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Abstract. Let π be an irreducible Harish-Chandra (g,K)-module, and denote its as-
sociated variety by AV(π). If AV(π) is reducible, then each irreducible component must
contain codimension one boundary component. Thus we are interested in the codimension
one adjacency of nilpotent orbits for a symmetric pair (G,K). We define the notion of orbit
graph and associated graph for π , and study its structure for classical symmetric pairs; number
of vertices, edges, connected components, etc. As a result, we prove that the orbit graph is
connected for even nilpotent orbits.

Finally, for indefinite unitary group U(p, q), we prove that for each connected compo-
nent of the orbit graph ΓK(OG

λ ) thus defined, there is an irreducible Harish-Chandra module
π whose associated graph is exactly equal to the connected component.
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1. Introduction. Let G be a connected reductive complex algebraic group, and
(G,K) a symmetric pair, that is, K is the fixed point subgroup of a non-trivial involution
θ ∈ Aut(G). Note that K need not be connected. The differential of the involution θ gives an
automorphism of order two of g = Lie(G), which we will denote by the same letter. Let k and
s be the eigenspaces of θ with the eigenvalues +1 and −1, respectively. Then a direct sum
g = k+ s gives the (complexified) Cartan decomposition corresponding to the symmetric pair
(G,K).

Let N (s) be the set of nilpotent elements in s, which is a closed subvariety of s, and
called the nilpotent variety of s. We call K-orbits in N (s) nilpotent orbits for a symmetric
pair.

It follows from Kostant-Rallis [KR71] that the number of the K-orbits in N (s) is finite.
Moreover, the classification of nilpotent K-orbits is completely known for simple G, and if G

is classical, it is given combinatorially in terms of signed Young diagrams (see, e.g., [CM93]).
When two nilpotent K-orbits in N (s) generate the same G-orbit OG in g, we call these

two K-orbits are adjacent in codimension one (or simply adjacent) if the intersection of their
closures contains a K-orbit of codimension one. We consider a non-oriented graph ΓK(OG)

with the vertices consisting of K-orbits on N (s) contained in OG, and edges drawn if two
K-orbits are adjacent. The graph is called an orbit graph. We study combinatorial structures
of the graph ΓK(OG), which are related to representation-theoretic problem on the geometry
of associated varieties of Harish-Chandra modules.

For example, the number of vertices of ΓK(OG) gives the number of nilpotent K-orbits
which generates the same OG. This roughly classifies irreducible Harish-Chandra modules
with a fixed infinitesimal character which have annihilators with the same associated variety.
We give generating functions of the number of the nilpotent orbits for classical symmetric
pairs in §3. There we also give generating functions of the number of vertices of ΓK(OG) for
individual orbits.

From a viewpoint of representation theory, nilpotent K-orbits in N (s) and their closures
occur as irreducible components of the associated varieties of Harish-Chandra modules. For
an irreducible Harish-Chandra module X, its associated variety AV(X) decomposes into ir-
reducible components as

AV(X) =
�⋃

i=1

OK
i ,(1.1)

where O
K
i are nilpotent K-orbits in N (s), which generate a common nilpotent G-orbit OG.

The closure of the G-orbit OG is an associated variety of the primitive ideal of X. Thus we
get a full subgraph of ΓK(OG) with vertices

{OK
i | OK

i is an irreducible component of AV(X)} .

We denote this subgraph by AVΓ (X), and call it an associated graph of X. Here we omit the
subscript K , because the Harish-Chandra module X already encodes it.
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Vogan’s theorem ([Vog91, Theorem 4.6]) suggests that the following conjecture is plau-
sible to hold.

CONJECTURE 1.1. If X is an irreducible Harish-Chandra (g,K)-module, the associ-
ated graph AVΓ (X) is connected.

In the case of a symmetric pair of type AIII, we will prove

THEOREM 1.2 (Theorem 6.1 below). Let GR = U(p, q), an indefinite unitary group,
and (G,K) = (GLn(C),GLp(C) × GLq(C)) (n = p + q) be an associated symmetric pair
of type AIII. Let us consider a nilpotent G-orbit OG in g. For any connected component in
the orbit graph ΓK(OG), there exists an irreducible Harish-Chandra (g,K)-module X whose
associated graph AVΓ (X) is exactly the chosen connected component.

This theorem is a partial converse to the conjecture above. For a general classical sym-
metric pair including type AIII, we also have the following

THEOREM 1.3. Let (G,K) be a classical symmetric pair corresponding to a real form
GR of G. If OG is an even nilpotent orbit, then the orbit graph ΓK(OG) is connected,
and there exists an irreducible degenerate principal series representation π of GR such that
AVΓ (π) = ΓK(OG).

For this, see Remark 6.2.
These theorems show that the combinatorial structure of orbit graphs seems important

and interesting. In § 4, for a symmetric pair of type AIII, we study the structure of the orbit
graph ΓK(OG), and obtain a combinatorial description of ΓK(OG) in Theorem 4.7. In par-
ticular, we can give an explicit formula which gives the number of connected components of
the graph. For the precise statement, see Theorem 4.15 and the arguments before it.

The main tool of our arguments is an induction of graphs introduced in § 4.3. The induc-
tion carries a connected component of the orbit graph of a smaller nilpotent orbit to that of a
larger (or induced) nilpotent orbit.

The combinatorial arguments in § 4 can be carried over to the other classical symmetric
pairs. The results thus obtained are summarized in § 5; among them, we determine the con-
nected components of orbit graphs and prove that there is only one connected component for
an even nilpotent orbit (a part of the claim of Theorem 1.3).

Theorem 1.2 above is proved in § 6 for type AIII. Essentially this theorem claims that
the induction of orbit graphs described in purely combinatorial manner and the cohomolog-
ical (or parabolical) induction of representations match up. It is natural to expect a similar
result for other symmetric pairs and our combinatorial arguments in § 5 strongly suggest such
statements. This is a future subject of ours.

2. Preliminaries. Let G be a connected reductive algebraic group over the complex
number field C. Let GR be the connected component of the identity of a noncompact real
form of G. We denote by KR a maximal compact subgroup of GR, so that (GR,KR) is a
symmetric pair with respect to a Cartan involution. Let gR and kR be the Lie algebras of GR
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and KR respectively, and gR = kR + sR be the associated Cartan decomposition. In general,
we denote by HR a real Lie group, and H its complexified algebraic group (if it exists). We
also use corresponding German small letters to denote their Lie algebras; so hR is the Lie
algebra of HR and h its complexification.

Pick a nilpotent G-orbit OG in g, and let

(2.1) OG ∩ s =
m∐

k=1

O
K
k

be the decomposition of OG into equidimensional Lagrangian K-orbits (see, e.g., [Vog91,
Corollary 5.20]). We will denote a nilpotent G-orbit in g by OG (or OG

λ when it is parameter-
ized by a partition λ in the classical cases), and a nilpotent K-orbit in s by O

K (or OK
T when

parameterized by a signed Young diagram T ).
Two nilpotent K-orbits OK

k and OK
� are said to be adjacent if these two nilpotent K-

orbits appear in the decomposition (2.1) of OG, and they share a boundary of codimension
one. Also we say two nilpotent orbits OK and O′K are connected in codimension one if
there exists a sequence of nilpotent K-orbits OK = OK

k1
,OK

k2
, . . . ,OK

kr
= O′K such that each

successive pair (OK
ki

,OK
ki+1

) is an adjacent pair.

We define a graph ΓK(OG) with vertices {OK
1 ,OK

2 , . . . ,OK
m } and edges given by the

adjacency relation. The graph ΓK(OG) is called an orbit graph.
Now let X be an irreducible Harish-Chandra (g,K)-module and let

AV(X) =
�⋃

i=1

O
K
i

be the irreducible decomposition of its associated variety. The labeling of OK
i by i = 1, . . . , �

is now different from those which are used in (2.1), but it is known that each OK
i will generate

the same nilpotent G-orbit OG = OG
X . In fact, OG

X is the associated variety of the primitive
ideal of X. Therefore we can consider {OK

1 , . . . ,OK
� } as a subset of vertices of ΓK(OG

X),
and we define the full subgraph AVΓ (X) of ΓK(OG

X), whose vertices are the irreducible
components of AV(X), and whose edges are the ones in ΓK(OG

X).
Vogan proved in [Vog91, Theorem 4.6] that the codimension in O

K
i of its boundary

∂OK
i = OK

i \ OK
i is equal to one if AV(X) is reducible (i.e., � ≥ 2).

The boundary of codimension one of the closure of a nilpotent K-orbit OK is generally
reducible, and one of its irreducible components might be contained in the closure of another
K-orbit OK

0 , hence OK and O
K
0 are adjacent; or it might be only contained in OK itself, so

it does not contribute to the connectedness in codimension one. Both cases are possible and
actually occur. However, it is plausible that the following conjecture holds. In Conjecture 2.1
and Problem 2.2 below, K is not necessarily connected. In fact, if we take a connected com-
ponent of the fixed point subgroup of the involution θ , the claim of the conjecture becomes
even stronger.
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CONJECTURE 2.1. Let X be an irreducible Harish-Chandra (g,K)-module, and

AV(X) = ⋃�
i=1 O

K
i the irreducible decomposition of its associated variety. Then the graph

AVΓ (X) is connected. Namely, for any pair (OK
i ,OK

j ), there exist a sequence of nilpotent
K-orbits

O
K
i = O

K
i0

, O
K
i1

, O
K
i2

, . . . , O
K
in

= O
K
j

such that OK
ik−1

∩ O
K
ik

(1 ≤ k ≤ n) contains a nilpotent K-orbit of codimension one.

Taking this conjecture into account, in this paper, we consider the following problems.
First three are combinatorial problems, and remaining two are representation-theoretic ones.

PROBLEM 2.2. Let us consider a symmetric pair (G,K) as above, and let OG be a
nilpotent G-orbit in g.

(1) Describe the explicit structure of the orbit graph ΓK(OG).
(2) Find the number of connected components of ΓK(OG).
(3) Find the number of K-orbits in OG ∩ s.
(4) Assume that the graph ΓK(OG) is connected. Does there exist an irreducible Harish-

Chandra (g,K)-module X such that ΓK(OG) = AVΓ (X)?
(5) More generally, for any connected component Z ⊂ ΓK(OG), does there exist an irre-

ducible Harish-Chandra module X such that Z = AVΓ (X)? Here a connected component
of a graph means a maximal connected full subgraph.

We will answer most of these problems in the classical cases.
If the intersection of G-orbits with s is always a single K-orbit, most of our problems

above become trivial. So we omit these cases. However, our problem does hold in such cases.
Thus, in the following, we only consider classical symmetric pairs of type AIII, BDI, CI,

CII, DIII in the notation of [Hel78, Chapter X, Table V].

3. The number of nilpotent orbits for a symmetric pair. In this section, we solve
Problem 2.2 (3) for the classical symmetric pairs. For classical symmetric pairs, a classifi-
cation of K-orbits in s and their closure relations are obtained by Takuya Ohta [Oht86] (see
also [KP79], [BC77] and [Djo82]) and we use Ohta’s result in the following case-by-case
arguments.

3.1. Type AIII (GLp+q(C),GLp(C) × GLq(C)). In the following, we denote
GLn(C) simply by GLn and use similar abbreviation for other classical groups. Let us con-
sider a symmetric pair

(G,K) = (GLn,GLp × GLq) (n = p + q) ,

where K is embedded into G block diagonally. Thus the corresponding Cartan decomposition
is

g = k ⊕ s, k = glp ⊕ glq, s = Mat(p, q;C) ⊕ Mat(q, p;C) ,

where s is anti-diagonally embedded into g.
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Let us first recall that the nilpotent G = GLn-orbits in g = gln are parameterized by the
partitions of n, i.e., collections of the size of Jordan blocks arranged in non-increasing order.
To each partition λ = (λ1, . . . , λ�) of n, we associate a nilpotent orbit denoted by OG

λ . When
OG

λ is given, a connected component of its intersection OG
λ ∩ s with s is a nilpotent K-orbit

in s, and every nilpotent K-orbit in s appears in this way. It is known that these K-orbits are
parameterized by the signed Young diagrams on λ of signature (p, q):

OG
λ ∩ s =

∐
T ∈SYD(λ;p,q)

O
K
T .

Here SYD(λ; p, q) denotes the set of signed Young diagrams T on λ of signature (p, q)

which satisfy
(1) T has the same shape as λ.
(2) There are p boxes with (+)-sign and q boxes with (−)-sign in T .
(3) Signs are alternating in each row (in columns signs may run in any order).

From this description, we get the generating function of the number of the nilpotent K-orbits
on s as follows.

THEOREM 3.1. Denote a partition λ of n as λ = [1m1 · 2m2 · · · nmn ] by using the
multiplicities mi of i. Then we have

(3.1)
∑

p, q≥0, λ	(p+q)

# SYD(λ; p, q) apbqtλ

=
∞∏

k=1

1

(1 − akbkt2k)2
· 1

1 − ak−1bkt2k−1
· 1

1 − akbk−1t2k−1
,

where tλ = t
m1
1 t

m2
2 · · · , and λ 	 (p + q) means λ is a partition of p + q . This formula is an

equality in the ring of formal power series in variables a, b, t1, t2, . . . .

