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Abstract

High-throughput DNA sequencing enables detection of copy number variations (CNVs) on the genome-wide scale

with finer resolution compared to array-based methods but suffers from biases and artifacts that lead to false

discoveries and low sensitivity. We describe CODEX2, as a statistical framework for full-spectrum CNV profiling that

is sensitive for variants with both common and rare population frequencies and that is applicable to study designs

with and without negative control samples. We demonstrate and evaluate CODEX2 on whole-exome and targeted

sequencing data, where biases are the most prominent. CODEX2 outperforms existing methods and, in particular,

significantly improves sensitivity for common CNVs.
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Background

Copy number variations (CNVs) are large deletions and

duplications of segments of the chromosome. CNVs are

pervasive in the human genome and play a causal role in

diseases such as cancer [1]. In the study of disease, CNVs

usually appear in two contexts: germline CNVs refer to

inherited variants, many of which are polymorphic at the

population level [2]; in contrast, somatic CNVs, also re-

ferred to as copy number aberrations (CNAs), are the

copy number changes resulting from somatic mutations,

such as those commonly observed in cancer. Germline

CNVs can also be described as common or rare based on

their population frequencies. This paper addresses the

problem of detection of both germline and somatic CNVs

and, in particular, of improving detection sensitivity for

common CNVs in both categories.

With the dramatic growth of sequencing capacity and the

accompanying drop in sequencing cost, massively parallel

next-generation sequencing offers appealing platforms for

genome-wide CNV detection. Whole-genome sequencing

(WGS) offers an unbiased genome-wide approach to detect

CNVs, while whole-exome sequencing (WES) and targeted

sequencing allow the identification of disease-associated

variants in coding regions with direct functional interpret-

ation. Despite the rapid technological progress, CNV detec-

tion using high-throughput sequencing still faces analytical

challenges due to the pervasive biases and artifacts that are

introduced during library preparation and sequencing.

Proper data normalization is crucial, especially for WES

and targeted sequencing, where technical biases are usually

magnitudes larger than CNV signal.

For studies in which deep coverage of specific genome

regions is desired [3–5], or where the cohort of interest

is large, WES and targeted sequencing are often pre-

ferred as cheaper alternatives to WGS. For example, the

DiscovEHR Collaboration (http://www.discovehrshare.-

com) has sequenced the exomes of more than 50,000

participants, and the Exome Aggregation Consortium

(ExAC; http://exac.broadinstitute.org) has aggregated

WES data for 60,706 unrelated individuals taken from

multiple disease-specific and population genetic studies.

This paper was primarily motivated by the challenges in

WES and targeted sequencing data, but the methods

developed here have also been integrated into a CNV
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detection pipeline for WGS data [6], where it is shown

that the normalization methods prescribed here allow

for more accurate CNV calls using Mendelian concord-

ance as metric.

CNV detection (by WES and targeted sequencing) is

primarily based on the detection of local changes in read

coverage along the genome. This analysis scheme is

based on the simple intuition that regions with copy

number gain should have increased read coverage, and

regions with copy number loss should have decreased

read coverage. However, read coverage depends not just

on copy number but also on many other factors, such as

GC content [7], mappability [8], and other local se-

quence characteristics [9]. Therefore, read coverage

tends to fluctuate even when there is no CNV and is es-

pecially variable in WES and targeted sequencing data

due to the biases and artifacts introduced during the tar-

geting and amplification steps [10–12].

Many methods are available for CNV detection in

high-throughput sequencing data [10–16]. Despite much

progress, however, significant challenges still remain

[17]. Independent benchmark results from multiple

studies [10, 12, 14, 18] show that existing methods suffer

from low precision and recall rates, especially for the de-

tection of common germline CNV signals. These results

are not unexpected, since in WES and targeted sequen-

cing data, and also to an extent in WGS data, the tech-

nical background bias for each genomic target varies

across samples, leading to false positives and negatives if

not properly removed. To remove this technical back-

ground, recent methods have relied on low-dimensional

linear factor models to capture the background bias [10,

11], which tend to control for false positives. However,

these low-dimensional linear factor models tend to re-

move common CNVs that correlate with the estimated

factors. CLAMMS [19] is developed to recover common

CNV signals by WES but is not suitable for cancer sam-

ples, where recurrent somatic copy number changes are

prominent. In this paper, we demonstrate that this issue

also affects the detection of somatic CNVs in cancer

genomes, as CNVs that are recurrent across multiple

cancer samples can be accidentally removed in the

normalization step. Due to these limitations, current

genetic studies using WES and targeted sequencing data

have focused mostly on single nucleotide variations and,

at best, rare CNVs [20–22].

Herein, we propose CODEX2 for full-spectrum CNV

detection in high-throughput sequencing data. In this

context, full spectrum implies the sensitive detection of

both common and rare CNVs. CODEX2 can be applied to

two scenarios: when there are “cases” and “controls” and

the goal is to detect CNVs that are enriched in the case

samples (Fig. 1a), and when the control samples are lack-

ing and the goal is simply to profile all CNVs in all

samples (Fig. 1b). We evaluated CODEX2 in three ways.

