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Abstract. In this short note we give a complete characteriza-
tion of a certain class of compact corank one Poisson manifolds,
those equipped with a closed one-form defining the symplectic foli-
ation and a closed two-form extending the symplectic form on each
leaf. If such a manifold has a compact leaf, then all the leaves are
compact, and furthermore the manifold is a mapping torus of a
compact leaf.

These manifolds and their regular Poisson structures admit an
extension as the critical hypersurface of a b-Poisson manifold as we
will see in [GMP].

1. Introduction

Given a regular Poisson structure we have an associated symplectic
foliation F given by the distribution of Hamiltonian vector fields. In
this short paper we study some properties of codimension one symplec-
tic foliations for regular Poisson manifolds and define some invariants
associated to them.

In Section 2.1 we introduce the first invariant, associated to the defin-
ing one-form of the foliation. We will see in Section 3.1 that this in-
variant measures how far a Poisson manifold is from being unimodular.
When this invariant vanishes we can choose a defining one-form for the
symplectic foliation which is closed. In particular when this invariant
vanishes, the Godbillon-Vey class of the foliation vanishes too (as had
been previously observed by Weinstein in [We]).
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In Section 2.2, we introduce another invariant also related to the
global geometry of these manifolds. The second invariant measures the
obstruction to the existence of a closed 2-form on the manifold that
restricts to the symplectic structure on each leaf. This invariant had
been previously studied by Gotay in [Go] in the setting of coisotropic
embeddings.

In section 3.2, we explore some of the global implications of the van-
ishing of these two invariants. In particular we show that if they vanish
and the foliation F has at least one compact leaf L, then all leaves are
compact and M itself is the mapping torus associated with the holo-
nomy map of L onto itself. (In particular, the leaves of F are the fibers
of a fibration of M over S1.) In Section 3.3, we give the Poisson version
of this mapping torus theorem. We also briefly describe another global
consequence of the vanishing of these invariants: A 2n-dimensional
Poisson manifold (X, Π), is a b-Poisson manifold if the section Πn of
Λn(X) intersects the zero section of this bundle transversally. For such
manifolds it is easy to see that this intersection is a regular Poisson
manifold with codimension one symplectic leaves and that its first and
second invariants vanish. A much harder result (which will be the topic
of a sequel to this paper) is that the converse is also true.

As an application of theorem 19 we give an explicit description of the
Weinstein’s groupoid integrating the Poisson structure of these regular
manifolds in the case there is a compact leaf. We do it in section 3.4.

Acknowledgements We are thankful to David Mart́ınez Torres for
useful conversations about the Weinstein’s symplectic groupoid inte-
grating these manifolds and also for giving us a different interpretation
of the unimodularity condition of theorem 10. We are also deeply
thankful to Rui Loja Fernandes for pointing out the connection of the
vanishing of our second invariant with the results contained in his paper
with Marius Crainic [CF].

2. Introducing two invariants of a foliation

2.1. The defining one-form of a foliation and the first obstruc-
tion class. Let M be a manifold, L a codimension one foliation of M ,
and write Ω(M) simply as Ω.

Definition 1. A form α ∈ Ω1 is a defining one-form of the foliation

L if it is nowhere vanishing and i∗Lα = 0 for all leaves L
iL
→֒ M .
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A basic property of this defining one-form is:

Lemma 2. For µ ∈ Ωk, we have µ ∈ α ∧ Ωk−1 if and only if i∗Lµ = 0
for all L ∈ L .

If u and v are vector fields tangent to the foliation, then [u, v] is as
well, and thus dα(u, v) = u(α(v)) − v(α(u)) − α([u, v]) = 0. Lemma 2
then implies

(1) dα = β ∧ α for some β ∈ Ω1.

Thus, Ω1 = α∧Ω is a subcomplex of Ω and Ω3 = Ω/α∧Ω a quotient
complex. Lemma 2 gives us a necessary and sufficient condition for a
k-form µ ∈ Ωk to be in Ωk

1.

