Georgia Institute of Technology, Graphics, Visualization and Usability Center, Technical Report # GIT-GVU-98-23, August998.

An abridged version of this paper appears in IEEE Transactions on Pattern Analysis and Machine Intelligence,Volume 19 (7), Jul$997.

Coding, Analysis, Interpretation, and Recognition of Facial Expressions

Irfan A. Essa

College of Computing, GVU Center,
Georgia Institute of Technology,
Atlanta, GA 30332-0280, USA.

irfan@cc.gatech.edu

Abstract on the enumeration of all “action units” of a face which cause
facial movements.

We describe a computer vision system for observing facial mo- - However a well recognized limitation of this method is the lack
tion by using aroptimal estimatioroptical flow method coupled  of temporal and detailed spatial information (both at local and
with geometric, physical and motion-based dynamic models de-g|opal scales) [10, 23]. Additionally, the heuristic “dictionary”
scribing thefacial structure Our method produces a reliable o facial actions originally developed for FACS-based coding of
parametric representation of the face's independent muscle ac-gmotion, after initial experimentation, has proven quite difficult
tion groups, as well as an accurate estimate of facial motion. 5 agapt for machine recognition of facial expression.

Previous efforts at analysis of facial expression have been
based on the Facial Action Coding System (FACS), a represen- . . . . .

tify facial movements using computer vision technigues. Conse-

ion devel in order llow human hologi ) . .
tation developed in order to allow human psychologists to code guently, the goal this paper is to provide a method for extract-

expression from static pictures. To avoid use of this heuristic cod- . : .
ing scheme, we have used our computer vision system to proba't-ng an extended FACS model (FAGS, by coupling optical flow

= : . . . ...~ techniques with a dynamic model of motion, may it be physics-
bilistically characterize facial motion and muscle activation in . ; .
) : s based model of both skin and muscle, geometric representation
an experimental population, thus deriving a new, more accurate

representation of human facial expressions that we call FACS of aface or a motion specific model.

Finally, we show how this method can be used for coding, anal- We Wwill show that our method is capable of detailed, repeat-
ysiS, interpretation, and recognition of facial expressions_ able facial motion estimation in both time and space, with suffi-
cient accuracy to measure previousigguantified muscle coar-
ticulations, and relates facial motions to facial expressions. We
will further demonstrate that the parameters extracted using this
method provide improved accuracy for analysis, interpretation,
coding and recognition of facial expression.

To improve this situation we would like tobjectivelyquan-

Keywords: Facial Expression Analysis, Expression Recogni-
tion, Face Processing, Emotion Recognition, Facial Analysis,
Motion Analysis, Perception of Action, Vision-based HCI.

1. Introduction 1.1 Background

Faces are much more than keys to individual tdgnthey
play a major role in communication and interaction that makes Representations of Facial Motion: Ekman and Friesen [9]
machine understanding, perception and modeling of human ex-have produced a system for describing “all visually distinguish-
pression an important problem in computer vision. There is a able facial movements”, called thcial Action Coding System
significant amount research on facial expressions in computer vi-or FACS It is based on the enumeration of all “action units”
sion and computer graphics (see [10, 23] for review). Perhaps(AUs) of a face that cause facial movements. There are 46
the most fundamental problem in this area is how to categorize AUs in FACS that account for changes in facial expression. The
active and spontaneous facial expressions to extract informatiorcombination of these action units result in a large set of possible
about the underlying emotional states? [6]. Althougha large bodyfacial expressions. For example smile expression is considered
of work dealing with human perception of facial motions exists, to be a combination of “pulling lip cornersA{(/ 12+13) and/or
there have been few attempt to develop objective methods formouth opening AU 25+27) with upper lip raiser{U 10) and bit
quantifying facial movements. of furrow deepening4/11).” However this is only one type of a

Perhaps the most important work in this area is that of Ekman smile; there are many variations of the above motions, each hav-
and Friesen [9], who have produced the most widely used systenming a different intensity of actuation. Despite its limitations this
for describing visually distinguishable facial movements. This method is the most widely used method for measuring human
system, called thEacial Action Coding Systeor FACS is based facial motion for both human and machine perception.