PROOF. Set SYD =⋃p,q≥0,λ	p+q SYD(λ; p, q), and define the map φ by

φ : SYD → C[[a, b, t1, t2, . . . ]]
T �→ apbqtλ T ∈ (SYD(λ; p, q)) .

Then it is obvious that
∑

T ∈SYD φ(T ) is equal to the left-hand side of (3.1).
A signed Young diagram is a union of rows of the following four types:

ε+
k = + − + − ··· ··· + − (length is 2k) ,

ε−
k = − + − + ··· ··· − + (length is 2k) ,

δ+
k = + − + ··· ··· − + (length is 2k − 1) ,

δ−
k = − + − ··· ··· + − (length is 2k − 1) .
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TABLE 1. Table of symmetric pairs.

type (G,K) n

AIII (GLp+q ,GLp × GLq) p + q

BDI (Op+q,Op × Oq) p + q

CI (Sp2p,GLp) 2p

CII (Spp+q , Spp × Spq) p + q (p, q : even)

DIII (O2p,GLp) 2p

We call these diagrams primitives of signed Young diagrams of type AIII. Using primitives
we can write SYD as

SYD =
⎧⎨
⎩∑

k≥0

(e+
k ε+

k + e−
k ε−

k + d+
k δ+

k + d−
k δ−

k )

∣∣∣∣ e±
k , d±

k ≥ 0

⎫⎬
⎭ ,

where sum means the sum of rows. Thus we have

∑
T ∈SYD

φ(T ) =
∑

e±
1 ,e±

2 ,...≥0,

d±
1 ,d±

2 ,...≥0

φ

⎛
⎝∑

k≥1

(e+
k ε+

k + e−
k ε−

k + d+
k δ+

k + d−
k δ−

k )

⎞
⎠

=
∑

e±
1 ,e±

2 ,...≥0,

d±
1 ,d±

2 ,...≥0

∏
k≥1

φ(ε+
k )e

+
k φ(ε−

k )e
−
k φ(δ+

k )d
+
k φ(δ−

k )d
−
k

=
∏
k≥1

∑
e+
k ≥0

φ(ε+
k )e

+
k

∑
e−
k ≥0

φ(ε−
k )e

−
k

∑
d+
k ≥0

φ(δ+
k )d

+
k

∑
d−
k ≥0

φ(δ−
k )d

−
k

=
∏
k≥1

1

1 − φ(ε+
k )

· 1

1 − φ(ε−
k )

· 1

1 − φ(δ+
k )

· 1

1 − φ(δ−
k )

.

This is equal to the right-hand side of (3.1), since φ(ε±
k ) = akbkt2k, φ(δ+

k ) = akbk−1t2k−1,
and φ(δ−

k ) = ak−1bkt2k−1. �

3.2. Types BDI, CI, CII, DIII. We consider the symmetric pairs in Table 1 in this
paper. For other classical symmetric pairs, namely types AI and AII, the intersection OG

λ ∩ s

is a single K-orbit. So our problem becomes trivial.
In this table, for a symplectic group, we denote it by SpN in which N represents the

dimension of the base symplectic space (or size of the matrices), hence N must be always
even. Also in the case of type CI and DIII, we sometimes put q = p so that n = p + q holds.
Thus, in the following, n always denotes the size of matrices in G, and p or q denotes the size
of the matrices of a simple factor of K (modulo its center).

Since the case of type AIII has been already treated, let us consider the other types,
namely types BDI, CI, CII and DIII. For these symmetric pairs, nilpotent G-orbits on g and
nilpotent K-orbits on s are parameterized by Young diagrams and signed Young diagrams
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TABLE 2. Primitives of signed Young diagrams.

type primitives ({a, b} = {+,−})
AIII ab · · · ab (even), ab · · · ba (odd)

BDI ab · · · ba (odd),
ba · · · ba

ab · · · ab
(even)

CI ab · · · ab (even),
ab · · · ba

ba · · · ab
(odd)

CII
ab · · · ba

ab · · · ba
(odd),

ba · · · ba

ab · · · ab
(even)

DIII
ba · · · ba

ba · · · ba
(even),

ab · · · ba

ba · · · ab
(odd)

((even) or (odd) means the parity of the length.)

with suitable conditions, respectively. In all these types, the conditions for signed Young di-
agrams can be described by using primitives, which consist rows of signed Young diagrams.
Primitives for these types are given in Table 2 ([Oht91, Proposition 2]; see also [Tr05, Propo-
sition 2.2]).

We denote by SYDX(λ; p, q) the set of the signed Young diagrams for type X (X = BDI,
CI, CII, DIII) of shape λ with the convention that q = p in the case of type CI or DIII.

Similarly we denote by YDX(n) the set of the Young diagrams for type X. Suppose we
remove the signs in a signed Young diagram T , and get a partition λ, i.e., T ∈ SYDX(λ; p, q).
Then a nilpotent K-orbit OK

T ⊂ s corresponding to T generates a nilpotent G-orbit OG
λ ⊂ g

corresponding to λ. We get YDX(n) in this way.

THEOREM 3.2. We have the generating functions of the numbers of the nilpotent K-
orbits on s for the symmetric pairs of types BDI, CI, CII and DIII as follows, where the
notation is the same as in Theorem 3.1.

(1) Write a partition λ of n = p + q of type BDI as λ = [1m1 · 2m2 · · · nmn ] using the
multiplicities mi of i. Then we have∑

p, q≥0, λ∈YDBDI(p+q)

# SYDBDI(λ; p, q) ap bq tλ

=
∞∏

k=1

1

1 − a2kb2kt2
2k

· 1

1 − ak−1bkt2k−1
· 1

1 − akbk−1t2k−1
.

(2) Write a partition λ of n = 2p of type CI as λ = [1m1 · 2m2 · · · nmn ]. Then we have∑
p≥0, λ∈YDCI(2p)

# SYDCI(λ; p,p) ap bp tλ

=
∞∏

k=1

1

(1 − akbkt2k)2
· 1

1 − a2k−1b2k−1t2
2k−1

.
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(3) Write a partition λ of p + q of type CII as λ = [1m1 · 2m2 · · · ]. Then the generating
function of the number of nilpotent K-orbits on s is given as follows.∑

p,q≥0 (p,q:even), λ∈YDCII(p+q)

# SYDCII(λ; p, q) ap bq tλ

=
∞∏

k=1

1

1 − a2k−2b2kt2
2k−1

· 1

1 − a2kb2k−2t2
2k−1

· 1

1 − a2kb2kt2
2k

.

(4) Write a partition λ of n = 2p of type DIII as λ = [1m1 · 2m2 · · · ]. Then the generating
function of the number of nilpotent K-orbits on s is given as follows.∑

p≥0, λ∈YDDIII(2p)

# SYDDIII(λ; p,p) ap bp tλ

=
∞∏

k=1

1

(1 − a2kb2kt2
2k)

2
· 1

1 − a2k−1b2k−1t2
2k−1

.

PROOF. The proof is similar to that of Theorem 3.1. If a primitive contains k+ (+)’s
and k− (−)’s, and consists of rows of lengths l1, l2, . . . , ld , then the generating function has a
factor

1

1 − ak+bk− tl1 tl2 · · · tld
.

Thus the formulas immediately follows from Table 2. �

4. Combinatorial description of orbit graphs for type AIII. In this section, we
consider a symmetric pair (G,K) = (GLn,GLp × GLq) of type AIII.

4.1. Structure of orbit graph. To describe the whole structure of the orbit graph
ΓK(OG

λ ), we prepare some notions.
The vertices of the graph ΓK(OG

λ ) is the set of nilpotent K-orbits:

V (ΓK(OG
λ )) = {OK

T | T ∈ SYD(λ; p, q)} .

We realize these vertices as points in the Euclidean k-space R
k. To describe it, we denote λ

in slightly different manner from the notation before, namely

(4.1)

λ = (i1, . . . , i1, i2, . . . , i2, . . . , ik, . . . , ik)

= (i
m(i1)
1 , i

m(i2)
2 , . . . , i

m(ik)
k ) ,

i1 > i2 > · · · > ik > 0, m(ij ) > 0 (1 ≤ j ≤ k) ,

where m(i) = mλ(i) is the multiplicity of i among the parts of λ, which is a function in i

and λ. If we pick T from SYD(λ; p, q), there are m(i) rows of length i in T . Among those
m(i) rows, some of them will begin with the box + , and the others begin with the box − .
We denote the number of rows which begin with + by m+(i) = m+

T (i). We also write
m−(i) = m(i) − m+(i), which is the number of rows of length i starting with box − .
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Let us define a map π : V (ΓK(OG
λ ))  SYD(λ; p, q) → Rk by

(4.2) π(T ) = (m+(i1),m
+(i2), . . . ,m

+(ik)) ∈ Z
k
≥0 ⊂ R

k .

These m+(ir)’s must satisfy obvious inequalities

0 ≤ m+(ir ) ≤ m(ir) (1 ≤ r ≤ k) ,

and a parity condition

p − q =
∑

ir : odd

(m+(ir) − m−(ir))

= 2
∑

ir : odd

m+(ir ) −
∑

ir : odd

m(ir) .(4.3)

Note that the difference m+(ir) − m−(ir ) only contributes to the difference p − q when the
row length ir is odd (if it is even, there are the same number of +’s and −’s in that row), hence
the above parity condition.

Conversely, if (a1, . . . , ak) ∈ Z
k
≥0 satisfies

0 ≤ ar ≤ m(ir) (1 ≤ r ≤ k) ,

and the parity condition

p − q = 2
∑

ir : odd

ar −
∑

ir : odd

m(ir) ,

then (a1, . . . , ak) is in the image of the map π , i.e., π(T ) = (a1, . . . , ak) for some T ∈
SYD(λ; p, q).

Thus we are left to determine the edges of the orbit graph. We first recall Ohta’s result

on cover relations (i.e., closure relation O
K
S ⊂ O

K
T with no orbits in-between) of nilpotent

K-orbits on s [Oht91, Lemma 5].

LEMMA 4.1. Let μ and λ be partitions of n = p + q . For signed Young diagrams
S ∈ SYD(μ; p, q) and T ∈ SYD(λ; p, q), the corresponding nilpotent K-orbits O

K
S and

O
K
T on s satisfy

O
K
S ⊂ OK

T , and there is no K-orbit in-between ,

if and only if one of the following three conditions holds:

(i) S =
u︷ ︸︸ ︷

· · · · · · ab

· · · ba︸ ︷︷ ︸
v

, T =
u+1︷ ︸︸ ︷

· · · · · · ba

· · · ab︸ ︷︷ ︸
v−1

(u ≥ v ≥ 1)

(ii) S =
u︷ ︸︸ ︷

ba · · · · · ·
ab · · ·︸ ︷︷ ︸

v

, T =
u+1︷ ︸︸ ︷

ab · · · · · ·
ba · · ·︸ ︷︷ ︸
v−1

(u ≥ v ≥ 1)
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FIGURE 1. Closure ordering: (GL6,GL3 × GL3).

(iii) S =
u︷ ︸︸ ︷

· · · · · · ba

· · · ba︸ ︷︷ ︸
v

, T =
u+2︷ ︸︸ ︷

· · · · · · ba

· · · ba︸ ︷︷ ︸
v−2

(u ≥ v ≥ 2, u − v: even) ,

where {a, b} = {+,−}, and S and T denote the diagrams obtained by removing common
rows from S and T .

EXAMPLE 4.2. The following is the graph of closure ordering of the nilpotent K-
orbits for the symmetric pair (GL6,GL3 × GL3). (See Figure 1.)

EXAMPLE 4.3. Figure 2 exhibits the graph of closure ordering of the nilpotent K-
orbits for the symmetric pair (GL8,GL4 × GL4).

In order to determine adjacency in codimension one, we recall the dimension formula
for OK

T (see [CM93, Corollary 6.1.4], for example).

LEMMA 4.4. Let λ be a partition of n = p+q , and T ∈ SYD(λ; p, q). The dimension
of the nilpotent K-orbit OK

T is half of the dimension of the nilpotent G-orbit OG
λ , and we have

dimO
K
T = 1

2
dimOG

λ = 1

2

(
n2 −

r∑
i=1

(tλi)
2
)

,

where t λ = (tλ1,
t λ2, . . . ,

t λr ) denotes the transposed partition of λ.
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FIGURE 2. Closure ordering: (GL8,GL4 × GL4).

Thus we obtain cover relations of nilpotent K-orbits on s of codimension one, and hence
the condition for two nilpotent K-orbits OK

S and OK
T (S, T ∈ SYD(λ; p, q)) to be adjacent in

codimension one.

LEMMA 4.5. Let μ and λ be partitions of n = p + q , and take S ∈ SYD(μ; p, q) and

T ∈ SYD(λ; p, q) respectively. Then O
K
S ⊂ O

K
T and dimO

K
S = dimO

K
T − 1 if and only if

one of the following two conditions holds.

(i) S =
u︷ ︸︸ ︷

· · · · · · ab

· · · ba︸ ︷︷ ︸
v

, T =
u+1︷ ︸︸ ︷

· · · · · · ba

· · · ab︸ ︷︷ ︸
v−1

(u ≥ v ≥ 1) ,

and T has no rows of length � = u, u − 1, . . . , v.
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(ii) S =
u︷ ︸︸ ︷

ba · · · · · ·
ab · · ·︸ ︷︷ ︸

v

, T =
u+1︷ ︸︸ ︷

ab · · · · · ·
ba · · ·︸ ︷︷ ︸
v−1

(u ≥ v ≥ 1) ,

and T has no rows of length � = u, u − 1, . . . , v.

