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In this paper we study the qualitative behavior of a predator–prey system with nonmonotonic
functional response. The system undergoes a series of bifurcations including the saddle-node
bifurcation, the supercritical Hopf bifurcation, and the homoclinic bifurcation. For different
parameter values the system could have a limit cycle or a homoclinic loop, or exhibit the so-
called “paradox of enrichment” phenomenon. In the generic case, the model has the bifurcation
of cusp-type codimension two (i.e. the Bogdanov–Takens bifurcation) but no bifurcations of
codimension three.

1. Introduction

In a well-known paper, Rosenzweig [1971] consid-
ered exploitation in a two-species ecosystem with
a vertical isocline (no intraspecific interaction) for
the predator and with prey limited by their envi-
ronment to a finite carrying capacity that was an
increasing function of their food supply. By per-
forming a linear stability analysis of the community
equilibrium point of the governing system of differ-
ential equations for a series of models, Rosenzweig
showed the destabilization of a stable predator–
prey system could be accomplished by enriching
the predators’ food supply sufficiently to result in
the extinction of both species. This phenomenon
is the so-called paradox of enrichment. Though
Rosenzweig’s predictions are controversial, there is
experimental evidence that supports the warning

(see e.g. [Luckinbill, 1973; Schaffer & Rosenzweig,
1978], etc.). Recently, some researchers have pro-
vided support to Rosenzweig’s predictions by math-
ematically analyzing certain predator–prey models,
for instance, the predator–prey models with group
defense.

In population dynamics, group defense is a term
used to describe the phenomenon whereby preda-
tion is decreased, or even prevented altogether, due
to the increased ability of the prey to better de-
fend or disguise themselves when their numbers are
large enough. An example of this phenomenon
is described by Tener [1965]. Lone musk ox can
be successfully attacked by wolves. Small herds
of musk ox (2–6 animals) are attacked but with
rare success. No successful attacks have been ob-
served in larger herds. A second example described
by Holmes and Bethel [1972] involves certain
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2124 D. Xiao & S. Ruan

insect populations. Apparently, large swarms of the
insects make individual identification difficult for
their predators. The third example was observed
by Davidowicz et al. [1988]. Filamenteous algae are
often qualified as inedible by herbivorous zooplank-
ton. However, experiments show that Daphnia can
consume them at low concentrations, and jam their
filtering apparatus in high concentrations.

To study the predator–prey interaction when
the prey exhibits group defense, Freedman and
Wolkowicz [1986], Mischaikow and Wolkowicz
[1990] and Wolkowicz [1988] proposed and studied
the following model

ẋ = xg(x, K)− yp(x) ,

ẏ = y(−D + q(x)) .
(1)

Here, x and y are functions of time representing
population densities of prey and predator, respec-
tively; K > 0 is the carrying capacity of the prey
and D > 0 is the death rate of the predator. The
function g(x, K) represents the specific growth rate
of the prey in the absence of predator and is as-
sumed to satisfy the following conditions (for x ≥ 0,
K > 0)

g(K, K) = 0 , g(0, K) > 0 , lim
K→∞

g(0, K) <∞ ,

gx(x, K) < 0 , gK(x, K) ≥ 0 , gxK(x, K) > 0 ,

lim
K→∞

gx(x, K) = 0 .

A prototype is the logistic growth

g(x, K) = r

(
1− x

K

)
,

which satisfies all the conditions. The function p(x)
denotes the predator response function and it is as-
sumed that p(x) satisfies

p(0) = 0 , p(x) > 0 for x > 0 .

In order to model group defense, it is assumed that
there is a constant M > 0 such that (see Fig. 1)

p′(x)

{
> 0, 0 ≤ x < M

< 0, x > M .

In particular, the function p(x) = αxe−βx proposed
in [Freedman & Ruan, 1992] satisfies the assump-
tions, where α and β are positive constants. The
rate of conversion of prey to predator is described
by q(x) which has properties similar to p(x). So

0 xM

p(x)

Fig. 1. The nonmonotonic predator response function p(x).

usually it is assumed that q(x) = µp(x) for some
positive constant µ.