Tracking facial motion: There have been several attempts to pressions, something that is completely missing from FACS, is a
track facial expressions over time. Mase and Pentland [20] werecritical parameter in recognizing emotions. This issue was also
perhaps the first to track action units using optical flow. Although addressed in the NSF workshops and reports on facial expres-
their method was simple, without a physical model and formu- sions [10, 23]. To us this strongly suggests moving away from
lated statically rather than within a dynamic optimal estimation a static, “dissect-every-change” analysis of expression (which is
framework, the results were sufficiently good to show the useful- how the FACS model was developed), towards a whole-face anal-
ness of optical flow for observing facial motion. ysis of facial dynamics in motion sequences.

Terzopoulos and Waters [29] developed a much more sophisti-
cated mgthod that tracked linear faC|.aI fea'Fures tq estimate ol vjisual Coding of Facial Motion
responding parameters of a three dimensional wire-frame face
model, allowing them to reproduce facial expressions. A signifi-
cant limitation of this system is that it requires that facial features 2.1  Vision-based Sensing: Visual Motion
be highlighted with make-up for successful tracking.

Haibo Li, Pertti Roivainen and Robert Forchheimer [18] de-  \we use optical flow processing as the basis for perception
scribe an approach in which a control feedback loop betweenand measurement of facial motion. We have found that Simon-
what is being visualized and what is being analyzed is used forcelli's [28] method for optical flow computation, which uses
a facial image coding system. Their work is the most similar to g multi-scale, coarse-to-fine, Kalman filtering-based algorithm,
ours, but both our goals and implementation are different. The provides good motion estimates and error-covariance informa-
main limitation of their work is lack of detail in motion estima-  tjon. Using this method we compute the estimated mean velocity
tion as only large, predefined areas were observed, and only aﬁin@/ectorvi(t), which is the estimated flow from timeto ¢ + 1.
motion computed within each area. These limits may be an ac-\we also store the flow covariancas, between different frames
ceptable loss of quality for image coding applications. However, for determining confidence measures and for error corrections in

for our purposes this limitation is severe; it means we cannot ob-gpservations for the dynamic model (see Section 2.3 and Figure 3
serve the “true” patterns of dynamic model changes, (muscle [observation loop (a)]).

actuations) because the method assumes the FACS model as the
underlying representation. We are also interested in developing . .

representation that is not dependent on FACS and is suitable nc??'z Facial Modeling

just for tracking, but recognition and analysis.

A priori information about facial structure is required for our
framework. We use a face model which is an elaboration of
H:e facial mesh developed by Platt and Badler [27]. We extend

is into a topologically invariant physics-based model by adding
anatomically-based muscles to it [11].

Recognition of Facial Motion: Recognition of facial expres-

sions can be achieved by categorizing a set of such predetermine
facial motions as in FACS, rather than determining the motion
of each facial point independently. This is the approach taken
by several researchers [19, 20, 33, 4] for their recognition sys-
tems. Yacoob and Davis, who extend the work of Mase, detect

thicknesst

motion (only in eight directions) in six predefined and hand ini- Element,

tialized rectangular regions on a face and then use simplifications K

of the FACS rules for the six universal expressions for recog-

nition. The motion in these rectangular regions, from the last Centrojd i j

several frames, is correlated to the FACS rules for recognition.
Black and Yacoob extend this method, using local parameterized
models of image motion to deal with large-scale head motions.
These methods show about 9@curacy at remgnizing expres-
sions in a database of 105 expressions [4, 33]. Mase [19] on a
smaller set of data (30 test cases) obtained an accuracy of 80%.

In many ways these are impressive results, considering the com-  Figure 1. Using the geometric mesh to determine the con-

plexity of the FACS model and the difficulty in measuring facial  tinuum mechanics parameters of the skin using Finite Ele-
motion within small windowed regions of the face. ment Methods.

