of D (because then the event in question

would be a large deviations event whose probability decays exponentially with M = enR, thus double-

exponentially with n), let alone the intersection over all {Q̂X|Y }. The condition for this to happen is

R > R0(α, β;QY ) , minQX|Y ∈QP
max{I(Q̂), I(Q̂)+v(Q̂)}. Conversely, if for every Q̂ with Q̂X|Y ∈ QP ,

we have I(Q̂) > R or R − I(Q̂) < v(Q̂), that is, R < R0(α, β;QY ), then D is close to 1 since the

intersection is over a sub-exponential number of events with very high probability. It follows that D

behaves like I{R0(α, β;QY ) > R}, Thus,

PMD
·

= EI
{
R0(α, β;QY ) > R, W (Y|X1) ≤ en(β−[α]+)Q0(Y)

}
(102)

= exp

[
−n inf

QY |X

{
D(QY |X‖W |P ) : R0(α, β;QY ) > R, D(Q) > [α]+ − β

}]
. (103)
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Thus,

EMD = inf
QY |X

{
D(QY |X‖W |P ) : R0(α, β;QY ) > R, D(Q) > [α]+ − β

}
(104)

= inf
QY :R0(α,β;QY )>R

{
inf

QY |X : (P×QY |X)Y =QY ,D(Q)>[α]+−β
D(QY |X‖W |P )

}
(105)

= inf
QY :R0(α,β;QY )>R

S([α]+ − β;QY ) (106)

Now, let us take a closer look at R0(α, β;QY ):

max{I(Q), I(Q) + v(Q)} =

 max{I(Q), I(Q) + u(Q)} u(Q) > −α

I(Q) u(Q) ≤ −α
(107)

= I(Q) + u(Q) · I{u(Q) > [−α]+}. (108)

Thus,

R0(α, β;QY ) = min
QX|Y ∈QP

[I(Q) + u(Q) · I{u(Q) > [−α]+}] (109)

= min

{
min

QX|Y ∈QP : u(Q)≤[−α]+
I(Q), min

QX|Y ∈QP : u(Q)>[−α]+
[I(Q) + u(Q)]

}
. (110)

Now,

min
QX|Y ∈QP : u(Q)≤[−α]+

I(Q) = R(α + [−α]+ − β;QY ) (111)

= R([α]+ − β;QY ) (112)

and

min
QX|Y ∈QP : u(Q)>[−α]+

[I(Q) + u(Q)] (113)

= β − α + min
QX|Y ∈QP :D(Q)>[α]+−β

[I(Q) +D(Q)] (114)

= β − α +

 R1(QY ) +D1(QY ) [α]+ − β < D1(QY )

R([α]+ − β;QY ) + [α]+ − β otherwise
(115)

=

 R1(QY ) +D1(QY ) + β − α [α]+ − β < D1(QY )

R([α]+ − β;QY ) + [α]+ − α otherwise
(116)

=

 R1(QY ) +D1(QY ) + β − α [α]+ − β < D1(QY )

R([α]+ − β;QY ) + [−α]+ otherwise
(117)

The term in the first line corresponds to an unconstrained minimization problem. Thus, whenever the term

in the second line is active, it is larger than the term in the first line. Thus, using the fact that α ≤ 0 we
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get

R0(α, β;QY ) =

 R1(QY ) +D1(QY ) + β − α −β < D1(QY )

R(−β;QY ) otherwise
. (118)

C. The Exclusive Decoding Error Exponent

Let us denote

Ωm ,

{
y : W (y|xm) > max

k 6=m
W (y|xk)

}
. (119)

Then, for m ≥ 1, R∗m = R∗0 ∩Ωm. For a given code, the probability of exclusive decoding error is given

by

PEE =
1

M

M∑
m=1

W (R∗0 ∩ Ωm|xm). (120)

Let X1 = x1 be transmitted and let Y = y be received, and let Q̃ denote their empirical joint distribution.

As before, we first condition on (x1,y).

