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stract 

A differential encoder is developed that preserves the phase trellis of continuous 

phase frequency shift keying (CPFSK) through differential demodulation. This differential 

encoder interfaces well with the decomposed model of CPFSK, creating a decomposed 

model of differentially-encoded and differentially-demodulated CPFSK (DCPFSK). The 

normalised minimum squared Euclidean distance d~in of uncoded DCPFSK is calculated. 

A code search model is developed, allowing codes over rings to be specifically designed for 

DCPFSK. The results of code searches show that there is very little loss in d~in when 

comparing coded DCPFSK systems with coherently-demodulated coded CPFSK systems. 

The performance of uncoded and coded DCPFSK systems in both additive white Gaussian 

noise (AWGN) and Rayleigh flat fading is analysed and simulated. DCPFSK is shown to 

be relatively robust to medium to slowly-varying fading, without the use of any additional 

techniques. 

Rate-1/2 encoded quaternary DCPFSK with modulation index h = 1/4 is com

pared with coherently-demodulated uncoded MSK and differentially-encoded and different

ially-demodulated minimum shift keying (DMSK) without error-control coding, in AWGN 

and Rayleigh flat fading. The coded system shows that significant performance improve

ment can be obtained through simple coding, particularly in Rayleigh flat fading. 
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Chapter 1 

Introduction 

1.1 Introduction 

Telecommunications-and particularly digital communications-are a very important part 

of today's society. People like being able to communicate across long distances. This 

communication can be the most common of human communications-that of voice-or 

it can be the more recent and rapidly-growing field of computer data. No matter how 

advanced communication systems become, high-end users want to be able to communicate 

faster and more cheaply. At the same time, there are many parts of the world that do not 

have even the most basic communication systems. This means that there is an enormous 

range of communication needs and desires in the world, and that there is scope for the 

development of many different communication systems and products. 

It is perhaps at the lower end of the spectrum that the research in this thesis is 

placed. We seek to further the development and analysis of a simple wireless communica

tion scheme that will provide a low-cost, low-to-medium capacity digital service. 

1.2 Background 

Our communication scheme is called differentially-encoded and differentially-demodulated 

continuous phase frequency shift keying (DCPFSK). DCPFSK is based on continuous 

phase frequency shift keying (CPFSK) which is a simple continuous phase modulation 

(CPM) scheme. The main advantage of CPM schemes is the fact that they are constant

envelope modulations. This permits the amplifiers in CPM schemes to run in their non

linear but power-efficient regions. There are many different and complex CPM schemes, 

of which CPFSK is one of the simplest. In turn, the simplest CPFSK scheme is known 
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as minimum shift keying (MSK) and is very widely used, a particular example being the 

Global System for Mobile Communications (known as GSM) that uses Gaussian minimum 

shift keying (GMSK). 

The state of the art of CPFSK systems up to 1986 is very well presented in [AAS86]. 

From then on the most important development was that of Rimoldi in [Rim88], who showed 

that the important class of CPFSK schemes with modulation index h = K! P where K 

and P are relatively prime positive integers, could be represented by a decomposed model 

[Rim88] consisting of a continuous phase encoder (CPE) and a memory less modulator 

(MM). This model provides insight into CPFSK, and allows its inherent coding and mod

ulation to be studied individually. Rimoldi showed how this model could be used to design 

codes specifically for CPFSK in [Rim89J. Yang and Taylor went further and developed 

codes over rings for CPFSK using the decomposed model in [YT94]. found codes 

that performed better than previous techniques developed without the model. Rimoldi 

and Li found similar results in [RL95]. 

coded CPFSK schemes use coherent demodulation which requires an accurate 

carrier reference. Acquiring the carrier in more extreme channels can be difficult and! or 

very computationally intensive. Differential demodulation uses the previous symbol to de

modulate the current signal, thereby avoiding the need for a carrier reference at the receiver 

at the expense of incurring a performance penalty. Differential decoding also modifies the 

transmitted data. To avoid this, a differential encoder can be used. A standard differential 

encoder-such as that used in differential phase shift keying (DPSK)-does not work with 

CPFSK as it removes CPFSK's inherent coding and suffers a further performance loss. 

Differentially-demodulated CPFSK has been discussed in various papers [AS8!], [Mas90j, 

[yL90] and [SZ98] for example, but only binary CPFSK systems are considered, and no 

differential encoder is proposed. A differential encoder that preserves the inherent coding 

has been developed in [YT92], but it too only works with binary CPFSK schemes, and 

does not interface well with the decomposed model. 

We seek to design and analyse coding schemes for CPFSK that work well with 

differential demodulation in additive white Gaussian noise (AWGN) and Rayleigh fiat 

fading. 

1.3 Scope 

We consider only the AWGN and Rayleigh fiat fading channels. No intersymbol interfer

ence (lSI) other than that introduced by fading or filters at the front end of the receiver is 
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present in the channeL Additionally, we do not restrict the bandwidth of transmitted 

signal, as we wish to determine the optimum performance of our system. We do not con

sider synchronisation issues, although the only synchronisation that the DCPFSK receiver 

would require is that of symbol timing. Finally, we only consider the code structures used 

in [YT94] as they were shown to perform the best. 

1.4 Overview 

In Chapter 2 we present and discuss coherently-demodulated CPFSK and its decomposed 

model and other relevant background material. We then discuss differential demodulation 

and develop a differential encoder that interfaces very well with the decomposed model and 

enables CPFSK to be differentially demodulated without losing its structure in Chapter 3. 

Our DCPFSK receiver structure is based on minimising the squared Euclidean distance 

(SED) between the received signal and all the possibly-transmitted signals. To aid us 

in determining the receiver's error performance, we calculate the normalised incremental 

SED (NISED) and normalised minimum SED (NMSED) of DCPFSK We approximate 

the theoretical error performance of DCPFSK in additive white Gaussian noise (AWGN) 

and compare this to simulation results. 

Chapter 4 discusses the coding method and models used in [YT94] with the aid 

of some examples. We develop the 

searches for DCPFSK We show how 

models required to perform similar code 

codes interface with DCPFSK and how they 

can be implemented through examples. We present the results of code searches that show 

that very little NMSED is lost between a coded CPFSK and a coded DCPFSK scheme. 

We look at the performance of coded CPFSK and DCPFSK systems in AWGN in 

Chapter 5. We use some of the work in [YT94] to derive an expression for a union bound 

on the bit error probability of coded CPFSK and DCPFSK systems in AWGN. We then 

apply a limited-length, exhaustive search to find the significant terms in the union bound 

and compare the computed results to those generated in simulations. In almost all the 

cases the two sets of curves agree very well. 

In Chapter 6 we investigate the performance of DCPFSK in various Rayleigh fiat 

fading channels. A CPFSK receiver using coherent demodulation will not work at all in a 

fading channel without additional algorithms to recover the faded carrier. The DCPFSK 

receiver performs reasonably well in fading as the inherent operation of the differential 

modulator partially compensates for the fading. We first determine the form of the faded 

and differentially-demodulated received signal, and then develop the pairwise probability 
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of error of DCPFSK in fading using the Gaussian quadratic form and the residue theorem. 

Using the union bound techniques of Chapter 5, we calculate the error performance of 

coded and uncoded DCPFSK in fading and compare the computed curves with simulated 

results. Irreducible bit error rates are observed, as the effect of the deep nulls and rapid 

phase changes associated with Rayleigh flat fading cannot be totally removed. In compar

isons between comparable coded and uncoded systems, the coding is seen to significantly 

lower the irreducible error rates. 

The work in the thesis is summarised in Chapter 7. We also draw some conclusions 

and discuss future research options that have been opened up. 

1.5 Contributions 

The original contributions in this thesis are Chapters 3 and 6 and parts of Chapters 4 and 

5. Specifically they are: 

" Development of a differential encoder that preserves the phase trellis of CPFSK 

through differential demodulation and interfaces well with the decomposed model of 

CPFSK. 

" Analysis and discussion of differentially-encoded and differentially-demodulated con

tinuous phase frequency shift keying (DCPFSK) including the calculation of the 

normalised incremental squared Euclidean distance and the normalised minimum 

squared Euclidean distance and the development of an approximate performance 

measure. 

• Development of a code search model 

systems with h 1/ M). 

" New codes for M-DCPFSK systems. 

M-DCPFSK systems (M-ary DCPFSK 

III Calculation of the performance of selected coded M-DCPFSK systems in AWGN, 

including the finding of significant distance terms and error coefficients for selected 

coded 1l1-DCPFSK systems . 

• Analysis and calculation of the performance of selected M-DCPFSK systems (both 

coded and uncoded) in Rayleigh flat fading. 
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1,6 Publications 

The following papers have been written on the work in this thesis, and have been published, 

or are awaiting publication: 

;& A. Griffin and D. P. Taylor, "On differentially demodulated CPFSK," in Proc. 

IEEE International Conference on Communications, Dallas, TX, June 1996, vol. 1, 

pp. 354~358. 

@II A. Griffin and D. P. Taylor, "Coding CPFSK for differential demodulation," Ac

cepted for publication in IEEE Transactions on Communications. 
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Chapter 

ontinuous Phas 

Shift 
4& 

eyIng 

2.1 Introduction 

Continuous phase frequency shift keying (CPFSK) is a true constant-envelope modula-

tion, which makes it an attractive communication O,",~.L"UL" wireless communications. It 

is basically frequency shift keying (FSK) with the added restriction that the phase is con

tinuous between symbol intervals. This restriction decreases the bandwidth requirement. 

The phase-continuity introduces a definite trellis structure into CPFSK, which complicates 

analysis and understanding. A decomposed model of CPFSK was presented in [Rim88]' 

that allows CPFSK's inherent coding and modulation to be explored independently, and 

provides insight into this important communications scheme. 

We present a mathematical description of CPFSK in Section 2.2. This provides 

the necessary definitions to proceed. We then discuss the phase tree generated by CPFSK 

in Section 2.3 and develop the phase trellis of CPFSK in Section 2.4. This leads to the 

decomposed model of CPFSK which is described in Section 2.5. The optimum detection of 

CPFSK is discussed in Section 2.6, and a receiver that performs this optimal detection is 

presented in Section 2.7. The distance properties of CPFSK are presented in Section 2.8. 

From there the error performance of CPFSK is discussed in Section 2.9. In Section 2.10 

we present our simulation results and compare theln to computed curves, Finally, in 

Section 2.11 we present a brief summary of the chapter. 
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2.2 Continuous •• u,-"" Frequency Shift Keying 

A CPFSK signal can be described by [Rim88] 

s(t, U) 
(2E 

V T cos(27rht + 'Ij;(t, U) + !po), t ~ 0, (2.1) 

where is the symbol energy, T is the symbol period, !Po is the initial phase offset, and 

h the asymmetric carrier frequency, which is related to the symmetric carrier frequency 

fe by 

1) h 
2T' 

'Ij;(t, U) is called the tilted (information-carrying) phase, and is given by 

00 

'Ij;(t, U) 47rh ~ Unq(t - nT), t ~ 0. 

n=O 

This is assumed to be ° at t = 0. The M-ary data sequence U is given by 

U = (Uo, Ul,' .. ), Un E {OJ 1, ... ,(M - I)}. 

(2.2) 

(2.3) 

(2.4) 

We assume that the symbols Un are independent and equiprobable. The symbol energy E 

is related to the bit energy Eb by 

E = Eb' r . log2 M, (2.5) 

where r is the rate of any external error-control coding (ECC), that is, the average number 

of information bits per symbol period T. In the case of no ECC, r 1. 

The parameter h in (2.2) and (2.3) is called the modulation index. We consider 

here only rational modulation indices of the form 

K 
h= p' (2.6) 

where K and P are positive integers with no common factors. This ensures that the phase 

of the CPFSK signal has a structured form as we will see in Sections 2.3 and 2.4. The 

phase response q(t) for CPFSK is 

0, t S: ° 
q( t) t/2T, ° < t S: T (2.7) 

t> T. 