In our view perhaps the principle difficulty these researchers
have encountered is the sheer complexity of describing human fa-
cial movement using FACS. Using the FACS representation, there In order to conduct analysis of facial expressions and to de-
are a very large number ofU's, which combine in extremely fine a new suitable set of control parameters (FAGSIsing
complex ways to give rise to expressions. Moreover, there is nowvision-based observations, we require a model with time depen-
a growing body of psychological research that argues that it is dentstatesand state evolutiorrelationships. FACS and the re-
the dynamics of the expression, rather than detailed spatial dedated AU descriptions are purely static and passive, and therefore
formations, that is important in expression recognition. Several the association of a FACS descriptor with a dynamic muscle is
researchers [1, 2, 6, 7, 8, 17] have claimed that the timing of ex-inherently inconsistent.
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By modeling the elastic nature of facial skin and the anatom-
ical nature of facial muscles we develop a dynamic muscle-
based model of the face, including FACS-like control param-
eters (see [11, 32] for implementation details). A physically-
based dynamic model of a face may be constructed by use of
Finite Element methods. These methods give our facial model
an anatomically-basedacial structure by modeling facial tis- (@) Original Image (bjwith Eyes, Lips () Face Model
sue/skin, and muscle actuators, with a geometric model to de- ;
scribe force-based deformations and control parameters [3, 15,
21].

By defining each of the triangles on the pgbnal mesh as an
isoparametric triangular shell elemenfshown in Figure 1), we
can calculate the mass, stiffness and damping matrices for each
element (usinglV = t.,dA), wheret,,; is thickness, given the el by Pois Enracied
material properties of skin (acquired from [26, 30]). Then by the
assemblage process of the direct stiffness method [3, 15] the re-
quired matrices for the whole mesh can be determined. As the
integration to compute the matrices is done prior to the assem-
blage of matrices, each element may have different thickingss
although large differences in thickness of neighboring elements
are not suitable for convergence [3]. Images to face model

The next step in formulating this dynamic model of the face is
the combination of the skin model with a dynamic muscle model. . . . X

. S i . _putations provides us with an estimated flow vectar, Now
This requires information about the attachment points of the mus using the a mapping functiont, we would like to compute ve-

cles to the face, or in our geometric case the attachment to thgocities for the vertices of the face mode}. Then, using the
vertices of the geometric surface/mesh. The work of Pieper [26] physically-based modeling technigues and the re]evant geomet-
gnd Waters [32] provides us with the required detailed informa- ric and physical models, described earlier, we can calculate the
tion about muscles and muscle attachments. forces that caused the motion. Since we are mapping global in-
formation from an image (over the whole image) to a geometric
model, we have to concern ourselves with translations (vector
7), and rotations (matrifR). The Galerkin polynomial interpo-
lation functionH and the strain-displacement functi#h) used
Initialization of Model on an image to define the mass, stiffness and damping matrices on the basis of
the finite element method are applied to describe the deformable

In developing a representation of facial motion and then using it Pehavior of the model [15, 25, 3].

to compare to new data we need to locate a face and the facial We would like to use only a frontal view to determine facial
features in the image followed by a registration of these featuresmotion and model expressions, and this is only possible if we
for all faces in the database. ifiimlly we started our estimation ~ are prepared to estimate the velocities and motions in the third
process by manually translating, rotating and deforming our 3-D axis (going into the image, theaxis). To accomplish this, we
facial model to fit a face in an image. To automate this process wedefine a function that does a spherical mappi#ig,, v), where

are now using the View-based and Modular Eigenspace method&reu andv are the spherical coordinates. The spherical function
of Pentland and Moghaddam [22, 24]. is computed by use of a prototype 3-D model of a face with a
spherical parameterization; this canonical face model is then used
to wrap the image onto the shape. In this manner, we determine

Figure 2. Initialization on a face image using Modular
Eigenfeatures method with a canonical model cdeef

Simoncelli's [28] coarse-to-fine algorithm for optical flow com-

2.3 Dynamic Modeling and Estimation

Using this method we can automatically extract the positions
of the eyes, nose and lips in an image as shown in Figure 2(b). ; .
These feature positions are used to warp the face image to matctt'nhe mapping equation:
the canonical face mesh (Figure 2(c) and (d)). This allows us

to extract the additional “canonical feature points” on the im- vy(z,y,2) i HMS(;EQ’ 3(/%,23;’2(9§’f |7§; v) Q)
age that correspond to the fixed (non-rigid) nodes on our mesh = iy ’
(Figure 2(f)). After the initial registering of the model to the im- For the rest of the paper, unless otherwise specified, whenever

age the coarse-to-fine flow computation methods presented by Siwe talk about velocities we will assume that the above mapping
moncelli [28] and Wang [31] are used to compute the flow. The has already been applied.

model on the face image tracks the motion of the head and the

facg correctly as long as there is not an excegsiye gmpunt of riginstimation and Control

motion of the face during an expression. This limitation can be

addressed by using methods that attempt to track and stabilizédriving a physical system with the inputs from noisy motion es-
head movement®(g., [12, 4]). timates can result in divergence or a chaotic physical response.
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Figure 3. Block diagram of the control-theoretic approach.
Showing the estimation and correction loop (a), the dynam-
ics loop (b), and the feedback loop (c).