Pr{R∗0 ∩ Ω1|x1,y} = Pr

{
enα
∑
m

W (y|Xm) + max
m

W (y|Xm) > enβQ0(y),

max
m>1

W (y|Xm) ≥ W (y|x1)

∣∣∣∣x1,y

}
(121)

·
= Pr

{
en[α]+W (y|x1) + enα

∑
m>1

W (y|Xm) + max
m>1

W (y|Xm) > enβQ0(y),

max
m>1

W (y|Xm) ≥ W (y|x1)

∣∣∣∣x1,y

}
(122)

·
= F1(x1,y) + F2(x1,y) + F3(x1,y) (123)

where

F1(x1,y) = I
{
W (y|x1) ≥ en(β−[α]+)Q0(y)

}
· Pr

{
max
m>1

W (y|Xm) ≥ W (y|x1)

∣∣∣∣x1,y

}
, (124)

F2(x1,y) = Pr

{∑
m>1

W (y|Xm) ≥ en(β−α)Q0(y), max
m>1

W (y|Xm) ≥ W (y|x1)

∣∣∣∣x1,y

}
, (125)

and

F3(x1,y) = Pr

{
max
m>1

W (y|Xm) ≥ max{enβQ0(y), W (y|x1)}
∣∣∣∣x1,y

}
. (126)

We next analyze separately each one of these three terms. For F1(x1,y), we may use an expression similar

to the regular random coding exponent, but with an additional constraint on Q̃ (similar to the derivation
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of EB(R) in the FA exponent)

F1(x1,y) = I
{
W (y|x1) ≥ en(β−[α]+)Q0(y)

}
· Pr

{
max
m>1

W (y|Xm) > W (y|x1)
}

(127)

.
= exp

[
−n · min

Q̃Y |X∈QP :D(Q̃)≤[α]+−β

{
D(Q̃Y |X ||W |P ) +

[
I(Q̃)−R

]
+

}]
(128)

with Q̃ = P × Q̃Y |X . So we obtain F1 , E{F1(X1,Y)} ·= e−nE1 with

E1 = min
QY |X :D(Q)≤[α]+−β

{
D(QY |X ||W |P ) + [I(Q)−R]+

}
(129)

with Q = P ×QY |X .

Next, we continue with F3(x1,y). We consider the set

S ,
{
Q̃ : D(Q̃) > −β

}
(130)

We split the evaluation of F3(x1,y) into two cases, depending whether Q̃ ∈ S or not.

Case 1: Q̃ /∈ S. In this case Q̃ is such that enβQ0(y) ≤ W (y|x1) and so

F3(x1,y) = Pr
{

max
m>1

W (y|Xm) > W (y|x1)
}

(131)

.
= exp

[
−n ·

[
I(Q̃)−R

]
+

]
(132)

as in the evaluation of F1(x1,y).

Case 2: Q̃ ∈ S. In this case Q̃ is such that enβQ0(y) > W (y|x1) and so

F3(x1,y) = Pr
{

max
m>1

W (y|Xm) > enβQ0(y)
}

(133)

.
= exp

[
−n ·

[
min

QX|Y ∈QP :D(Q̃Y ×QX|Y )≤−β
I(Q)−R

]
+

]
(134)

= exp

[
−n ·

[
R(−β, Q̃Y )−R

]
+

]
. (135)

Then

F3 , E [F3(X1,Y)] (136)
.
= E

[
F3(X1,Y) · I(Q̃ /∈ S)

]
+ E

[
F3(X1,Y) · I(Q̃ ∈ S)

]
(137)

.
= max

{
e−nE

′
3 , e−nE

′′
3

}
(138)

.
= e−n·min{E′3,E′′3} (139)
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where

E ′3 = min
Q̃:D(Q̃)≤−β

{
D(Q̃Y |X ||W |P ) +

[
I(Q̃)−R

]
+

}
(140)

and

E ′′3 = inf
Q̃:D(Q̃)>−β

{
D(Q̃Y |X ||W |P ) +

[
R(−β, Q̃Y )−R

]
+

}
. (141)

Using the fact that α ≤ 0, we get E ′3 = E1. Thus if we denote F3 , E{F3(X1,Y)} ·= e−nE3 , we obtain

E3 = min {E ′3, E ′′3} = min {E1, E
′′
3} ≤ E1 (142)

and so, E1 is always dominated by E3.

Finally, let us consider F2(x1,y). Again, let us consider a set

S ,
{
Q̃ : D(Q̃) ≥ α− β

}
(143)

and split into two cases, such that

F2 , E [F2(X1,Y)] = max
{
e−nE

′
2 , e−nE

′′
2

}
= e−n·min{E′2,E′′2} (144)

and each of the two exponents fits one of the following cases.