Writing Ω2 = Ω we have a short exact sequence of complexes

0 −→ Ω1
i

−→ Ω2
j

−→ Ω3 −→ 0.

From (1) we get 0 = d(dα) = dβ ∧ α − β ∧ β ∧ α = dβ ∧ α, that is,
α and dβ are dependent, so we must have dβ ∈ Ω1. Then, d(jβ) = 0
and we can define the first obstruction class cL ∈ H1(Ω3) to be

cL = [jβ] .

Proposition 3. The first obstruction class cF is does not depend on
the choice of the defining one form α.

Proof. Let α and α′ be distinct defining one forms for the foliation F .
We must have α′ = fα for some nonvanishing f ∈ C∞(M). Then

dα′ = df ∧ α + fdα = df ∧ α + fβ ∧ α = (
df

f
+ β) ∧ α′,

so β′ = d(log f) + β. Thus [jβ′] = [jβ]. �

Theorem 4. The first obstruction class cF vanishes identically if and
only if we can chose α the defining one-form of the foliation F to be
closed.

Proof. The first obstruction class cF = [jβ] vanishes identically if and
only if β = df +g α for some f, g ∈ C∞(M). Replacing α by α′ = e−fα
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we get

d(e−fα) = −e−fdf ∧ α + e−fdα

= −e−fdf ∧ α + β ∧ α

= −e−fdf ∧ α + e−fdf ∧ α + e−fg α ∧ α

= 0 .

�

2.2. The defining two-form of a foliation and the second ob-
struction class. Assume now that M is endowed with a regular corank
one Poisson structure Π and that F is the corresponding foliation of
M by symplectic leaves.

Furthermore, assume that the first obstruction class cF vanishes and
therefore the foliation is defined by a closed one form α.

Definition 5. A form ω ∈ Ω2 is a defining two-form of the foliation
F induced by the Poisson structure Π if i∗Lω = ωL is the symplectic

form on each leaf L
iL
→֒ M .

Using the formula

dω(u, v, w) = u(ω(v, w)) + v(ω(w, u)) + w(ω(u, v))−

−ω([u, v], w) − ω([v, w], u) − ω([w, u], v)

with u, v, w vector fields tangent to the foliation we conclude that
i∗Ldω = 0 for all leaves L ∈ F , so by Lemma 2 and since α is closed,

(2) dω = µ ∧ α for some µ ∈ Ω2.

From (2) we conclude that dµ ∧ α = 0, that is, α and dµ are de-
pendent, so dµ ∈ Ω1. Then, d(jµ) = 0 and we can define the second
obstruction class σF ∈ H2(Ω3) to be

σF = [jµ] .

Proposition 6. The second obstruction class σF does not depend on
the choice of the defining two-form ω.

Proof. Let ω and ω′ be distinct defining two-forms for the foliation F .
We must have ω′ = ω + ν for some ν ∈ Ω2 such that i∗Lν = 0 for every
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leaf L ∈ F . Then, by Lemma 2, ν = α ∧ ξ for some ξ ∈ Ω1 and we
have:

dω′ = dω + dν

= µ ∧ α − α ∧ dξ

= (µ + dξ) ∧ α.

Thus, µ′ = µ + dξ and [jµ′] = [jµ]. �

Theorem 7. The second obstruction class σF vanishes identically if
and only if we can chose ω the defining two-form of the foliation F to
be closed.

Proof. The second obstruction class σF = [jµ] vanishes identically if
and only if µ = dν + γ ∧ α for some ν, γ ∈ Ω1. Then, (2) implies
that dω = dν ∧ α, and replacing ω by ω′ = ω − ν ∧ α yields still
i∗Lω′ = i∗Lω = ωL for every L ∈ F but now with dω′ = 0. �

2.3. The modular vector field and modular class of a Poisson
manifold. We follow Weinstein [We] for the description of modular
vector field and the modular class of a Poisson manifold. A complete
presentation of these can also be found in [Ko].