First, we reanalyzed the WES data of the HapMap samples

from the 1000 Genomes Project [2], with matched micro-

arrays and experimental validation [23–25] to assess

performance. Our results demonstrate that CODEX2

significantly improves both sensitivity and specificity over

existing methods, especially for common CNVs. Next, we

applied CODEX2 to targeted sequencing data of melan-

oma cancer cell lines, patient-derived xenografts (PDX),

and tumor biopsies and successfully identified recurrent

CNVs whose frequencies are highly concordant with those

obtained from a separate cohort studied by The Cancer

Genome Atlas (TCGA) [1]. Finally, we performed exten-

sive simulations to benchmark existing methods and to

explore how key variables, such as population frequency

and CNV length, influence performance. CODEX2 is

compiled as an open-source R-package available at

https://github.com/yuchaojiang/CODEX2.

Results

Methods overview

Figure 1 illustrates the two experimental designs for

which CODEX2 can be applied: (i) case-control design

with a group of negative control samples, where the goal

is to detect CNVs disproportionately present in the

“cases” versus the “controls” (Fig. 1a), and (ii) detection

of all CNVs present in all sample designs, such as in

ExAC (Fig. 1b). The key innovation in CODEX2 is the

way that it harnesses negative control genome regions

and/or negative control samples in its genome-wide

latent factor model for a sample- and position-specific

background correction. The negative control genome

regions defined by CODEX2 are regions that do not

harbor common CNVs, but that are still allowed to

harbor rare CNVs, and can be constructed from existing

studies or learned from data.

Figure 2 illustrates how CODEX2 normalization im-

proves upon CODEX and singular value decomposition

(SVD)-based normalization methods such as XHMM

[11]. For simplicity, and without loss of generality, we

represent the background bias by a one-dimensional la-

tent factor, which we call the “latent batch effect”.

Against this background, we further assume that there

are two CNVs: region A, in which the carrier status (the

vector indicating whether each sample is a carrier) is

correlated with the underlying latent batch, and region

B, in which the carrier status is uncorrelated with the la-

tent batch. The signal for these two CNV regions is ob-

scured by the background batch effect in the observed

data. In a standard SVD or CODEX normalization,

which does not make use of negative controls, all sam-

ples and all genomic regions are used in the estimation

of the latent background model, resulting in the contam-

ination of background estimates by the CNV signal. The
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contamination is especially severe for CNV A, which is

correlated with the one-dimensional background batch.

For CODEX2, in scenarios for which negative controls

are available, only the negative controls are used to fit

the latent factor model, which is then used to predict

the background bias of the rest of the samples. In

scenarios for which negative control samples are not

available but negative control regions are identified, the

latent factor model is fitted only using the negative

control regions and then used to “fill in” the background

bias for the rest of the regions. In this way, we avoid the

contamination of the background estimates by the CNV

signal, thus attaining better separation of signal from

noise, as can be seen from the histograms of the normal-

ized z-scores. More details are given in the “Methods”

section.

CODEX2 estimates a separate background factor for each

genomic target/region in each sample, which can then be

used to normalize the observed coverage and detect CNV

regions using the recursive Poisson-likelihood segmentation

algorithm in Jiang et al. [12] (Additional file 1).

Analysis of WES and WGS data from the 1000 Genomes

Project

We first evaluated CODEX2 by reanalyzing a publicly

available WES dataset from the 1000 Genomes Project

[2], which contains 90 healthy individuals (Additional file 2:

Table S1). Forty individuals are Utah residents with

Northern and Western European ancestry, 20 are Japanese

from Tokyo, 26 are Yoruba people from Ibadan. Gender is

well balanced with 44 males and 46 females. The dataset

contains two batches that are sequenced at the Baylor

College of Medicine and the Washington University Gen-

ome Sequencing Center.

To assess the performance of CODEX2 and to bench-

mark against existing methods, we used WGS CNV calls

from phase 3 release [2], as well as the experimentally

validated CNVs from three previous microarray studies

[23–25] as gold standards. Specifically, we adopted strin-

gent quality control procedures (i.e., the reported CNV

must overlap with at least 2 and at most 20 exons, have

less than 5% NA rate across all samples, and have at

most three copy number states). These “gold standard”

A

B

Fig. 1 CODEX2 can be applied under two experimental designs to identify common and rare, germline and somatic CNVs. a CODEX2 with

negative control samples. The goal is to recover both rare and common CNV signals present disproportionately in the cases versus the controls.

b CODEX2 without negative control samples. The goal is to identify all CNVs in all samples, e.g., to detect germline CNVs in healthy individuals

without prior knowledge of disease status
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CNVs, shown in Additional file 3: Table S2, were catego-

rized as common if they are present in more than 10% of

the samples, and rare otherwise. Using these “validation

sets,” we were able to assess the performance of

CLAMMS [19], XHMM [11], EXCAVATOR [14], CODEX

[12], and CODEX2 to detect common and rare CNVs,

with results shown in Additional file 4: Table S3. Figure 3

and Additional file 1: Table S4 show the precision and re-

call rates across the four benchmarked methods, using the

CNVs validated by each of the four studies as ground

truth. The gray lines are the contours of the F-measure,

defined as the harmonic mean of precision and recall.