Figure 2.1 illustrates q(t). It is the fact that. q(t) is continuous and semi-infinite that 
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q(t) 

1 
-
2 

T t 

Figure 2.1: Phase response for CPFSK 

ensures that the phase is continuous in CPFSK. 

The two most important parameters in a CPFSK scheme are hand M, as they 

determine the scheme's information band-width and performance. As we will 

see later, an important class of CPFSK schemes results when h = 11M. An example 

is minimum shift keying (MSK) which is CPFSK with M = 2 and h = 1/2. We will 

refer to an M-ary CPFSK scheme with h 11M as M-CPFSK. Thus 4-CPFSK denotes 

quaternary CPFSK with h 1/4, and MSK could be referred to as 2-CPFSK. 

2,3 Phase Tree of 

If we take the phase of a CPFSK signal (described by (2.1)) and take out the contribution 

of the carrier frequency term 21Th t and the initial phase offset tpo, we are left with the 

tilted phase term 'l/J(t, U). Assuming that 'l/J(t, U) is zero at time t 0, we can show 

its development over time by hypothesising all the possible values the elements of U can 

take. This is called a phase tree. An example for MSK is shown in Figure 2.2(a). A more 

complicated phase tree is shown in Figure 2.2(b), that of 4-CPFSK. 

Looking closely at (2.3), we can see that 'l/J(t, U) is made up of various scaled and 

time-shifted versions of q(t). The superposition of these semi-infinite phase responses can 

be clearly seen in the phase trees. At each branch point, j\1 different phase trajectories 

emerge, corresponding to M different frequencies, and the M possible transmitted symbols. 

The phase tree also shows us tbat in each symbol period, the CPFSK signal also contains 

the "memory" of all the previous symbols, which is the branch point in the tree, or the 

starting phase of the symbol. Unfortunately, the phase tree expands with each symbol 

period and quickly becomes too complex to be useful. 
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'IjJ(t, U) 

311" 

211" 

0 
0 T 2T 3T 

(a) MSK (M = 2, h 1/2) 

'IjJ(t, U) 

911" 

2 

411" 

71f 

2 

311" 

511" 

2 

211" 

311" 
-
2 

11" 

11" 
-
2 

0 
0 T 2T 3T 

(b) 4-CPFSK (M 4, h = 1/4) 

2.2: Pha,.<Je tree examples for CPFSK 

10 



2.4 Thellis of 

A more useful form of signal phase information is the phase trellis. Let us define the 

modulo-x operator as Rx[eJ, which denotes the remainder after e is divided by x (the 

modulo operator is defined and discussed in Appendix A). Using the fact that the cosine 

function operates modulo-211" on its phase, and noting the property (A.2), we can write 

R27r [211" ht + R27r [~(t, U)] + !Po] 

R27r [211"ht + if;(t, U) + !po] . 

We call if;(t, U) the physical tilted phase, defined as 

(2.8) 

(2.9) 

Letting t = T + nT, and noting the properties (A.2) and (A.3), we can further develop 

if;(t, U) as 

if;(t,U) = if;(T + nT, U), O~T<T 

R:m[41l"h ':0 U,q(T + nT iT)] , O~T<T 

[ n-l ] 
R27r 211"h. Ui + 211"hUn ; , O~T<T 

~=o 

= R2n[R+1l"(~) ~ U,] + 21l"hU.;]. O~T<T 

R+1l" (~) Rp [~U'] + 21l"hU.;] , O~T<T 

R27r[211"h(Vn + Un;)] ) O~T< (2.10) 

The quantity Vn is called the accumulated symbol phase, and represents the con

tribution of all the previously transmitted symbols. It is defined as 

(2.11) 

vVe can see from (2.10) that the phase of a CPFSK signal has a very structured 

form and depends on two terms. The Un term is a frequency component that depends 

only on the current symbol, and the Vn term is a starting phase that depends on all the 

previous transmitted symbols and creates the trellis. It is this Vn term that ensures the 

phase is continuous in CPFSK. The number of possible starting phases at time nT is P, 

and the physical tilted phase is equal to 211"hVn at time nT. 
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{;(t, U) Vn {;(t,U) Vn 

2IT 2IT 

3IT 
3 -

2 

1 IT 2 

IT 

2 
1 

0 0 0 0 

nT (n + 1)T nT (n + 1)T 

(a) MSK (M 2, h = 1/2) (b) CPFSK with M 2 and h = 1/4 

{;(t, U) Vn {;(t, U) Vn 

2IT 2IT 

3IT 
- 3 
2 

1 IT 2 

IT 

2 
1 

0 0 0 0 

nT (n + 1)T nT (n + 1)T 

(c) CPFSK with M 4 and h 1/2 (d) 4-CPFSK (M 4, h = 1/4) 

Figure 2.3: Phase trellis examples for CPFSK 

A plot of {;(t, U) produces a phase trellis, which shows the possible phase trajec

tories at any point in time, but unlike the phase tree, does not grow with each symbol 

period. It is fact that the phase trellis is time-invariant that makes it more useful 

than the phase tree. We can think of the modulo-2IT operator as "wrapping" the phase 

tree around a cylinder so that all multiples of 2IT sit on top of each other. The remnant 

around the cylinder in one symbol period is the phase trellis. The phase trellises for var

iou:, CPFSK schemes are shown in Figure 2.3. The phase trellises of Figmes 2.3(a) and 

2.3(d) correspond to the phase trees of Figures 2.2(a) and 2.2(b) respectively. The dotted 

lines show where the phase is continuous modulo-2IT. From each of the P phase states, 

IY! different phase trajectories emanate, each one corresponding to one of the M different 
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symbols. Thus there are 1\;1 . P different signals possible in anyone symbol period, and 

they are clearly shown on the phase trellis. The phase trellis is a very important aid to 

the understanding of CPFSK, and is analogous to the signal-constellation diagrams used 

in PSK. 

2.5 The Decomposition of CPFSK 

Using the definitions in Sections 2.2 and 2.4, CPFSK can be decomposed into a two

part model, consisting of a continuous phase encoder (CPE) and a memoryless modulator 

(MM)[Rim88], as shown in Figure 2.4. This provides for greater understanding of CPFSK, 

as its inherent coding and modulation aspects are isolated and can be studied indepen

dently. We now discuss each part. 

Un Continuous Xn Memoryless S(T,Xn) 

Phase Encoder Modulator 

Figure 2.4: Decomposition of CPFSK 

2.5.1 Memoryless Modulator 

The advantage of the memoryless modulator is that it needs no knowledge of the previous 

transmitted signal. We have seen in Section 2.4 that the physical tilted phase has a time 

invariant-trellis. Thus the modulator only needs to know which of the M . P different 

signals are to be transmitted. We define the input to the memoryless modulator as 

The M-ary value X~l) 

selects its starting phase. 

Following [Rim88], we write 

{;(r, 

(2.12) 

the frequency to be transmitted, and the P-ary value X~2) 

the coherent case with no external ECC, 

and (2.13) 

instead of {; (r + nT, U), o :s; r < T, 
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and 

allowing us to write the output of the memory less modulator as 

OS; 7 < T, 

where we have chosen the initial phase !.po to be zero with no loss of generality, and 

OS; 7 < T. 

Decomposing (2.14) into in-phase and quadrature components, we have 

8~(7, Xn) cos [21rh (7 + nT)] 

8Q{7, Xn) sin[21rh(7 + nT)], OS; 7 < T. 

(2.14) 

(2.15) 

(2.16) 

where 8~(7,Xn) and 8Q(7,Xn) are the in-phase and quadrature components of 8(7,Xn) 

respectively, referenced to h. They are defined as 

8~(7,Xn) ~ ff-TCOS[W(7,Xn)], 0S;7<T (2.17) 

SQ(7, ~ ff-Tsin[w(7, X n)], OS; 7 < T. (2.18) 

Figure 2.5 shows a possible realisation of the memoryless modulator as defined by (2.10)

(2.11) and (2.16). As Xn takes on a relatively small number of values, the calculation 

of the signal terms in Figure 2.5 could easily be implemented as lookup tables in a DSP 

r;-2E -
T cos[W( 7, X n)] C--" 

Xn 
cos [21rh (7 + nT)] -

I 
2E T --

Figure 2.5: Memoryless modulator 
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implementation. Note that although we may generate the CPFSK signal in the manner 

above, we will also refer to it using 

S(t,U) = sr(t,U) cos(27rfet) - sQ(t,U) sin(27rfet ), (2.19) 

where sr(t, U) and sQ (t, U) are the in-phase and quadrature components, referenced to 

fe, of s(t, U) respectively. They are defined by 

Sr(t, U) ~ f!: cos['lj;(t, U) - 27rfot] 

sQ(t, U) ~ f!: sin['lj;(t, U) - 27rfot], 

and fa is the difference between fe and iI, defined as 

fa ~ fe - iI = (M - 1)~. 
2T 

(2.20) 

(2.21) 

(2.22) 

Including the fa term ensures that the spectra of the base-band quantities sr(t, U) and 

sQ(t, U) are symmetric around zero Hertz. 

2.5.2 Continuous Phase Encoder 

The purpose of the continuous phase encoder (CPE) is to generate the inputs to the 

memoryless modulator from the input data stream. These inputs are specified in (2.12) 

and (2.11), however a recursive form of (2.11) is required. Replacing n by n + 1 in (2.11) 

and again using (A.2), we obtain 

(2.23) 

A diagram of the CPE to implement (2.12), (2.13) and (2.23) is shown in Figure 2.6. The 

addition in the CPE is modulo-P, and thus the CPE is a linear convolutional encoder over 

the ring of integers modulo-P (Zp), which outputs X n and has the state Vn-

Figure 2.6: Continuous phase encoder 
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2.6 Optimum detection of CPFSK 

We now discuss the optimum detection of CPFSK following [AAS86]. In the additive 

white Gaussian (AWGN) channel, the received signal r(t, U) is given by 

r(t, U) 8(t, U) + w(t), (2.24) 

where s(t, U) was given in (2.19) and w(t) is zero-mean Gaussian noise with a two-sided 

power spectral density (psd) Sw(f) equal to No/2. 

As the transmitted signal in each symbol interval depends on all the previously 

transmitted symbols, we must determine the state sequence (and the transitions) of the 

transmitter to detect the transmitted data U. This is called maximum-likelihood sequence 

estimation (MLSE) [For72]. Using the time-invariant phase trellis and the memoryless 

modulator, the transmitter can be thought of as a Markov source, that is the transmitted 

signal 8(t, U) in the n-th symbol period depends only on the state of the CPE Vn and the 

current information symbol Un. 

Let us use '0 to denote a hypothesised transmitted data stream. As discussed in 

[AAS86], the MLSE receiver maximises the log likelihood function 

(2.25) 

with respect to 'O. PI' {r( t, U) 1'0 } is the probability density function (pdf) of the received 

signal r(t, U) conditioned on 'O. The maximising sequence '0 is the maximum-likelihood 

sequence estimate that minimises the squared Euclidean distance between the received 

signal r(t, U) and a hypothesised transmitted signal. As CPFSK is a constant-envelope 

modulation, we can equivalently maximise the correlation 

(2.26) 

To simplify processing, we define 

(2.27) 

which allows us to write the recursion equation 

Jc,n('O) = (2.28) 
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where 

l
(n+1)T 

r(t, U) s(t, 0) dt 
nT 

l
(n+1)T 

nT 
r(t, U) cos [27fht + ~(t, (1)] dt 

1:+1

)T r(t, U) cos [27fht + 27fhUn~ + 27fhVn] dt (2.29) 

Thus Ae,n(Un, Vn) can be generated using a bank of M . P filters and sampling the output 

of the filters at t = (n + 1)T. The receiver correlates the received signal over one symbol 

period with all possible transmitted signals over that symbol period. Note that we have 

left out the amplitude scaling of J2E /T in (2.29) as it does not affect performance. 