The modular vector field of a Poisson manifold measures how far
Hamiltonian fields are from preserving a given volume form. A simple
example is that of a symplectic manifold: the top power of the symplec-
tic 2-form is a volume form invariant under the flow of any Hamiltonian
vector field, so the corresponding modular vector field is zero.

Definition 8. Let (M, Π) be a Poisson manifold and Θ a volume form
on it, and denote by uf the Hamiltonian vector field associated to
a smooth function f on M . The modular vector field XΘ

Π is the
derivation given by the mapping

f 7→
Luf

Θ

Θ
.

When both the Poisson structure and the volume form on M are
implicit, we denote the modular vector field by vmod.

The modular vector field has the following properties [We]:

(1) The flow of the modular vector field preserves the volume and
the Poisson structure:

LXΘ

Π

(Π) = 0, LXΘ

Π

(Θ) = 0;
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(2) When we change the volume form, the modular vector field
changes by:

XHΘ
Π = XΘ

Π − ulog(H), where H ∈ C∞(M).

This implies that the class of the modular vector field in the
first Poisson cohomology group is independent of the volume
form chosen. This class is called the modular class of the
Poisson manifold. A Poisson manifold is called unimodular if
this cohomology class is zero. As remarked above, symplectic
manifolds are unimodular.

(3) If M is 2-dimensional with Poisson structure given by the bracket
{x, y} = f(x, y) and volume form Θ = dx∧ dy, then the modu-
lar vector field is uf , the Hamiltonian vector field associated to
f . In particular, the modular vector field is tangent to the zero
level set of f .

3. The case with vanishing invariants

3.1. Vanishing first invariant: Unimodular Poisson manifolds.
Assume again that (M2n+1, Π) is a corank one Poisson manifold and F
its foliation by symplectic leaves. Fix α ∈ Ω1(M) and ω ∈ Ω2(M) defin-
ing one- and two-forms of the folliation, respectively. Let us compute
the modular vector field associated to the volume form Θ = α ∧ ωn:

Luf
Θ = d(ι(uf )Θ)

= d(ι(uf )α ∧ ωn)
= −n d(α ∧ df ∧ ωn−1)
= nα ∧ df ∧ β ∧ ωn−1,

where β ∈ Ω1(M) is such that dα = α∧β. On the last step we use the
fact that dω ∧ α = 0.

By definition of modular vector field, we have

(3) nα ∧ df ∧ β ∧ ωn−1 = (ι(vmod)df) α ∧ ωn.

Furthermore, vmod is tangent to the leaves L of F , so (3) implies that

(4) n dfL ∧ βL ∧ ωn−1
L = (ι(vmod)dfL)ωn

L,

where as before ωL = i∗Lω, and similarly fL = i∗Lf and βL = i∗Lβ.

On the other hand, because (dfL ∧ ωn
L) is a (2n + 1)-form on a (2n)-

dimensional manifold L, we have

ι(vmod)(dfL ∧ ωn
L) = 0
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and hence

(5) (ι(vmod)dfL)ωn
L = dfL ∧ n ι(vmod)ωL ∧ ωn−1

L .

From (4) and (5) we conclude that for all fL ∈ C∞(L),

dfL ∧ ι(vmod)ωL ∧ ωn−1
L = dfL ∧ βL ∧ ωn−1

L ,

which implies the following:

Theorem 9. Consider the Poisson manifold (M2n+1, Π) with volume
form Θ = α ∧ ωn, where α and ω are defining one- and two-forms of
the induced foliation.

Then, the modular vector field is the vector field which on every sym-
plectic leaf L ∈ F satisfies

ι(vmod)ωL = βL.

A corollary of Theorem 9 is the following criterion for unimodularity
1of corank one Poisson manifolds:

Theorem 10. A corank one Poisson manifold (M, Π) with induced
symplectic foliation F is unimodular if and only if the first obstruction
class of the foliation cF vanishes identically.

Proof. Recall that (M, Π) is unimodular if and only if we can choose a
volume form on it such that the corresponding modular vector field is
zero. Also, recall from Theorem 4 that cF vanishes identically if and
only if we can choose a closed defining one-form α.