PROOF. Among three cases in Lemma 4.1, it turns out that in Case (iii) the codimension
is always greater than one by Lemma 4.4. In Cases (i) and (ii) the codimensions are one if
and only if T has no rows between two rows in T . �

LEMMA 4.6. Let λ be a partition of n = p + q , and T , T ′ ∈ SYD(λ; p, q). Then OK
T

and O
K
T ′ are adjacent in codimension one if and only if one of the following two conditions

holds.

(i) T =
2u︷ ︸︸ ︷

ab · · · · · · ab

ba · · · ba︸ ︷︷ ︸
2v

, T ′ =
2u︷ ︸︸ ︷

ba · · · · · · ba

ab · · · ab︸ ︷︷ ︸
2v

(u > v ≥ 0) ,

and λ has no rows of length � = 2u − 1, 2u − 2, . . . , 2v + 1.

(ii) T =
2u+1︷ ︸︸ ︷

ab · · · · · · ba

ba · · · ab︸ ︷︷ ︸
2v+1

, T ′ =
2u+1︷ ︸︸ ︷

ba · · · · · · ab

ab · · · ba︸ ︷︷ ︸
2v+1

(u > v ≥ 0) ,

and λ has no rows of length � = 2u, 2u − 1, . . . , 2v + 2.

PROOF. Suppose that there exists S ∈ SYD(μ; p, q) of shape μ 	 n such that OK
S ⊂

OK
T , OK

S ⊂ OK
T ′ , and the codimension is equal to one. Then the only possibility is that

OK
S ⊂ OK

T satisfies (i) (resp. (ii)), and OK
S ⊂ OK

T ′ satisfies (ii) (resp. (i)) in Lemma 4.5.
Suppose the length of the first row of S is odd. Since S appears in (i) and (ii) in

Lemma 4.5 at the same time, the signatures a, b in (i) and those in (ii) must coincide. Thus
the length of the second row is also odd, which leads us to the case (i) in the present lemma.
Similarly, if the length of the first row of S is even, in Lemma 4.5, the signatures a, b in (i)
and those in (ii) must be interchanged. So the length of the second row is also even, which
leads us to the case (ii) in the present lemma. �

THEOREM 4.7 (Description of orbit graph). Let λ be a partition of n, and SYD(λ;
p, q) the set of signed Young diagrams with signature (p, q). Recall the map π : SYD(λ; p, q)

→ Rk from Equation (4.2), where k is the number of parts of λ of different length (see
Equation (4.1)).

The structure of the orbit graph ΓK(OG
λ ) is described as follows. The vertices are {OK

T |
T ∈ SYD(λ; p, q)} and, for two vertices OK

T and O
K
T ′ , there is an edge if and only if π(T ) −

π(T ′) belongs to

{±(er − er+1) | 1 ≤ r ≤ k − 1} ∪ {±ek} .

Here er denotes a fundamental unit vector which has 1 in the r-th coordinate and 0 elsewhere.
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FIGURE 3. Orbit graph for λ = (6, 4, 4, 2, 2).

FIGURE 4. Orbit graph for λ = (4, 3, 3, 1, 1).

PROOF. By the definition of π : SYD(λ; p, q) → Rk and Lemma 4.6, we immediately
have the description of the edges. Note that the case where v = 0 in Case (i) of Lemma 4.6
corresponds to the edges ±ek. �

EXAMPLE 4.8. (1) Consider the shape λ = (6, 4, 4, 2, 2) and signature (p, q) =
(9, 9). The following is (the image under π of) the graph of SYD(λ; p, q), where dotted
lines are just for help to see the structure.

(2) Consider the shape λ = (4, 3, 3, 1, 1) and signature (p, q) = (6, 6). Figure 4 is (the
image under π of) the graph of SYD(λ; p, q). Again dotted lines are just for help to see the
structure.

From this theorem, we can give a complete system of representatives of the connected
components of ΓK(OG

λ ) in algorithmic way. The idea of getting such a representative is to
start from an orbit OK

T from a connected component, then to move rows in T ∈ SYD(λ; p, q)

beginning with + as upper as possible within the connected component containing OK
T .

To describe these representatives explicitly, let us introduce some notation.
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Let λ be a partition of n with length � = �(λ) and put λ�+1 = 0. Define k0 = 0 < k1 <

k2 < · · · < km by

(4.4) {k1, k2, . . . , km} = {j | 1 ≤ j ≤ �, λj − λj+1 is odd} ,

and put

(4.5)

P(λ; p, q) = {p = (p1, . . . , pm) ∈ Z
m
≥0 | p satisfies (∗)}

(∗)

⎧⎨
⎩

0 ≤ ps ≤ ks − ks−1 (1 ≤ s ≤ m) ,

2
∑

λks : odd
ps − #(odd parts) = p − q .

If there is no odd part in λ, then we formally put m = 1, k1 = 0 and P(λ; p, q) = {(0)},
otherwise we get k1 > 0. For p = (p1, . . . , pm) ∈ P(λ; p, q), we construct a signed Young
diagram T ∈ SYD(λ; p, q) in such a way that j -th row begins with + if and only if ks−1 <

j ≤ ks−1 + ps for some 1 ≤ s ≤ m. Then the parity condition in (∗) for
∑

λks : odd ps assures
that T has indeed the desired signature (p, q) (see Equation (4.3)). Again, if there is no odd
part in λ, we associate (0) ∈ P(λ; p, q) with a signed Young diagram T in which every row
starts with − . In this case it is necessary that p = q = n/2 holds (thus n must be even in this
case).

LEMMA 4.9. With the above notation, the set

{T ∈ SYD(λ; p, q) | T constructed from p ∈ P(λ; p, q)} ,

gives a complete system of representatives of connected components of the graph ΓK(OG
λ ).

PROOF. This lemma follows easily from Theorem 4.7. More precisely, this complete
system corresponds to the greatest signed Young diagrams with respect to the total order
defined by

T1 ≥ T2 ⇔

⎧⎪⎪⎨
⎪⎪⎩

(1) the number of + in r1(T1) < that in r1(T2) ,

(2) or the number of + in r1(T1) = that in r1(T2) ,

and r1(T1) ≥lex r1(T2) ,

where r1(T ) denotes the first column of T , and ≥lex denotes the lexicographic order with +
> − . �

4.2. Product of graph. The orbit graph ΓK(OG
λ ) associated to the set of signed

Young diagrams SYD(λ; p, q) is presented as a disjoint union of products of basic building
blocks. There are two kinds of the basic building blocks A(m; ρ) and C(m) defined below.
Take a partition λ of n = p + q , and write λ = (i

m(i1)
1 , i

m(i2)
2 , . . . , i

m(ik)
k ) using multiplicities

(see Equation (4.1)).
Let us use the notation in (4.4) and Lemma 4.9. For 1 ≤ s ≤ m, we put rs to be the

number of different parts of λ between the first row and the ks-th row (we count the ks-th
row also). Then we have an increasing sequence r1 < r2 < · · · < rm ≤ k. Recall that k

is the number of different parts of λ. Here rm = k holds if the last part of λ is odd. If the
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last part of λ is even, irm+1, irm+2, . . . , ik are different even row lengths at the tail of λ. See
Example 4.11, where these numbers rs’s as well as ks’s are given for several λ’s.

For a collection of non-negative integers m = (m1,m2, . . . ,m�) and ρ, we define con-
nected graphs A(m; ρ) and C(m) as follows. The vertices of A(m; ρ) are given by{

(a1, a2, . . . , a�) ∈ Z
�
∣∣∣ 0 ≤ as ≤ ms (1 ≤ s ≤ �) ,

a1 + a2 + · · · + a� = ρ

}
,

and the edge between (a1, a2, . . . , a�) and (b1, b2, . . . , b�) exists if and only if

(a1, a2, . . . , a�) − (b1, b2, . . . , b�) = ±(es − es+1)

for some s = 1, 2, . . . , � − 1. The vertices of C(m) is

{(a1, a2, . . . , a�) ∈ Z
� | 0 ≤ as ≤ ms (1 ≤ s ≤ �)} ,

and the edge between (a1, a2, . . . , a�) and (b1, b2, . . . , b�) exists if and only if

(a1, a2, . . . , a�) − (b1, b2, . . . , b�)

=
{

±(es − es+1) (s = 1, 2, . . . , � − 1) , or

±e� .

If the parameter is empty, we set C(∅) to be the graph of a single point with no edge. For
example, A(2, 1; 1) and C(1, 2) are as follows:

A(2, 1; 1) C(1, 2)

THEOREM 4.10. Under the above notation, the orbit graph ΓK(OG
λ ) for a partition

λ of n = p + q can be presented as a disjoint union of direct products of simple connected
graphs as

ΓK(OG
λ ) 

∐
p∈P(λ;p,q)

Zp ,

where, if rm < k, the product Zp is defined by

Zp = A(m(i1),m(i2), . . . ,m(ir1); p1)

× A(m(ir1+1),m(ir1+2), . . . ,m(ir2); p2) × · · ·
× A(m(irm−1+1),m(irm−1+2), . . . ,m(irm); pm)

× C(m(irm+1),m(irm+2), . . . ,m(ik)) ,



ORBIT GRAPH OF ASSOCIATED VARIETIES 215

and, if rm = k,

Zp = A(m(i1),m(i2), . . . ,m(ir1); p1)

× A(m(ir1+1),m(ir1+2), . . . ,m(ir2); p2) × · · ·
× A(m(irm−1+1),m(irm−1+2), . . . ,m(irm); pm) .

PROOF. The set of vertices of the orbit graph ΓK(OG
λ ) is in one-to-one correspondence

with the set of signed Young diagrams SYD(λ; p, q), and, if im is strictly smaller than k, its
image under the map π : SYD(λ; p, q) → Rk is{

(a1, a2, . . . , ak) ∈ Z
k

∣∣∣∣∣
0 ≤ as ≤ m(is) (1 ≤ s ≤ k) ,

2
∑

is : odd
as − #(odd parts) = p − q

}

=
∐

p∈P(λ;p,q)

⎧⎨
⎩(a1, a2, . . . , ak) ∈ Z

k

∣∣∣∣∣∣
0 ≤ as ≤ m(is) (1 ≤ s ≤ k) ,

art−1+1 + · · · + art = pt

(1 ≤ t ≤ m)

⎫⎬
⎭


∐

p∈P(λ;p,q)

m∏
t=1

V
(
A(m(irt−1+1), . . . , m(irt );pt )

)
× V
(
C(m(irm+1), . . . , m(ik))

)
,

(4.6)

where we put r0 = 0, and V (Γ ) denotes the set of vertices of a graph Γ . If rm = k, then the
last term in the last equality will not appear.

Since the edges of ΓK(OG
λ ) are of the form ±(es −es+1) or ±ek (s = 1, 2, . . . , k−1 and

is − is+1 is even), every edge sits inside some factor of the right-hand side of (4.6). Therefore
(4.6) turns out to be a disjoint union of direct products not only as sets but also as graphs. �

EXAMPLE 4.11. (1) Let λ = (6, 4, 4, 2, 2) = (6, 42, 22) be a partition of 18 and
(p, q) = (9, 9).

(i1, i2, i3) = (6, 4, 2), (m(i1),m(i2),m(i3)) = (1, 2, 2), k = 3 ,

(k0, k1) = (0, 0), m = 1, r1 = 0 ,

P (λ; p, q) = {(0)} .

Thus ΓK(OG
λ )  C(1, 2, 2) as given in Example 4.8 (1).

(2) Let λ = (4, 3, 3, 1, 1) = (4, 32, 12) and (p, q) = (6, 6).

(i1, i2, i3) = (4, 3, 1), (m(i1),m(i2),m(i3)) = (1, 2, 2), k = 3 ,

(k0, k1, k2) = (0, 1, 5), m = 2, (r1, r2) = (1, 3) ,

P (λ; p, q) = {(0, 2), (1, 2)} .

So we have

ΓK(OG
λ ) 

∐
(p1,p2)

A(1; p1) × A(2, 2; p2)

= A(1; 0) × A(2, 2; 2) � A(1; 1) × A(2, 2; 2)
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as given in Example 4.8 (2).
(3) Let λ = (9, 9, 8, 8, 6, 5, 4, 2, 2) = (92, 82, 6, 5, 4, 22) and (p, q) = (27, 26).

(i1, i2, . . . , i6) = (9, 8, 6, 5, 4, 2) ,

(m(i1),m(i2), . . . ,m(i6)) = (2, 2, 1, 1, 1, 2), k = 6 ,

(k0, k1, k2, k3) = (0, 2, 5, 6), m = 3, (r1, r2, r3) = (1, 3, 4) ,

P (λ; p, q) = {(p1, p2, p3) | p1 ∈ [0, 2], p2 ∈ [0, 3], p3 ∈ [0, 1], p1 + p3 = 2} .