Case 1: Q̃ /∈ S. In this case, en(β−α)Q0(y) ≤ W (y|x1) so using Bayes rule

F2(x1,y) = Pr

{∑
m>1

W (y|Xm) > en(β−α)Q0(y),max
m>1

W (y|Xm) ≥ W (y|x1)

}
(145)

= Pr
{

max
m>1

W (y|Xm) ≥ W (y|x1)
}
×

Pr

{∑
m>1

W (y|Xm) > en(β−α)Q0(y)|max
m>1

W (y|Xm) ≥ W (y|x1)

}
(146)

= Pr
{

max
m>1

W (y|Xm) ≥ W (y|x1)
}
× 1. (147)

The resulting exponent is

E ′2 = min
Q:D(Q)≤α−β

{
D(QY |X ||W |P ) + [I(Q)−R]+

}
, (148)

and evidently, as α ≤ 0 then E ′2 ≥ E1.

Case 2: Q̃ ∈ S. In this case, en(β−α)Q0(y) > W (y|x1) so we use the following derivation.

F2(x1,y)
·

= Pr

∑
Q̂X|Y

N(Q̂|y)enf(Q̂) ≥ eng(Q̂),
∑
Q̂X|Y

I{N(Q̂|y) ≥ 1} · enf(Q̂) ≥ enf(Q̃)

 (149)
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·
= Pr

{
max
Q̂X|Y

N(Q̂|y)enf(Q̂) ≥ eng(Q̂), max
Q̂X|Y

I{N(Q̂|y) ≥ 1} · enf(Q̂) ≥ enf(Q̃)

}
(150)

·
= Pr

 ⋃
Q̂X|Y

{N(Q̂|y) ≥ enu(Q̂)}

⋂ ⋃
Q̂X|Y

{I{N(Q̂|y) ≥ 1} ≥ en[f(Q̃)−f(Q̂)]}

 (151)

= Pr

 ⋃
Q̂X|Y

{N(Q̂|y) ≥ enu(Q̂)}

⋂
 ⋃
Q̂X|Y : f(Q̃)≤f(Q̂)

{I{N(Q̂|y) ≥ 1} ≥ en[f(Q̃)−f(Q̂)]}

 (152)

= Pr
⋃

{Q̂X|Y ,Q
′
X|Y : f(Q̃)≤f(Q′)}

{
N(Q̂|y) ≥ enu(Q̂), N(Q′|y) ≥ 1

}
(153)

·
= Pr

⋃
Q̂X|Y : f(Q̃)≤f(Q̂)

{
N(Q̂|y) ≥ en[u(Q̂)]+

}
+

∑
Q̂X|Y 6=Q′X|Y : f(Q̃)≤f(Q′)

Pr{N(Q̂|y) ≥ en[u(Q̂)]+ , N(Q′|y) ≥ 1} (154)

·
= max

Q̂X|Y : f(Q̃)≤f(Q̂)
Pr
{
N(Q̂|y) ≥ en[u(Q̂)]+

}
+

max
Q̂X|Y 6=Q′X|Y : f(Q̃)≤f(Q′)

Pr{N(Q̂|y) ≥ en[u(Q̂)]+ , N(Q′|y) ≥ 1} (155)

·
= max

Q̂X|Y : f(Q̃)≤f(Q̂)
Pr{N(Q̂|y) ≥ en[u(Q̂)]+} (156)

= max
Q̂X|Y :D(Q̃)≥D(Q̂)

Pr{N(Q̂|y) ≥ en[u(Q̂)]+} (157)

·
= exp

[
−n ·

[
min

Q̂X|Y :D(Q̂)≤D(Q̃),D(Q̂)≤α−β
I(Q)−R

]
+

]
, (158)

where all the conditional types satisfy Q̃X|Y ∈ QP , Q′X|Y ∈ QP , Q̂X|Y ∈ QP , and the last passage follows

from an analysis almost identical to that of EA in Subsection V-A.