Freedman and Wolkowicz [1986] showed that
if the carrying capacity of the prey population is
sufficiently large, the predator population is almost
always driven to extinction. This supports the phe-
nomenon of “paradox of enrichment.” In the case
when there are two interior equilibria, by using the
carrying capacity of the prey K as a bifurcation
parameter, Wolkowicz [1988] showed, among other
things, that system (1) undergoes a Hopf bifurca-
tion at the inside equilibrium when K passes a crit-
ical value and there is a homoclinic bifurcation as-
sociated with the Hopf bifurcation (either the Hopf
bifurcation followed by the homoclinic bifurcation
or the homoclinic bifurcation followed by the Hopf
bifurcation) when the same bifurcation parameter
K takes some other value. The observation and
analysis made by Freedman and Wolkowicz [1986]
and Wolkowicz [1988] indicate that the codimension
of these bifurcations in system (1) is greater than
or equal to two.

The purpose of this paper is to discuss the dy-
namics of a predator–prey system of the form

ẋ = rx

(
1− x

K

)
− αxye−βx ,

ẏ = y(µαxe−βx −D) ,

(2)

where x and y represent the prey and predator pop-
ulations, respectively; r, K, α, β, µ and D are posi-
tive parameters. For the sake of simplicity, we scale
the parameter α by letting y = αy and µ = µα.
Dropping the bars, we have the following system

ẋ = rx

(
1− x

K

)
− xye−βx ,

ẏ = y(µxe−βx −D) ,

(3)
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Codimension Two Bifurcations in a Predator–Prey System 2125

From the point of view of biology, we only
restrict our attention to system (3) in the closed first
quadrant in the (x, y) plane. We shall make global
qualitative analysis and bifurcation analysis of
system (3) depending on all parameters and show
that system (3) has a unique limit cycle or a global
attractive equilibrium in the interior of the first
quadrant, or exhibits the “paradox of enrichment”
phenomenon for different parameter values. Fur-
thermore, we show that system (3) can exhibit qual-
itatively different dynamics including the supercriti-
cal Hopf bifurcation, the saddle-node bifurcation as
well as the homoclinic bifurcation. In the generic
case, system (3) has the bifurcation of codimension
two (i.e. the Bogdanov–Takens bifurcation) and no
bifurcations of codimension three.

We would like to point out that though the re-
sponse function p(x) = αxe−βx looks similar to the
Ivlev’s response function p(x) = αx(1 − e−βx), we
will see that system (3) exhibits much richer and
more complicated dynamics than the predator–prey
model with Ivlev’s functional response (see [Sugie,
1998; Kooij & Zegeling, 1996]). The key differ-
ence is that system (3) has a Bogdanov–Takens sin-
gularity while the the predator–prey model with
Ivlev’s functional response does not. The differ-
ence has also been observed between a predator–
prey model with the simplified Monod–Haldane re-
sponse function p(x) = mx/(a+x2) [Ruan & Xiao,
2001] and predator–prey systems with Holling type-
II response function p(x) = mx/(a+x) and Holling
type-III response function p(x) = mx2/(a+x2) (see
cf. [Kooij & Zegeling, 1997; Sugie et al., 1997] and
the references cited therein).

This paper is organized as follows. Existence of
equilibria and nonexistence of closed orbits of the
system (3) are discussed in Sec. 2. In Sec. 3 we
study all possible bifurcations depending on all pa-
rameters. Using K (the carrying capacity of the
prey) and D (the death rate of the predator) as bi-
furcation parameters, we obtain the versal unfold-
ing of the Bogdanov–Takens singularity. For some
parameter values, the system has a unique limit cy-
cle or a homoclinic loop. A brief discussion is given
in Sec. 4.

2. General Phase Portraits Analysis
of the System (3)

As it is typical for predator–prey systems, the x-
axis, y-axis and the interior of the first quadrant are

all invariant under system (3), solutions with pos-
itive initial values are positive and bounded, and
there are a hyperbolic saddle point at the origin
and an equilibrium (K, 0) in the x-axis for all per-
missible parameters. The equilibria of the greatest
interest are those interior to the first quadrant, so
we seek conditions for such equilibria to exist. From
system (3), we see an interior equilibrium, the fol-
lowing equation

µxe−βx −D = 0

must have a positive root x∗. Therefore, the first
condition is that

µ ≥ eβD . (4)

To determine the y value of the equilibrium, we
merely solve

rx

(
1− x

K

)
− xye−βx = 0

for y at the root x∗ and get

y∗ = r

(
1− x∗

K

)
eβx

∗
.

To ensure that y∗ > 0, however, we must make a
second assumption

x∗ < K . (5)

Notice that if the predator response function is
monotone, Freedman [1987] has shown that if
x∗ > K, then the predator goes extinct. If predator

y

x
0 (K, 0)

Fig. 2. The phase portrait of system (3) when µ < eβD or
µ = eβD and βK ≤ 1.