XHMM, which is designed for the detection of rare CNVs,

lacks sensitivity to common CNVs, so does EXCAVATOR.

CODEX detects proportionately more common CNVs but

still lacks sensitivity. CLAMMS retains high precision

rates overall but suffers from low sensitivity. CODEX2

achieves a recall rate of 92.8%, 60.7%, 79.2%, and 66.2% in

the four validation sets, respectively, while simultaneously

making substantial improvements to specificity. CODEX2

does not dominate in the phase 3 WGS validation set, po-

tentially due to the false calls in the set (Additional file 1:

Figure S1). Overall, CODEX2 achieves a good perform-

ance for both common and rare CNVs, with significant

improvement in precision and recall for common CNV

detection.

We further demonstrate CODEX2 on a WGS dataset

of 108 individuals from the 1000 Genomes Project

(Additional file 2: Table S1), out of which there are

three family trios (Additional file 1: Table S5). We ap-

plied CODEX2 and CNVnator [26] to profile germline

CNVs and assessed the performance using the Mendel-

ian concordance rates between children and their par-

ents as a metric. CODEX2 and CNVnator on average

returned 1011 and 118 CNVs per individual, respect-

ively (see Additional file 5: Table S6 for calling results).

CODEX2 has a higher number of overlapped CNVs be-

tween children and parents (Additional file 1: Figure

S1) as well as higher call set quality (Additional file 1:

Figure S2). Specifically, sequencing data, especially

WES, are known to contain reproducible artifacts that

lead to false positives shared between samples. Thus,

the degree of overlap in CNV calls between samples is,

per se, not a good measure of accuracy; in fact, if no

normalization is performed, the CNV calls would com-

prise mostly of false positives and would have an inflated

cross-sample concordance close to one. Therefore, we as-

sess call accuracy using the ratio of child-parent concord-

ance over the concordance between the two unrelated

parents. This measure of concordance enrichment more

accurately reflects call set quality.

Analysis of targeted sequencing data of melanoma cases

and controls

We further applied CODEX2 to a cohort study of

melanoma from Garman et al. [27] including 334 cases

(untreated human melanoma cell lines, patient-derived

xenografts, and tumors) and 16 controls. Samples were

sequenced on a custom capture panel of 108 genes

previously implicated in tumorigenesis of melanoma. For

almost all tumor suppressor genes, the entire gene re-

gion (exons and introns) was sequenced to facilitate

Fig. 2 Outline of the analysis framework with a benchmark against SVD-based methods. Results are based on in silico simulations where the

ground truth with one-dimensional latent factor is known. One CNV signal is correlated with batch effect, and the other is not. CODEX2 utilizes

negative control samples and negative control regions and outperforms SVD-based methods
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CNV calling; for oncogenes, only exons were sequenced.

For cases where the full gene is captured and sequenced,

we separated the gene region into consecutive windows

of 500 bp. This resulted in a panel of 1398 targets across

350 samples.

We applied CODEX2 to this dataset and compare to

CODEX. The number of Poisson latent factors in the

background model is determined by the Bayesian informa-

tion criterion (BIC) for both programs. The use of nega-

tive controls in estimating the background model allowed

CODEX2 to be more robust to model tuning. For

CODEX2, the number of latent factors had minimal effect

on normalization and more generally on CNV detection,

as only the normal samples were used to estimate the bias

coefficient for each exon (Additional file 1: Table S7). In

comparison, for CODEX, the number of CNV events de-

creased as the number of latent factors increased (Add-

itional file 1: Table S7). Since the 108 genes are sparsely

scattered across the genome, segmentation is performed

within each gene separately. Furthermore, due to clonal

heterogeneity and normal cell contamination, copy num-

bers may not be integers and are assumed to be continu-

ous and fractional to represent attenuated mean estimates

of the genome mixtures. We categorize a CNA event to be

high gain, gain, diploid, one-copy deletion, and two-copy

deletion, if the profiled copy number is above 3.3, between

2.3 and 3.3, between 1.7 and 2.3, between 0.7 and 1.7, and

below 0.7, respectively. Figure 4 shows the heatmaps of the

segmentation results by CODEX and CODEX2. Each row

corresponds to a sample, with the first 16 samples towards

the bottom corresponding to the normal controls; each col-

umn corresponds to a target in the gene panel. In melan-

oma, somatic deletions of tumor suppressors (e.g., PTEN)

and duplications of oncogenes (e.g., BRAF) are known to

have high incidence rates [1]. From visual inspection of the

heatmaps in Fig. 4, we see that CODEX2 successfully retains

these expected recurrent deletions and duplications, while

CODEX, which does not make use of the negative control

samples in fitting the background model, misinterprets the

recurrent signals as a background latent factor.