2.7 Coherent Receiver for CPFSK 

We now present the receiver structure of [AAS86] that will perform maximum likelihood 

sequence estimation of CPFSK. The receiver consists of two main parts: a coherent de

modulator and a Viterbi processor. 

r(t, U) Coherent yc(t, U) Viterbi U 

Demodulator Processor 

Figure 2.7: A MLSE receiver structure for coherent CPFSK 

2.7.1 Coherent Demodulator 

The first part of the receiver is the coherent demodulator shown in Figure 2.8, which 

moves the received signal in quadrature to baseband. The low-pass filters (LPFs) are 

ideal, passing only frequencies less than h/2. As h < < fe, the unwanted terms at twice 

the carrier frequency fe are removed. The canonical form of the noise in (2.24) is 

W(t) = wr(t) cos(27ffet) - wQ(t) sin(27ffet ), (2.30) 

where wr(t) and wQ(t) are both uncorrelated, zero-mean, Gaussian processes with psd's 

given by 

(2.31) 

otherwise. 
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r(t, U) ---r-------"'i Yc,r(t, U) 

. cos(27ffet ) 

7f 
-
2 

Yc,Q(t, U) 

Figure 2.8: Coherent demodulator 

Thus we a,"lsume that the noise is band-limited and that the bandwidth of the noise is some 

value fw (fw < < fe). Making use of (2.19)-(2.21) and (2.30), we can write the canonical 

form of r(t, U) as 

r(t, U) rr(t, U) cos(27f fet) - rQ( t, U) sin(27f fe t ) , 

where 

Tr(t, U) sr(t, U) + wr(t) 

rQ(t, U) = sQ(t, U) + wQ(t). 

We define the complex envelopes of s(t, U), w(t) and r(t, U) to be 

s(t, U) ~ sr(t, U) + j sQ(t, U) 

w(t) ~ wr(t, U) + j 'IJJQ(t, U) 

r(t,U)1 ~ rr(t"U) + jrQ(t,U) 

s(t, U) + w(t). 

We show in Appendix B that the psd of w(t) is given by 

{ 

2No, - ~ f ~ f2" 

0, otherwise. 

(2.37), we can write the received signal of (2.32) as 

r(t,U) Re [r(t, U) exp(j27f fet)] 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

~ [f(t, U) exp(j27ffet) + f*(t, U) exp( - j27f fet) ] , (2.39) 
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where Re ['U.] denotes the real part of 'U., and 'U.* denotes the complex conjugate of 'U.. 

Similarly, the local oscillator output can be written as 

cos(211' Jet) Re [exp(j211' Jet)] 

~ [eXP(j211'Jet ) +exp(-j211'Jet ) J. (2.40) 

We look first at the in-phase component of the demodulated signaL Using (2.39) and 

(2.40), we can write Yc,r(t, U) in 2.8 at the input to the low-pass filter (LPF) as 

Yc,r(t, U) - r(t, U) cos(211' Jet) 

- ~[f(t,U)exp(j211'Jct) +f*(t,U)exp(-j211'Jet)] 

X ~ [exp(j211'Jet) +exp(-j211'Jet)] 

~ [f(t, U) exp(j411' Jet) + f*(t, U) + f(t, U) + f*(t, U) exp( -j411' Jet) ]. 

(2.41) 

The LPF removes the double frequency terms and further band-limits the noise. r'or 

convenience, the noise component at the output ofthe LPF is still denoted by w(t)J with 

psd given by (2.38), but now 

Jw (2.42) 

Thus we can write the output of the LPF as 

Yc,r(t, U) 

(2.43) 

which is in-phase component of the demodulated received signaL 

We now turn to the quadrature component of the demodulated signal. The phase

shifted version of the local oscillator is given by 

cos(211' Jet - 11'/2) sin(211' Jet) 

rm [exp(j211'Jet)] 

1. [exp (j211' Jet) - exp( - j211' Jet)], 
2J ' 

(2.44) 

where denotes the imaginary part of 'U.. We can thus write Yc,Q(t, U) in Figure 2.8 
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at the input to the LPF as 

Yc,Q(t, U) r(t, U) sin(27T Jet) 

~ [f(t, U) exp(j27T Jet) + f* (t, U) exp( - j27T Jet) ] 

X 2~ [exp(j27TJet ) eXp(-j27TJet)] 

;j [f(t, U) exp(j47T Jet) + f*(t, U) f(t, U) - f*(t, U) exp( -j47TJet) ]. 

(2.45) 

Again the LPF removes the double frequency terms, so that we can write the quadrature 

component of the demodulated complex-baseband received signal as 

Yc,Q(t, U) ;j [f* (t, U) f(t, U)] 

1 _ 
-'2 1m [r(t, U)]. (2.46) 

We define the demodulated received signal Yc(t, U) as 

Yc(t, U) £= v'2 [Yc,r(t, U) j Yc,Q(t, U)] , (2.47) 

where the factor v'2 has been introduced to ensure that a noiseless Yc(t, U) will integrate 

to E, similar to the transmitted signal s(t, U). Substituting (2.43) and (2.46) into (2.47), 

we obtain 

Yc(t, U) ~ [Re [f(t, U)] + jIm [f(t, U)]] 

1 _ 

v'2 r(t, U) 

~ [s(t, U) + w(t)]. 

Note that from (2.20) and (2.21L s(t, U) is given by 

,s(t, U) cos[?,b(t, U) 27TJot] + j IW- sin['t/J(t, U) - 27TJot] 

/2: exp(j[¢(t, U) 27TJot]) , 

so that the demodulated signal in a coherent CPFSK system is given by 

Yc(t, U) = fi exp(j[¢(t, U) - 27TJot]) + 1 w(t). 
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Processor 

The Viterbi processor takes yc(t, U) and forms the metric 

(2.51) 

which is equivalent to the metric given in (2.29) [AAS86]. This can be implemented by 

2M baseband filters with the impulse responses 

{

2COs(21fhUnTT t), 
0, 

o ~ t <T 
(2.52) 

otherwise, 

{

2Sin (21fhUn T T t) , 
0, 

O~t<T 

(2.53) 

otherwise. 

Figure 2.9 shows how this might be implemented. Viterbi processor uses the Viterbi 

algorithm (discussed in Appendix C) to perform MLSE and produce an estimate of 

the transmitted data. Note that the multiplication and addition structure is repeated P 

times, to hypothesise each possible value of Vn . 

2.8 Euclidean Distance Properties of CPFSK 

As discussed in Section 2.6, the Euclidean distance properties of a modulation are very 

important, as they determine its performance. Let U and U be two information sequences, 

the normalised squared Euclidean distance (NSED) between two signals s(t, U) and s(t, U) 

is defined as 

2 A.£ log2 M 100 

1 . A 12 d (U, U) 2E -00 S(t, U) - S(t, U) dt. (2.54) 

This can be re-written as 

log M r(n+1)T 1 . A 12 
d

2
(U, U).£ 2~ inT s(t, U) - s(t, U) dt 

n 

(2.55) 
n 
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Yc,l(t, U) 

Yc,Q(t, U) 

------ - - - - -
I I 

P different structures 

Figure 2.9: Detection Processor 

Viterbi 

Processor 

where d~(U, U) is called the normalised incremental squared Euclidean distance (NISED), 

and is defined as 

, 12 s(t, U) dt. (2.56) 

The most important Euclidean distance property is the normalised minimum squared 

Euclidean distance (NMSED), defined as 

mm d2 (U, U). 
U,U 
u:pu 

We now present the NISED and NMSED coherently-demodulated CPFSK. 
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1 Normalised Squared Euclidean of CPFSK 

The NISED for uncoded coherently-demodulated M-ary CPFSK modulation with h 

K/ P, where K and P are relatively prime positive integers is given by [Rim91] 

(2.58) 

This can be written in terms of Un and Vn as 

{I M [1 - Sin(27fh[Un+Vn-Un-VnD.-Sin(21l'h[Vn-Vn])] TT -L ir 
og2 27fh(Un-Un) ) Vn T Vn 

log2 M [1 - cos(27rh[Vn Vn])] , Un Un) 

(2.59) 

and in terms of the inputs to the memoryless modulator as 

X n
(l) ~ (1) 

Xn . 

(2.60) 

2.8.2 Normalised Minimum Squared Euclidean Distance for CPFSK 

The NMSED for coherently-demodulated M-ary CPFSK modulation with h K/ P < 1/2 

where K and are relatively prime positive integers is [Rim91] 

d
2

. = {min [IOg2M, 210g2M(1_Si;:~h)] M>P 

mill ( sin 27rh) (2.61) 
210g2 M 1 27rh M :;; 

2.9 Performance of 

For coherently-demodulated CPFSK in the additive white Gaussian (AWGN) chan-

nel, the probability of bit-error Pe at high SNR is closely approximated by [AAS86] 

(2.62) 
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where Eb is the bit energy and No is the one-sided power spectral density of the noise, 

d~in is the NMSED of the scheme in question. The Q-function is defined as 

Q(x) = 
1 

(2.63) 

In Table 2.1 we present d~in for various CPFSK schemes, calculated using (2.61). 

There is an obvious loss in d;nin as M increases, and from (2.62) this results in poorer per

formance. However this performance degradation is tempered by an increase in throughput 

measured in bits/symbol. The degradation is very similar to that experienced by phase 

shift keying (PSK). 

Table 2.1 

d~in for various CPFSK schemes 

Scheme d~in 

MSK 

4-CPFSK 

8-CPFSK 6 

2 

4-.§. 
'If 

12V2 
'If 

2 

1.45 

0.60 

2.10 Simulation of a CPFSK system 

To reduce the long run-times of the simulation of a band-pass system, simulations were 

run in complex baseband. Appendix D discusses the receiver and simulation model used 

to obtain the results. data was assumed to be uniformally distributed, 16 samples 

per symbol were generated, and the Viterbi algorithm had a decision depth of at least 10 

symbols. Figure 2.10 shows the results of the simulations compared with the theoretical 

performance of various coherently-demodulated CPFSK schemes. The theoretical curves 

were calculated using (2.62) and the results in Table 2.1. The simulation results agree well 

with the computed curves. 

2.11 Summary 

In this chapter we have introduced CPFSK and its properties. We looked at the strueture of 

the phase of a CPFSK signal and presented the idea of a phase tree and then a phase trellis. 

This led to the two-part decomposed model of CPFSK, which provides greater insight 

into how its inherent coding and modulation aspects interact. A coherent CPFSK receiver 
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Figure 2.10: Computed and simulated performance of various M-CPFSK schemes 

structure was presented and discussed. The distance properties of CPFSK were presented, 

followed by the theoretical error performance of coherently-demodulated CPFSK. We then 

discussed how simulations had been performed and showed how their results compared very 

well with the theoretical eurves previously presented. 
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3.1 Introduction 

Although coherent demodulation performs very well, phase and frequency differences be

tween the oscillators in transmitter and receiver must be compensated for, and the 

req uired algorithms can be very computationally intensive. A possible solution is differ

ential demodulation. The idea is to use one symbol as a phase reference to demodulate 

and detect the next, thereby avoiding the need for a local @scillator in the receiver. This 

simplifies receiver structure at the expense of performance, as the carrier reference is cor

rupted by the channeL However we find that without specific differential encoding, we can 

detect the original data values, but lose the knowledge of the phase trellis, and thus suffer 

a further performance loss. 