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
00

1.
11

:2
12

3-
21

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IA
M

I 
on

 0
3/

19
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



2126 D. Xiao & S. Ruan

response function is nonmonotone as in system (3),
there could be two equilibria since rx(1− (x/K))−
xye−βx = 0 may have two roots x1 and x2. Even
if one xi > K, the predator does not necessarily
go to extinction. We will see more details in the
following.

Note that if condition (4) is not satisfied, then
system (3) has no interior equilibria; if (4) holds,
then system (3) may have one or two interior equi-
libria. Condition (5) is required when interior equi-
libria exist. Next we discuss the all possible phase
portraits of system (3) depending on all parameters.

2.1. Either µ < eβD or µ = eβD
and βK ≤ 1

In this case, system (3) has no interior equilibria. It
is easy to see that the equilibrium (K, 0) is a stable
node. The phase portrait is depicted in Fig. 2.

2.2. µ = eβD and βK > 1

In this case, system (3) has three equilibria, a hy-
perbolic saddle (0, 0), a stable node (K, 0) and an
interior equilibrium (x0, y0), where x0 = (1/β),
y0 = r(1− (1/βK))e.

y

0 (K, 0)
x

(a)

y

0 (K, 0)
x

(b)

y

x
0 (K, 0)

(c)

Fig. 3. The phase portrait of system (3) when (a) µ = eβD but (1/β) < K < (2/β); (b) µ = eβD but K > (2/β);
(c) µ = eβD and K = 1/β.
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Codimension Two Bifurcations in a Predator–Prey System 2127

After some calculations, we know that (x0, y0)
is a saddle-node when K 6= (2/β) and a cusp when
K = 2/β. In both cases system (3) has no closed
orbits. Detailed information can be seen in Fig. 3.
Especially, from Figs. 3(b) and 3(c) we can easily
see that sufficient enrichment of the environment
leads to the extinction of the predator for almost all
initial values, which strongly supports the so-called
“paradox of enrichment”.

2.3. µ > eβD

In this case, system (3) has at most four equilibria,
(0, 0), (K, 0), and two interior equilibria (x1, y1),
(x2, y2), where x1 and x2 are roots of

µxe−βx −D = 0 .

Obviously, 0 < x1 < (1/β) < x2.
More precisely, there are three possibilities.

(i) When K < x1, system (3) has two boundary
equilibria, (0, 0) and (K, 0), and no interior equi-
libria. The dynamics of system (3) is trivial as in
Fig. 2. (ii) When x1 < K < x2, system (3) has three
equilibria: two hyperbolic saddles (0, 0) and (K, 0),
and an interior equilibrium (x1, y1). In this case
the interior equilibrium (x1, y1) is a focus or node,
which is stable (unstable) if x1 < K < x1 + β−1 ≤
x2 (x1 + β−1 < K < x2, respectively). (iii) When
x2 < K, system (3) has four equilibria: a hyper-
bolic saddle (0, 0), a hyperbolic stable node (K, 0)
and two interior equilibria (x1, y1) and (x2, y2).
We can see that (x2, y2) is a hyperbolic saddle
and (x1, y1) is a focus or node, which is stable
(unstable) if x2 < K < x1 + β−1 (x2 ≤ x1 + β−1 <
K, respectively).

In case 2.3 (ii) and (iii), system (3) could have
complicated dynamics in the interior of the first
quadrant. Next we give two theorems on nonex-
istence of closed orbits of system (3).

Theorem 2.1. If eβD < µ and x1 < K ≤ 1/β,
then system (3) has three equilibria: two hyperbolic
saddles (0, 0) and (K, 0), and a globally asymptot-
ically stable equilibrium (x1, y1) in the interior of
the first quadrant. The phase portrait is shown in
Fig. 4.

Proof. It can be easily checked that the equilib-
rium (x1, y1) is a stable focus (or node). Next we
prove that system (3) has no periodic orbits in the
interior of the first quadrant.

y

0 (K, 0) x

(x  , y  )1 1

Fig. 4. The phase portrait of system (3) when eβD < µ and
x1 < K ≤ (1/β).

Introduce the new time τ by dt = eβxdτ ,
system (3) is equivalent to

dx

dτ
= rx

(
1− x

K

)
eβx − xy = f(x, y)

dy

dτ
= µxy −Dyeβx = g(x, y) .