Notice that the parity condition for p ∈ P(λ; p, q) reads as 2(p1 + p3) − 3 = 27 − 26, so we
get p1 + p3 = 2. Thus we have

ΓK(OG
λ )

=
∐

(p1,p2,p3)

A(2; p1) × A(2, 1; p2) × A(1; p3) × C(1, 2)

 (A(2; 1) × A(1; 1) � A(2; 2) × A(1; 0)
)× 3∐

p2=0
A(2, 1; p2) × C(1, 2)







4.3. Induction of subgraphs. Let us consider the following operation on the par-
titions. We identify the partitions with Young diagrams in standard way. Given a Young
diagram (or a partition) λ, we remove two successive columns of the same length from λ

(if they exist), and we get λ′. To explain this operation in another way, let us consider the
transposed partition μ = t λ. If μ = (μ1, . . . , μ�′) has a pair of repeated parts, i.e., if
μ = (μ1, . . . , μi, μi+1, . . . , μ�′) with μi = μi+1, we remove that pair, and then take the
transpose again. So we get

(4.7) λ′ = t (μ1, . . . , μ̂i , ˆμi+1, . . . , μ�′) ,
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where ·̂ means elimination.

LEMMA 4.12. Let λ and λ′ be as above, and h the height of the columns removed from
λ. Then the number of connected components of ΓK(OG

λ ) coincides with that of ΓK ′(OG′
λ′ ),

where (G,K) = (GLn,GLp × GLq), and (G′,K ′) = (GLn−2h,GLp′ × GLq ′) with p′ =
p − h and q ′ = q − h.

Note that if n = 2h, then λ′ is the empty Young diagram, and ΓK ′(OG′
λ′ ) should be

considered as the one-point graph (with no edges) whose vertex is parameterized by the empty
signed Young diagram.

PROOF. The number 0 < k1 < k2 < · · · < km for λ given in Equation (4.4) are
the same as those for λ′, since the parities of the row lengths are the same for λ and λ′.
By the same reason the number of the odd parts is the same for λ and λ′. Together with
p−q = (p−h)−(q−h) = p′−q ′, it turns out that the set P(λ′; p′, q ′), which parameterizes
the connected components of ΓK ′(OG′

λ′ ) is equal to P(λ; p, q). Hence the number of the

connected components of ΓK(OG
λ ) coincides with that of ΓK ′(OG′

λ′ ). �

Let us refine the lemma above, which helps us to understand the connected components
more concretely. Actually, we describe the connected components of ΓK(OG

λ ) in terms of
those of ΓK ′(OG′

λ′ ). To do so, we need some notation.

Let Z′ be a full subgraph of ΓK ′(OG′
λ′ ). For each vertex OK ′

T ′ in Z′, we construct several
nilpotent K-orbits {OK

T }T as follows. Since λ′ is contained in λ (as a Young diagram, in the
left and upper justified manner), we can put the signed Young diagram T ′ inside the shape λ.
In other words, we fill ±’s in λ′ ⊂ λ in such a way that it recovers T ′. If T ′ has several rows
of the same length, we allow every possible permutations of such rows. After that, we fill ±’s
in λ/λ′ in every possible way, which is compatible with T ′.

EXAMPLE 4.13. (1) Let us consider the case where (p, q) = (8, 7), (p′, q ′) = (3, 2),
and

λ′ = (22, 1) ⊂ λ = (42, 3, 22) .

Pick T ′ ∈ SYD(λ′; 3, 2) below, and we get a set of signed Young diagrams in SYD(λ; 8, 7)

as follows.

T ′ = + −
− +
+

∈ SYD(λ′; 3, 2)� {T ∈ SYD(λ; 8, 7)}

T =
+ − + −
− + − +
+ − +
+ −
+ −

,

+ − + −
− + − +
+ − +
+ −
− +

,

+ − + −
− + − +
+ − +
− +
− +

(2) Similarly we give an example where (p, q) = (7, 5), (p′, q ′) = (4, 2), and λ′ = (2, 14) ⊂
λ = (4, 32, 12). Let us consider T ′ ∈ SYD(λ′; 4, 2) below. Note that we can reorder the tail
of T ′ as we like.
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T ′ =
+ −
+
+
+
−

=
+ −
+
−
+
+

Then we obtain {T ∈ SYD(λ; 7, 5)} from T ′ as follows.

T =
+ − + −
+ − +
+ − +
+
−

,

+ − + −
+ − +
− + −
+
+

We get several signed Young diagrams of the shape λ in this way. We repeat this pro-
cedure for each vertex OK ′

T ′ of Z′. Collecting all the signed Young diagrams thus obtained
from Z′, we finally get a subset ind(Z′) ⊂ SYD(λ; p, q) or a subset of nilpotent K-orbits
contained in OG

λ ∩ s. (Since Z′ is a graph, we should write ind(V (Z′)) instead of ind(Z′), but
we prefer this simpler notation.) We denote a full subgraph of ΓK(OG

λ ) with the vertices in

ind(Z′) by g-ind(G,K)

(G′,K ′)(Z
′) or simply by g-ind(Z′).

LEMMA 4.14. Let λ and λ′ be as above and we use the notation in Lemma 4.12. If Z′
is a connected component of ΓK ′(OG′

λ′ ), then g-ind(Z′) is a connected component of ΓK(OG
λ ).

This correspondence establishes a bijection between the connected components of ΓK ′(OG′
λ′ )

and those of ΓK(OG
λ ).

PROOF. Note that any T ∈ SYD(λ; p, q) is contained in ind({T ′}) for some T ′ ∈
SYD(λ′; p′, q ′). Also, for two signed Young diagrams T ′ �= T ′′ ∈ SYD(λ′; p′, q ′), it
is immediate to see that ind({T ′}) ∩ ind({T ′′}) = ∅. Thus it is sufficient to prove that
g-ind(Z′) ⊂ ΓK(OG

λ ) is connected. In fact, if we can prove that g-ind(Z′) is connected,

we have a well-defined surjective map from the connected components of ΓK ′(OG′
λ ) to those

of ΓK(OG
λ ). Since the number of connected components are equal by Lemma 4.12, this map

must be bijective. By the arguments above, ind(Z′) covers all the vertices of ΓK(OG
λ ) when Z′

moves connected components of ΓK ′(OG′
λ ). This means that g-ind(Z′) must be a connected

component.
So let us prove that g-ind(Z′) is connected.
Take T ′ ∈ SYD(λ′; p′, q ′), where p′ = p − h and q ′ = q − h. First, we will prove that

g-ind({T ′}) is connected.
We write μ = t λ = (μ1, μ2, . . . , μ�1), and

λ′ = t (μ1, . . . , μ̂i , ˆμi+1, . . . , μ�1) , h = μi = μi+1

as in Equation (4.7). Here, without loss of generality, we can assume that the removed
columns are at the rightmost position among the columns of the same length h, i.e., μi+1 >

μi+2 with the convention μ�1 > μ�1+1 = 0. Then there are three possibilities: (i) i > 1 and
μi−1 = μi ; (ii) i > 1 and μi−1 > μi ; (iii) i = 1, i.e., we remove first two columns. Let us
recall the map π in Equation (4.2), and choose an arbitrary T ∈ ind({T ′}).
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Case (i). In this case, it is easy to see that there is a unique choice for T , and ind({T ′}) is
one point. So it is connected.

Case (ii). In this case, we have μi−1 > μi = μi+1 > μi+2. As in Equation (4.1), we
write

λ = (i1, . . . , i1, i2, . . . , i2, . . . , ik, . . . , ik)

= (i
ν1
1 , i

ν2
2 , . . . , i

νk

k ) ,

i1 > i2 > · · · > ik > 0 , νr > 0 (1 ≤ r ≤ k) .

If we remove two columns of the same length μi = μi+1 from λ, we get

λ′ = (i ′1
ν ′

1, i ′2
ν ′

2, . . . , i ′k−1
ν ′
k−1) ,

i ′1 > i ′2 > · · · > i ′k−1 > 0, ν′
r > 0 (1 ≤ r ≤ k − 1) .

Since λ = λ′ + (2h) (h = μi = μi+1), there exists 1 ≤ j < k such that ij = ij+1 + 2 and{
ir = i ′r + 2

νr = ν′
r

(1 ≤ r ≤ j − 1) ,

{
ij+1 = i ′j
νj + νj+1 = ν′

j

,

{
ir = i ′r−1

νr = ν′
r−1

(j + 2 ≤ r ≤ k) .

Fix T ∈ ind({T ′}) and we write

π(T ) = (m+
T (i1),m

+
T (i2), . . . ,m

+
T (ik)) =: (a1, a2, . . . , ak) ∈ Z

k
≥0

and

π(T ′) = (m+
T ′(i ′1), . . . ,m

+
T ′(i ′k−1)) =: (b1, . . . , bk−1) ∈ Z

k−1
≥0 .

Then by the definition of the map π and the construction of the signed Young diagram T , we
get

(b1, . . . , bk−1) = (a1, . . . , aj−1, aj + aj+1, aj+2, . . . , ak) .

Thus we conclude that

{π(T ) |T ∈ ind({T ′})}

=

⎧⎪⎨
⎪⎩(b1, . . . , bj−1, aj , aj+1, bj+1, . . . , bk−1)

∣∣∣∣∣∣∣
aj + aj+1 = bj

0 ≤ aj ≤ νj

0 ≤ aj+1 ≤ νj+1

⎫⎪⎬
⎪⎭ .

Note that the parity condition (4.3) is automatically satisfied since π(T ′) = (b1, . . . , bk−1)

satisfies it, and ij and ij+1 have the same parity. Now it is clear that {π(T ) | T ∈ ind({T ′})}
constitutes a segment in the direction of ±(ej − ej+1), hence g-ind({T ′}) is connected.
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Case (iii). In this case, we must have

λ = (i
ν1
1 , i

ν2
2 , . . . , i

νk−1
k−1 , 2νk ) ,

i1 > i2 > · · · > ik−1 > 2 , νr > 0 (1 ≤ r ≤ k) .

We remove first two columns from λ and get

λ′ = ((i1 − 2)ν1, (i2 − 2)ν2, . . . , (ik−1 − 2)νk−1) .

If we denote π(T ′) = (b1, . . . , bk−1) ∈ Z
k−1
≥0 as above, we conclude that

{π(T ) | T ∈ ind({T ′})} = {(b1, . . . , bk−1, ak) | 0 ≤ ak ≤ νk} .

This set also constitutes a segment in the direction of ±ek , hence g-ind({T ′}) is connected.
Next, we prove that if T ′ and T ′′ in SYD(λ′; p′, q ′) are adjacent in codimension one, then

there are T1 ∈ ind({T ′}) and T2 ∈ ind({T ′′}) which are adjacent in SYD(λ; p, q). We also
prove this by case-analysis, so we divide the proof into three cases (i)–(iii) introduced above.
These cases depend only on λ and λ′, not depending on individual T ′ ∈ SYD(λ′; p′, q ′).

Case (i). In this case, there is only one signed Young diagram T1 belonging to ind({T ′})
for any T ′. It is easy to check that π(T1) = π(T ′). The same is true for {T2} = ind(T ′′). Thus
we know π(T1) − π(T2) = π(T ′) − π(T ′′), and this gives the edge in the orbit graph realized
in R

k . So the claim obviously holds.
Case (ii). Let π(T ′) = (b1, . . . , bk−1) and π(T ′′) = (d1, . . . , dk−1) as above. Then

π(T1) = (b1, . . . , bj−1, aj , aj+1, bj+1, . . . , bk−1) for certain integers aj , aj+1 with the prop-
erty aj + aj+1 = bj and 0 ≤ aj ≤ νj , 0 ≤ aj+1 ≤ νj+1. Similarly π(T2) = (d1, . . . , dj−1,

cj , cj+1, dj+1, . . . , dk−1) with cj + cj+1 = dj and 0 ≤ cj ≤ νj , 0 ≤ cj+1 ≤ νj+1. Let
us assume that π(T ′) = π(T ′′) + (er − er+1) for certain r , i.e., assume that T ′ and T ′′ are
connected by the edge corresponding to er − er+1.

If r �= j − 1, j , then bj = dj holds, and we can take (aj , aj+1) = (cj , cj+1). Thus T1

and T2 are connected by the edge corresponding to er − er+1.
If r = j − 1, then (bj−1, bj ) = (dj−1 + 1, dj − 1) and all the other b’s and d’s coincide

with each other. Since cj +cj+1 = dj ≥ 1, we can assume that cj ≥ 1. If we put (aj , aj+1) =
(cj − 1, cj+1), clearly T1 and T2 are connected by the edge corresponding to ej−1 − ej . The
case of r = j can be treated similarly.

Next, we assume that T ′ and T ′′ are connected by the edge corresponding to ek−1. If
j �= k−1, then we can take (aj , aj+1) = (cj , cj+1) and conclude that T1 and T2 are connected
by the edge ek . If j = k − 1, we have bj = bk−1 = dk−1 + 1 ≥ 1. Since ak−1 + ak = bk−1,
we can choose ak > 0 and put (dk−1, dk) = (ak−1, ak − 1). Then, clearly T1 and T2 are
connected by the edge ek .

Case (iii). Assume that

π(T ′) = (b1, . . . , bk−1) , π(T1) = (b1, . . . , bk−1, ak) (0 ≤ ak ≤ νk) ,

π(T ′′) = (d1, . . . , dk−1) , π(T2) = (d1, . . . , dk−1, ck) (0 ≤ ck ≤ νk) .