After averaging over (X1,Y), the resulting exponent is

E ′′2 = inf
Q̃:D(Q̃)>α−β

{
D(Q̃Y |X ||W |P ) +

[
min

Q̂X|Y ∈QP :D(Q̂)≤D(Q̃),D(Q̂)≤α−β
I(Q)−R

]
+

}
(159)

= inf
Q̃:D(Q̃)>α−β

{
D(Q̃Y |X ||W |P ) +

[
min

Q̂X|Y ∈QP :D(Q̂)≤α−β
I(Q)−R

]
+

}
(160)

= inf
Q̃:D(Q̃)>α−β

{
D(Q̃Y |X ||W |P ) +

[
R(α− β, Q̃Y )−R

]
+

}
. (161)

To conclude, we have

EEE(R) , min {E ′′2 , E ′3, E ′′3} . (162)
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VI. NUMERICAL EXAMPLES

In this section, we demonstrate the results obtained via numerical examples. First, we consider an

example of practical interest, and second, we compare our results to the non-optimal exponents derived

in [26].

Consider transmitting over an additive white Gaussian noise (AWGN) channel in discrete time, in which

the output at time k ∈ {1, . . . , n} is given by

ỹk = xk + wk. (163)

The channel input xk is restricted to a ternary input alphabet X = {−1, 0, 1} ⊂ IR, and a fixed composition

codebook is drawn according to the input type P = [1/2, 0, 1/2]. When the transmitter is silent, xk = 0.

The noise is Gaussian i.i.d. with N (0, 1/SNR) where SNR is the signal to noise ratio (SNR). The output

ỹk is quantized into a ternary alphabet Y = {−1, 0, 1} as follows:

yk =


−1 ỹk ≤ −1/2

0 −1/2 < ỹk < 1/2

1 ỹk ≥ 1/2

. (164)

After output quantization, a DMC, parametrized by the SNR value, is obtained. For example, when

SNR = 4dB then
W (−1| − 1) W (0| − 1) W (1| − 1)

W (−1|0) W (0|0) W (1|0)

W (−1|1) W (0|1) W (1|1)

 =


0.786, 0.2053, 0.0087

0.21405, 0.5719, 0.21405

0.0087, 0.2053, 0.786

 , (165)

where Q0 = W (·|0). The capacity of the original AWGN channel (with optimal input and no output

quantization) is C ≈ 0.628 (nats) and the mutual information of the resulting DMC with the assumed

input type P is I(P ×W ) ≈ 0.5 (nats). The obtained exponents for the parameters α = 0, β = 0.2 are

shown in Figure 1 and 2 for SNR = 0dB and SNR = 4dB, respectively. For visual clarity, the exponent

EIE(R) is not shown, as it is easily given by the minimum of EMD(R) and Er(R).

It can be observed that the FA exponent has the same form as the random coding exponent. For low

rates it is an affine function of the rate with slope −1, and for larger rates it has decreases monotonically

to 0. Moreover, EFA is convex for all positive rates. In general, since EFA(R) is the pointwise minimum

of two decreasing convex functions (see Appendix A), it is only convex in intervals where one exponent

dominates the other. It is also worth to observe that the MD exponent is constant up to some critical rate,

and then increases (this may also be deduced from eq. (40)). Indeed, the fact that many codewords exist
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Figure 1. Error exponents for binary-input-ternary-output Gaussian channel and SNR = 0dB, α = 0, β = 0.2

in the codebook decreases the MD probability, even if the decoding will eventually not be to the true

codeword. The IE exponent, given by the minimum of EMD(R) and Er(R) is increasing up to the rate where

these two exponents equate (assuming EMD(0) ≤ Er(0)), and then decreases to zero at R = I(P ×W ).

The qualitative description of the EE exponent as a function of the rate is similar to the FA exponent.

Finally, notice that for the larger SNR, EEE(R) reaches its lower bound Er(R) for all rates.

Next, we compare the optimal random coding exponents derived in this paper, with the results of [26].

In [26, Chapter 4], Wang studies the achievable tradeoff between EFA(R) and EMD(R) at the capacity

R = I(P ×W ), which obviously implies that EIE(R) = 0. Among the ensembles considered in [26], the

best achievable trade-off is obtained for fixed composition codebooks, as assumed in this paper, but a

heuristic decoding rule is used (see [26, Theorem 4.2] and comment 3 in Section (III)). Another difference

is that the MD probability in [26] is not averaged over all codewords in the codebook (as in eq. 7), and

is defined as the maximal probability over all codewords in the codebook. Nonetheless, this difference is

immaterial since for any codebook with a given average misdetection probability, a different codebook
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Figure 2. Error exponents for binary-input-ternary-output Gaussian channel and SNR = 0dB, α = −0.1, β = 0.2

can be found with the same maximal misdetection probability, and a negligible loss in rate.