(6)

Taking the Dulac function D(x, y) = x−1y−1 for
system (6), we have

∂[D(x, y)f(x, y)]

∂x
+
∂[D(x, y)g(x, y)]

∂y

= ry−1eβx
(
β − 1

K
− βx

K

)
< 0

as K ≤ (1/β) in the interior of the first quadrant.
Thus, system (6) has no closed orbits in the interior
of the first quadrant by Dulac–Bendixson criterion.
Hence, the equilibrium (x1, y1) is globally asymp-
totically stable in the interior of the first quadrant.

�

Theorem 2.2. If µ > eβD and K > (1/β) + x2,
then system (3) has four equilibria: two hyperbolic
saddles (0, 0) and (x2, y2), a hyperbolic stable node
(K, 0) and an unstable equilibrium (x1, y1). More-
over, system (3) has no closed orbits, that is, it ex-
hibits the so-called “paradox of enrichment” phe-
nomenon. The phase portrait is given in Fig. 5.

Proof. Clearly the equilibrium (x1, y1) is an unsta-
ble focus as K > (1/β) + x2. Since the equilibrium
(x2, y2) is a saddle, a closed orbit (a periodic orbit
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2128 D. Xiao & S. Ruan

(x  , y  )

(x  , y  )

y

x0 (K, 0)

2

1 1

2

Fig. 5. The phase portrait of system (3) when µ > eβD and
K > (1/β) + x2.

or a homoclinic loop) of system (3) must be in the
domain E if it exists, here

E = {(x, y) : 0 < x ≤ x2, 0 < y < +∞} .

Note that the problem of existence of a closed orbit
of system (3) in E is equivalent to that of system
(6) in E. As in the proof of Theorem 2.1, we have

∂[D(x, y)f(x, y)]

∂x
+
∂[D(x, y)g(x, y)]

∂y

= rK−1y−1eβx(Kβ − 1− βx)

> rβK−1y−1eβx(x2 − x) ≥ 0

as K > (1/β) + x2 in E. Therefore, system (3) has
neither a limit cycle nor a homoclinic loop in the
interior of the first quadrant. This completes the
proof. �

Remark 2.3. Notice that for the original system (2),
the condition (4) becomes

µα ≥ eβD . (7)

Accordingly, we can obtain all the phase portraits
of the system (2).

3. Multiple Bifurcations of
System (3)

According to the analysis in Sec. 2, we know that
there exist some special parameter values such that
the equilibrium of system (3) is not hyperbolic.

Thus, when the parameters vary in the neighbor-
hood of these special values, the dynamics of sys-
tem (3) can change, which leads to bifurcations. In
this section, we discuss all possible bifurcations of
system (3) at these equilibria, and show that sys-
tem (3) has a unique limit cycle or a homoclinic
loop for different parameter values.

First of all, we need the model to be persistent
from the point of view of biology, hence, the con-
dition µ ≥ eβD is required. On the other hand,
mathematically the following surface

SN =

{
(µ, β, D, K) : µ = eβD and K 6= 2

β

}
is a saddle-node bifurcation surface. When the pa-
rameters pass from one side of this surface to the
other side, the number of equilibria of system (3)
changes, i.e. from zero to two. Thus, system (3)
exhibits saddle-node bifurcation.

However, when µ = eβD and K = 2/β, sys-
tem (3) has an interior equilibrium (x0, y0) which
is a cusp from Sec. 2. Moreover, we have

Theorem 3.1. If µ = eβD and K = 2/β, then
the equilibrium (x0, y0) of system (3) is a cusp
of codimension two, i.e. it is a Bogdanov–Takens
singularity.

Proof. When µ = eβD and K = 2/β, we have
x0 = 1/β, y0 = re/2. Let X = x− x0, Y = y − y0,
we can rewrite system (3) as

Ẋ = − 1

βe
Y − rβ

4
X2 + P (X, Y ) ,

Ẏ = −rβµ
4
X2 +Q(X, Y ) ,

(8)

where P (X, Y ) = O(|(X, Y )|3) and Q(X, Y ) =
O(|(X, Y )|3) are C∞ functions in (X, Y ). In the
small neighborhood of the origin, we transform
system (8) into a simpler form

ẋ = y ,

ẏ =
rµ

4e
x2 − rβ

2
xy +R(x, y)

(9)

by smooth invertible transformations

x = X , y = − 1

βe
Y − rβ

4
X2 + P (X, Y ) ,

where R(x, y) = O(|(x, y)|3) is a C∞ function of
their arguments.
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Codimension Two Bifurcations in a Predator–Prey System 2129