If T ′ and T ′′ are connected by the edge er − er+1 (r < k − 1), we can take ak = ck above,
and conclude that T1 and T2 are also connected by the edge er − er+1.
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If T ′ and T ′′ are connected by the edge ek−1, we can take ak = 0, ck = 1 above, and
conclude that T1 and T2 are also connected by the edge ek−1 − ek . �

In Lemma 4.14 we have proved the correspondence between the connected components
of ΓK ′(OG′

λ′ ) and that of ΓK(OG′
λ ), where λ′ is a Young diagram obtained from λ by removing

two successive columns of the same length. Repeating this operation we get the correspon-
dence between ΓK ′′(OG′′

λ′′ ) and ΓK(OG′
λ ), where λ′′ is obtained from λ by removing two suc-

cessive columns of the same length for finitely many times. We denote this correspondence
by the same notation such as g-ind(Z′′) = g-ind(G,K)

(G′′,K ′′)(Z
′′). It follows from the definition of

g-ind that g-ind(G,K)

(G′′,K ′′)(Z
′′) is independent of the order of removing the columns.

4.4. Number of connected components. If we remove pairs of the columns with the
same length from λ repeatedly, then we will finally reach a Young diagram ρ with columns
of different lengths. Lemma 4.12 tells that the orbit graph ΓK ′(OG′

ρ ) has the same number of

connected components as that of ΓK(OG
λ ). Therefore, to answer Problem 2.2 (2), it suffices

to consider the Young diagrams with columns of different lengths.

THEOREM 4.15. (1) The orbit graph ΓK(OG
λ ) consists of a single vertex if and only

if (a) the parts in λ are all odd; and (b) �(λ) = |p − q| or λ = (r�) for some odd r .
(2) The orbit graph ΓK(OG

λ ) has no edges if and only if each column length of λ occurs
odd times or it consists of a single vertex. In particular, if λ has distinct column lengths, i.e.,
if the transposed partition t λ has distinct parts, then ΓK(OG

λ ) has no edge.
(3) Assume that λ has distinct column lengths. In this case the number of the connected

components (i.e., the number of the vertices) of the orbit graph ΓK(OG
λ ) is given by

∏
1≤s≤m
λks : odd

(1 + t + · · · + tks−ks−1)

∣∣∣∣
t d

×
∏

1≤s≤m
λks : even

(1 + ks − ks−1) ,(4.8)

where k0 = 0 < k1 < k2 < · · · < km are the (distinct) column lengths of λ, f (t)
∣∣
t d

denotes
the coefficient of td , and d is the number given by

(4.9) d := p − q + #(odd parts of λ)

2
.

If d is not an integer, then there is no signed Young diagram of shape λ with signature (p, q).

PROOF. (1) If there is an even part in λ, then clearly we have more than two signed
Young diagrams of the same shape λ (the even part can start with the both +/− signs). So
the parts in λ should be odd. Now we assume p ≥ q . The case where p < q can be treated
similarly. Since all the parts in λ are odd, the parity condition (4.5) becomes

(4.10)
∑

λks : odd
ps = 1

2

(
�(λ) + p − q

)
.

Since there should be a unique choice of (ps)
m
s=1, if m �= 1, all ps ’s must attain the largest

possible value, namely ps = ks−ks−1. Then the left hand side of (4.10) is equal to km = �(λ),
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and we get �(λ) = p − q . On the other hand, m = 1 forces a unique column length so that
we have λ = (r�) for some r .

(2) Let us assume the orbit graph has more than two vertices. The partition λ has a
column length that occurs even times if and only if

(i) there are two successive row lengths is and is+1 of the same parity, or
(ii) the smallest part of λ is even.

By Lemma 4.6, this condition is equivalent to the condition that the orbit graph ΓK(OG
λ ) has

an edge provided that there are at least two vertices. Hence ΓK(OG
λ ) has no edges if and only

if each column length of λ occurs odd times.
(3) Note that the numbers ks’s are the same as ks’s defined in Equation (4.4). Thus it

suffices to count the elements in P(λ; p, q) defined just after Equation (4.4).
If λks is even, ps can be any integer contained in the interval [0, ks − ks−1]. Therefore

the number of choices is equal to the second product of (4.8). If λks is odd, we can choose
integers ps in [0, ks − ks−1] subject to the relation∑

s:odd

ps = p − q + #(odd parts)

2
= d .

Note that the integer d coincides with the number of the rows of odd length beginning with
+ . Therefore the number of choices for ps (λks : odd) is the coefficient of td in∏

1≤s≤m
λks : odd

(1 + t + · · · + tks−ks−1) .

Thus we have the desired formula. �

From this theorem, the condition for an orbit graph to be connected is immediate.

COROLLARY 4.16. For a nilpotent G-orbit OG
λ in g, the graph ΓK(OG

λ ) is connected
if and only if there exists 0 ≤ r ≤ � = �(λ) such that

λ1, . . . , λr are odd, and λr+1, . . . , λ� are even .(4.11)

Since r can be 0 or �, we allow the cases where all the λi ’s are even, or where they are all
odd.

PROOF. The second product of (4.8) is equal to one if and only if the product is empty,
namely, there is no even parts in λ except for successive even parts at the tail of λ = (λ1, λ2,

. . . , λ�). Thus (4.11) is the necessary condition.
If (4.11) is satisfied, then there is at most one factor in the first product of (4.8), and the

second product is equal to one. Therefore (4.11) is also the sufficient condition. �

For a nilpotent G-orbit OG
λ there is a corresponding weighted Dynkin diagram ([CM93,

Corollary 3.2.15]), which is a Dynkin diagram with vertices labeled by 0, 1 or 2. A nilpotent
G-orbit which corresponds to a weighted Dynkin diagram with even labels (0 or 2) only is
called an even nilpotent orbit.
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It is known that a nilpotent orbit OG
λ is even if and only if all the parts of λ have the same

parity, and this evenness condition is the same in the other classical cases (see [CM93, § 5.3]).
So we have

COROLLARY 4.17. Let us consider the symmetric pair of type AIII. If a nilpotent orbit
OG is even, the orbit graph ΓK(OG) is connected.

5. Orbit graphs for classical symmetric pairs. For symmetric pairs of types other
than AIII, we have similar results on the structure of orbit graphs, induction of subgraphs and
the number of connected components of orbit graphs.

5.1. Structure of orbit graphs. As to the structure of orbit graphs, we need informa-
tion on

TABLE 3. Cover relations of nilpotent K-orbits on s.

DIII

S T

(1)

2u−1︷ ︸︸ ︷
ab · · · · · · ba

ba · · · · · · ab

ab · · · ba

ba · · · ab︸ ︷︷ ︸
2v−1

2u︷ ︸︸ ︷
ab · · · · · · ab

ab · · · · · · ab

ba · · · ba

ba · · · ba︸ ︷︷ ︸
2v−2

(u ≥ v ≥ 1)

(2)

2u︷ ︸︸ ︷
ba · · · · · · ba

ba · · · · · · ba

ab · · · ba

ba · · · ab︸ ︷︷ ︸
2v−1

2u+1︷ ︸︸ ︷
ab · · · · · · ba

ba · · · · · · ab

ba · · · ba

ba · · · ba︸ ︷︷ ︸
2v−2

(u ≥ v ≥ 1)

(3)

2u−1︷ ︸︸ ︷
ab · · · · · · ba

ba · · · · · · ab

ba · · · ba

ba · · · ba︸ ︷︷ ︸
2v

2u︷ ︸︸ ︷
ba · · · · · · ba

ba · · · · · · ba

ab · · · ba

ba · · · ab︸ ︷︷ ︸
2v−1

(u ≥ v ≥ 1)

(4)

2u︷ ︸︸ ︷
ab · · · · · · ab

ab · · · · · · ab

ba · · · ba

ba · · · ba︸ ︷︷ ︸
2v

2u+1︷ ︸︸ ︷
ab · · · · · · ba

ba · · · · · · ab

ab · · · ba

ba · · · ab︸ ︷︷ ︸
2v−1

(u ≥ v ≥ 1)

(5)

2u︷ ︸︸ ︷
ba · · · · · · ba

ba · · · · · · ba

ba · · · ba

ba · · · ba︸ ︷︷ ︸
2v

2u+2︷ ︸︸ ︷
ba · · · · · · ba

ba · · · · · · ba

ba · · · ba

ba · · · ba︸ ︷︷ ︸
2v−2

(u ≥ v ≥ 1)

CII

S T

(1)

2u︷ ︸︸ ︷
ba · · · · · · ba

ab · · · · · · ab

ba · · · ba

ab · · · ab︸ ︷︷ ︸
2v

2u+1︷ ︸︸ ︷
ba · · · · · · ab

ba · · · · · · ab

ab · · · ba

ab · · · ba︸ ︷︷ ︸
2v−1

(u ≥ v ≥ 1)

(2)

2u+1︷ ︸︸ ︷
ab · · · · · · ba

ab · · · · · · ba

ba · · · ba

ab · · · ab︸ ︷︷ ︸
2v

2u+2︷ ︸︸ ︷
ba · · · · · · ba

ab · · · · · · ab

ab · · · ba

ab · · · ba︸ ︷︷ ︸
2v−1

(u ≥ v ≥ 1)

(3)

2u︷ ︸︸ ︷
ba · · · · · · ba

ab · · · · · · ab

ab · · · ba

ab · · · ba︸ ︷︷ ︸
2v+1

2u+1︷ ︸︸ ︷
ab · · · · · · ba

ab · · · · · · ba

ba · · · ba

ab · · · ab︸ ︷︷ ︸
2v

(u ≥ v ≥ 0)

(4)

2u+1︷ ︸︸ ︷
ba · · · · · · ab

ba · · · · · · ab

ab · · · ba

ab · · · ba︸ ︷︷ ︸
2v+1

2u+2︷ ︸︸ ︷
ba · · · · · · ba

ab · · · · · · ab

ba · · · ba

ab · · · ab︸ ︷︷ ︸
2v

(u ≥ v ≥ 0)

(5)

2u+1︷ ︸︸ ︷
ab · · · · · · ba

ab · · · · · · ba

ab · · · ba

ab · · · ba︸ ︷︷ ︸
2v+1

2u+3︷ ︸︸ ︷
ab · · · · · · ba

ab · · · · · · ba

ab · · · ba

ab · · · ba︸ ︷︷ ︸
2v−1

(u ≥ v ≥ 1)
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• vertices of the graph, i.e., the classification of nilpotent K-orbits by the set of signed
Young diagrams. This can be deduced from Table 2.

• closure relations of nilpotent K-orbits on s of codimension one (Lemma 5.2). This
can be deduced from the following.

– cover relations of nilpotent K-orbits, which are given by Ohta [Oht91, Table V]
quoted in Tables 3 and 4.

– dimension formulas for nilpotent K-orbits (Lemma 5.1).
• edges of the graph, i.e., the condition when two nilpotent K-orbits are adjacent in

codimension one (Lemma 5.3).

LEMMA 5.1. For a symmetric pair of type X = BDI, CI, CII or DIII, let λ ∈ YDX(n)

be a partition of n = p + q , and T ∈ SYDX(λ; p, q) a signed Young diagram of type X.
Recall that we put q = p in the case of type CI or DIII. Then we have

dimO
K
T = 1

2
dimOG

λ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2

(1

2
n(2n − 1) − 1

2

∑
i

(tλi)
2 + 1

2

∑
i:odd

mi

)
(g = on) ,

1

2

(1

2
n(2n + 1) − 1

2

∑
i

(tλi)
2 − 1

2

∑
i:odd

mi

)
(g = spn, n : even) ,

where t λ = (tλ1,
t λ2, . . . ) is the transposed partition of λ, and mi denotes the multiplicity of

i in λ.

PROOF. See [CM93, Corollary 6.1.4], for example. �

LEMMA 5.2. The closure relations of nilpotent K-orbits on s of codimension one are
given as follows.

(1) For types BDI and CI, all the cover relations in Table 4 are of codimension one if and
only if T has no rows of length between the longer length in T and the shorter length in T

(exclusive).
(2) For types CII and DIII, the closure relations of codimension one are Case (1) of CII

and Case (1) of DIII in Table 3 such that T has no rows of length between the longer length
in T and the shorter length in T (exclusive).

LEMMA 5.3. For symmetric pairs (G,K) of types X = BDI, CI, CII, DIII, two nilpo-
tent K-orbits OK

T and OK
T ′ (T , T ′ ∈ SYDX(λ; p, q)) are adjacent in codimension one if and

only if T and T ′ are of the following form, and T has no rows of length between the longer
length in T and the shorter length in T (exclusive).

PROOF. For CII and DIII the assertion easily follows from Lemma 5.2 (2). For BDI
and CI the assertion also follows from Lemma 5.2 (1), although we should mention that when
u = v + 1 we use Case (1) of Table 4, and when where u > v + 1 we use Cases (3) and (8)
of Table 4. �

From Lemma 5.3 we finally obtain the structure of the orbit graph.
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TABLE 4. Cover relations of nilpotent K-orbits on s (continued).