The work of [YT92], developed a differential encoder for CPFSK that preserves 

the phase trellis through differential demodulation. However that encoder is designed 

for binary multi-h CPFSK, and does not extend to M-ary signals. It accepts standard 

binary bi-polar CPM symbols (an = ±1) and outputs symbols in the set { ... ,-1, 

0,1, ... ,P I}, and will not interface well with the decomposition of CPFSK, or any 

external error-control encoders. 

As a consequence, we now develop an M -ary differential encoder for CPFSK that 

is also a linear encoder over the ring of integers modulo-P (Zp). This should interface 

well with the decomposition of CPFSK and provide greater understanding of differentially

encoded and differentially-demodulated CPFSK (DCPFSK). A linear differential encoder 

will allow us to cascade the channel encoder, the differential encoder and the CPE to form 
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an overall linear encoder over Zp and thus simplify code searching. 

In Section 3.2 we discuss differential demodulation and the form of a differentially

demodulated CPFSK signal. This leads on to a method to differentially encode CPFSK in 

Section 3.3, and then to the decomposition of DCPFSK in Section 3.4. We then discuss the 

phase trees and trellises of DCPFSK in Sections 3.5 and 3.6 respectively. The detection 

of DCPFSK is discussed in Section 3.7, and a receiver structure for DCPFSK based on 

Euclidean distance is presented in Section 3.8. In Section 3.9 we analyse DCPFSK to 

determine its Euclidean distance properties. The error performance of DCPFSK is then 

discussed in Section 3.10. We compare our simulation results to computed curves m 

Section 3.11. Finally, we present a summary of the chapter in Section 3.12 

3.2 Differential Demodulation 

A general structure for differential demodulation is shown in Figure 3.1. The received 

signal is multiplied in quadrature by a copy of the received signal that has been phase

shifted and delayed by a symbol period. The resulting signals are low-pass filtered to 

obtain the desired in-phase and quadrature base-band signals. As a delayed version of the 

received signal is used as the carrier reference, extra noise is introduced into the system and 

performance suffers. Note that as there is no local oscillator, the receiver is much simpler 

to build as the only synchronisation required is that of symbol timing. Thus differential 

demodulation trades off receiver complexity against performance. 

As in the coherent case, the received signal r(t, U) is given by 

r(t, U) = s(t, U) + w(t). (3.1) 

Using (2.32)-(2.38), we can write the received signal as 

r(t, U) Re [f(t, U)exp(j27rJct)] 

~ [f(t, U) exp(j27r Jet) + (t, U) exp( - j27r Jct)]. (3.2) 

This allows us to write Yd,I(t, U) in Figure 3.1 at the input to the low-pass filter (LPF) as 

Yd,l(t, U) r(t, U)r(t - T, U) 

~ [r(t, U)exp(j27rJct) + (t, U)exp( -j27rJct)] 

x~[r(t 7\U)exp(j27rJclt T])+f*(t U)exp(-j27rJc[t T])] 
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T(t, U) Yd,r(t, U) 

T 

1T 

2 

LPF Yd,Q (t, U) 

Figure 3.1: Differential demodulator 

l [f(t, U)f(t - T, U)eXp(j21Tfe[2t - T]) 

+ f*(t, U)f(t 

+ f(t, U)f*(t 

+ f*(t, U) (t 

U) exp( - j21T feT) 

U) exp(j21T f cT ) 

U)exp( -j21Tfcl2t - T]) ]. (3.3) 

The low-pass filter removes the double frequency terms, and assuming feT is equal to some 

integer, we may write the output of the LPF on the in-phase chain as 

Yd,I(t, U) : [f*(t, U) f(t T, U) + f(t, U) f*(t - T, U)] 

1 
2 Re [f(t, U) f*(t - T, U)] . (3.4) 

Note that if feT is not equal to some integer, then exp(j21T feT) and its conjugate will 

cause some phase rotation. However, as both fe and T are known, the rotation can easily 

be accounted for. 

Before proceeding with Yd,Q(t, U), we need to consider the effect of the 1T /2-phase 

shifter. Let us denote T-delayed and 1T/2-phase shifted version ofT(t, U) as r{t T, U), 

then from (3.2) 

r{t U) Re [f( t - T, U) exp(j21T f c [t T] 1T /2)] 

Re [f(t - T, U) exp(j21T felt - T]) exp{ - j1T /2) 1 

~ [f(t - T, U) exp(j21T felt T]) exp( -j1T /2) 

+ f*(t - T, U)exp(-j21Tfelt T]) exp(j1T/2) ] 
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= 2~ [f(t - T, U)exp(j27rfe[t - T]) 

(t-T:U)exp(-j27rfc[t- )]. (3.5) 

We can now write Yd,Q(t, U) in Figure 3.1 at the input to the low-pass filter (LPF) as 

Yd,Q(t, U) = r(t, U) r(t - T, U) 

~ [f(t, U) exp(j27rfct) + (t, U)exp( -j27rfet) ] 

x 21j [f(t - T, U)exp(j27rfc[t - T]) 

- 'r*(t - U)exp(-j27rfc[t - T])] 

4~ [f(t, U)f(t - T, U)exp(j27rfcl2t - T]) 

+ f*(t, U)f(t T, U) exp( -j27r feT) 

f(t, U) f* (t T, U) exp(j27r feT) 

- f* (t, U) f* (t T, U) exp( -j27r fcl2t - T]) ]. (3.6) 

Following the LPF, and again using the assumption that feT is equal to some integer, we 

have 

Yd,Q(t, U) 4~[f*(t,U)f(t-T,U) f(t,U)f*(t T,U)] 

~ 1m [f(t, U) f* (t - T, U)]. 

We define the demodulated signal Yd(t, U) as 

Yd(t, U) #::. .(!; [Yd,r(t, U) j Yd,Q(t, U)] , 

(3.7) 

(3.8) 

where the factor JT / E has been introduced to facilitate energy calculations. Substituting 

(3.4) and (3.7) into (3.8), we obtain 

Yd(t, U) = (!; [Yd,r(t, U) - j Yd,Q(t, U)] 

~{!; {Re [f(t, U) f* (t U)] + jIm [f(t, U) r* (t U)]} 

= ~(!; f(t, U) (t T, U). (3.9) 

Substituting (2.37) into (3.9), we find that the output of the differential demodulator is 

Yd(t, U) ~{!; [{ s(t, U) + 1V(t)}{ s* (t - T, U) + w*(t - T)}] 

= ~ (!; [s(t, U) (t - T, U) + 'iiJ(t) s"'(t U) 

+ ,9(t, U) w* (t - T) + w{t) w*(t - T)] (3.10) 
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It is important to note that the power spectral densities of w(t) and its components, given 

by (2.38) and (2.31), are limited to f1l) as in the coherent case. 

The information we are interested in is contained in tbe signal x signal term. Using 

(2.49), this can be developed as 

where 

Yd(t, U) lJj;[s(t, U) (t U)] 

= 

= 

= ~ If [ ~ exp(j[",( t, U) 2n Jot]) 

X ~ exp( -j[",(t - T, U) - 2nfo(t - T)])] 

{It exp(j[1,b(t, U) 1,b(t - T, U) - 27f faT)]) 

n exp(j['¢d(t, U) 27ffoT ]) , (3.11) 

4nh [t, U,q(t 

n-l 

(i+ 1)T1] iT) Uiq[t 
i=O 

["-1 n-2 
t- nT 1 

27fh t; Ui + Ui Un- 1 T ' nT 5:. t < (n+ l)T 
i=O 

27fh[ Un-l + (Un nT::; t < (n+ l)T. 

(3.12) 

Note that from now on we will ignore the 27f faT term in (3.11) as it is just a known phase 

rotation and can easily be accounted for. Thus the noise-free version of Yd(t, U) is given 

by 

nT::; t < (n + l)T. ' 

(3.13) 

Looking at the phase of Yd (t, U), we see that we can detect Un, but we have lost the phase 

trellis, as there is no term depending on all the previously transmitted symbols. Without 

the phase trellis, Yd(t, U) is memory less and the performance suffers. This is because 

the use of the Viterbi algorithm provides no performance improvement in the case of a 

memory less signal. 
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Figure 3.2: Differentially-encoded CPFSK system 

3.3 Differentially Encoding CPFSK 

Let us assume that there exists a differential encoder preceding the CPE as shown in 

Figure 3.2, that accepts the uncoded M-ary symbols U and outputs the differentially

encoded symbols {3. 

The transmitted signal in such a system is given by 

fiE ( n-l t - nT) 
s(t, (3) = V T cos 2n11t + 21rh ~ f3i + 21rhf3n T ' nT ::; t < (n + l)T. 

(3.14) 

As shown in Section 3.2, this would result in a noise-free differentially-demodulated signal 

of 

nT ::; t < (n + l)T. 

(3.15) 

The noise-free output of a coherent system can be written as 

yc(t, U) = 
( [

n-l t - nT] ) 
exp .i 21rh ~ Ui + Un T ' nT ::; t < (n + l)T. (3.16) 

We now require the phases of (3.15) and (3.16) to be equal. Taking the first term in the 

phases, we have 

n-J 

f3n-l (3.17) 

i=O 

second term gives us 

,8n - f3n-l (3.18) 

An obvious solution is to define f3n as 

(3.19) 
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as this would satisfy both (3.17) and (3.18). Although this is a mathematically elegant 

solution, it is unfortunately not a practical one. Looking at the transmitted signal, given 

by (3.14), we see that there are three terms in the phase of s(t,fJ), The first term 27r!It is a 

term dependent solely on the carrier frequency and thus unaffected by diH'erential encoding. 

The second term 27rh 1 fJi is a data-dependent phase term that is constant over each 

symbol period, and thus is also not significantly aH'ected by differential encoding. The 

third term 27rhfJn(t nT)/T is a data-dependent frequency term. As Un is non-negative, 

the definition in (3.19) has fJn increasing without bound, thus the third term in (3.14) 

would result in an ever-increasing frequency. This of course would mean that s(t,fJ) had 

an ever-increasing band-width, a highly undesirable characteristic. Thus (3.19) is not a 

good choice as the definition of the differential encoder. 

As seen in Section 2.4, we can reduce any term in the phase of a signal modulo-27r, 

Noting our restriction on h, given by (2.6), we can take the constant phase terms of (3.15) 

and (3.16) and write (3.17) as 

R2.[2nhflnl R+nh ~~: Ui] 

R,. [2n (~) fln] R,. [2n (~) ~ U'] 

R,. [2n (~) Rp[fln[] R,. [2n (~) Rp [~U']] 

Rp[flnl = Rp U'] , (3.20) 

where we have made use of the properties (A.2) and (A.3). Thus we could define fJn as 

(3.21) 

In this case fJn can take on one of P values, namely {O, 1, ... ,P - 1}. Thus the data

dependent frequency term in s( t, fJ) is limited to P different frequencies. 

Using definition (3.21), fJn is a P-ary symbol, so that 

fJn - fJn-l E {-(P 1), (P - 2), ... ,P - 1}. (3.22) 

Thus (3.18) is not satisfied. However, once we have detected the value of fJn - fJn-l, we 

can reduce this modulo-P to find Rp[UnJ as (from (A.2)) 
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Rp[UnJ. (3.23) 

This leaves us with the question: is Rp[UnJ equal to Un? Obviously it is if M P. If 

P> M then we can further reduce (3.23) modulo-M to obtain Un, as (from (A.5)) 

(3.24) 

if and only if P is a multiple of M. So the differential encoder of (3.21) generates P states 

for the demodulated trellis, and allows us to detect the transmitted symbol Un, if P is a 

multiple of M. 