This is why an estimation and control framework needs to be in-

corporated to obtain stable and well-proportioned results. Simi-

lar considerations motivated the control framework used in [18].
Figure 3 shows the whole framework of estimation and control
of our active facial expression modeling system. The next few
sections discuss these formulations.

The continuous time Kalman filter (CTKF) allows us to esti-
mate the uncorrupted state vector, and produceptimal least-
squares estimatender quite general conditions [5, 16]. The
Kalman filter is particularly well-suited to this application be-

Control, Measurement and Correction of Dynamic Motion

Now using a control theory approach we will obtain the muscle
actuations. These actuations are derived from the observed image
velocities. The control input vectdd is therefore provided by

the control feedback lawlU = —GX, whereg is thecontrol
feedback gain matrixWe assume the instance of control under
study falls into the category of aptimal regulator(as we need
some optimality criteria for an optimal solution [16]). Hence, the
optimal control lawU* is given by:

U* = -R'BTP.X* (5)
where X* is the optimal state trajectory arlé. is given by
solving yet anothematrix Riccati equatio16]. Here Q is
a real, symmetric, positive semi-defingeate weightingnatrix
andR is a real, symmetric, positive definitentrol weighting
matrix. Comparing with the control feedback law we obtain
G = R™'B”P,. This control loop is also shown in the block
diagram in Figure 3 (upper loop (c)).

2.4 Motion Templates from the Facial Model

So far we have discussed how we can extract the muscle ac-
tuations of an observed expression. These methods have relied
on detailed geometric and/or physics-based description of facial
structure. However our control-theoretic approach can also be

cause it is a recursive estimation technique, and so does not inused to extract the “corrected” or “noise-free” 2-D motion field
troduce any delays into the system (keeping the system active)that is associated with each facial expression. In other words,

The CTKF for the above system is:

X:AX+BU+L(Y—CX), @
whereL, = A.CTA,, 71,

whereX is the linear least squares estimateXobased or¥'(r)

for r < t andA. the error covariance matrix f&. The Kalman

gain matrixL is obtained by solving the following Riccati equa-

tion to obtain the optimal error covariance matAix:

d

Ao = AA, + A AT+ GA,GT —A.CTA,, 'CA.. (3
P

dt
We solve forA. in Equation (3) assuming a steady-state system
(e, LA, =0).

The Kalman filter, Equation (2), mimics the noise free dynam-
ics and corrects its estimate with a term proportional to the dif-
ference(Y — CX), which is the innovations process. This cor-

as much as the dynamics of motion is implicit into our analysis,

it does not explicitly require a geometric and/or physical model
of the structure. The detailed models are there so that we can
back-projectthe facial motion onto these models and use these
models to extract a representation in the state-space of these mod-
els. We could just use the motion and velocity measurements for
analysis, interpretation and recognition without using the geo-
metric/physical models. This is possible by using 2-D motion
energy templates that encode just the motion. This encoded mo-
tion in 2-D is then used as representation for facial action.

The system shown in Figure 3 employs optimal estimation,
within an optimal control and feedback framework. It maps 2-
D motion observations from images onto a dynamic model, and
then the estimates of corrected 2-D motions (based on the opti-
mal dynamic model) are used to correct the observations model.
Figure 9 and Figure 10 show the corrected flow for the expres-
sions of raise eyebrow and smile, and also show the corrected

rection is between the observation and our best prediction based/oW after it has been applied to a dynamic face model. Further
on previous data. Figure 3 shows the estimation loop (the bottomCOrTections are possible by using deformations of the facial skin
loop) which is used to correct the dynamics based on the error(i-€., the physps-based mpdel) as constraints in state-space that
predictions. only measures image motion.