One of the numerical examples in [26, Section 4.4.4] assumes an input alphabet X = {−1, 0, 1} and

output alphabet Y = {−1, 1}. The relation between the inputs X\{0} = {−1, 1} to Y is an ordinary binary

symmetric channel (BSC) with crossover probability ε = 0.05, and for the special symbol Q0 = [1/2, 1/2].

Moreover, the symbol ′0′ is restricted not to be used for coding. In this event, since the channel is

symmetric, a uniform input type P = [1/2, 0, 1/2] induces Q0 on the output letters, just like the special

symbol. Thus, good results are obtained when the input type is not uniform, and P = [0.4, 0, 0.6] is

chosen as an example, which results I(P ×W ) = 0.48 (nats). A numerical calculation we have performed

showed that in this case the exponents in [26, Section 4.4.4] and the optimal exponents derived in this

paper coincide.10 However, if one considers a binary non-symmetric channel between the inputs {−1, 1}

and Y with ε1 = W (1| − 1) = 0.01 and ε2 = W (1|0) = 0.3 (and all other parameters are the same), then

10See [26, Figure 4.5 in Section 4.4.4] for the actual graphs. Notice that the figures in [26] are presented in base 2 logarithm, even though
expressions of the form e−nE are used for exponential decrease.



30

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

102⋅ E
MD

10
2 ⋅ E

F
A

Comparison with Wang’s results 
 Binary non−symmetric channel, ε

1
=0.01, ε

2
=0.30

 

 
Optimal
Wang

Figure 3. Comparison with [26, Theorem 4.2]

Wang’s results are strictly sub-optimal, as can be seen in Figure 3. We remark that for optimal results,

we have chosen α = 0 (see discussion in Section III) and β was varied in order to trade-off between the

false alarm and misdetection exponents.

VII. DIRECTIONS FOR FUTURE RESEARCH

The main contribution of this paper is the derivation of the optimal detector for the transmission of

a codeword, as well as its exact random coding error exponents for the ensemble of fixed composition

codes of a given type P . From this point, there is a variety of possible future research directions:

1) We have focused on discrete memoryless channels, but the same problem may be formulated for

additive Gaussian noise channels. For these channels, the optimal detector/decoder is exactly the same

as in Lemma 1, while the error exponents analysis may be performed by methods similar, e.g., to [13],

where an analogue of the method of types is developed for the continuous alphabet case.

2) Throughout, we have assumed a given input type P . Clearly, P may be optimized to obtain the

largest exponents possible, as long as I(P ×W ) ≥ R is satisfied. Notice, however, that three exponents

are involved in this optimization, and by varying P one may improve one exponent, but decrease either
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of the two others. This can be circumvented by defining a cost function that weighs all three exponents

as a Lagrangian, and then optimize the cost function with respect to P . As a subset of this problem, it

may be only decided whether to use the special symbol for coding or not. If the P -probability of ′0′ is

strictly positive, then the mutual information I(P ×W ) and the IE and EE exponents may be increased,

but clearly the FA and MD exponents will decrease.

3) A related direction is improving the ensemble of codebooks, e.g. using expurgated ensembles or

an ensemble of linear codes. As for expurgated bounds, here too, one should define which codewords

to expurgate, since removing some of the codewords from a given code may improve one exponent, but

perhaps harm the other exponents. Again, a cost function may be defined, and then methods that similar

to those of [16] and [19] may be applied. As for linear ensembles of codes, currently, the type-class

enumeration method relies on the fact that type-class enumerator11 is a binomial random variable, namely,

it counts ‘successes’ of mutually independent experiments. For the linear ensemble, these experiments

are merely pairwise independent, so it is not trivial to characterize the large deviations behavior of the

enumerators. Though one can always resort to bounds, our aim for further research are the exact exponents.