For the case where M > P, the differential encoder of (3.21) does not preserve 

enough information to transmit M symbols. A solution is to define the differential encoder 

as 

(3.25) 

Once the quantity (3n - (3n-l has been detected, Un can be detected by modulo-M reduction 

as 

(3.26) 

We need to show that the definition of (3.25) also produces P states for the phase trellis 

to fulfil the requirement of (3.17). As discussed above, we can reduce the constant phase 

term of (3.15) modulo-21f, and using the definition of (3.25) and noting (2.6), we have 

R2,[2~hilnl ~ R+~ (~) RM[~Uill 

R2.[2~ (~) R+M Uilll 

R2n[2~ (~) RP[~Uill 
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(3.27) 

where we have made use of the properties (A.2), (A.3) and (A.5), and incurred the re

striction that P must he a factor of M. Thus the differential encoder of (3.25) allows us 

to detect the transmitted symhol Un and generates P states for the demodulated trellis, 

if P is a factor of M. 

We can now finally define the differential encoder in general terms as 

where 

B max{P,M}, 

with the restriction that 

max{P,M} = kmin{P,M}, 

where k is an arbitrary positive integer. We can write (3.28) in a recursive form as 

~n RB [t, u,] 

RB[~Ui+un] 

RB [RB [~U,] +un] 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

This differential encoder is shown in Figure 3.3, where the addition is modulo-B. The 

differential encoder is a linear encoder over ZB. If B M, then the differential encoder 

is a scrambler [For70], as it replaces one stream of M-ary symbols with another stream of 

M-ary symbols in a one-to-one permutation. 

Figure 3.3: Differential encoder 
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Figure 3.4: Decomposition of DCPFSK 

3.4 The Decomposition of DCPFSK 

A DCPFSK system can be decomposed into two parts, a differential continuous-phase 

encoder (DCPE) and a rnemoryless modulator (MM), as shown in Figure 3.4. The purpose 

of the DCPE is to provide an input to the memoryless modulator so that the memory less 

modulator produces a CPFSK signal suitable for differential demodulation. The DCPE 

consists of a differential encoder cascaded with a CPE. It has the information symbol 

Un as input, and outputs two quantities: f3n and Vn· f3n is the differentially-encoded 

information symbol, defined in (3.28)-(3.31), and Vn is the accumulated symbol phase of 

the transmitted DCPFSK signal, defined as 

Note that we can re-write (3.32) in a recursive form as 

Vn Rp [~~i] 

Rp [~~i + ~n-l] 

RP[RP[~~i] Hn-l] 

(3.32) 

(3.33) 

The DCPE is shown in Figure 3.5, where all the addition is modulo, with the modulo base 

denoted by the quantity above each adder. It is important to note that if M and P are 

such that B = P, the DCPE will be a linear encoder over the ring of integers modulo-Po 

The mernoryless modulator in Figure 3.4 is exactly the same as that of Section 2.5.1. 

Its input is defined in (2.12) with elements 

and (3.34) 

for a DCPFSK system with no external error-control coding. 

36 



Figure 3.5: Differential continuous phase encoder 

As with CPFSK, the two most important parameters in a DCPFSK scheme are h 

and M as they determine the scheme's information bit-rate, band-width and performance. 

Again, an important class of DCPFSK schemes result when h = 1/ M, and it is convenient 

to refer to an M-ary DCPFSK scheme with h = l/M as M-DCPFSK. Thus 4-DCPFSK 

denotes quaternary DCPFSK with h = 1/4, and DMSK could be referred to as 2-DCPFSK. 

3.5 Phase Tree 

As discussed in Sections 2.3 and 2.4, the phase tree (and therefore the trellis) of a CPFSK 

system is based on the information-dependent part(s) of the transmitted signal. With 

coherent demodulation, the phase tree is unchanged by the demodulation process. This 

is because the only part of the modulated and demodulated signals s(t, U) and yc(t, U) 

that depends on the information symbols is '¢(t, U). This is not the case with differ

ential demodulation. In a differential system, the transmitted signal is s (t, (3), whose 

information-dependent part is '¢(t, (3). The demodulated signal Yd (t, (3)'s information con

tent is contained in '¢d(t, (3), which defined in (3.12). Thus the phase trees of the modulated 

and demodulated signals are different in a DCPFSK system. 

The phase tree is generated in the same manner as the coherent case, namely 

by hypothesising all the possible signal paths and plotting them on the same axes. In 

Figure 3.6(a) we show the phase tree of a modulated DMSK signal. The phase tree is 

identical to that of coherent MSK. This is not surprising as in a DMSK system M and P 

are both equal to 2, and therefore B = 2. Thus the differential encoder will just substitute 

one binary sequence for another, as discussed in Section 3.3, and the modulated signal will 

just be another MSK signal. The phase tree of the demodulated DMSK signal is shown 

in Figure 3.6(b). As a result of the differential encoding, demodulation and detection, 

'¢d(t, (3) for DMSK never goes above n. The phase trees of modulated and demodulated 4-

DCPFSK are shown in Figures 3. 7( a) and (b) respectively. They exhibit similar behaviour 

to those of DMSK. The phase tree of the modulated signal is identical to that of 4-CPFSK. 
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Figure 3.6: Phase trees for DMSK 

This will always be the case when M and P are such that B = J.~1. Also, the phase tree 

of the demodulated signal does not go above 21T. In fact, the phase tree of a demodulated 

DCPFSK signal will never go above 21Th(B - 1), so that only DCPFSK schemes with 

M > P will have demodulated signals whose phase trees go above 21T. It is important to 

note that the demodulated phase trees in Figures 3.6(b) and 3.7(b) contain new slopes 

when compared to their demodulated coherent counterparts. As the slope of the phase 

of signal determines its frequency content, demodulated DCPFSK signals have different 

spectra to that of demodulated CPFSK signals. 
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Figure 3.7: Phase trees for 4-DCPFSK 

Although we have again looked at the phase trees of DMSK and 4-DCPFSK, they 

are used only as a development towards the phase trellises. As in the coherent case, these 

are more important, and are considered in the next section. 
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Figure 3.8: Phase trellis examples for modulated DCPFSK 

3.6 Phase Trellis 

The phase trellis is generated in the same manner to Section 2.4, by taking the phase tree 

modulo-21f. Consequently, modulated and demodulated signals in a DCPFSK system have 

different phase trellises. We look first at some examples of the phase trellises of modulated 

DCPFSK signals, shown in Figure 3.8. Except for DCPFSK with M 2 and h = 1/4, 

these are identical to those in Figure 2.3. As discussed in Section 3.5, this is because the 

case in Figure 3.8{b) is the only one where B =1= M. Note too that DCPFSK with M = 2 

and h 1/4 and 4-DCPFSK have the same modulated phase trellis. However, this is 

a little misleading. In the 4-DCPFSK case, the signal transmitted depends only on the 
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Figure 3.9: Pha."le trellis examples for demodulated DCPFSK 

starting phase Vn . Whereas in the M = 2 and h = 1/4 case, the signal path taken depends 

on the two previous values of Vn . Nonetheless, 3.8(b) shows all the signal paths 

that can be transmitted in a DCPFSK system with M 2 and h = 1/4. 

Figure 3.9 shows some example phase trellises of demodulated DCPFSK signals. 

All the phase trellises are very different to those in both Figures 2.3 and 3.8. The most 

important point is that the slope of the phase path taken depends on the starting phase 

value. In the coherent case the phase slope was independent of the starting phase value. 

Again, as in the phase trees of the demodulated DCPFSK signals, the phase trellises have 

new slopes, and therefore different spectra to the equivalent coherent cases. 
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Note that only DCPFSK with M 4 and h = 1/2 "wraps" modulo-21T, as it is the 

only case where ]\.1{ > P. The DCPFSK with M 4 and h 1/2 case is also unique as 

it is the only one where more than M different slopes are possible from each phase state. 

As discussed in Section 3.3, we can detect the transmitted symbol by reducing the slope 

modulo-M. 

Previously, we pointed out that the signal path taken in Figure 3.8(b) depended 

on the two previous values of Vn . This is not the case with the demodulated phase trellis 

in Figure 3.9(b), as its signals depend only on the starting phase. The phase trellis of 

a demodulated DCPFSK signal is always time-invariant and thus we can again use the 

Viterbi algorithm to detect the transmitted symbols. 

3.7 Detection of DCPFSK 

The presence of the noise x noise and signal x noise ter:rIh<; in Yd (t, (3) makes it non

Gaussian, and thus the optimal detection of DCPFSK is a very complex problem. More

over, a simpler differential modulation scheme-differential phase shift keying (DPSK)

shows very little improvement in performance when an optimal differential metric is used 

in place of a sub-optimal one based on the optimal coherent metric [van96]. We choose 

to use a receiver for DCPFSK similar to the coherent case, that seeks to minimise the 

squared Euclidean distance between the differentially-demodulated received signal and the 

possible differentially-demodulated transmitted signals. This may perform worse than an 

optimal receiver, but will be considerably less complicated. 

Thus oUI receiver seeks to maximise the function 

(3.35) 

with respect to U, where fld(t,{3) is the signal x signal term of Yd(t,{3). Pr {Yd(t,(3)IU} 

is the probability density function (pdf) of the received signal Yd(t, (3) conditioned on U. 

The maximising sequence U is the sequence estimate that minimises the squared Euclidean 

distance between the differentially-demodulated received signal Yd (t, (3) and a hypothesised 

differentially-demodulated transmitted signal. As DCPFSK signals are constant envelope, 

we can equivalently maximise the complex correlation 

(3.36) 

To simplify processing, we define 

r(n+l)T 

i-oo Yd(t,(3)yci(t,{3)dt, (3.37) 
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which allows us to write the recursion equation 

(3.38) 

where 

As in the coherent case, Ad,n (fin, fin-l) can be realised using a bank of M . P filters that are 

sampled at t = (n + l)T. receiver correlates the differentially-demodulated received 

signal over one symbol period with all possible differentially-demodulated transmitted 

signals over that symbol period. Note that we have left out the amplitude scaling of 

y'E/T in (3.39) as it does not affect performance. 

r(t,{3) Differential Yd(t, {3) Viterbi fJ 
Demodulator Algorithm 

I 

3.10: A receiver structure for DCPFSK 

8 Receiver for 

Our receiver consists of two main blocks: a differential demodulator and a Viterbi processor 

as shown in Figure 3.10. The differential demodulator was discussed in Section 3.2, it 

accepts the received signal r(t,{3) given in (3.1) with U replaced by {3, and outputs the 

demodulated DCPFSK signal Yd(t,{3) given by (3.10), again with U replaced by {3. We 

now discuss the Viterbi processor. 
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3.B.1 Viterbi Processor 

The metric given in (3.39) can be rewritten as 

Ac,n(lJn, Vn) = cos(21fhSn-l) l~+1)T Yd,I(t, (3) cos [21fh(Sn - Sn-l);] dt 

cos(21fhSn - 1 ) l~+1)T Yd,Q(t, (3) sin [21fh(Sn - Sn-d ;,] dt 

sin(21fhSn -d l~+1)T Yd,Q(t,(3) cos [21fh(Sn - Sn-d;] dt 

sin(21fhSn-d l~+l)T Yd,I(t,(3) sin [21fh(Sn - Sn-l);] dt. 

(3.40) 

Due to the M -1 possible values of Sn - Sn-b this can be computed by 4M 2 baseband 

filters with the impulse responses 

h ' < (t) 
d,I,,Bn -,Bn-l 

{ 2 cos [2~h(~n )T; t] , o ~ t < T 

0, otherwise, 

(3.41 ) 

{ 2 sin [2~h(~n T - t] 
)1' ' o ~ t < T 

0, otherwise. 

h . • (t) 
d,Q,,Bn-,Bn-l 

(3.42) 

Figure 3.11 shows how this might be implemented. The Viterbi processor uses the Viterbi 

algorithm (discussed in Appendix C) to perform MLSE and produce an estimate (j of the 

transmitted data. Note that the multiplication and addition structure is repeated up to 

P times (depending on the filter), to hypothesise each possible value of Pn-l. 