But by Theorem 9, the modular vector field vmod = Xα∧ωn

Π is zero if
and only if βL = i∗Lβ = 0 for every leaf L ∈ F , which by Lemma 2 is
equivalent to β ∈ α ∧ Ω, thus making α closed:

dα = β ∧ α = 0.

�

Remark 11. Given a transversally orientable foliation with defining
one-form α, the Godbillon-Vey class is defined as the class of the 3-form
β ∧ dβ. From Theorem 10 we deduce in particular that for unimodular
Poisson manifolds this 3-form vanishes. The converse is not true as
observed by Weinstein in [We].

1We thank David Mart́ınez-Torres for pointing out that an alternative proof of
this can be obtained via formula 4.6 in [KLW]. However, this alternative proof
requires a use of the interpretation of the modular class as one-dimensional repre-
sentations and this seems an interesting but longer path.
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3.2. Vanishing (first and) second invariant(s): a topological
result. We begin by recalling Reeb’s global stability theorem about
codimension one foliations:

Theorem 12. [Re] Let F be a transversely orientable codimension
one foliation of a compact connected manifold M . If F contains a
compact leaf L with finite fundamental group, then every leaf of F is
diffeomorphic to L.

Furthermore, M is the total space of a fibration f : M → S1 with
fiber L, and F is the fiber foliation {f−1(θ)|θ ∈ S1}.

The key point in the proof of Theorem 12 is that such a foliation
with a compact leaf has trivial holonomy (see for example [CN]). Since
a foliation defined by a closed one-form has trivial holonomy as well
(see again [CN], p.80), the proof and conclusions of Reeb’s theorem
hold in the following case:

Theorem 13. Let F be a transversely orientable codimension one fo-
liation of a compact connected manifold M with cF = 0. If F contains
a compact leaf L, then every leaf of F is diffeomorphic to L.

Furthermore, M is the total space of a fibration f : M → S1 with
fiber L, and F is the fiber foliation {f−1(θ)|θ ∈ S1}.

Remark 14. A theorem of Tischler [Ti] says that a compact manifold
endowed with a non-vanishing closed one form must be a fibration over
a circle. However, this fibration need not coincide with the codimension
one foliation defined by the closed one form. Theorem 13 asserts that
when the foliation contains a compact leaf, then it is itself a fibration
over a circle.

We outline an alternative proof of Theorem 13 that does not use
Reeb’s theorem (or rather, its proof):

Proposition 15. Let F be a transversely orientable codimension one
foliation of a compact connected manifold M with cF = 0. Then:

(1) there exists a family of diffeomorphisms Φt : M → M , defined
for t ∈ (−ε, ε), that takes leaves to leaves;

(2) if F contains a compact leaf L, then all leaves are compact;
(3) and furthermore there exists a saturated neighbourhood U of L

and a projection f : U → I such that the foliation is diffeomor-
phic to the foliation given by the fibers of p.
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Proof. (1) Let α be a closed defining one form of the foliation F ,
and v a vector field on M such that α(v) = 1; this vector field is
transversal to the foliation F . The flow Φt of the vector field v,
defined for t ∈ (−ε, ε) for small enough ε, takes leaves to leaves
diffeomorphically, since

Lvα = ιvdα + dιvα = 0.

(2) Let N be the union of all compact leaves in M . The set N is
open: Given a leaf L contained in N , the set

{Φt(L)|t ∈ (−ε, ε)}

is an open neighborhood of L contained in N . The same ar-
gument can be used to show that M r N is open. Since N is
nonempty and M is connected, we must have N = M .

(3) Because i∗Lα = 0 with L compact, Poincaré lemma guarantees
the existence of a tubular neighbourhood U of L and function
f on it such that the leaf L is the zero level set of f and α = df
on U . Shrinking U as necessary, we can assume it is a saturated
neighbourhood and that the leaves are level sets of f .

