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ABSTRACT

A multiscale post processing algorithm based on con-
strained optimization with the Huber Markov random
field (HMRF) model is investigated in this research.
The decoded image is enhanced from coarse to fine
scales, where postprocessing at the coarse scale im-
proves the global appearance of the image and reduces
long range artifacts such as ringing while postprocess-
ing at the fine scale keeps the sharpness of edges. The
efficiency of the proposed algorithm is supported by
experimental results.
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1. INTRODUCTION

In image/video compression, as the coding rate be-
comes low, the quality of the coded image degrades
and unpleasant artifacts appear. In block-based cod-
ing schemes, the most noticeable artifact is the block-
ing artifact appearing as discontinuities along block
boundaries. For wavelet/subband coding, it is the

ringing artifact appearing as ripples around sharp edges.

The objective of postprocessing is to improve the sub-
jective appearance of the decoded image after the im-
age is decoded.

One early work in postprocessing was reported by
Rosenholtz and Zakhor in [1]. They proposed a method
of iterative projection onto convex sets (POCS) to re-
duce blocking artifacts in DCT compressed images. In
addition to the transmitted coding bit stream, the a
priori image model has to be incorporated in POCS to
improve the subjective quality of the decoded image.
Reeves and Eddins [2] proved that POCS provided
the solution to a constrained minimization problem,
where a decoded image was processed iteratively be-
tween two operations, i.e. a projection operation spec-
ified by the quantization constraint and a smoothing
operation. Instead of adopting the heuristic constraint
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in [2], [1], Rourke and Stevenson [3] considered a sta-
tistical Huber-Markov random field (HMRF) model.
Their algorithm effectively removes the blocking ar-
tifact in the DCT transformed image while retaining
sharpness around boundaries. However, it is still not
effective in removing the ringing artifact. The diffi-
culty lies in the fact that the ringing artifact spreads
over a wide range. The first order HMRF model adopted
in [3] does not model such an artifact well. One pos-
sible improvement is to adopt a higher order HMRF
model. However, since the complexity of postprocess-
ing grows exponentially with the order of HMRF, the
adoption of high order HMRF is computationally ex-
pensive.

In this research, we propose a multiscale postpro-
cessing algorithm, in which the decoded image is en-
hanced from coarse to fine scales. Postprocessing at
the coarse scale improves the global appearance of the
image and reduces long range artifacts such as ringing
while postprocessing at the fine scale keeps the sharp-
ness of edges. The same first order HMRF model is
used to characterize the long range correlation in the
coarse scale and the short range correlation in the fine
scale. Our another contribution is the adaptive ad-
justment of the continuity factor so that the intensity
of smoothing is reduced in areas where the projection
operation cancels the effect of smoothing.

This work is organized as follows. The theoretical
foundation of constrained optimization-based postpro-
cessing is reviewed in Section 2. The implementation
details of multiscale postprocessing are described in
Section 3. Experimental results are given in Section
4.

2. POSTPROCESSING BASED ON
CONSTRAINED OPTIMIZATION

For simplicity, the effect of entropy coding is removed
in the following discussion. That is, for quantized data
coded with an entropy coder, we assume that they are



decoded with the corresponding entropy decoder al-
ready. Let the coded bit stream, the decoded image
in the transform domain, and the width of the quan-
tization bins be denoted by y, m and q, respectively.
Also, let Q and Q™! denote the quantizer and the de-
quantizer, H and H~! be the forward and backward
transforms. The direct decoding can be written as:

m = Q '[y]. (1)

Let Z be the set of images which generates the com-
pressed bitstream y. For most decoding algorithms,
the dequantized value is chosen to be at the center of
the quantization bin. Thus, it can be easily derived
that

Z = {z:QHl[z]=y}
= {Z :I Hz(z)y) _m(xay) I< q(a:,y)}.

(2)

Since the receipt of bitstream y indicates that the orig-
inal image is an element of Z, we call Z the coding
constraint. The postprocessing technique can be for-
mulated as a constrained optimization problem:

z = argmin{U(z)},

min with U(z) =

—log Pr(z). (3)
In words, under the constraint Z, we maximize the a
priori probability of image z associated with a qual-
ity measure U(z). The smaller the value U(z), the
smoother the image with a potentially better subjec-
tive quality. The model in use for U(z) is the Huber
Markov random field (HMRF) [4], which has been suc-
cessfully to model both smooth regions and disconti-
nuities in an image. Since the probability distribution
function of the Markov random field can be explicitly
written as the Gibbs function, one can derive the a
priori probability of image z as

Pr(z) = %exp {— Z Vc(z)} . (4)
ceC
Comparing (3) and (4), we have
U(z) = Z Ve(z), (5)

ceC

where ¢ is a pair of two neighboring pixels, C is the
set of all such pixel pairs, and V,(-) is a local potential
function of the form

Ve(z) = p(dlz, Te) = p(z1 — 29, T¢), x1,72 €c¢, (6)
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and where d. is the differential operator and T, is
the continuity factor of the pixel pair. Since p(:) is
known as the Huber minimax function, this statisti-
cal model is called the Huber-Markov random field
(HMRF) model.