The Viterbi algorithm then proceeds as described in Appendix C to produce an 

estimate of the transmitted data sequence (j. 

9 Euclidean Distance Properties of DCPFSK 

As discussed in Section 3.8, our receiver structure is based on squared Euclidean distance 

(SED). Thus the Euclidean distance properties of a DCPFSK scheme will contribute signif:" 

icantly to the scheme's performance. With coherent demodulation, the signal paths before 

and after demodulation are the same, and the SED can be calculated using the inputs 

to the memoryless modulator, shown in Section 2.8. This is not the case with differen

tial demodulation, as the differential demodulator in Figure :3.1 also performs differential 

decoding. However, the differential decoding is not the exact inverse of the differential 
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Processor 

encoding, so that the signal paths are changed. Thus the SED of DCPFSK is different to 

that of CPFSK, we must look at the SED between demodulated DCPFSK signals rather 

than the transmitted signals as in the coherent case. 

Thus we define the normalised squared Euclidean distance (NSED) between two 

DCPFSK signals Yd(t, fJ) and Yd(t, {3) as 

(3.43) 
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which can be re-written as 

log M l(n+l)T 1 

2~ Yd(t,j3) 
n nT 

(3.44) 
n 

where d~(j3,/3) is called the normalised incremental squared Euclidean distance (NISED), 

and is defined as 

(3.45) 

Finally, the most important Euclidean distance property is the normalised minimum 

squared Euclidean distance (NMSED), which is defined as 

2 t:. 2 ~ 

dmin = mi!l d (13,13). 
/3,/3 

/3:f./J 

We now calculate the NISED and NMSED of DCPFSK. 

3.9.1 Incremental Squared Euclidean Distance 

Let us write the noise-free version of Yd (t, 13) as 

nT::;; t < (n + l)T, 

where, for convenience, we have defined 

0n-l A 21fhf3n-l 

21fh 
<Pn A T (f3n - f3n-l). 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

Note that <PnT On - On-I, as we will use this in the following. We can re-write the 

NISED given in (3.45) as 

M l(n+l)T 1 12 10 M r(n+l)T 1 12 
2E nT Yd(t,j3) dt + ;~ inT Yd(t,/3) dt 

-==--M_ Re [J.:+1)T Yd(t,{3) Yd(t,{J) dtj. (3.50) 
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Now as Yd(t,/3) and Yd(t,/3) are both constant envelope, the first two terms are easily 

calculated. Looking at the first term, we have 

log2 M l(n+l)T I 12 
E Yd(t,/3) dt 

2 nT 

.........:::.:::......M_ r(n+l)T 

lnT 

M l(n+l)T E 
.........:::.:=--.- - dt 

2E nT T 

---,-==--M_ . E 
2E 

M 

2 
(3.51) 

Similarly 

M r(n+l)T 1 12 
-=,:::- lnT Yd(t,/3) dt = 

M 
(3.52) 

2 

The integral in the third term is 

l

(n+l)T ~ 

Yd(t,/3) Yd(t,/3) dt 
nT 

E l(n+l)T ([A A ]) = - exp(j [On-l + <Pn{t - nT)+]) exp -j On-l + <Pn(t nT) dt 
T nT 

E r(n+l)T ([ ~ A ] ) 

= T lnT exp j On-l - 0n-l + (<Pn - <Pn)(t nT) dt 

[ ( [

A A ]) ] (n+l)T 
= ----,:-- exp j On-l - On-l + (<Pn - <Pn)(t nT) t=nT 

--.[exp(j [On-l - On-I + (<Pn ¢n)TJ) exp(j [On-l - On-I])] 

j-T(-<Pn-' [exp(j [On - On]) - exp(j [On-IOn-I])] (3.53) 

d~(/3, /3) exp (j [On-I - On-I]) ] 

exp(j [On-l - On-l])] 

On-I) ] 

(3.54) 

(3.48), we can write (3.54) in terms of f3n 

d~ ( [ f3n 1 ' [A~n l) = log2 M [1 
f3n-l f3n-l 

sin(27fh[f3n ~n]) - sin(2;rh[f3~-1 - ~n-l])]. 
27fh(f3n - f3n-l - f3n + f3n-l) 

(3.55) 



the case where 

(3.56) 

the denominator of the second term in (3.55) equal to zero and l;([3,/3) is undefined. 

However (3.57) also implies 

f3n ~n f3n-l 

sin 27rh(f3n-l ~n-]), (3.57) 

so that the numerator of the second term (3.55) is also equal to zero. For convenience, 

we define <Pn as 

(3.58) 

We will use UH6pitaFs rule to find the limit of d~(f3,/3) as <Pn -+ <Pn-l by differentiating 

the numerator and denominator of the second term in (3.55) with respect to <Pn. Thus, 

10g2 M [1 cos 21rh<Pn _l] 

10g2 M [1 - cos 21rh(f3n-l - ~n-l)] (3.59) 

We can now define the normalised incremental squared Euclidean distance of DCPFSK as 

- f3n-l = 

(3.60) 
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Minimum Squared Distance 

The NMSED of DCPFSK can be found in a manner similar to [Rim91J. We 

from the definition of Pn, 

sin ( R2+~ (~) RM [~Ui]]) 

sin ( R2+~ (~) Rp [RM [~Ui]]]) 

Sin( R+~hRP [~Ui]]) 

= sin (2~hRP [~Ui]) 

note that 

(3.61) 

where the second-to-Iast step holds because, by definition, P, or P is a factor of B. 

Let us look further at the NISED of DCPFSK given by (3.60). For simplicity, we only 

consider the case where Pn - Pn-l =1= ~n - ~n-l' Substituting (3.28) into (3.60), and noting 

(3.61), we obtain 

(3.62) 

(3.63) 

where we have defined 

(3.64) 

and 

(3.65) 

We can think of en and en as the state of the transmitter and receiver respectively. 
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en can be determined from en-l as 

en RP[~Ui+Unl 

Rp [ Rp Ui 1 + Un 1 

(3.66) 

and en can be determined from en+ 1 using 

en Rp [~ Ui Un ] 

~ R+P[~Ui] Un] 

(3.67) 

Similarly 

(3.68) 

and 

(3.69) 

We can construct a super trellis whose states are defined by the super states 

(en, en), and whose transitions depend on the inputs Un and Un, as in (3.66) and (3.68). 

As en and en each have P states, there are p 2 super states in the super trellis. When 

en =1= en, there are errors in the system. Consequently we call such a state an error state. 

There are P error-free states, occurring when en en. We call the P paths that trace 

through these error-free states in the super trellis the er-ror-free paths. It is clear that the 

error-free paths will have the input Un Un, '1/ n. 

We wish to find one path that achieves the smallest non-zero squared Euclidean 

distance and to compute the SED of that path. Such a path will lie on an error-free path 

for most of the way. the trellis is time-invariant, it is not important when such a path 

leaves an error-free path. Let us assume that this happens in the i-th intervaL So we are 

looking for a detour that leaves an error-free path in the i-th interval, stays unmerged over 

an unknown number of L intervals and merges with any error-free path in the (i + L )-th 

interval, such that the total SED is minimal. We refer to the first interval of the detour 

as the diverge and the last interval as the merge. 
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We first consider detours length 1. In this case the diverge and the merge are in 

the same interval. We will denote the minimum SED of such a detour as d;nin l' Since the 
I 

detour begins in the i-th interval, we have 8 i - 1 = 8 i - 1 and Ui i= Ui. the merge is in 

the same interval we must also have 8 i = 8i. Using (3.66) and (3.68) gives us 

Rp [8i-l + Ui ] 

Rp [Ui ] 

(3.70) 

where we have made use of (A.6). We have already stated that Ui i= Uil so k must be a 

non-zero integer in (3.70). As Ui and Ui are M-ary digits, condition (3.70) can only be 

satisfied if and only if M > P. Substituting 8i-l 8i-l and 8 i = 8 i into (3.63), we find 

(3.71) 

However, we need to show that Pi - Pi-l - /3i + i= O. Let us look at the quantity 

Pi - Pi-l first. Let us suppose that Pi-l equals some M-ary value, O. Then, from (3.31) 

with B = M, we have 

where 

Thus we can write 

and through similar reasoning, 

Pi RM[Pi-l + Ui] 

Rl\1f[n + Ui] 

O+Ui kM 

n+ <M 
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(3.72) 

(3.73) 

(3.74) 

(3.75) 



where 

(3.76) 

and n is some M-ary value. Using (3.74) and (3.75), 

(3i - (3i-l (3.77) 

As Ui and Ui are M-ary symbols, U - U < 1M 11. Also k - k E {-I,O, I}, so that the 

only way that the RHS of (3.77) can be equal to zero is if k k = 0 and Ui Ui. But we 

have already stated that Ui ::f. Uil so (3i - (3i-l - /3i + 

holds. 

must be non-zero, and (3.71) 

Thus the NMSED of detours of length 1 when M > P is given by 

(3.78) 

For case where M <S; P, there are no detours of length 1. 

We now consider detours of length L > 1. We look first at a diverge, as we start 

in an error-free state we must have 

8i-l = (3.79) 

and 

(3.80) 

which imply Ui ::f. Ui . It is convenient to consider the cases M <S; P and M > P separately. 

We first consider the case where M <S; P, so that B = P, (3n 8 n and /3n = 8n . This 

allows us to re-write (3.63) as 

d~(f3,j3) = log2 M [1- sin(27rh[8n - 8n ]) -sin(27r~[8n-2 8n - 1])]. (3.81) 
27rh(8n - 8 n - 1 - 8 n + 8) 

Substituting (3.79) and (3.80) into (3.81), we find the NSED a diverge is 

2 A 

di ,diverge(f3, (3) = 

(3.82) 

where we have defined 

(3.83) 
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Note that Wi E {±1, ±2, .. , ,±(P I)} as ei i- Eh Thus the normalised minimum 

of a diverge in the i- th interval is 

d~in,diverge = 10g2 M II,1i;n [1 

10g2M (1 max 
Wi 

sin 21Th Wi 

21Thwi 

Wi E {±1, ... ,±(P I)}. 

Theorem 1 of [Rim91] states that for any non-zero integer k, and for 0 < h < 1/2, 

sin 21Thk sin 21Th 
---,-.,-- < ---

21Thk 21Th 

with equality if and only if k ±l. Applying (3.85) to (3.84) we obtain 

2 [ sin 21Th] 
dmin,diverge = 10g2 M 1 - 21Th . 

Thus a diverge occurring in the i-th interval achieves minimum SED if Wi ±l. 

(3.84) 

(3.85) 

(3.86) 

For the case where M k.o/[ P, with kM being an integer greater than one, B = M 

and (3.81) does not hold. However from (A.I), we can writeI:~=o Ui as 

n 

i=O 

= en + kP (3.87) 

where k is a non-negative integer. Using (3.87) in the definition of with B = M, we 

have 

f3n RM[ta Ui] 

RM[en + kPj 

RM[8n + RM[kPll 

RM[en + k1,nP ] 

en + k1,nP (3.88) 

where kl,n is a non-negative integer less than kNh and the last step makes use of (A.8) as 

8 n + k1,nP is non-negative and less than M. Similarly, we can show that 

(3.89) 

where k2,n is a non-negative integer less than kM. Using (3.88) and (3.89) in (3.90), we 

obtain 

10 M [1 _ sin(21Th[8n 

g2 21Th (en 
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si,n(21T':[8n _ 1 - 871 - 1])] , 

en + 8 n-l + knP) 
(3.90) 



where 

(3.91) 

and kI,n) kI,n-I, k2,n, E {a, 1, ... ,kM 1}. Note that kn E {a, ... ,±2(kM -1)}. 