4) The problem discussed in this paper is intimately related to the message-wise UEP problem [2]

where a specific message out of the codebook has a special stature, and similarly to our problem, FA and

MD probabilities may be defined with respect to the special message. It is apparent, that no matter what

is the codeword of the special message, the optimal detector/decoder in Lemma 1 can be used verbatim,

by letting Q0(y) to be the output distribution, given that the special codeword has been sent. Also, in case

that the special message is 012, both problems are equivalent, and our results apply, and thus generalize

the results of [2, Theorem 2, Theorem 10], which only considered rates close to capacity and either zero

FA exponent or zero MD exponent. Exploring further relations between these problems is left for further

study.

5) In many cases, in addition to the codeword detection problem, the classical problem of channel

knowledge is also present [11]. To perform optimal detection/decoding, the receiver should have an

up-to-date knowledge of the channel law W . The problem of designing joint detection/decoding rules

remains relevant, and even becomes more involved, when the receiver is ignorant of the exact underlying

law governing the channel. Optimal detectors/decoders should be developed for this scenario, and their

performance should be evaluated.

6) The problem is easily extended to network scenarios, e.g., detecting, in a multiple access channel,

which of the users is currently transmitting, and then decode the messages of the active users.

11The quantity defined as N(Q̂|y) in the proof of Theorem 2.
12As proposed in [2, Section III.B] in cases that maximal MD exponent is required, or maximal (lower bound on) FA exponent is required,

an optimal strategy is to repeatedly send the same symbol.
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APPENDIX A

ASPECTS OF EXPONENTS COMPUTATION

In this appendix we discuss several aspects of the computation of the various exponent functions

appearing in Section IV. Let us recall the regular random coding expression for fixed composition codes

is given by

Er(R) = min
QY |X
D(QY |X ||W |P ) +

[
I(P ×QY |X)−R

]
+
. (A.1)

The objective function of this minimization problem includes clipping, which complicates the computation

of Er(R), as it results a minimax problem. The standard method to solve this optimization problem is to

first solve it for R = 0. In this case

Er(0) = min
QY |X
D(QY |X ||W |P ) + I(P ×QY |X). (A.2)

which does not contain the problematic clipping. Now, letting the minimizer be Q0
Y |X , and defining the

critical rate

Rcr , I(P ×Q0
Y |X) (A.3)

it is easily noticed that for R ≤ Rcr we have

Er(R) = D(Q∗Y |X(0)||W |P ) +Rcr −R (A.4)

namely, Er(R) decreases linear with slope −1. Then, for R > Rcr we have

Er(R) = min
QY |X :I(P×QY |X)≤R

D(QY |X ||W |P ) (A.5)

which is a constrained optimization problem. However, since I(Q) is a convex functional of QY |X then this

is a convex optimization problem which can efficiently be solved numerically. Moreover, using standard

Lagrange formulation this problem may be written as the following an unconstrained problem

Er(R) = min
QY |X

max
λ≥0

{
D(QY |X ||W |P ) + λ ·

(
I(P ×QY |X)−R

)}
(A.6)

= max
λ≥0

min
QY |X

{
D(QY |X ||W |P ) + λ ·

(
I(P ×QY |X)−R

)}
. (A.7)
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For a given λ, let Qλ
Y |X be the minimizer of the inner problem. It is well known that as λ is varied from

1 to 0 then the random coding exponent is given parametrically by Er(R) = D(Qλ
Y |X ||W |P )

R = I(P ×Qλ
Y |X)

, (A.8)

where for λ = 0 the error exponent vanishes, and the rate is the mutual information I(P ×W ).

In what follows, we shall attempt to represent the various exponents in forms similar to the ordinary

random coding exponent, in order to prove the feasibility of their computation. This is possible for EFA

and EEE, however computing EMD is more evolved as discussed in Subsection A-B of this appendix.

A. Computation of False Alarm Exponents

We begin with the expression EA(R) from eq. (37). While this is a very compact expression, it is

difficult to compute its value because of the clipping operations. Thus, we split the minimization in eq.

(37) into two cases I(Q) ≤ R and I(Q) > R. Then, we may write

EA(R) = min {E ′A(R), E ′′A(R)} (A.9)

where

E ′A(R) , min
QY |X : I(Q)≤R, D(Q)+I(Q)≤−β+α+R

{D(QY ||Q0)} , (A.10)

E ′′A(R) , min
QY |X : I(Q)>R, D(Q)≤−β+α

{D(QY ||Q0) + I(Q)−R} . (A.11)

Now, computing E ′A(R) is a convex optimization problem since D(Q) is a linear function of Q (cf. eq.