CI

S T

(1)

2u−1︷ ︸︸ ︷
ab · · · · · · ba

ba · · · · · · ab︸ ︷︷ ︸
2u−1

2u︷ ︸︸ ︷
ab · · · · · · ab

ba · · · ba︸ ︷︷ ︸
2u−2

(u = v ≥ 1)

(2)

2u︷ ︸︸ ︷
ba · · · · · · ba

ba · · · ba︸ ︷︷ ︸
2v

2u+2︷ ︸︸ ︷
ba · · · · · · ba

ba · · · ba︸ ︷︷ ︸
2v−2

(u ≥ v ≥ 1)

(3)

2u︷ ︸︸ ︷
ba · · · · · · ba

ab · · · ab︸ ︷︷ ︸
2v

2u+2︷ ︸︸ ︷
ba · · · · · · ba

ab · · · ab︸ ︷︷ ︸
2v−2

(u ≥ v ≥ 1)

(4)

2u︷ ︸︸ ︷
ba · · · · · · ba

ab · · · · · · ab

ba · · · ba︸ ︷︷ ︸
2v

2u+1︷ ︸︸ ︷
ab · · · · · · ba

ba · · · · · · ab

ba · · · ba︸ ︷︷ ︸
2v−2

(u ≥ v ≥ 1)

(5)

2u︷ ︸︸ ︷
ba · · · · · · ba

ba · · · ba

ab · · · ab︸ ︷︷ ︸
2v

2u+2︷ ︸︸ ︷
ba · · · · · · ba

ba · · · ab

ab · · · ba︸ ︷︷ ︸
2v−1

(u ≥ v ≥ 1)

(6)

2u︷ ︸︸ ︷
ba · · · · · · ba

ab · · · · · · ab

ba · · · ba

ab · · · ab︸ ︷︷ ︸
2v

2u+1︷ ︸︸ ︷
ba · · · · · · ab

ab · · · · · · ba

ba · · · ab

ab · · · ba︸ ︷︷ ︸
2v−1

(u ≥ v ≥ 1)

(7)

2u︷ ︸︸ ︷
ab · · · · · · ab

ab · · · · · · ab

ba · · · ba

ba · · · ba︸ ︷︷ ︸
2v

2u+1︷ ︸︸ ︷
ab · · · · · · ba

ba · · · · · · ab

ab · · · ba

ba · · · ab︸ ︷︷ ︸
2v−1

(u ≥ v ≥ 1)

(8)

2u︷ ︸︸ ︷
ab · · · · · · ab

ba · · · ba︸ ︷︷ ︸
2v

2u+2︷ ︸︸ ︷
ba · · · · · · ba

ab · · · ab︸ ︷︷ ︸
2v−2

(u ≥ v ≥ 1)

(9)

2u︷ ︸︸ ︷
ab · · · · · · ab

ba · · · ba

ba · · · ba︸ ︷︷ ︸
2v

2u+2︷ ︸︸ ︷
ba · · · · · · ba

ab · · · ba

ba · · · ab︸ ︷︷ ︸
2v−1

(u ≥ v ≥ 1)

(10)

2u︷ ︸︸ ︷
ab · · · · · · ab

ab · · · · · · ab

ba · · · ba︸ ︷︷ ︸
2v

2u+1︷ ︸︸ ︷
ab · · · · · · ba

ba · · · · · · ab

ab · · · ab︸ ︷︷ ︸
2v−2

(u ≥ v ≥ 1)

BDI

S T

(1)

2u︷ ︸︸ ︷
ba · · · · · · ba

ab · · · · · · ab︸ ︷︷ ︸
2u

2u+1︷ ︸︸ ︷
ba · · · · · · ab

ab · · · ba︸ ︷︷ ︸
2u−1

(u = v ≥ 1)

(2)

2u+1︷ ︸︸ ︷
ab · · · · · · ba

ab · · · ba︸ ︷︷ ︸
2v+1

2u+3︷ ︸︸ ︷
ab · · · · · · ba

ab · · · ba︸ ︷︷ ︸
2v−1

(u ≥ v ≥ 1)

(3)

2u+1︷ ︸︸ ︷
ab · · · · · · ba

ba · · · ab︸ ︷︷ ︸
2v+1

2u+3︷ ︸︸ ︷
ab · · · · · · ba

ba · · · ab︸ ︷︷ ︸
2v−1

(u ≥ v ≥ 1)

(4)

2u+1︷ ︸︸ ︷
ab · · · · · · ba

ba · · · · · · ab

ab · · · ba︸ ︷︷ ︸
2v+1

2u+2︷ ︸︸ ︷
ba · · · · · · ba

ab · · · · · · ab

ab · · · ba︸ ︷︷ ︸
2v−1

(u ≥ v ≥ 1)

(5)

2u+1︷ ︸︸ ︷
ab · · · · · · ba

ab · · · ba

ba · · · ab︸ ︷︷ ︸
2v+1

2u+3︷ ︸︸ ︷
ab · · · · · · ba

ab · · · ab

ba · · · ba︸ ︷︷ ︸
2v

(u ≥ v ≥ 0)

(6)

2u+1︷ ︸︸ ︷
ab · · · · · · ba

ba · · · · · · ab

ab · · · ba

ba · · · ab︸ ︷︷ ︸
2v+1

2u+2︷ ︸︸ ︷
ab · · · · · · ab

ba · · · · · · ba

ab · · · ab

ba · · · ba︸ ︷︷ ︸
2v

(u ≥ v ≥ 0)

(7)

2u+1︷ ︸︸ ︷
ba · · · · · · ab

ba · · · · · · ab

ab · · · ba

ab · · · ba︸ ︷︷ ︸
2v+1

2u+2︷ ︸︸ ︷
ba · · · · · · ba

ab · · · · · · ab

ba · · · ba

ab · · · ab︸ ︷︷ ︸
2v

(u ≥ v ≥ 0)

(8)

2u+1︷ ︸︸ ︷
ba · · · · · · ab

ab · · · ba︸ ︷︷ ︸
2v+1

2u+3︷ ︸︸ ︷
ab · · · · · · ba

ba · · · ab︸ ︷︷ ︸
2v−1

(u ≥ v ≥ 1)

(9)

2u+1︷ ︸︸ ︷
ba · · · · · · ab

ab · · · ba

ab · · · ba︸ ︷︷ ︸
2v+1

2u+3︷ ︸︸ ︷
ab · · · · · · ba

ba · · · ba

ab · · · ab︸ ︷︷ ︸
2v

(u ≥ v ≥ 0)

(10)

2u+1︷ ︸︸ ︷
ba · · · · · · ab

ba · · · · · · ab

ab · · · ba︸ ︷︷ ︸
2v+1

2u+2︷ ︸︸ ︷
ba · · · · · · ba

ab · · · · · · ab

ba · · · ab︸ ︷︷ ︸
2v−1

(u ≥ v ≥ 1)
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BDI

T T ′
2u+1︷ ︸︸ ︷

ba · · · · · · ab

ab · · · ba︸ ︷︷ ︸
2v+1

2u+1︷ ︸︸ ︷
ab · · · · · · ba

ba · · · ab︸ ︷︷ ︸
2v+1

(u > v ≥ 0)

CI

T T ′
2u︷ ︸︸ ︷

ba · · · · · · ba

ab · · · ab︸ ︷︷ ︸
2v

2u︷ ︸︸ ︷
ab · · · · · · ab

ba · · · ba︸ ︷︷ ︸
2v

(u > v ≥ 0)

CII

T T ′
2u+1︷ ︸︸ ︷

ab · · · · · · ba

ab · · · · · · ba

ba · · · ab

ba · · · ab︸ ︷︷ ︸
2v+1

2u+1︷ ︸︸ ︷
ba · · · · · · ab

ba · · · · · · ab

ab · · · ba

ab · · · ba︸ ︷︷ ︸
2v+1

(u > v ≥ 0)

DIII

T T ′
2u︷ ︸︸ ︷

ab · · · · · · ab

ab · · · · · · ab

ba · · · ba

ba · · · ba︸ ︷︷ ︸
2v

2u︷ ︸︸ ︷
ba · · · · · · ba

ba · · · · · · ba

ab · · · ab

ab · · · ab︸ ︷︷ ︸
2v

(u > v ≥ 0)

THEOREM 5.4 (Description of orbit graph). Let X = BDI, CI, CII or DIII. Let λ ∈
YDX(n) be a partition, where n = p + q is the size of the matrix group G given in Table 1
(p = q if X = CI or DIII; p and q are even if X = CI). Then the orbit graph ΓK(OG

λ ) is
described as follows. The vertices are

{OK
T | T ∈ SYDX(λ; p, q)} ,

and for two vertices OK
T and O

K
T ′ , there is an edge if and only if π(T ) − π(T ′) belongs to

{±(er − er+1) | 1 ≤ r ≤ k − 1} ∪ {±ek} when X = BDI, CI ,

{±2(er − er+1) | 1 ≤ r ≤ k − 1} ∪ {±2ek} when X = CII, DIII ,

where π : SYDX(λ; p, q) → Rk is the composite of the natural inclusion SYDX(λ; p, q) →
SYD(λ; p, q) and π : SYD(λ; p, q) → Rk defined in (4.2).

REMARK 5.5. The set of possible edges is a proper subset of the set of vectors listed in
the above theorem. In fact, possible edges are ±(er −er+1) with ir and ir+1 odd for X = BDI,
and ±(er−er+1) with ir and ir+1 even together with ±ek if ik is even for X = CI. For X = CII
and DIII, possible edges are twice the possible edges of BDI and CI, respectively.

5.2. Induction of subgraphs. We use the operation of removing two successive
columns of the same length, and the induction g-ind of graphs, which are introduced in Sub-
section 4.3. It is easy to see that these two operations preserve the type X (X = BDI, CI, CII,
DIII) of the signed Young diagrams.

SYD(λ′; p′, q ′)
g-ind �� SYD(λ; p, q)

⊂ ⊂

SYDX(λ′; p′, q ′)
g-ind �� SYDX(λ; p, q) .

We can conclude the following two lemmas by similar argument as in the case of AIII.
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LEMMA 5.6. Let X = BDI, CI, CII or DIII, and λ ∈ YDX(n). Let λ′ ∈ YDX(n − 2h)

be the Young diagram obtained by removing successive two columns of the same height h.
Then the number of connected components of ΓK(OG

λ ) coincides with that of ΓK ′(OG′
λ′ ), where

(G,K) and (G′,K ′) are as follows.

(G,K) (G′,K ′)
BDI (Op+q,Op × Oq) (Op+q−2h,Op−h × Oq−h)

CI (Sp2p,GLp) (Sp2p−2h,GLp−h)

CII (Spp+q, Spp × Spq) (Spp+q−2h, Spp−h × Spq−h)

DIII (O2p,GLp) (O2p−2h,GLp−h)

In the above lemma, in the case of type CII or DIII, the length h of the removed columns
is always even since all parts of λ occur with even multiplicity (see § 3.2 and [Tr05, Proposi-
tion 2.2]).

LEMMA 5.7. Let λ and λ′ be as above, and we use the induction g-ind. If Z′ is a
connected component of ΓK ′(OG′

λ′ ), then g-ind(Z′) is a connected component of ΓK(OG
λ ).

This correspondence establishes a bijection between the connected components of ΓK ′(OG′
λ′ )

and those of ΓK(OG
λ ).

5.3. Number of connected components. To answer Problem 2.2 (2), as in the case
of AIII, it suffices to consider the Young diagram with columns of different lengths thanks to
Lemma 5.6.

THEOREM 5.8. Let X = BDI, CI, CII or DIII. Let λ ∈ YDX(n), and n = p + q (we
put p = q if X = CI or DIII; p and q are even if X = CII).

(1) The orbit graph ΓK(OG
λ ) consists of a single vertex if and only if

• For X = BDI, CII; the number of odd parts in λ is equal to p − q , or odd parts in λ

have the same length.
• For X = CI, DIII; the parts in λ are all odd.

(2) Let us assume that there are at least two vertices in ΓK(OG
λ ). Then the orbit graph

ΓK(OG
λ ) has no edges if and only if

• each column length h of λ occurs odd times, or occurs even times and λh is even, when
X = BDI, CII.

• each column length h of λ occurs odd times, or occurs even times and λh is odd, when
X = CI, DIII.

In particular, if λ has distinct column lengths, then ΓK(OG
λ ) has no edge.

(3) Assume that λ has distinct column lengths. In this case the number of the connected
components (i.e., the number of vertices) of the orbit graph ΓK(OG

λ ) is given by

∏
1≤s≤m
λks : odd

(1 + t + · · · + tks−ks−1)

∣∣∣
t d

(X = BDI) ,(5.1)
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1≤s≤m

λks : even

(1 + ks − ks−1) (X = CI) ,(5.2)

∏
1≤s≤m
λks : odd

(1 + t + · · · + t(ks−ks−1)/2)

∣∣∣
t d/2

(X = CII) ,(5.3)

∏
1≤s≤m

λks : even

(
1 + ks − ks−1

2

)
(X = DIII) ,(5.4)

where k0 = 0 < k1 < k2 < · · · < km are the (distinct) column lengths of λ, f (t)
∣∣
t d

denotes
the coefficient of td , and d is the number given by

(5.5) d := p − q + #(odd parts of λ)

2
.

The number d is always an integer if SYDX(λ; p, q) is non-empty, and is an even integer if
SYDCII(λ; p, q) is non-empty.

PROOF. (1) By the description of primitives of the signed Young diagrams we get the
desired conditions. Note that there is a unique filling of +/− signs for a pair of even (respec-
tively odd) parts in the case of X = BDI or CII (respectively X = CI or DIII).

(2) By the condition for two K-orbits to be adjacent in codimension one (Lemma 5.3),
we immediately have the assertion.

(3) Using the forms of primitives in Table 2 together with the condition on the number
of signs, we have the desired formula as in the case of AIII. We omit the details. �

From this theorem the condition for an orbit graph to be connected is immediate.