Substituting (3.79) and (3.80) into (3.90), we find the NSED of a diverge is 

2 ' [sin(21fh[8 i 8i]) 1 
di,diverge ((3, (3) 10g2 M 1 - 21fh( 8i _ 8i + kiP) . (3.92) 

We note now that we can replace 8i 8i with 8i - 8i + kiP in the argument of the sine 

function as 

sin(21fh[8i 8i + kiP]) sin(R27f [21fh[8i 8i + kiP]]) 

Using (3.93) in (3.92) we have 

2 ' 
di,diverge ((3, (3) 

where we have defined 

= sin ( R2r. [21f (~) Rp [8i - 8i + kiP] ] ) 

sin ( R2r. [21f (~) Rp [8 i 8i + Rp[kiP]]]) 

sin ( R27f [21f (~) Rp [8i - 8i] ] ) 

(3.93) 

(3.94) 

(3.95) 

Note that ~i E ±2, ... ,±([2k,'Vl - l]P I)} as 8 i =1= 8i. Equation (3.94) is in the 

same form as (3.82), so we can apply similar reasoning to find the NMSED of a diverge in 

the i-th interval is 

d~in)diverge = M lI!in [1 sin( 21f ~ ~ d l' ~ i E {± 1, 
Wi 21fhWi 

... ,±([2kM l]P - 1)} 

- 1 . M [1 sin 21fhj 
- og2 21fh' (3.96) 

and attained when ~i = ±1. 

We now turn to a merge, occurring in any interval, say the l-th interval. Our detour 

will be returning from an error state to an error-fi'ee state. Thus we will have 

(3.97) 
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and 

(3.98) 

which imply Uz =1= Uz. Again we consider the cases M :::; P and M > P separately. We 

first look at the case where M :::; so that B = P and (3.81) holds. Substituting (3.97) 

and (3.98) into (3.81), we find the NSED of a merge is 

10g2M [1- sin(21Th[81_1 
A
81- 1])] 

21Th(8z_ 1 61-d 

2 A 

d1 ,merge (Ul, Ul) 

1 M [ 
sin 21Thwl_l 

og2 1- , 
21Thwl_l 

(3.99) 

Note that WZ-l E {±1, ±2, ... , (P 1)} as 8 1- 1 =1= 81-1. As (3.99) is in a similar form to 

(3.82), we can apply similar reasoning to obtain the normalised minimum SED of a merge 

in the l-th interval as 

d~in,merge = logz lvi [
1 _ sin21ThWl_1] 

21ThWl_1 ' 
Wl-1 E {±1, ±2, ... , ±(P 1)} 

logz M [1 sin 21Th] . 
21Th 

(3.100) 

Thus a merge occurring in the i-th interval achieves minimum SED if Wl-l 

For the M > Pease, B 1\,1 so we must use (3.90). Substituting (3.97) and (3.98) 

into (3.81), we find the NSED of a merge occurring in the i-th interval is 

sin(21Th[81,:-1 - 81- 1]) ]. 

21Th(81- 1 - 6 1- 1 + kl-1P) 
(3.101) 

Again we replace 8 1-1 81-1 with 81-1 -81- 1 

to obtain 

in the argument of the sine function 

Z A 

dn,merge (f3, (3) log, M [1 

logzlvi [1 - Sin(21r~~I_t}] , 
21rhWZ-1 

(3.102) 

where ~1-1 E ... ,±([2kM -ljP l)} as 61-1 =1= 8z-1 . As (~).102) is of the same 

form as (3.82), we can again apply similar reasoning to find the NMSED of a merge in the 

l-th interval is 

d~in,merge = 
. [ Sin(21Th~I_1)] -

10g2)\1 :gun 1 - - , Wl- 1 E {±1, ±2, ... , 
WI_1 21Thwz-l 

[2kM - ljP - l)} 

[
sin 21Th] 

10g2 M 1 - 21Th ' (3.103) 
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and attained when ~l~l ±1. 

So we have found the NMSED of a diverge and a merge for the cases where P :::; M 

and P = M. Let us now consider detours of length 2, which consist only a diverge and 

merge. If there exists a path (or path) of length 2 whose diverge and merge achieve 

d~in,diverge and d~in,merge respectively, then this path would clearly achieve d;lin,2' the 

minimum distance for any path of 2 intervals. As d~ ((3, /:3) is non-negative and zero on the 

error-free paths only, the SED of any detour of greater than two unmerged intervals will 

be larger than d~in 2' , 

Thus our task is to show that d~in,2 d~nin,diverge + d~in,merge can be achieved by 

one or more paths. Such a path will start on an error-free path, diverge in the i-th interval 

to a state such that = ±1 (or ~i ±1) and then merge to an error-free path. 

following equations describe this sequence, 

8i~1 

8i 

8i+l 

Eli~l 

Eli ± 1 

Eli+!. 

(3.104) 

(3.105) 

(3.106) 

At the start of the detour, 8i~1 and Eli~l are both equal to a certain value. We will call 

this value n, where n E {O, I, ... ,P - 2}. With the inputs 

Ui 

Ui+l 

we obtain the sequences 

8i~1 n 

8i n+ 1 Eli 

8 i +1 n+1 Eli+! 

So we have shown that W nand 

thus 

1 o 

0 1, 

n Wi-l 

n Wi 

H+1 Wi+! 

0 Wi-l 

1 Wi 

0 

(3.107) 

(3.108) 

0 

1 

O. 

can indeed follow the sequence ( ... ,0,1,0, ... ), and 

d;nin,diverge + d~in,merge 

sin2nh] 
2nh . (3.109) 

Note that although we have only shown above that there are P - 1 paths that achieve 

d~in,2' they are by no means the only paths to do this. Indeed, if we reverse the inputs 
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in (3.107) and (3.108) we find another P - 1 paths, and more can he found using other 

inputs. We are now in a position to present the generalised result. 

The minimum normalised squared Euclidean distance (NMSED) of a DCPFSK 

system with h = K/ P ::; 1/2, where K and P are relatively-prime positive integers, and 

whose choice of M and P follow max{ M, P} = k min{ M, P}, where k is a positive integer, 

is given by 

J 
M>P 

(3.110) 

It is interesting to note that this is the same as the result for CPFSK. 

3.10 Error Performance of DCPFSK 

The differential demodulator uses the previous symbol which is corrupted by AWGN to 

demodulate the current symboL The presence of this "extra" AWGN means that Yd (t, (3) 

has a non-zero mean, quadratic Gaussian form which makes exact analysis very difficult. 

Let us look at Yd(tJ:3) again, 

~ A [s(t,(3) s*(t - T,(3) + w{t) (t T,(3) 

+s(t,(3)w*(t T) +W(t)W*(t-T)]. (3.111) 

We assume that at high SNR the noise x noise term is dominated by the other three terms, 

and we neglect it. We further assume that the two noise x signal terms are independent, 

and that they act so that the performance of DCPFSK is equivalent to that of CPFSK 

with twice the noise. Thus we assume that the probability of bit error for DCPFSK at 

high SNR is 

(3.112) 

Similar assumptions and conclusions can be found in [AS81] for DCPFSK and [Pro95] 

for differential (DPSK). For the simplest DCPFSK case, that of DMSK, there is a 

solution that avoids the above assumptions. The probability of bit error for DMSK is 

given by (see for example [Mas90]) 

Pe,DMSK ~ exp ( - ~:), (3.113) 

which is exactly the same as the result for differential binary PSK [Hay88][Pro95]. 
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We present the d~in for various DCPFSK schemes in Table 3.1, calculated using 

(3.110). As (3.110) is identical to (2.61), the values in Table 3.1 are the same as those in 

Table 2.1. 

Table 3.1 

d~in for various DCPFSK schemes 

Scheme d~il1 

DMSK 2 2 

4-DCPFSK 4 ,§. 1.45 
1f 

8-DCPFSK 6-
1f 

0.60 

3.11 Simulation of a DCPFSK system 

The simulation of a DCPFSK system is a much more complicated problem than that of 

its coherent counterpart. We discuss the simulations and the model used in Appendix F. 

It is important to note that the simulations do not use the assumptions discussed in 

Section 3.10, and thus they take into account the effect of noise x noise and signal x noise 

terms. 

Figure 3.12 shows the results of the simulations compared with the computed per

formance of various coherently-demodulated CPFSK schemes. The computed curves were 

calculated using (3.113), (3.112) and the results in Table 2.1. simulation results and 

the computed curves agree reasonably well at high SNR, given that the computed cunes 

are only approximations based on significant assumptions. The data was assumed to be 

uniformally distributed, at least 16 samples per symbol were generated, and the Viterbi 

algorithm had a decision depth of 20 symbols. 

It is interesting to compare the performance of CPFSK with DCPFSK, and in 

Table 3.2 we tabulate the approximate SNR values required in the simulations to achieve 

a BER of 10-5 for different l\t[-CPFSK and M-DCPFSK schemes. For the cases with M 

equal to 4 and 8, an increase of approximately 3dB is required when going from CPFSK 

to DCPFSK. An increase of less than a dB is required when going from MSK to DMSK. 

Similar figures have been observed in [Hay88] in comparisons of M-ary PSK and M-ary 

DPSK. 
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Figure 3.12: Computed and simulated performance of various M-DCPFSK schemes 

Table 3.2 

Comparison of empirical SNR values required to achieve a BER of 10-5 for different 

M-CPFSK and M-DCPFSK schemes 

Approximate SNR values 

M M-CPFSK I M-DCPFSK 

2 9.9 10.6 

4 11.0 14.0 

8 14.8 17.9 

3.12 

In this chapter we have presented and discussed DCPFSK. The differential encoder de

veloped preserves the phase trellis through differential demodulation and combines well 

with the decomposed model of CPFSK. differential demodulator operates in such 

a manner that the phase tree and trellis of a demodulated DCPFSK signal differs from 

those of a modulated DCPFSK signal. Both phase trees and trellises are important as 
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they provide important insight into the behaviour of DCPFSK. 

We presented a receiver structure for DCPFSK that was based on Euclidean dis

tance and discussed each of its components. We also calculated the normalised incremental 

squared Euclidean distance (NISED) and normalised minimum squared Euclidean distance 

(NMSED) for DCPFSK. The NISED of DCPFSK differs from that of CPFSK, but both 

have the same NMSED in the case with no external error-control coding. Our receiver 

is not maximum-likelihood due to the extra noise components introduced by differential 

demodulation. These noise components make analysis very difficult, but through some 

simple assumptions the error performance of DCPFSK is found to be approximately 3dB 

worse than that of a CPFSK system with the same NMSED. The results of our simulations 

were seen to agree with this approximation. 
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hapter 4 

DC 

1 Introduction 

Trellis coding h3.."> long been used to improve a system's performance without increasing 

its bandwidth. CPFSK has previously been encoded using a binary convolutional channel 

encoder, but work in [MM89] suggests that the most "natural" codes for ]YJ-ary phase 

modulation are linear codes over the ring of integers modulo-M (ZM). This idea has been 

combined with the decomposed model of CPFSK [Rim88], using convolutional encoders 

over the ring of integers modulo-P Zp [YT94] [RL95]. This allowed the structure within 

CPFSK to be exploited to improve the code performance while minimally increasing the 

complexity. The codes found performed better than any previous coding schemes used. 

As discussed in Section 3.9, the normalised incremental squared Euclidean distance 

(NISED) of DCPFSK is different to that ofCPFSK. Although CPFSK and DCPFSK have 

the same normalised minimum squared Euclidean distance (NMSED) in the uncoded case, 

it does not necessarily follow that the coded systems will have the same NMSED. We wish 

to use the decomposed model of DCPFSK developed in Chapter 3 to develop convolutional 

codes over the ring of integers modulo-M ZM for M-DCPFSK in a similar manner to 

[YT94]. We restrict ourselves to M-DCPFSK coded systems. The differential encoders 

and continuous phase encoders (CPE) in these systems will both be linear encoders over 

ZlvI, allowing for easier interfacing with a channel encoder. 