A B

C D

Fig. 3 Assessment of CNV calls on WES data from the 1000 Genomes Project by microarray and WGS calls. CNV calls by XHMM, EXCAVATOR,

CODEX, and CODEX2 are validated against genotyping calls after quality controls from a HapMap 3 Consortium [25], b Conrad et al. [24], and (c)

McCarroll et al. [23], as well as WGS CNV calls from the phase 3 release (d) [2]. Gray contours show F-measures as harmonic means of precision

and recall rates. CODEX2 has significantly improved precision and recall for common CNVs and has the highest F-measure among all methods
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Fig. 4 Heatmap of CODEX and CODEX2 normalization/segmentation results for the melanoma cohort. Each column is one target in the gene

panel; each row is one sample, with the first 16 towards the bottom in the heatmap being normal. Profiled CNVs are categorized as high gain,

gain, diploid (null), one-copy loss, and two-copy loss based on the estimated copy numbers. Only the part of the oncogenes and tumor suppressors

with greater than 30 targets is shown

A

B

Fig. 5 Assessment of profiled CNVs in the melanoma cohort with a comparison to TCGA. CNVs are separated by states: losses on the left panels

and gains on the right panel. Each dot corresponds to one gene in the targeted sequencing panel. CNV frequencies detected by a CODEX and b

CODEX2 from the melanoma cohort is compared to the TCGA cohort with CODEX2 having a drastically higher correlation
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To rigorously evaluate CODEX2’s accuracy on this data,

we compared the frequencies of the profiled gains and

losses, that is, the proportion of samples in which a call is

made, with frequencies from an independent melanoma

patient cohort in TCGA [1]. Specifically, for each gene tar-

get, we plotted in Fig. 5 the proportion of samples carrying

a deletion (or duplication) in TCGA versus this corre-

sponding proportion in our current dataset. CODEX2

achieves much higher concordance with TCGA results,

with overall correlation across genes reaching 0.842 for

deletions and 0.853 for gains, as compared to CODEX

(correlation = 0.52 for deletions and 0.049 for gains).

CODEX2 detects in these cell line samples a higher fre-

quency of BRAF amplification and CDKN2A loss, as com-

pared to the frozen tissue-derived TCGA results, which is

not surprising due to the relative in vitro growth advan-

tage of cells carrying these mutations. Based on the results

by CODEX2, Garman et al. [27] further separated the co-

hort based on cancer subtypes and clinicopathological

characteristics (responses to targeted and/or immunother-

apy) and investigated the differences in mutational profiles

between groups. The accurate profiling of CNVs in this

dataset enables unbiased downstream analysis.

Performance assessment via spike-in studies

To understand how variables such as CNV length and

population frequency affected the sensitivity of CODEX,

CODEX2, and methods based on singular value decom-

position (SVD, such as XHMM and CoNIFER), we con-

ducted in silico spike-in studies. We started with the

exonic read depth data from chromosomes 16 to 22 in

the 90 samples we analyzed from the 1000 Genomes

Project and applied filtering to remove putative existing

CNVs. We then added to the background count matrix

under the null, heterozygous CNV signals of varying

length, frequency, and degree of correlation with the first

latent factor in the background model (see details of

simulation setup in the “Methods” section).

As an illustration, Fig. 6 shows a small subset of the

CNV regions in the spike-in data with the ground truth,

the post-normalization heatmap, and the CNV assign-

ments across multiple methods, with the “null” regions

containing no CNVs removed for easier visualization. The

histograms in Fig. 6 show the distribution of the normal-

ized z-scores, with exons that harbor CNVs in red and

exons within diploid regions in gray. We see that

CODEX2 achieves a clear separation of the deletions and

A

C

B

Fig. 6 Performance assessment by spike-in experiment. CNV signals are in silico spiked in with increasing population frequencies. a Ground truth

and normalization results by CODEX, CODEX2, and SVD-based method. b Histogram of normalized z-scores as logðY=λ̂Þ in CNV (red) and diploid

(gray) regions. The z-scores returned by XHMM are on a different scale with a much wider range and significant overlap between the null and

non-null. c Segmentation results where CODEX2 has the highest concordance with the ground truth among the methods being compared
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diploids with the distributions centered on the expected

values, log(1/2). The segmentations by CODEX and

XHMM contain false negatives as well as false positives,

especially in regions where common CNV signals reside,

whereas improved normalization by CODEX2 allows al-

most perfect segmentation. Additional file 1: Figure S4

further shows the true latent background parameters (esti-

mated using raw read depth without spike-in, which rep-

resents the null model that would be unobservable in a

real data scenario) and the estimated parameters obtained

by CODEX and CODEX2 on the “observed data” contain-

ing added CNVs. Our results show that while the sample

loadings {h1, h2, h3} are consistent between CODEX,

CODEX2, and the ground truth, the exon-specific factors

{g1, g2, g3} estimated by CODEX are biased due to the in-

clusion of the mean CNV signals, reflecting the same

trend in Additional file 1: Figure S5. CODEX2 corrects

this bias through the use of the mixture model.