3. MULTISCALE POSTPROCESSING
ALGORITHM

In this section, we describe a multiscale postprocessing
algorithm to solve the above constrained optimization
problem. The algorithm has been successfully used to
remove the ringing artifact in wavelet coded images
and the blocking and ringing artifacts in DCT coded
images. Due to the space limit, we will focus on the
application of this algorithm to wavelet coded images
below.

Step 1: Dequantization

The coded bitstream is dequantized, and the output
data include the dequantized wavelet coeflicient m and
the quantization bin width q.

Step 2: Multiscale postprocessing

The algorithm is a top-down process, which pro-
ceeds from the coarsest scale s = d to the finest scale
s = 1. At each scale, it solves the constrained opti-
mization

Zs = argzn%ig U(zs).
s s

(8)
The initial value z§°) at scale s is derived from the
final result obtained at scale s + 1. That is,

0 = {

The continuity factor T, is initialized at a value of 16
for all pixel pairs.

for scale s+1 and above,
for scale s.

Zs+1,
mg,

9)

Step 3: Smoothing with the steepest descent search

Given the postprocessing result zgk) at the kth it-
eration, we use the steepest descent algorithm to find
the estimate z**?) at the (k + 1)th iteration. The

gradient is calculated as

’ k
g® = vUE®) = 3 o, T,
c€Cs

(10)

where p'(-) is the first derivatives of the Huber func-
tion. Thus, the image is updated according to

Wi = 2 aPglh), )
where agk) is the stepsize calculated via
t
# - _VU VU
% vUt- AU - U (12)
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Step 4: Projection

Since the updated image may fall outside of the
coding constraint set Z;, ng) should be projected
back to Z, via

7+ = Pz, (ng)) . (13)

Step 5: Adjustment of continuity factor T,

Before the next smoothing operation, we adjust the
continuity factor T, adaptively. For each pair of pixels
x1,Zg € ¢, we check the difference in their pixel values
before the steepest descent smoothing 2t — z4', after
the steepest descent smoothing zf — zP, and after
the projection ¢ — z§. The continuity factor T, is
reduced by half if both of the following conditions are
satisfied:

l2f =2 | > 07|af —2f| (14)
and |28 —2§ | > 0.7|zF —2B), (15)
The rationale of the above rule is that if the edge over
the pixel pair ¢ is at first smoothed by the steepest
descent algorithm (14) and then pulled back by the
projection operation (15), we conclude that continuity
factor T, is too strong and should be reduced.

Step 6: Iterative postprocessing

We iterate Steps 3-5 until the decrease in the image
quality measure U(z,) is smaller than a certain thresh-
old. Then, we proceed to the the next finer scale and
repeat Steps 2-5. The postprocessing is terminated
until we obtain the optimal decoded image Z which
minimizes the image quality measure U(z) at scale 1.

4. EXPERIMENTAL RESULTS

We tested the proposed postprocessing algorithm on
the Lena image of size 512 x 512 with both wavelet
and DCT coders. Results are shown in Fig. 1. For
clarity, only the central region of size 256 x 256 is
shown. The wavelet coder used was a modified lay-
ered zero coder (LZC) [5]. The DCT coder was the
standard baseline JPEG coder developed by the in-
dependent JPEG group. The original image and the
wavelet coded image are shown in Fig. 1 (a) and (b),
respectively. At such a low bit rate, the decoded im-
age suffers from severe ringing artifacts around the
hat, eye, and cheek of Lena. We applied a single scale
HMRF based postprocessing algorithm proposed by
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Rourke [3] and the result is given in Fig. 1(c). Al-
though the image looks better than the directly de-
coded result, there are still long range ringing artifacts
appearing as large shadows and lights. For example,
the ringing in the hat, eye and cheek areas of Lena is
still not completely removed. This is due to the fact
that the single-scale HMRF can only model the short
range distortion. It fails to catch the long range ring-
ing artifact caused by the tail of the wavelet filters and
the truncation of wavelet coefficients at coarse scales.
The result of multiscale postprocessing is shown in
Fig. 1(d). The subjective appearance of the image is
much better with almost all ringing artifact removed
while the sharp edges at the hat, cheek and eyes are
retained. The JPEG coded Lena and its postprocess-
ing result are also shown in Fig. 1(e) and Fig. 1(f),
respectively. We see that the proposed technique also
effectively removes the blocking and ringing artifacts
in the DCT coded image.
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Figure 1: Experimental results of the Lena image: (a) the Original (shown center region of size 256 x 256), (b)
LZC coded Lena at 0.125bpp, (c) LZC with single scale postprocessing, (d) LZC with multiscale postprocessing,
(e) JPEG coded Lena at 0.307bpp, (f) JPEG with multiscale postprocessing.
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