(32) and the definition of D(·) immediately after). Next, let us analyze

E ′′A(R) = inf
QY |X :D(Q)≤−β+α,I(Q)>R

D(QY ||Q0) + I(Q)−R. (A.12)

as a function of the rate. For R = 0 we have

E ′′A(R = 0) = min
QY |X :D(Q)≤−β+α

D(QY ||Q0) + I(Q) (A.13)

which is a convex optimization problem. Suppose that its unique solution is (QA,R=0)Y |X and let

Rcr,A , I(P × (QA,R=0)Y |X). (A.14)

Then, for R ≤ Rcr,A the exponent is an affine function

E ′′A(R) = E ′′A(R = 0)−R (A.15)
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and for R > Rcr,A

E ′′A(R) = inf
QY |X :D(Q)≤−β+α,I(Q)>R

D(QY ||Q0) + I(Q)−R (A.16)

= min
QY |X :D(Q)≤−β+α,I(Q)=R

D(QY ||Q0), (A.17)

due to the convexity of the objective. But, since

E ′A(R) = min
QY |X : I(Q)≤R,D(Q)+I(Q)≤−β+α+R

D(QY ||Q0) (A.18)

then for R > Rcr,A we get

E ′A(R) ≤ E ′′A(R). (A.19)

Thus, for the purpose of computing EA(R) we may disregard E ′′A(R) for R > Rcr,A, or equivalently

EA(R) = min{E ′A(R), Ẽ ′′A(R)} (A.20)

where

Ẽ ′′A(R) =

minQY |X :D(Q)≤−β+αD(QY ||Q0) + I(Q)−R, R ≤ Rcr,A

∞ R > Rcr,A

. (A.21)

Then, computing both E ′A(R) and Ẽ ′′A(R) only requires solving convex optimization problems.

Next, let us discuss EB(R). Again, for R = 0

EB(R = 0) = min
QY |X :D(Q)≤−β

{D(QY ||Q0) + I(Q)} (A.22)

where as usual P ×QY |X , and let (QB,R=0)Y |X be the minimizer for this problem. Then we may similarly

define

Rcr,B , I(P × (QB,R=0)Y |X) (A.23)

and for R ≤ Rcr,B

EB(R) = D((P ×Q0
Y |X)Y ||Q0) +Rcr −R. (A.24)

Then, for R > Rcr,B we have

EB(R) = min
QY |X : I(P×QY |X)≤R,D(P×QY |X)≤−β

D((P ×QY |X)Y ||Q0). (A.25)

All optimization problems involved in computing EB(R) are convex since the constraint D(Q) ≤ −β is

linear, and the divergence involved is convex. Moreover, a parametric form of EB(R) may be obtained,

just as for the ordinary random coding exponent.
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Further simplifications are possible, recalling that without loss of generality it may be assumed that

α ≤ 0. When α = 0 then Rcr,A = Rcr,B and EB(R) = Ẽ ′′A(R) for R ≤ Rcr,A = Rcr,B. For R > Rcr,A we

have

Ẽ ′′A(R) ≥ EB(R) (A.26)

and thus

EFA(R) = min {E ′A(R), EB(R)} . (A.27)

Now if α is reduced to be strictly less than 0 then EB(R) does not change, and E ′A(R) and Ẽ ′′A(R)

increase, so

Ẽ ′′A(R) ≥ EB(R) (A.28)

and

EFA(R) = min {E ′A(R), EB(R)} . (A.29)

So to conclude, assuming without loss of generality α ≤ 0 , we may disregard Ẽ ′′A(R). The resulting

optimization problems for E ′A(R) and EB(R) are all convex, and thus solvable.

On a final note, we remark that E ′A(R) and EB(R) are both convex functions of R (but EFA(R) may

not be, as it is a minimum of two convex functions).

B. Computation of Misdetection Exponent

It is observed from eqs. (35) and (40) that R(∆;QY ), S(∆;QY ) and R1(QY ), D1(QY ) need to be

computed for any given QY . It can be easily proved that given QY , computing each of these functions is

a convex optimization problem, and thus can be efficiently computed. However, the optimization over QY ,

needed in order to compute EMD(R) in eq. (40), is a non-convex problem, and thus global optimization

methods are required (e.g. a simple algorithm is an exhaustive search over a fine grid of the |Y|-dimensional

probability simplex).