�

So far we have proved that foliations with vanishing first invariant cF
are locally trivial fibrations in the neighbourhood of a given compact
leaf. Using the transverse vector field v of the proof of (1) in Proposition
15, we could now drag this vector bundle structure and by a Cëch-type
construction obtain a global fiber bundle over S1. Furthermore, the
choice of a transverse vector field v whose flow takes leaves to leaves
gives us an Ehresmann connection, which we use to lift the closed loop
on the base of the fibration and thus obtain a holonomy map φ : L → L,
thus obtaining the following:

Corollary 16. Let F be a transversely orientable codimension one
foliation of a compact connected manifold M with cF = 0, and assume
that the foliation contains a compact leaf L. Then, the manifold M
is the mapping torus of the diffeomorphism φ : L → L given by the
holonomy map of the S1 fibration.2

Remark 17. If the foliation F satisfies cF = 0 but has no compact
leaves, and instead there exists a leaf L such that H1(L, R) = 0 (hy-
pothesis of Thurston’s theorem [Th]), then it can be proved that the
foliation is a fibration over S1.

2The mapping torus of φ : L → L is the space L×[0,1]
(x,0)∼(φ(x),1) .
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3.3. Vanishing (first and) second invariant(s): a Poisson re-
sult. We wanted to look in this section at the case of vanishing first
and second invariants, and for that we must now assume that M is
endowed with a regular corank one Poisson structure and that F is the
corresponding symplectic foliation.

Proposition 18. The two invariants cF and σF vanish if and only if
there exists a Poisson vector field transversal to the foliation.

Proof. Given α and ω defining one- and two-forms respectively, let v
be the vector field uniquely defined by

(6) α(v) = 1 and ι(v)ω = 0.

Conversely, given a vector field v on M transversal to the foliation F ,
these equalities uniquely give us defining one- and two-forms α and ω.

The vector field v is Poisson if and only if Lvα = Lvω = 0 which by
(6) becomes ι(v)dα = ι(v)dω = 0. But then necessarily dα = dω = 0,
or equivalently, cF = σF = 0. �

As before, the choice of a transverse vector field v gives an Ehresmann
connection on the fibration that we can use to lift the closed loop on
the base of the fibration to obtain a holonomy map φ : L → L.

Because v is a Poisson vector field, its flow drags the symplectic
structure of one leaf to define the Poisson structure on M (because M
is a symplectic fibration over a one dimensional base, the Guillemin-
Lerman-Sternberg condition [GLS] guarantees that the minimal cou-
pling structure yields a unique Poisson structure on M). Furthermore,
the parallel transport of the connection preserves the symplectic struc-
ture on the leaves, and in particular the holonomy map φ is a symplec-
tomorphism:

Theorem 19. Let M be an oriented compact connected regular Poisson
manifold of corank one and F its symplectic foliation. If cF = σF = 0
and F contains a compact leaf L, then every leaf of F is symplecto-
morphic to L.

Furthermore, M is the total space of a fibration over S1 and it is
the mapping torus of the symplectomorphism φ : L → L given by the
holonomy map of the S1 fibration.

Regular corank one Poisson manifolds with cF = σF = 0 are interest-
ing in Poisson geometry because they can be characterized as manifolds
which are the critical hypersurfaces of Poisson b-manifolds:
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Definition 20. An oriented Poisson manifold (X2n, Π) is a Poisson
b-manifold if the map

x ∈ X 7→ (Π(x))n ∈ Λ2n(TX)

is transverse to the zero section.3

Theorem 21. [GMP] Let (M, Π) be an oriented compact regular Pois-
son manifold of corank one, F its symplectic foliation and v the Poisson
vector field transversal to F .

If cF = σF = 0, then there exists an extension of (M, Π) to a b-
Poisson manifold (U, Π̃). This extension is unique up to isomorphism
among the extensions for which [v] is the image of the modular class
under the map

H1
Poisson

(U) −→ H1
Poisson

(M).