Since the coefficients of the terms x2 and xy in
system (9) are not zero, the origin of system (9) is
a cusp of codimension two, i.e. a Bogdanov–Takens
singularity. This completes the proof. �

For a Bogdanov–Takens singularity, it is more
interesting to find the versal unfolding depending on
the original parameters in system (3). For this, we
choose the carrying capacity of the prey population
K and the death rate of predator D in system (3)
as bifurcation parameters, and consider

ẋ = rx

[
1−

(
λ1 +

1

K0

)
x

]
− xye−β0x ,

ẏ = y(µ0xe
−β0x − λ2 −D0) ,

(10)

where λ1 and λ2 are parameters which vary in a
small neighborhood of the origin; µ0, K0, β0 and
D0 satisfy the equations µ = eβD and K = 2/β.
We translate the origin of system (10) to the point
(x0, y0) = (1/β, re/2), then system (10) becomes

Ẋ = −rβ−2
0 λ1 − 2rβ−1

0 λ1X −
1

β0e
Y

−
(
rβ0

4
+ 2rλ1

)
X2 + P (X, Y ) ,

Ẏ = −re
2
λ2 − λ2Y −

rβ0µ0

4
X2 +Q(X, Y ) .

(11)

Following the procedure of deriving the normal
form in [Xiao & Ruan, 1999], we take x1 = X,
x2 = −rβ−2

0 λ1−2rβ−1
0 λ1X−(1/β0e)Y −((rβ0/4)+

2rλ1)X2 +P (X, Y ), then system (11) is written as

ẋ1 = x2 ,

ẋ2 =
r

2β0
λ2 −

(
2r

β0
λ1 + λ2

)
x2 +

rµ0

4e
x2

1

−rβ0

2
x1x2 +R(x, λ) ,

(12)

here R(x, λ) = O(|λ|2) + O(|λ|2x) + O((|λ| +
|x|)|x|2) is a smooth function of its arguments. We
simply denote system (12) by

ẋ1 = x2 ,

ẋ2 = τ1 + τ2x2 +
rµ0

4e
x2

1 −
rβ0

2
x1x2 +R(x, τ) ,

(13)

where τ1 = (r/2β0)λ2 and τ2 = −((2r/β0)λ1 +
λ2), which vary in a small neighborhood of the
origin.

By the theorems in [Bogdanov, 1981a, 1981b],
we obtain the following local representations of the

bifurcation curves in a small neighborhood of the
origin:

1. The saddle-node bifurcation curve SN =
{(λ1, λ2) : λ2 = 0, λ1 6= 0}.

2. The Hopf bifurcation curve H = {(λ1, λ2) :
λ2 < 0, r

√
−(β0e/2µ0)λ2 = 2rβ−1

0 λ1 + λ2}.
3. The homoclinic bifurcation curve HL =
{(λ1, λ2) : λ2 < 0, (5r/7)

√
−(β0e/2µ0)λ2 =

2rβ−1
0 λ1 + λ2}.

We sketch these bifurcation curves in a small neigh-
borhood of the origin in the (λ1, λ2) plane by their
first approximations and obtain the following bifur-
cation diagram (see Fig. 6). The bifurcation curves
divide the parameter plane into four parts: I, II, III
and IV.

(a) When the parameter values are in the region III,
system (10) has two interior equilibria and a
unique stable limit cycle. Thus there exists an
open set of initial population densities such that
both the predator and the prey tend to a stable
oscillation.

(b) When the parameter values lie on the homo-
clinic bifurcation curve HL, system (10) has two
interior equilibria, a stable homoclinic loop and
no limit cycle.

Remark 3.2. By Theorem 3.1 and the above argu-
ment, we know that system (3) cannot undergo bi-
furcations of codimension three at the degenerate
singularity.

In the case 2.3 of Sec. 2, we can see that the sta-
bility of the equilibrium (x1, y1) can change as the
parameter K varies, which implies that the equilib-
rium (x1, y1) is not hyperbolic. Next we discuss the
property of (x1, y1).

Lemma 3.3. If µ > eβD and K = x1 + β−1, then
the equilibrium (x1, y1) of system (3) is a stable
multiple focus of multiplicity one.