We systematically compare the performance of CODEX2

against existing methods by spiking in deletions and dupli-

cations of length 5, 10, 20, and 40 exons with population

frequency p ∈ {5%, 10%,…, 95%}, repeating each simulation

run 20 times. The precision and recall rates achieved by

each method are shown in Fig. 7, Additional file 1: Table

S8, and Additional file 1: Table S9. Figure 7 shows how two

variables, population frequency and degree of correlation

with batch effect, impact the accuracy of methods. The re-

sults show that CODEX and SVD-based methods are sensi-

tive to both variables, while CODEX2 maintains high

accuracy across all frequencies and all degrees of correl-

ation. CODEX2 has nearly perfect performance, whereas

CODEX and SVD-based methods suffer from low sensitiv-

ity and specificity, especially for common CNVs with fre-

quencies around 50%. We also investigated the effect of

CNV length on performance and demonstrated that

CODEX and SVD-based methods have lower sensitivity

and specificity for longer CNVs, as compared to CODEX2

(Additional file 1: Figure S6, Additional file 1: Table S8).

We further studied the relationship between CNV carrier

status and batch effects—44 and 46 samples are sequenced

by the Baylor College of Medicine and the Washington

University Genome Sequencing Center, respectively—and

show that when they are highly correlated, CODEX suffers

from low sensitivity, while CODEX2 is able to recover the

A

B

Fig. 7 Assessment of precision and recall rates with different CNV frequencies and correlations between CNV state and batch effect. CODEX2 has

nearly perfect performance compared to CODEX and XHMM. The latter two suffer from low recall and precision rates, especially for common CNV

signals that are highly correlated with the batch effects
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CNV signals from the batch effect (Fig. 7). Detailed results

from an example run are shown in Additional file 1: Figure

S7, where the spiked-in CNVs are highly correlated with

the batch effect (i.e., most of the carriers are from one of

the sequencing centers). CODEX estimates the latent

factors assuming all exons are null, with the fitted regres-

sion line lying between the carriers and non-carriers, result-

ing in low sensitivity for true deletions in carriers and false

positives as duplications in non-carriers. CODEX2, on the

other hand, estimates the exon-specific latent factors in

common CNV regions using the proposed expectation-

maximization (EM) algorithm and successfully separates the

carriers from the non-carriers, which leads to clean down-

stream segmentation. Here, we show that normalization is

of the first-order effect.

We also performed additional simulations where we

spiked in CNV signals to mimic those that are observed

in genetically heterogeneous mixtures, such as cancer.

Specifically, in each sample, we added CNV signals as a

mixture of p% cells with copy number c (sampled from a

Gaussian distribution with mean 1 for heterozygous de-

letion) and (1 − p)% cells with copy number 2. If the

copy number change event is clonal in the cancer sam-

ple, p is referred to as purity in cancer genomics study,

which is the proportion of cancer cells out of the entire

cell population; if the copy number change is subclonal,

p is the cancer cell frequency for the CNV event. Our

results show that CODEX2 is able to recover CNV

signals with decent sensitivity and specificity for p as low

as 30% (Additional file 1: Table S10). In the cancer

genomics setting, we integrated CODEX2 with down-

stream software to create a stand-alone pipeline MARA-

THON [28] and demonstrated on a cancer phylogeny

study of a neuroblastoma, breast cancer, and melanoma

patient, with detection of somatic CNAs [28].

Methods
Background and overview

Multiple methods have been developed to recover CNV

signals from experimental noise. VarScan2 [13], Exome-

Depth [15], and ExomeCNV [16] control for baseline

fluctuations in read coverage by relying on matched

normal samples or building an optimized reference set.

EXCAVATOR [14] adopts a median normalization ap-

proach for bias removal. It was soon realized that the

magnitudes of the various sources of bias are sample-

specific, and thus cannot be completely removed by nor-

malizing to control samples or reference sets. This

realization motivated the development of CLAMMS [19],

where a reference panel is selected for each sample based

on seven sequencing quality control metrics, as well as

CoNIFER [10] and XHMM [11], which adopt SVD to esti-

mate sample-specific backgrounds that can be more ef-

fective. CLAMMS, however, cannot be applied to WGS

data or cancer samples, and SVD is designed for capturing

linear biases in continuous-valued observations. GC con-

tent has been shown to have a sample-specific, nonlinear

bias in sequencing data. Furthermore, read counts are not

fit well by Gaussian models, even after transformation,

due to their fluctuation over a very wide range. Our previ-

ous work, CODEX [12], adopts a Poisson latent factor

model for count-based sequencing data and estimates a

sample-specific background for each genomic position

that incorporates nonlinear biases due to GC content,

target-specific capture and amplification efficiency, and

low-dimensional latent systemic artifacts.