The optical flow computation method has already established a  BY using this methodology without the detailed 3-D geometric
probability distribution . (¢)) with respect to the observations. and physical models aniack-projectinghe facial motion esti-
We can simply use this distribution in our dynamic observations Mates into the image we can remove the complexity of physics-
relationships. Hence we obtain: based modeling from our representation of facial motion. Then
learning the “ideal” 2-D motion viewse(g., motion energy) for
each expression we can characterize spatio-temporal templates
for those expressions. Figure 4 (e) and (f) shows examples of

An(t) = M(z,y,2)Av (1), and Y (t) = M(z,y, 2)V;(t).

(4)
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Figure 4. Determining of expressions from video se- (top) show deformation over time for FACS actiofs' 2,
quences. (a) and (b) show expressions of smile and sur- and (bottom) for an actual video sequence of raising eye-
prise, (c) and (d) show a 3-D model with surprise and smile brows.
expressions, and (e) and (f) show the spatio-temporal mo-
tion energy representation of facial motion for these expres-
sions. use simple linear ramps to approximate the actuation pro-
file. Coarticulation effects are not accounted for in any facial

movement.

this representation of facial motion energy. It is this representa-
tion of facial motion that we use for generating spatio-temporal
“templates” for coding, interpretation and recognition of facial
expressions.

Other limitations of FACS include the inability to describe fine
eye and lip motions, and the inability to describe the coarticu-
lation effects found most commonly in epch. Alhough the
muscle-based models used in computer graphics have alleviated
some of these problems [32], they are still too simpladtou-

3. Analysis and Representations rately describe real facial motion. Our method lets us character-
ize the functional form of the actuation profile, and lets us deter-

The goal of this work is to develop a new representation of Mine a basis set of “action units” that better describes the spatial

facial action that more accurately captures the characteristics ofProperties of real facial motion.
facial motion, so that we can employ them in recognition, coding ~ Evaluation is an important part of our work as we do need to
and interpretation of facial motion. The current state-of-the-art €XPeriment extensively on real data to measure the validity of our

for facial descriptions (either FACS itself or muscle-control ver- NeW representation. For this purpose we have developed a video
sions of FACS) have two major weaknesses: database of people making expressions;the results presented here

are based on 52 video sequences of 8 users making 6 different
e The action units are purely local spatial patterns. Real facial €xpressions. These expressions were all acquired at 30 frames
motion is almost never completely localized; Ekman himself Per second at full NTSC video resolution.
has described some of these action units as an “unnatural” Currently these subjects are video-taped while making an ex-
type of facial movement. Detecting a unique set of action Pression on demand. These “on demand” expressions have the
units for a Specific facial expression is not guaranteed_ limitation that the Subjectsl emotion generally does not relate to
his/her expression. However we are for the moment more in-
e There is no time component of the description, or only a terested in measuring facial motion and not human emotion. In
heuristic one. From EMG studies it is known that most fa- the next few paragraphs, we will illustrate the resolution of our
cial actions occur in three distinct phasegplication re- representation using the smile and eyebrow raising expressions.
leaseandrelaxation In contrast, current systems typically Questions of repeatability aratcuracy will also be briefly ad-
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3.1 Spatial Patterning

To illustrate that our new parameters for facial expressions are
more spatially detailed than FACS, comparisons of the expres-
sions ofraising eyebrowandsmileproduced by standard FACS-
like muscle activations and our visually extracted muscle activa-
tions are shown in Figure 5 and Figure 6.

3.2 Temporal Patterning

i — i} Another important observation about facial motion that is ap-
The top row of Figure 5 show$U 2 (“Raising Eyebrow”) from parentin Figure 5 and Figure 6 is that the facial motion s far from

the FACS model and the linear actuation profile of the corre- jinear in time. This observation becomes much more important

sponding geometric control points. This is the type of spatio- \ynen facial motion is studied with reference to muscles, which is

temporal patterning commonly used in computer graphics ani-jn fact theeffectorof facial motion and the underlying parameter
mation. The bottom row of Figure 5 shows the observed motion ¢, differentiating facial movements using FACS.

of these control points for the expressionraising eyebrowby

Paul Ekman. This plot was achieved by mapping the motion onto .o+ of FACS expressions can only be represented by a muscle
the FACS model and the actuations of the control points mea-

_actuation that has a step-function profile. Figure 7 and Figure 8

sured. As can be seen, the observed pattern of deformation igy,q, iots of facial muscle actuations for the observed smile and
very different than that assumed in the standard implementation