Proof. Let x = x − x1, y = y − y1. Then when
K = x1 + β−1, system (3) can be transferred to

ẋ = −x1e
−βx1y +

∑
i+j≥2

fij
i!j!

xiyj ,

ẏ = µy1e
−βx1(1− βx1)x+

∑
i+j≥2

gij
i!j!

xiyj ,

(14)
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Fig. 6. The bifurcation set and the corresponding phase portraits of system (10).

where fij := (∂i+jf/∂ix∂jy)|(x1,y1), gij := (∂i+jg/

∂ix∂jy)|(x1,y1), and f := rx(1 − (x/K)) − xye−βx
and g := y(µxe−βx −D).

According to the formula for the third focal
value of a multiple focus on p. 253 of [Andronov
et al., 1971] (see also [Andronov et al., 1966]), we
obtain, after some elementary but lengthy compu-
tations, the following expression for the third focal
value α3 of the multiple focus (0, 0) in system (14)

α3 = −3πrµβx1y1

4Ke2βx1θ
3
2

[2− (βx1)2] ,

where θ = µx1y1(1 − βx1)e−2βx1 . Since βx1 < 1,
α3 < 0. Hence, the equilibrium (x1, y1) is a stable
multiple focus of multiplicity one. This proves the
lemma. �

By Lemma 3.3, we know that the equilibrium
(x1, y1) is a stable focus when µ > eβD and
x1 +β−1 ≥ K. However, the equilibrium (x1, y1) is
an unstable focus as µ > eβD and K > x1 + β−1.
Therefore, system (3) can undergo a supercritical
Hopf bifurcation. A stable limit cycle appears in
the small neighborhood of (x1, y1). The surface

H1 = {(K, µ) : K = x1 + β−1, µ > eβD}

is called the supercritical Hopf bifurcation surface of
system (3).

Summarizing the above arguments, we have

Theorem 3.4. There exists a positive number ε
such that system (3) has at least one limit cycle
when µ > eβD and x1 + β−1 + ε > K > x1 + β−1.

According to above analysis and Theorems 2.1
and 2.2, we make the following conjectures.

Conjecture 3.5. When µ > eβD and x1 + β−1 ≥
K > β−1, system (3) has a unique interior equi-
librium (x1, y1), which is a global attractor in the
interior of the first quadrant.

Conjecture 3.6. When µ > eβD and K > x1 +
β−1, system (3) has at most one limit cycle, it is
stable if it exists.

Remark 3.7. For system (2) with the original pa-
rameters, the first condition of Theorem 3.1 be-
comes µα = eβD. Biologically, Theorem 3.1 indi-
cates that if the death rate of the predator satisfies
D = µα/eβ and the carrying capacity of the prey
satisfies K = 2/β, then the unique interior equilib-
rium of the predator–prey system (2) is a cusp of
codimension two, and in the neighborhood of the
critical values of (D, K) the system exhibits very
rich dynamics. While Theorem 3.4 demonstrates
this when the death rate of the predator is decreased
so that D < µα/eβ and the carrying capacity K
of the prey takes certain value, then the predator
and prey populations exist in the form of oscillatory
periodic solutions.
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4. Discussion

Multiple parameter bifurcation in predator–prey
systems is an interesting, important and challenging
problem, since it is to determine all possible types of
bifurcations depending on all parameters involved
in the systems. Rothe and Shafer [1991] investi-
gated a predator–prey system with a nonmonotone
functional response of the form

p(x) =
mx

a+ bx+ x2

and showed that it exhibits very rich dynamics such
as Hopf, saddle-loop, and semi-stable bifurcations of
cycles, as well as a special bifurcation of cycles from
infinity. It is also shown that two cycles can coex-
ist. Therefore, their system exhibits bifurcations of
codimension three.

In this paper we have considered a predator–
prey system with a different nonmonotone func-
tional response, namely,

p(x) = αxe−βx .

It has been shown that when the parameters take
some critical values, the predator–prey system has
a unique interior equilibrium which is a cusp of
codimension two and in the small neighborhood of
these critical values the system exhibits Bogdanov–
Takens bifurcation. By carrying out a global qual-
itative analysis of the system depending on all pa-
rameters, we have shown that the system has a
unique limit cycle or a global attractive equilib-
rium in the interior of the first quadrant, or exhibits
the “paradox of enrichment” phenomenon for differ-
ent parameter values. Moreover, the system under-
goes a series of bifurcations including a supercritical
Hopf bifurcation, a saddle-node bifurcation and a
homoclinic bifurcation. Generically the system has
bifurcations of codimension two and, differing from
the system studied by Rothe and Shafer [1991], has
no bifurcations of codimension three.
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