We will start by giving an overview of the SVD-based

methods by CoNIFER [10] and XHMM [11] and the

Poisson latent factor model by CODEX [12]. We will

discuss the limitations of existing models and the

reason why they lack sensitivity for common CNVs. We

will then describe the model for CODEX2, leaving algo-

rithmic details to the supplements in Additional file 1.

Review and reevaluation of existing methods

Denote Y as a n ×m matrix of raw read depth, where Yij
corresponds to the read depth for exon i ∈ {1,…, n} in sam-

ple j ∈ {1,…,m}. SVD-based methods CoNIFER [10] and

XHMM [11] remove the strongest K SVD components:

Y � ¼ Y−UKDKV
T
K ;

where UK and VK correspond to the top K left and right

singular vectors, respectively, and DK corresponds to the

diagonal matrix of the K largest singular values. Each

column of Y∗ is column-standardized. The genome is

then segmented by hidden Markov model (HMM) into

“diploid,” “deletion,” or “duplication” states.

This paper extends CODEX [12], which improves upon

SVD-based approaches in several ways: CODEX adopts a

Poisson model that more accurately models count data,

and importantly, it explicitly models observable and meas-

urable sources of bias, such as GC content and exon

length, in addition to unmeasurable biases, due to un-

anticipated experimental variables, in the form of latent

factors. In particular, GC content bias exhibits nonlinear

patterns of variation across samples [7, 12], and thus,

CODEX uses a nonlinear sample-specific function instead

of a low-rank linear factor to capture this bias. Since an

understanding of the CODEX model is integral to our en-

suing discussion, we review it here. CODEX assumes that:

Y ij � Poisson λij
� �

; λij

¼ N j f j GCið Þβi exp
XK

k¼1
g ikhjk

� �

;

where Nj is the total number of reads in sample j, fj(·) is

the GC content bias function for sample j, GCi is the

GC percentage of exon i, βi is an exon-specific factor
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capturing multiplicative effects due to features such as

exon length, and gk = {g1k,…, gnk} and hk = {h1k,…, hmk}

are the kth (1 ≤ k ≤ K) Poisson latent factors. The

Poisson latent factors form a low-dimensional back-

ground model to capture unanticipated experimental

variables, similar to the singular vectors in SVD-based

normalization models [10, 11]. CODEX uses maximum

likelihood to estimate the parameters of the null model,

where g and h are assumed to be orthogonal to ensure

identifiability (see Additional file 1: Algorithm S1 for

details). For the remaining details on model selection,

parameter estimation, and genome segmentation, see

Jiang et al. [12].

These SVD- and factor-based methods, so far, all lack

sensitivity for common CNVs. This is because common

CNVs bias the estimation of the low-dimensional linear

factors (gk and hk in CODEX’s model and Uk, Vk in

SVD-based algorithms), which, in CNV regions, capture

part of the CNV signal. Therefore, subsequent removal

of these factors also removes the signal for the CNVs.

Additional file 1: Figure S5 shows a toy example illus-

trating this issue, focusing on one exon i∗ and assuming

that K = 1. For this exon, CNV signals are in silico added

at six population frequencies, creating six scenarios. For

each scenario, simulated read counts Yi = {Yi1,…,Yim} are

plotted against the sample factors h1 = {h11,…, hm1}. The

samples that carry the CNV are shown in red, the rest

are shown in black. In each iteration of CODEX, Poisson

log-linear regression is performed for Yi on h1 to get gi1
and the “loading” for exon i. CODEX estimates gi1 as-

suming that the great majority of the samples are “nulls,”

that is, they do not carry CNVs, resulting in estimated

background values shown in green. Ideally, the back-

ground curve should be fit to the control samples, the

true “nulls,” as shown in blue. Yet in real data, we do

not know which are the true carriers of this CNV, and

the background curve is thus contaminated with signal,

lying between the carriers and the non-carriers. The

higher the incident rate of the CNV, the higher the con-

tamination of the background by signal and the closer

the fitted green curve to the carriers rather than the

non-carriers. This, as a result, leads to low sensitivity in

detecting the true CNV carriers. The effect of population

frequency on detection sensitivity by CODEX and

SVD-based algorithms is also explored by simulation

shown in Figs. 6 and 7.

CODEX2 model and full-spectrum CNV detection

Figure 1 gives an overview of the two scenarios of

CODEX2. To describe CODEX2, we first consider the

simpler scenario where negative control samples are

available. Without loss of generality, we consider a co-

hort comprised of both tumor and normal samples; the

normal samples may not be matched to the tumor

samples. Our goal is to identify CNVs present in the

cancer samples but not in the normal samples. Duplica-

tions of oncogenes and deletions of tumor suppressors

are commonly seen in cancer samples and have been

reported to be associated with cancer. It is therefore

crucial to detect somatic CNVs recurrent only in cancer

samples with high sensitivity and specificity. Denote Jc as

the set of indices of the normal samples, which serve as

negative control. Assuming that the normal samples are

copy number-neutral, the negative control samples are

used by CODEX2 to estimate the exon-specific bias β

and latent factors g to avoid attenuating and removing

common CNV signals. Poisson regression is then applied

to each cancer sample to obtain the sample loadings h.