. . o X h eyebrow raising expressions. For the purpose of illustration, in
of FACS. There IS a wide distribution of mot!on Fh“’“gh all the this figure the 36 face muscles were combined into seven local
control points, not just around the largest activation points.

groups on the basis of their proximity tmch other and to the
Similar plots for smile expression are shown in Figure 6. These regions they effected. As can be seen, even the simplest expres-

observed distributed patterns of motion provide a detailed repre-sions require multiple muscle actuations.

sentation of facial motion that we will show is sufficient for ac- Of particular interest is the temporal patterning of the muscle

curate characterization of facial expressions. actuations. We have fit exponential curves to the activation and

The top rows of Figure 5 and Figure 6, that show the develop-



release portions of the muscle actuation profile to suggest the type
of rise and decay seen in EMG studies of muscles. From this data
we suggest that the relaxation phase of muscle actuation is mostly
due to passive stretching of the muscles by residual stress in the
skin.

Note that Figure 8 for the smile expression also shows a sec-
ond, delayed actuation of muscle group 7, about 3 frames after
the peak of muscle group 1. Muscle group 7 includes all the
muscles around the eyes and as can be seen in Figure 7 is the
primary muscle group for the raising eye brow expression. This SEDPNNOEREAREE
example illustrates that coarticulation effects can be observed by S
our system, and that they occur even in quite simple expressions. S
By using these observed temporal patterns of muscle activation,
rather than simple linear ramps, or heuristic approaches of the
representing temporal changes, we can more accurately charac-
terize facial expressions. Figure 9. Left figure shows a motion field for the expres-

sion of raise eye brow expression from optical flow com-
3.3 Characterization of Facial Expressions putation and the right figures shows the motion field af-
ter it has been mapped to a dynamic face model using the
control-theoretic approach of Figure 3.

One of the main advantages of the methods presented here is
the ability to use real imagery to define representations for differ-
ent expressions. As we discussed in the last section, we do not
want to rely on pre-existing models of facial expression as they
are generally not well suited to our interests and needs. We would
rather observe subjects making expressions and use the measured
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Our initial experimentation on automatic characterization of fh ',';u & r':;:
facial expression is based on 52 image sequences of 8 people %\ 11,:%-.’ JJ*"’{&E-T.’{'
making expressions similg surprise anger, disgustraise brow LI ;\ | bty | [
andsad Some of our subjects had problems making the expres- iy = -
!

sion of sad, therefore we have decided to exclude that expres-
sion from our study. Complete detail of our work on expres-
sion recognition using the representations discussed here appears
elsewhere [14]. Using two different methods; one based on our
detailed physical model and the other on our 2-D spatio-temporal
motion energy templates, both showed recogniéiccuracy rates

of 98%.

Figure 10. Left figure shows a motion field for the ex-
pression of smile expression from optical flow computa-
tion and the right figures shows the motion field after it has
been mapped to a dynamic face model using the control-
theoretic approach of Figure 3.

4. Discussion and Conclusions

We have developed a mathematical formulation and imple- , . . ) .
mented a computer vision system capable of detailed analysis O{esentgtlon of famal pattgrnmg, a representation useful for static
facial expressions within an active and dynamic framework. The 2nalysis of facial expression.
purpose of this system to to analyze real facial motionin orderto We have used this representation in real-time tracking and syn-
derive an improved model (FAGS of the spatial and temporal  thesis of facial expressions [13] and have experimented with ex-
patterns exhibited by the human face. pression recognition. Currently our expression recogngicgu-

This system analyzes facial expressions by observing expresracy is 98% on a database of 52 sequences. using either our mus-
sive articulations of a subject's face in video sequences. The vi-cle models or 2-D motion energy models for classification [14].
sual observation (sensing) is achieved by usinggtimal opti- We are working on expanding our database to cover many
cal flowmethod. This motion is then coupled to a physical model other expressions and also expressions with speech. Categoriza-
describing the skin and muscle structure, and the muscle controtion of human emotion on the basis of facial expression is an im-
variables estimated. portant topic of research in psychology and we believe that our

By observing the control parameters over a wide range of facial methods can be useful in this area. We are at present in collab-
motions, we can then extract a minimal parametric representationorating with several psychologists on this problem and procur-
of facial control. We can also extract a minimal parametric rep- ing funding to undertake controlled experiments in the area with



more emphasis on evaluation and validity.
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