COROLLARY 5.9. Under the same notation as in Theorem 5.8, an orbit graph ΓK(OG
λ )

is connected if and only if

• (BDI, CII) there exists 0 ≤ r ≤ s ≤ � = �(λ) such that

(5.6)
λ1, . . . , λr are even, λr+1, . . . , λs are odd ,

and λs+1, . . . , λ� are even ,

or the number of odd parts in λ coincides with |p − q| .
• (CI, DIII) there exists 0 ≤ r ≤ � = �(λ) such that

λ1, . . . , λr are odd, and λr+1, . . . , λ� are even .(5.7)

In particular, if OG
λ is an even nilpotent orbit, its orbit graph is connected.

PROOF. We give the proof for X = CI and BDI, and the proofs are similar when X =
CII and DIII.

Suppose that X = CI, and λ has distinct column lengths. Equation (5.2) is equal to one
if and only if the product is empty. This means that m ≤ 1, and λ has at most one column.

For any λ ∈ YDCI(n), we use the operation of removing successive two columns of
the same length. By repeating this operation λ is reduced to a diagram with distinct column
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lengths, and the numbers of connected components of the corresponding orbit graphs are
equal. Diagrams λ ∈ YDCI(n) which are reduced to diagrams with at most one column are of
the form (5.7).

Next suppose that X = BDI, and λ has distinct column lengths. Equation (5.1) is equal
to one if and only if the product has at most one factor, or d = 0 or equal to the highest degree
of the polynomial (5.1), namely the number of odd parts of λ.

The first condition is equivalent to m ≤ 2, namely, λ has at most two columns. We again
use the operation of removing columns, and diagrams λ ∈ YDBDI(n) which are reduced to
diagrams with at most two columns are of the form (5.6). The second condition is equivalent
to #(odd parts of λ) = |p − q|.

Thus we obtain the desired condition. �

6. Associated varieties of Harish-Chandra modules. Let us consider Problems 2.2
(4) and (5) in this section for the symmetric pair of type AIII.

We write GLn = GLn(C), and put

G = GLp+q = GLn (n = p + q) , K = GLp × GLq ,

g = glp+q = gln , k = glp ⊕ glq ,

s = Mat(p, q;C) ⊕ Mat(q, p;C) .

We consider a real form GR = U(p, q) of G, an indefinite unitary group of signature (p, q),
and KR = U(p) × U(q) a maximal compact subgroup. Then (G,K) is the complexification
of the Riemannian symmetric pair (GR,KR). Roughly saying, finitely generated admissible
representations of GR can be understood once we know completely about Harish-Chandra
(g,K)-modules.

The main subject in this section is a Harish-Chandra (g,K)-module X and its associated
graph AVΓ (X) (see Introduction for definition). The goal is the following theorem.

THEOREM 6.1. Consider the symmetric pair (G,K) = (GLn,GLp × GLq) (n =
p + q) associated with GR = U(p, q). Let OG be a nilpotent G-orbit in g.

(1) If the orbit graphΓK(OG)is connected, then there exists an irreducible Harish-Chandra
(g,K)-module X which satisfies ΓK(OG) = AVΓ (X). Namely, the associated variety is
AV(X) = OG ∩ s for this Harish-Chandra module.

(2) More generally, for any connected component Z ⊂ ΓK(OG), there exists an irreducible
Harish-Chandra (g,K)-module X such that Z = AVΓ (X).

In Case (1), we can choose X as an irreducible degenerate principal series representa-
tion, and in Case (2), X can be chosen as a parabolic induction from a certain derived functor
module, which we will describe explicitly below.

REMARK 6.2. (1) For an even nilpotent orbit OG, the orbit graph ΓK(OG) is con-
nected (Corollaries 4.17 and 5.9), and the claim (1) of Theorem 6.1 holds by Theorem 4.2
and Corollary 4.4 in [Nis11]. The associated Harish-Chandra module constructed in [Nis11]
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is also a degenerate principal series representation and it gives essentially the same represen-
tation as the present construction. See also [BB99] and [MT07].

(2) In general, the containment OG ∩ s ⊂ OG ∩ s is strict even for an even nilpotent
orbit OG. See [Nis11, Remark 4.3].

In the rest of this section, we prove Theorem 6.1. The proof is divided into several
subsections.

6.1. Let us recall λ and λ′ in §4.3. We mainly keep the notation in §4.3 in this subsec-
tion. Thus we remove two columns of the same length h from λ and obtain λ′. Put

n′ = n − 2h , (p′, q ′) = (p − h, q − h)

as before. Let us consider a real parabolic subgroup PR of GR = U(p, q), whose Levi part is

LR  U(p′, q ′) × GLh(C) .

We realize PR in the following way. Let {ei | 1 ≤ i ≤ n} ⊂ C
n be the standard basis of Cn,

and we denote an indefinite Hermitian form (, ) by

(u, v) = tuIp,qv (u, v ∈ C
n) , where Ip,q =

(
1p

−1q

)
.

Then GR is realized as a matrix group which preserves the Hermitian form ( , ):

GR = U(p, q) = {g ∈ GLn(C) | tgIp,qg = Ip,q } .

It is easy to see that a subspace V ±
h = 〈ei ± en−i+1 | 1 ≤ i ≤ h〉 is totally isotropic with

respect to (, ). Then the parabolic subgroup

PR = {g ∈ U(p, q) | g(V +
h ) = V +

h }
satisfies our requirement. In fact a Levi subgroup LR is given by

LR = {g ∈ U(p, q) | g(V ±
h ) = V ±

h } .

If we put Wp′,q ′ = (V +
h ⊕ V −

h )⊥, the orthogonal complement of V +
h ⊕ V −

h with respect to
(, ), then LR clearly preserves Wp′,q ′ and

LR � g �→ (g
∣∣
Wp′,q′ , g

∣∣
V +

h
) ∈ U(p′, q ′) × GLh(C)

gives an isomorphism. Note that the Hermitian form (, ) restricted to Wp′,q ′ has the signature
(p′, q ′).

For ν ∈ C and a (possibly infinite dimensional) admissible representation π ′ of G′
R

=
U(p′, q ′), let π ′(ν) be an admissible representation of LR defined by

π ′(ν)(g) = ∣∣det(g
∣∣
V +

h
)
∣∣ν π ′(g

∣∣
Wp′,q′ ) .

We extend it to PR in such a way that π ′(ν) is trivial on the unipotent radical, and denote it
by the same notation π ′(ν). We define

I (π ′; ν) = I
GR

PR
(π ′; ν) := IndGR

PR
π ′(ν);
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here induction is normalized as in [Kn86, Chapter VII]. Assume that π ′ is an irreducible

representation of G′
R

and the associated variety of its primitive ideal is OG′
λ′ .

LEMMA 6.3. For a generic ν ∈ C, the standard module I
GR

PR
(π ′; ν) is irreducible, and

we have

AVΓ (I
GR

PR
(π ′; ν)) = g-ind(G,K)

(G′,K ′)(AVΓ (π ′)) .

In particular, if AVΓ (π ′) is a connected graph, AVΓ (I
GR

PR
(π ′; ν)) is also connected.

PROOF. The irreducibility statement is well-known (e.g [Kn86, Remark 1, page 174]).
For the remainder, we sketch two proofs. The first is essentially analytic (but uses the difficult
results of [SV00] to pass from the analytic invariant of wave front set to associated varieties).
The second is essentially algebraic (but uses the difficult results of [KnV96, Chapter XI] to
rewrite parabolically induced representations as cohomologically induced instead).

For the first sketch we begin with a few generalities. (The results of the next two para-
graphs hold in the generality of any real reductive group GR.) Let N (gR) denote the nilpo-
tent cone of gR. Given a finite-length representation π of GR on a Hilbert space, we let
WF(π) ⊂ N (gR) denote its wave front set in the sense of Howe [Ho79]. (The wave front
set is most naturally defined as a subset of g∗

R
; here and elsewhere we identify gR with g∗

R
by

means of an invariant form. Since WF(π) and the other invariants we consider are invariant
under scaling, the choice of form does not matter.) According to [Ro95, Theorem C], WF(π)

coincides with the asymptotic support AS(π) defined by Barbasch-Vogan [BV80]. Moreover,
[Ro95, Theorem D] implies that if π is assumed to be irreducible, then there are GR orbits
O

GR

1 , . . . ,O
GR

� (each of which generate the same G-orbit OG) such that

WF(π) =
�⋃

i=1

O
GR

i .

Finally, write OK
i for the K orbit corresponding to O

GR

i via the Sekiguchi correspondence
(e.g. [CM93, Chapter 9]). Then Schmid and Vilonen [SV00] prove that

(6.1) AV(π) =
�⋃

i=1

OK
i .

Now suppose π is of the form IndGR

PR
(π ′) for an irreducible admissible representation π ′

of LR. Using the inclusion lR into gR, regard WF(π ′) as a subset of gR. We claim

(6.2) WF(π) = GR · (WF(π ′) + nR
)

,

where nR denotes the Lie algebra of the nilradical NR of PR. According to [Ro95, Theorem C]
mentioned above, the assertion is equivalent to

(6.3) AS(π) = GR · (AS(π ′) + nR
)

.

Under a technical positivity hypothesis stated two sentences after [BV80, Equation (3)], (6.3)
is proved in [BV80, Theorem 3.5]. The positivity hypothesis may be verified as follows. The
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construction of [BV80] assigns a real number to each irreducible component of AS(π). (Be-
cause there is no need to normalize measures carefully in [BV80], these real numbers are
defined only up to positive scaling. Hence only their signs are well-defined in [BV80].) The
crucial positivity hypothesis is that all of these numbers are positive. Meanwhile, after normal-
izing measures carefully, Rossmann interprets these real numbers in [Ro95, Theorems B–C]
as integrals over certain Lagrangian cycles. The cycles are made somewhat more explicit in
the work of Schmid-Vilonen [SV98], where their positivity becomes apparent. (In fact, in
[SV00] they are shown to coincide with the positive integers appearing in the associated cycle
of π (in the sense of [Vog91]).) Thus the positivity hypothesis always holds. Hence so does
(6.3) (and equivalently (6.2)). As mentioned around (6.1), the main results of [SV00] then
allows us to interpret the assertion of (6.2) as a computation of associated varieties.

Return to the setting of the lemma. Suppose we are given a nilpotent K ′ orbit OK ′

parameterized by T ′ ∈ SYD(λ′; p′, q ′). Let OG′
R denote the nilpotent G′

R
orbit corresponding

to OK ′
via the Sekiguchi correspondence. Consider

GR ·
(
O

G′
R + nR

)
.

This is a closed GR-invariant set of nilpotent elements (see [CM93, Theorem 7.1.3]). Hence
it may be written as

O
GR

1 ∪ · · · ∪ O
GR

�

for nilpotent GR orbits OGR

i , each of which is parameterized by a signed Young diagram Ti of
signature (p, q). By the discussion around (6.1) and (6.2), the lemma amounts to establishing
{T1, . . . , T�} is obtained from T ′ by the procedure described before Lemma 4.14. This is a
direct calculation whose details we will give in Appendix.

We next turn to the second approach to proving the lemma. As remarked above, the main
point is to rewrite I

GR

PR
(π ′; ν) as a cohomologically induced representation. To get started, fix

a θ -stable parabolic subalgebra q = lq ⊕ u of g such that

l
q
R

:= lq ∩ lq  u(p′, q ′) ⊕ u(h, h) .

Let L
q
R

denote the analytic subgroup of GR with Lie algebra l
q
R

, and set S = dim(u ∩ k). Of
course L

q
R

 G′
R

× G′′
R

with G′
R

= U(p′, q ′) as above and G′′
R

= U(h, h). Fix a Cartan
subalgebra h of lq (and hence of g), write (u) ⊂ h∗ for the roots of h in u, and let δu denote
the half-sum of the elements of (u). We follow the notation of [KnV96, Chapter 5]. In
particular, given a (lq, Lq ∩ K) module π ′ � π ′′, we may form the cohomologically induced
(g,K) module LS(π ′ � π ′′).

Next let P ′′
R

denote a real parabolic subgroup of G′′
R

with Levi factor GL(h,C). Fix
ν ∈ C as in the statement of the lemma and extend the character | det |ν of GL(h,C) trivially
to the nilradical of P ′′

R
. Set

(6.4) π ′′ := Ind
G′′

R

P ′′
R

(| det |ν) ,

where again the induction is normalized. We may choose ν so that
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(a) π ′′ is irreducible; and
(b) if χ ∈ h∗ denotes (a representative of) the infinitesimal character of π ′ � π ′′, then

Re
(
α∨(χ + δu)

)
> 0 for all α ∈ (u) .

(In the terminology of [KnV96, Definition 0.49], χ is said to be in the good range for
q.)

With such a choice of ν fixed, our main technical claim is as follows:

(6.5) I
GR

PR
(π ′; ν) = LS(π ′ � π ′′) .

To prove this, we compute the Langlands (quotient) parameters of both sides. For the left-
hand side, we may assume the Langlands parameters of π ′ are given. They consist of a
cuspidal parabolic subgroup M ′

R
A′
R
N ′
R

of G′
R

, a discrete series or limit of discrete series
representations ξ ′ of M ′

R
, and a suitably positive character η′ of A′

R
. See for example the

discussion at the beginning of [KnV96, XI.9]. In the notation of Knapp-Vogan, let I ′(ξ ′, η′)
denote the standard continuous representation of G′

R
parameterized by M ′

R
A′
R
N ′
R

, ξ ′, and η′.
By construction, we have a surjection

(6.6) I ′(ξ ′, η′) −→ π ′ .