The sample-specific background values are then com-

puted using β,g,h and used in Poisson-likelihood seg-

mentation to identify CNVs (refer to Additional file 1:

Algorithm S2 for the detailed estimation procedure).

Now, let us consider the scenario where negative con-

trol samples are not available. We denote I∗ as a set of

indices of the exons that harbor highly recurrent CNVs,

the compliment of which are the indices of exons within

the negative control regions. The set I∗ can be obtained

based on prior knowledge (e.g., common deletions in

tumor suppressors), from an existing database (e.g., the

Database of Genomic Variants), or empirically from a

first-pass CODEX run, that is, if an exon lies within a

common CNV region, CODEX will return a high stand-

ard deviation of the normalized z-scores across all sam-

ples for this exon—Additional file 1: Figure S5 shows

that for a common CNV, the estimated null will be

biased towards the alternative, especially when the inci-

dence rate is high. Figure 1b shows an example of identi-

fying germline CNVs from a population of samples (e.g.,

healthy individuals from the 1000 Genomes Project). For

step 1 in Additional file 1: Algorithm S2, we no longer

have a set of control samples to directly estimate the

exon-specific parameters. We propose an expectation-

maximization (EM) algorithm embedded in our iterative

parameter estimation procedure, where the missing data

is the carrier status of the samples. Specifically, for each

exon i ∈ I∗:

Y i� j ∼Poissonðλi� jÞ;

logðλi� jÞ ¼ logðN jÞ þ logð f jðGCi�ÞÞ þ logðβi�Þ þ
XK

k¼1
g i�kh jk þ αi� j;

where

αi� j ¼

(

μi� with probability πi� ;

0 with probability1−πi� :

πi� is the incident rate for the CNV that span exon i∗,

and μi� is the deviation from the null on the log scale,

which can be either pre-fixed (e.g., log(1/2) for

Jiang et al. Genome Biology          (2018) 19:202 Page 10 of 13



heterozygous deletion) or estimated by CODEX2. For

simplicity, here we show the case where there is only

one type of CNV event within the carriers. This can be

easily extended to multiple subgroups with a model se-

lection metric, which is enabled in the CODEX2 pack-

age. N, f(GC), and h can be using negative control

regions shown in Additional file 1: Algorithm S3 steps 1

and 2. We adopt an EM algorithm to estimate the un-

known parameters Θ ¼ fβi� ; gi�1;…; g i�K ;πi� ; μi� ji
�
∈I�g

with missing data:

Zi� j ¼

(

1 i f sample j has CNV spanning exon i�;

0 otherwise:

(refer to Additional file 1: Algorithm S3 for implementa-

tion details).

CODEX2 offers the choice of Akaike information criter-

ion (AIC), Bayesian information criterion (BIC), and vari-

ance reduction to determine the optimal number of latent

factors. In CODEX and SVD-based methods (XHMM and

CoNIFER), the number of latent factors is a critical model

tuning parameter that affects normalization and segmen-

tation results. It is often not clear whether to use the AIC,

BIC, or simple visual examination of the scree plot, and

this arbitrariness plagues all methods that rely on SVD,

PCA, or factor models. By using negative controls to guide

the estimation of the background model, CODEX2 is less

sensitive to the number of latent factors (Additional file 1:

Table S7), thus giving results that are easier to reproduce.

For segmentation, CODEX2 adopts the same Poisson

likelihood ratio-based approach as CODEX (please refer

to Jiang et al. [12] for details). For targeted sequencing,

where a smaller pre-selected panel of targets is sequenced,

the normalization model is exactly the same; the segmen-

tation is performed within each gene separately. For

WGS, user-defined consecutive bins can be treated as

“targets” in the WES setting, with normalization and seg-

mentation procedures carried out in the same fashion

(refer to Zhou et al. [6] for details).

Simulation setup

We start with the exonic read depth data of chromo-

somes 16 to 22 from the 90 samples we analyzed from

the 1000 Genomes Project and apply filtering to remove

putative existing CNVs. Specifically, the filtering step

removes all exons that (i) are called to harbor CNV

events by XHMM, EXCAVATOR, CODEX, or CODEX2;

(ii) overlap with duplication and deletion reported in the

Database of Genomic Variants; (iii) do not pass quality

control procedure by CODEX (median coverage be-

tween 40 and 4000, length between 30 and 2000 bp,

mappability less than 0.95, GC content between 30 and

70%); (iv) have standard deviation of normalized z-scores

across samples above 0.3, maximum of normalized

z-scores above 0.8, or minimum normalized z-scores

below − 0.8 across all samples. This way, we are left with

4035 “null” exons that are CNV-free across 90 samples.