Example 22. Let M = T3 with coordinates θ1, θ2, θ3 and F the codi-
mension one foliation with leaves given by

θ3 = aθ1 + bθ2 + k, k ∈ R,

where a, b ∈ R are fixed and independent over Q. This implies that
each leaf is diffeomorphic to R2 [Ma]. Then,

α =
a

a2 + b2 + 1
dθ1 +

b

a2 + b2 + 1
dθ2 −

1

a2 + b2 + 1
dθ3

is a defining one-form for F and there is a Poisson structure Π on M
of which

ω = dθ1 ∧ dθ2 + b dθ1 ∧ dθ3 − a dθ2 ∧ dθ3

is the defining two-form. Note that α and ω are closed, and so the
invariants cF and σF vanish.

Indeed, (M, Π) can be extended to (U, Π̃) where U = M × (−ε, ε)
and Π̃ is the bivector field dual to the 2-form

ω̃ = d(log t) ∧ α + ω.

3.4. Vanishing (first and) second invariants: Explicit integra-
tion of the Poisson structure. A Lie algebroid structure over a
manifold M consists of a vector bundle E together with a bundle map
ρ : E → TM and a Lie bracket [ , ]E on the space of sections satisfying,
for all α, β ∈ Γ(E) and all f ∈ C∞(M), the Leibniz identity:

[α, fβ]E = f [α, β]E + Lρ(α)(f)β.

3In particular, this implies that the critical set {x ∈ X|(Π(x))n = 0} is a
hypersurface.
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Given a Lie groupoid one can naturally associate to it a Lie algebroid
structure, but the converse is not true: given a Lie algebroid it is not
always possible to produce a smooth Lie groupoid with the prescribed
Lie algebroid structure. However, when the Lie algebroid is in fact a
Lie algebra (case of Lie algebroid over a point), the integration to a Lie
group is guaranteed by Lie’s third theorem. In [CF], Marius Crainic
and Rui Loja Fernandes solve the problem of integrability of a Lie
algebroid to a Lie groupoid.

Given a Poisson manifold (M,π), there exists a natural Lie algebroid
structure on T ∗M : the Poisson cotangent Lie algebroid has anchor map
π♯ and Lie bracket defined by

[α, β] = Lπ♯(α)(β) − Lπ♯(β)(α) − d(π(α, β)).

In this case the integrability problem consists of associating a sym-
plectic groupoid to this Lie algebroid structure, as studied by Marius
Crainic and Rui Loja Fernandes in [CF04]. The canonical integration,
or Weinstein’s groupoid, is a symplectic groupoid integrating the alge-
broid which is source simply connected.

Recall the following theorem [CF04, Corollary 14],

Theorem 23. [Crainic-Fernandes] Let M be a regular Poisson mani-
fold. Then:

(1) If M admits a leafwise symplectic embedding then every leaf of
M is a Lie-Dirac submanifold.

(2) If every leaf of M is a Lie-Dirac submanifold then M is inte-
grable.

The second obstruction class σF can be interpreted via Gotay’s em-
bedding theorem [Go] and measures the obstruction for a closed 2-form
to exist on Z which restricts to ωL on each leaf L. If cF = 0, we
get a leafwise symplectic embedding and Theorem 23 guarantees in-
tegrability. Furthermore, using Theorem 19 we can obtain an explicit
characterization of the Weinstein’s integrating groupoid:

Corollary 24. The Poisson structure on manifolds with vanishing in-
variants cF and σF is integrable (in the Crainic-Fernandes sense) and
the Weinstein’s symplectic groupoid is a mapping torus.

Proof. Consider the Weinstein’s groupoid of a symplectic leaf (Π1(L), Ω)
and the product (Π1(L) × T ∗(R), Ω + dλliouville). Let f be the time-1
flow of the Poisson vector field transverse to the symplectic foliation v.
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On this product define φ : (x̃, (t, η)) 7→ (f̃ , (t + 1, η)). This map
preserves the symplectic groupoid structure and thus by identification
it induces a symplectic groupoid structure on the mapping torus which
has φ as gluing diffeomorphism. �
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