Next we consider the Langlands parameters for the character | det |ν of GL(h,C). Of course
this is well-known (see, for example, [K94, Theorem 4]). The parameters consist of a Borel
subgroup MGL

R
AGL
R

NGL
R

of GL(h,C), a character ξGL of MGL
R

, and an appropriately positive
character ηGL of AR. In the obvious notation, we have a surjection

(6.7) IGL(ξGL, ηGL) −→ | det |ν .

We can combine these two Langlands parameters to get a Langlands parameter for GR:
there exists a cuspidal parabolic subgroup MRARNR of GR whose intersection with G′

R
is

M ′
R
A′
R
N ′
R

and whose intersection with GL(h,C) is MGL
R

AGL
R

NGL
R

. In this case

MR = M ′
R

× MGL
R

AR = A′
R

× AGL
R

,

and so we can form ξ = ξ ′ � ξGL and η = η′ � ηGL. Then NR can be chosen so that
(MRARNR, ξ, η) is a quotient Langlands parameter for GR. If we let I (ξ, η) denote the
corresponding standard continuous representation of GR, then (6.6), (6.7), and induction in
stages give a surjection

(6.8) I (ξ, η) −→ I
GR

PR
(π ′; ν) ,

the image of which we have assumed is irreducible. Thus the triplet (MRARNR, ξ, η) is
indeed a quotient Langlands parameter for the induced representation I

GR

PR
(π ′; ν), the left-

hand side of (6.5).
The more difficult part of the argument is computing the Langlands parameters of right-

hand side of (6.5). Fortunately [KnV96, Theorem 11.216] explains how to compute the Lang-
lands parameters of LS(π ′ � π ′′) in terms of those for π ′ and π ′′. (To apply this theorem, we
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need the “good range” hypothesis detailed in item (b) above.) We may assume, as above, that
we are given the Langlands parameters of π ′. To compute the Langlands parameters of π ′′,
note that MGL

R
AGL
R

 (C×)h is the Levi factor of a cuspidal parabolic subgroup M ′′
R
A′′
R
N ′′
R

of
G′′

R
. Thus if we set ξ ′′ = ξGL and η′′ = ηGL, we can choose N ′′

R
so that (M ′′

R
A′′
R
N ′′
R
, ξ ′′, η′′)

is a Langlands parameter for G′′
R

. Moreover, induction in stages and (6.7) imply that there is
a surjection

I ′′(ξ ′′, η′′) −→ π ′′ ,

the image of which is irreducible by hypothesis. So (M ′′
R
A′′
R
N ′′
R
, ξ ′′, η′′) is indeed a Langlands

quotient parameter for π ′′. Then Theorem [KnV96, Theorem 11.216] gives that the Langlands
parameters of the right-hand side of (6.5) are exactly those of the left-hand side computed
above. Thus (6.5) follows.

Given (6.5), we can complete the second proof of the lemma relatively easily. The first
ingredient is to apply a general result about associated varieties of derived functor modules to
the right-hand side of (6.5),

(6.9) AV (LS(π ′ � π ′′)
) = K · (AV(π ′ � π ′′) + (u ∩ s)

)
.

(In the case that π ′ � π ′′ is one-dimensional, a well-known argument is sketched in the in-
troduction of [Tr05]; the general case follows in much the same way.) The next ingredient
is the computation of AV(π ′′): [Nis11, Corollary 5.4] proves that AV(π ′′) consists of the
closures of the h + 1 nilpotent orbits for U(h, h) whose shape consists of h rows of two
boxes. Finally, Proposition 3.1 and Corollary 3.2 of [Tr05] explain how to compute the right-
hand side of (6.9) in terms of signed Young diagrams. Combined with (6.5), the result is that
AV(I

GR

PR
(π ′; ν)) consists of the closures of the K orbits parameterized by the signed Young

diagrams obtained from those parameterizing the irreducible components of AV(π ′) by the
procedure described before Lemma 4.14. This completes the second proof of the lemma. �

6.2. Now let us consider the first claim of Theorem 6.1, so we assume that ΓK(OG
λ )

is connected. Then, by Corollary 4.16, if we remove two columns of the same length from λ

repeatedly, finally we reach λ′ of a diagram with only one column (possibly λ′ is an empty
diagram). Thus we have

λ = λ′ +
t∑

i=1

[2hi ] ,

for some hi ’s, where [2hi ] denotes the partition (2, 2, . . . , 2) of length hi . Put

h =
t∑

i=1

hi , n′ = n − 2h , (p′, q ′) = (p − h, q − h) .

Note that the notation λ′, p′, q ′ etc. is used in slightly different way from the former subsec-
tion. With these notations, we have λ′ = (1n′

) (n′ ≥ 0) and if n′ = 0, it means that λ′ is an
empty diagram.
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Let us consider a real parabolic subgroup PR of GR = U(p, q) with Levi part

(6.10) LR  U(p′, q ′) × GLh1(C) × · · · × GLht (C) .

The construction of PR is similar to that in the former subsection. In fact, we simply repeat
the procedure in §6.1 t-times. Now consider a character χν of LR with a parameter ν =
(ν1, . . . , νt ) ∈ C

t defined by

χν(g) =
t∏

i=1

∣∣det gi

∣∣νi ,

where gi ∈ GLhi (C) is the GLhi -component of g ∈ LR under the isomorphism (6.10).

Let I (ν) = I
GR

PR
(ν) be a degenerate principal series defined by

I (ν) := IndGR

PR
χν ,

where χν is extended to a character of PR which is trivial on the unipotent radical. Then we
have

LEMMA 6.4. For a generic ν ∈ Ct , the degenerate principal series I (ν) = I
GR

PR
(ν) is

irreducible, and we have

AVΓ (I (ν)) = ΓK(OG
λ ) .

PROOF. We use Lemma 6.3 repeatedly, and conclude that

AVΓ (I (ν)) = g-ind(G,K)

(G′,K ′)({T ′}) ,

where T ′ is the unique signed Young diagram in SYD(λ′; p′, q ′) with a single column (pos-
sibly an empty diagram). By Lemma 4.14, we have g-ind({T ′}) = ΓK(OG

λ ) since the right
hand side is a connected graph. �

6.3. Let us consider a general partition λ of size n. If we remove two columns of
the same length successively from λ, finally we obtain λ′ with distinct column length. By
Theorem 4.15, ΓK ′(OG′

λ′ ) is totally disconnected and individual OK ′
T ′ constitutes a connected

component of the orbit graph. Thus, by Lemma 4.14, g-ind({OK ′
T ′ }) (T ′ ∈ SYD(λ′; p′, q ′))

exhausts connected components of ΓK(OG
λ ). By a result of Barbasch-Vogan [BV83, Theo-

rem 4.2], there exists a derived functor module πT ′ of G′
R

with the associated variety

AV(πT ′) = OK ′
T ′ .

We construct a real parabolic PR of GR just as in the former subsection §6.2, and define an
admissible representation πT ′(ν) (ν ∈ C

t ) of the Levi subgroup LR by

πT ′(ν)(g) =
t∏

i=1

∣∣det(gi )
∣∣νi · πT ′(g0) ,

where

g = (g0; g1, . . . , gt ) ∈ U(p′, q ′) × GLh1(C) × · · · × GLht (C) = LR .
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Let us consider a standard module

I (πT ′ ; ν) = I
GR

PR
(πT ′ ; ν) := IndGR

PR
πT ′(ν) .

LEMMA 6.5. With the above notations, the associated graph

AVΓ (I (πT ′ ; ν)) = g-ind({T ′})
is a connected component of ΓK(OG

λ ), and these associated graphs exhaust connected com-
ponents of the orbit graph ΓK(OG

λ ).

PROOF. By repeated use of Lemma 6.3, we obtain the first equality AVΓ (I (πT ′ ; ν)) =
g-ind({T ′}). The right-hand side is connected and it gives a bijection from SYD(λ′; p′, q ′) to
the connected components of the orbit graph ΓK(OG

λ ) by Lemma 4.14. �

7. Appendix. In this appendix, we calculate the induction of nilpotent orbits explic-
itly.

Let GR = U(p, q) and take a parabolic subgroup PR as in § 6.1. The Levi part LR of PR

is isomorphic to GLh(C) × U(p′, q ′), where (p′, q ′) = (p − h, q − h). We take a nilpotent
orbit OG′

R of G′
R

:= U(p′, q ′) and extend it trivially to LR, which we denote by the same

notation. Then what we want to know is the induction IndGR

PR
O

G′
R := the largest nilpotent

orbit contained in GR · (OG′
R + nR

)
. For this, we pick nilpotent elements X ∈ O

G′
R and

Ξ ∈ nR, and calculate the Jordan normal form of X + Ξ . We assume that the Jordan normal
form of X corresponds to a partition λ′ = (λ′

i )1≤i≤� of p′ + q ′. Then the Jordan normal
form of X + Ξ corresponds to a partition which is obtained from λ′ by adding 2 in different
h-places (and rearranging the parts in nonincreasing order). We will explain this below, but
some remarks are in order.

In fact, the nilpotent orbit OG′
R is parametrized by a signed Young diagram T ′, and the

so-obtained partition (adding 2 in h-places) has unique signature compatible with T ′. So the
Jordan normal form (the shape of the diagram) is enough to specify the obtained GR-orbits.
Among them, the largest one with respect to the closure relation is λ′ + [2h] (adding 2 in the
first h-places). This is what we want in § 6.1.

So the rest of Appendix is devoted to specify X and Ξ in the matrix form and calculate
the Jordan normal form of X + Ξ explicitly.

We realize GR = U(p, q) as in § 6.1, and denote by ei the fundamental vector with 1 in
the i-th coordinate and 0 elsewhere. We choose a basis of the indefinite unitary space Cp,q as

{ei + en−i+1}1≤i≤h ∪ {eh+j }1≤j≤p′+q ′ ∪ {ei − en−i+1}1≤i≤h .

Using the coordinate for this basis, an element in u(p, q) is represented in the form⎛
⎜⎜⎝

A α β B

γ X11 X12 −α∗
δ X21 X22 β∗
C −γ ∗ δ∗ −A∗

⎞
⎟⎟⎠ X = (Xij ) ∈ u(p′, q ′), A ∈ glh(C)

B∗ = −B, C∗ = −C .
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In this coordinate, an element in the Lie algebra pR of the parabolic subgroup PR is repre-
sented in the block upper triangular form⎛

⎝A ξ B

X η

−A∗

⎞
⎠ ξ = (α, β), η =

(−α∗
β∗
)

.

We denote an element in the nilpotent radical nR by

(7.1) Ξ =
⎛
⎝0 ξ B

0 η

0

⎞
⎠

and pick a nilpotent element X ∈ u(p′, q ′) corresponding to the signed Young diagram T ′
above, which has the shape λ′. By abuse of notation, we denote the embedded X into gR =
u(p, q) by the same letter X. The embedding is specified by the matrix form above. Then we
calculate

(X + Ξ)k =
⎛
⎝0 ξXk−1 ξXk−2η

Xk Xk−1η

0

⎞
⎠ (k ≥ 2) .

From this, we conclude that if X is k-step nilpotent, then X + Ξ is (k + 2)-step nilpotent
extending the length by 2.

Let us try to get more specific information. We re-arrange (a part of) the basis eh+1, eh+2,

. . . , eh+p′+q ′ to get a Jordan normal form X = Jλ′
1
⊕ Jλ′

2
⊕ · · · ⊕ Jλ′

�
, where Jm denotes a

Jordan cell of size m with zeroes on the diagonal and 1’s on the upper diagonal (and zero
elsewhere). The calculation tells that we can enlarge the Jordan cell by 2 in each cell. But
since the rank of ξ (or B) is at most h, we can choose at most h-cells freely.

We exhibit this by an example, where X has 3 cells and h = 2. Also, let us put λ′ =
(m1,m2,m3), so that X = Jm1 ⊕Jm2 ⊕Jm3 . For this X we have a direct decomposition of the
vector space V = Cp′,q ′

into V = V (m1) ⊕ V (m2) ⊕ V (m3) such that X acts on V (mi) by
Jmi . Choose a vector vi ∈ V (mi) so that Xmi−1vi = J

mi−1
mi

vi �= 0. Then (vi ,X
mi−1vi) �= 0,

where (−,−) is the indefinite Hermitian form on V . For this, see [CM93, § 9.3].
Put ηij = (vi , vj ). Then Equation (7.1) for η = ηij defines ξ = ξij . It is easy to see that

if t ξij = (v∗
i , v∗

j ), then t v∗
i Xk−2vj = δij (vi ,X

k−2vj ) and we get

ξijX
k−2ηij =

(
(vi ,X

k−2vi) 0
0 (vj ,X

k−2vj )

)
.

Now denote by Ξij ∈ nR the matrix Ξ in (7.1) replaced η = ηij and ξ = ξij . Then the Jordan
type of X +Ξ12 is Jm1+2 ⊕Jm2+2 ⊕Jm3 . Other cases where the induced nilpotent is X +Ξij

can be treated similarly.
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