Treating this filtered count matrix as background, we fit

the background model of CODEX, with the estimated

parameters as ground truth. The optimal number of la-

tent factors is 3 by AIC, BIC, and variance reduction

(Additional file 1: Figure S4) and is kept the same for

subsequent analysis for CODEX2, CODEX, and

SVD-based method. We then add, to this background

count matrix, heterozygous CNV signals of varying

length, frequency, and degree of correlation with the first

latent factor in the background model. In more detail,

we spike in heterozygous deletions, of varying lengths

and population frequencies, by reducing the raw depth

of coverage for exons spanned by the CNV from y to

y × c/2, where c is sampled from a normal distribution

with mean 1 and standard deviation 0.1. Note that het-

erozygous deletions with frequency p in the population

have exactly the same detection accuracy as duplications

with frequency 1 − p, since all copy number events are

defined in reference to a population average. To confirm,

we also spike in copy number gains with varying popula-

tion frequencies where c is sampled from a Gaussian dis-

tribution with mean 3. To assess the performance in

cancer genomics setting where the samples are heteroge-

neous, we further carry out spike-in studies where CNV

signals are added as a mixture, with p% tumor cells hav-

ing copy number c and (1 − p)% normal cells having

copy number 2.

Discussion and conclusions

A limitation shared by all existing CNV detection methods,

highlighted by multiple independent benchmarking studies,

is the lack of sensitivity for common variants. Similarly, in

our experience applying CODEX [12] to WES and targeted

sequencing of tumor samples, we easily detect sporadic ab-

errations but miss highly recurrent aberrations. To meet

the widespread demand for improved CNV detection, we

develop in this paper a new method, CODEX2, to remove

technical noise and improve CNV signal-to-noise ratio for

all sequencing platforms including WES and targeted se-

quencing. CODEX2 builds on our existing method CODEX

[12] with a significant improvement of sensitivity for com-

mon variants, thus allowing full-spectrum CNV detection.

CODEX2 can be applied either in the case-control setting

where the goal is to detect CNVS that are enriched in the

case samples or when the goal is simply to profile all CNVs.

We have benchmarked CODEX2 extensively against

existing methods. In the first evaluation, we reanalyzed

WES data of the HapMap samples from the 1000 Genomes

Project, for which a set of experimentally validated CNV

calls from microarrays and other sources could be used to

assess performance. Our results demonstrate that CODEX2
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has markedly improved sensitivity and specificity over exist-

ing methods. The improvement for calling of common vari-

ants is the most substantial, from 40% recall rate to > 80%

recall rate, in two out of the three validation sets used,

while simultaneously improving precision from 60 to 90%.

In the second evaluation, we applied CODEX2 to targeted

sequencing data of melanoma cell lines, PDX, and tumor

samples, in which CODEX2 detects CNVs with recur-

rence rates that are highly concordant with those obtained

from TCGA. Finally, we performed extensive simulations

benchmarking existing methods and elucidated how key

variables, such as population frequency, influence detec-

tion sensitivity. Together, these results establish the im-

proved accuracy of CODEX2 over existing state-of-the-art

approaches and the utility of the software under varying

study designs.

Under a different context, for the detection of differen-

tial expression in RNA sequencing data, Risso et al. [29]

proposed the normalization method “removing un-

wanted variation” (RUV) which is based on a factor

model that relies on sets of control genes or samples for

estimation. CODEX2 resembles RUV but has distin-

guishing features. First, RUV is designed to be used in a

case-control setting. CODEX2 can be applied with and

without negative control samples. Second, when estimat-

ing the latent factors that correspond to the control

genes or samples, RUV adopts SVD with Gaussian as-

sumption, whereas CODEX2 uses Poisson generalized

linear modeling to achieve a better fit for low counts.

Furthermore, CODEX2 directly models the GC content

bias, which cannot be fully captured by a linear principal

component [7, 12], as well as library size and exon

length, all of which can be directly quantified.

CODEX2 normalizes the read depth data for CNV

detection via a Poisson latent factor model, which can

be well adapted to other settings within the genomics

domain. Lee et al. [30] apply a similar Poisson factor

approach to the non-normalized microRNA sequencing

data. Chen et al. [31] estimate allele-specific copy num-

ber under tumor-normal setting using the Poisson latent

factor model to remove biases and artifacts that cannot

be fully captured by comparing to the normal.

CODEX2 has been integrated into a pipeline, iCNV [6],

to detect CNV using both sequencing and microarray data.

It is shown that the integration of CODEX2 with paired

microarray data and/or allele-specific read counts at germ-

line heterozygous loci, when available, leads to enhanced

performance [6]. For cancer genomics studies, CODEX2

has been integrated into a pipeline, MARATHON [28], to

infer both germline and somatic copy number changes and

reconstruct tumor phylogeny. Sequencing capacity has in-

creased exponentially over the past few years. This tremen-

dous amount of data opens up great opportunities, and yet

at the same time, precautions should be made with regard

to running efficiency and method scalability. CODEX2 pro-

cesses each chromosome within each batch separately and

can thus be highly parallelized. With increasing sequencing

capacity, and increasing need to profile CNVs as a

non-negligible source of genetic variation, we believe that

CODEX2 can be a useful tool for the genetics and genom-

ics community.
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