C. Computation of Exclusive Decoding Error Exponent

We begin by analyzing E ′3(R). It can be easily seen that computing E ′3(R) is a convex optimization

problem, and thus finding the optimal solution Q′ is a feasible task. Then, two cases are possible depending

whether Q′ has a slack constraint, i.e. D(Q
′
) < −β, or not.

Case 1: D(Q
′
) < −β. In this case

E ′3(R) = min
Q:D(Q)≤−β

{
D(QY |X ||W |P ) + [I(Q)−R]+

}
(A.30)
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= min
Q

{
D(QY |X ||W |P ) + [I(Q)−R]+

}
(A.31)

= Er(R) (A.32)

i.e. the regular random coding exponent. Since by definition EEE(R) ≥ Er(R) this implies that EEE(R) =

Er(R).

Case 2: D(Q
′
) = −β. In this case, continuity and convexity arguments imply

E ′3(R) = min
Q:D(Q)≤−β

{
D(QY |X ||W |P ) + [I(Q)−R]+

}
(A.33)

= min
Q:D(Q)=−β

{
D(QY |X ||W |P ) + [I(Q)−R]+

}
(A.34)

≥ min
Q:D(Q)=−β

{
D(QY |X ||W |P ) + [R(−β,QY )−R]+

}
(A.35)

≥ min
Q:D(Q)≥−β

{
D(QY |X ||W |P ) + [R(−β,QY )−R]+

}
(A.36)

= inf
Q:D(Q)>−β

{
D(QY |X ||W |P ) + [R(−β,QY )−R]+

}
(A.37)

= E ′′3 (R) (A.38)

and then EEE(R) = min {E ′′2 (R), E ′′3 (R)}.

The above analysis may aid to choose β. Since a-priori EEE(R) ≥ Er(R), if a strict inequality EEE(R) >

Er(R) is desired, then the value of β should be chosen such that Q∗, the minimizer of Er(R), is not

feasible for E ′3(R), namely D(Q∗) > −β.

We continue with E ′′2 (R). For R = 0 we have

E ′′2 (R = 0) = min
QY

{S(α− β;QY ) + R(α− β;QY )} . (A.39)

To find the minimal value we explicitly write

E ′′2 (R = 0) = min
QY

{
inf

QX|Y ∈QP :D(Q)>α−β
D(QY |X‖W |P ) + min

Q̃X|Y ∈QP :D(Q̃)≤α−β
I(Q̃)

}
(A.40)

or equivalently

E ′′2 (R = 0) = inf
QX|Y ∈QP :D(Q)>α−β

min
Q̃X|Y ∈QP :D(Q̃)≤α−β

D(QY |X‖W |P ) + I(Q̃) s.t. QY = Q̃Y . (A.41)

Thus, in essence, computing E ′′2 (R = 0) requires minimizing over two conditional distributions QY |X

and Q̃Y |X with the additional linear constraint that their Y -marginal are equal. As the objective function

is jointly convex in the optimization variables QY |X and Q̃Y |X , and the constraints are linear, this is a

convex optimization problem.
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Then, if the optimal solution is ((Q2,R=0)Y |X , (Q̃2,R=0)Y |X) denoting

Rcr,2 , I
(
P × (Q̃2,R=0)Y |X

)
(A.42)

we get for R ≤ Rcr,2 an affine section

E ′′2 (R) = D((Q2,R=0)Y |X‖W |P ) +Rcr,2 −R. (A.43)

For R > Rcr,2 we may use the Lagrange formulation

inf
QX|Y ∈QP :D(Q)>α−β

min
Q̃X|Y ∈QP :D(Q̃)≤α−β

D(QY |X‖W |P ) + λ · I(Q̃) s.t. QY = Q̃Y . (A.44)

Letting the solution of this problem be ((Q2,λ)Y |X , (Q̃2,λ)Y |X), and solving this problem for λ ∈ [0, 1]

provides the following parametric representation of the exponent: E ′′2 (R) = D
(
(Q2,λ)Y |X‖W |P

)
R = I

(
P × (Q̃2,λ)Y |X

) . (A.45)

Finally, E ′′3 (R) has identical structure to E ′′2 (R) (the only difference is that −β is replaced by α− β),

and thus may be computed exactly in the same manner.
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