We begin this chapter in Section by reviewing the method used in [YT94] to 

code CPFSK. We then discuss in Section 4.3 why a feedback-free CPE is necessary when 

performing code searches for CPFSK systems. In Section 4.4 we present the appropriate 

terminology and the structure of the channel encoder in [YT94] that we will be using. This 

allows us to present the code search model for an encoded CPFSK system in Section 4.5. 
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The overall encoder in an encoded OPFSK system is discussed in Section 4.6, and the 

implementation of such a system is discussed in Section 4.7. We then move on to coded 

DOPFSK systems. We first develop a Euclidean distance model of DOPFSK in Section 4.8, 

which allows us to construct a code search model for an encoded DOPFSK system in 

Section 4.9. We discuss the overall encoder in an encoded DOPFSK system in Section 4.10, 

and in Section 4.11 we discuss the implementation of such a system. Having presented 

and developed the necessary material, we discuss the code search procedure used in this 

thesis in Section 4.12, and present its results in Section 4.13. The important points from 

the chapter are summarised in Section 4.14. 

4.2 Coding CPFSK 

Figure 4.1 shows the general idea of a coded M-OPFSK system [YT94]. The channel 

encoder (OE) accepts I 1 M-ary data symbols and outputs I M-ary encoded symbols. The 

commutator then allows the continuous phase encoder (OPE) and memoryless modulator 

(MM) to process these encoded symbols individually to generate the transmitted signal. 

The channel encoder and OPE form an overall encoder. If, as we specify, the channel 

encoder and OPE are both linear encoders over ZM, the overall encoder is also a linear 

encoder over Z M. 

Overall Encoder 

~ OPE I(n L--M_M---,S(t'U) 

Figure 4.1: Coded CPFSK system 

4.3 Feedback-free Continuous Phase Encoder 

The OPE of Section 2.5.2 is a feedback encoder, and catastrophic convolutional channel 

encoders may combine with the feedback-OPE to produce an overall encoder that is non

catastrophic [MMP88]. This means that catastrophic channel encoders should also be 

considered when finding the best codes for OPFSK. The problem of determining which 

catastrophic channel encoders combine to produce overall non-catastrophic encoders would 

also need to be solved. By using a feedback-free OPE these problems can be avoided, as 
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non-catastrophic channel encoders combined with a feedback-free CPE always produce 

overall non-catastrophic encoders, and catastrophic ehannel encoders combined with a 

feedback-free CPE always produee overall eatastrophic encoders [YT94]. 

The feedback in the CPE can be removed by using the precoder shown in Fig

ure 4.2(a), where if is some data sequenee that will produee U when passed through the 

preeoder. Like the differential encoder) precoder is also a scrambler [For70], as it re-

places one stream of M -ary symbols with another stream of M -ary symbols in a one-to-one 

permutation. We will henceforth to this precoder as the scrambler. 

The feedback-free CPE resulting from the cascade ofthe scrambler and the feedback 

CPE is illustrated in Figure 4.2(b), and will combine with a non-catastrophic channel 

encoder to form an overall non-catastrophic encoder. 

(a) Scrambler (b) Feedback-free CPE 

Figure 4.2: Removing the feedback in the CPE 

4.4 Channel Encoder 

The channel encoder employed in [YT94] was a convolutional encoder defined over 7lp, 

but we will deal with one defined over 7lM. Let us introduce the terminology for a delay 

polynomial x(D) where 

(D) 6 D Dkv X = Xo + Xl + ... + Xkv + ... , (4.1) 

and D is a unit delay. Let R = 7lM denote a commutative ring [MM90], and let R(D) 

denote the ring rational functions over R, whose numerators are polynomials with 

coefficients in as are the denominators, with the restriction that their zeroth delay 

terms are equal to one. Every rate-(l- 1)/1 convolutional code over can be generated 

by some encoding matrix G(D) = 9ik(D), 1 ~ i < 1 1, 1 ~ k < 1, 9ik(D) E R{D) 

with kernel Ker[G{D)] = O. Every generator matrix whose components are causal, can be 

realised with a finite number of memory cells capable of storing elements and a finite 

number of modulo-M scalars and adders. The uncoded input sequence is denoted a(D), 
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a(1) (D) ----.,...------r---- ---,-----r-----+ btl) (D) 

h(l-l) • 
v 

h (2) • 
1 

Figure 4.3: Rate-(l 1)/1 systematic ring convolutional encoder 

where each akv is a vector of l - 1 M-ary integers, that is, 

( i) 
ak" E {O, 1, ... ,(M - 1)}, (4.2) 

where xt represents the non-conjugate transpose of x. The coded output sequence b{D), 

where each bkv is a vector of l .1\;I-ary symbols similar to ak", is related to a(D) by 

b(D)t = a(D)tG(D). (4.3) 

As in the field case, a systematic ring convolutional encoder is always minimal and 

non-catastrophic [MM89]. That is, there is no infinite weight input sequence that produces 

a finite weight output sequence. 

The feedback realisation of a rate-(l 1)/[ systematic convolutional encoder is 

shown in Figure 4.3. The 8 and ED symbols represent modulo-.1VI multiplication and 

addition respectively. The transfer function for such an encoder is 

1 0 
H(l)(D) 

H(O)(D) 

G(D) (4.4) 

° 
1 

H(l-l)(D) 

H(O) (D) 

where H(i)(D) = h~i) + h~i) D + ... + h~) D V and v is the number of delay cells in the 

encoder. Note that the element h~O) is always equal to one. 

Permutations between the redundancy-carrying output line and the information

carrying output lines are necessary, as the different permutations may produce differ-
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ent overall encoders when combined with CPFSK [YT94]. A permutation between the 

redundancy-carrying output line and the i-th information-carrying output line corresponds 

to a permutation of the l-th column and the i-th column of G(D). Permutations of the 

information lines are not necessary, as we assume the input data is random. For a rate

(l 1) / 1 encoder there are 1 permutations and thus l different encoders. 

4.5 Code Search Model for CPFSK 

As discussed in Section 2.9, the NMSED of a coherent CPFSK system significantly affects 

its performance. A channel encoder seeks to increase the NMSED of the system. Thus 

for a given throughput and complexity, coded CPFSK systems are compared the basis 

of their NMSED. A code search model should allow the NMSED of the system to be 

easily determined. In Section 2.8.1 we presented a formula for the NISED of a CPFSK 

system which was based only on X n1 the input to the memoryless modulator at time n. 

By determining the transfer function of the overall encoder formed by the cascade of the 

channel encoder and the feedback-free CPE, we can calculate the NISED of the coded 

system using X n' 

The transfer function of the feedback CPE is 

C(D) = [1 (4.5) 

and that of the scrambler 

T(D) = [1 DJ. (4.6) 

The transfer function of the feedback-free CPE is obtained by cascading T(D) and C(D), 

C(D) = T(D)· C(D) (4.7) 

Figure 4.4 illustrates the feedback-free CPFSK system encoded with a convolutional chan-

nel encoder over The input data sequence a(D) is encoded by G(D) and the 1 elements 

of the output encoded sequence b(D) are then individually selected by the commutator 

and processed by the feedback-free CPE C(D) to produce the input to the memol'yless 

modulator from which the NMSED of the channel encoder can be calculated. 

It is convenient to move the commutator through the system to just in front of 

the memoryless modulator. Thus the scrambler and the CPE must proeess 1 symbols at 

a time. Let TI(D) and CI(D) denote the equivalent 1 x land 1 x 2l versions of T(D) and 

C(D) respectively. The equivalent l x 2l-version of C(D) is denoted (D) and its output 
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Overall Encoder 
- -, 

a(D) : 
G(D) 

L _ 

Figure 4.4: Coded CPFSK system with scrambler 

Overall Encoder 

,----- - - - .., , 
a(D) , 

I, I G(D) • b(D) : Tl(D) 

: I 

b(D) 
C1(D) 

:: c(D) 
, 

I I :. " 
1- ___ 

- -- :' 

Figure 4.5: Coded CPFSK system model for code searches 

is denoted c(D) where each Ckv is a vector of 2l M-ary symbols, similar to aklf' Figure 4.5 

shows the system using these equivalent encoders. Note that X n is a 2-element vector, 

and the commutator selects all the elements of each Cklf in pairs, that is, 

i = 1, ... ) I, kvl ~ n < (kv + 1)1. (4.8) 

Using the model in Figure 4.5 the NISED between two encoded sequences C and cover 

the kv-th trellis interval, denoted O~If(C,C), is defined as 

(4.9) 

where 

C(2i-l) _ c(2i-l) 
kv - kif ' 

(4.10) 

and r is the rate of the encoder. Using (4.9), we write the normalised squared Euclidean 
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distance between two coded sequences c and c as d2 (c, c), given by 

d
2 

( c, c) = I: 0tv ( c, c) . (4.11) 

kv 

Similarly, the NMSED of a coded CPFSK system is given as 

min d2 (c, c). (4.12) 
C,c 

c=/=c 

6 Overall Encoder a Coded CPFSK System 

Like its components-the CPE and the channel encoder-the overall encoder is also a 

linear encoder over 'ilJ\1. Both the 1 x 2- and l x 2l-forms of the CPE contain only one 

delay element, so the overall encoder will contain v + 1 delay elements. Let be the 

number of states in the channel encoder. There will be M states in the CPE, but as the 

overall encoder is not systematic, it will not necessarily have SG . M states. In [YT94], 

Yang and Taylor prove that the number of states in the overall encoder, denoted Sv, is 

given by 

(4.13) 

where ns is the number of different values that the 2l-th element in bk]7 takes before the 

channel encoder merges to the zero state. The quantity Sv will have a large influence on 

the complexity of an encoded CPFSK system, as the size of the system trellis will depend 

on the number of states the overall encoder Sv, and the number of branches per state, 

which is equal to Ml-l. 

4.6.1 Rate-l/2 Ring-Coded 4-CPFSK Overall Encoder Example 

Let us consider rate-1/2 encoded 4-CPFSK. channel encoder used is then a convolu-

tional encoder over with transfer function 

G(D) 
1 

(4.14) 
1+2D 

Using the general form of G(D) given in (4.4) and Figure 4.3, an implementation of (4.14) 

can be found. This is shown in Figure 4.6, where the summer to left the delay element 

has been removed as it only had one input. The minus sign into that summer has also been 

removed, as 2 -2 modulo-4. The trellis diagram of this channel encoder is shown in 

Figure 4.7, where content of the delay element is shown, along with the input and output 
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a(1) (D) ---------'1""-->- btl) (D) 

b(2) (D) 

Figure 4.6: Implementation of G(D) [1 l+~D] 

o 

2 

0(00) ____ ----,,0 0 
2(22) 

1(11) 
3(33) 

0(02) 
2(20) 

1(13) _____ --'" 2 
3(31) 

Figure 4.7: Trellis diagram of G(D) = [1 l+~D] 

for each transition as a(1)(b(1)b(2)). Note that are parallel transitions between the 

states. 

By cascading the channel encoder with the 2 x 4-version of the feedback-free OPE, 

we obtain an overall encoder that is a rate-1/4 encoder with transfer function 

G(D) C2(D) = [1 1] [ 1 
1 + 2D 3D ; : ~l 

[ 
1 +D D 

1 + 2D 1 + 2D 

3 + 2D ] 1 . 
1+2D 

(4.15) 

This overall encoder is shown in Figure 4.8, and its trellis is illustrated in Figure 4.9. The 

contents of the two delay cells are used to identify the states, and the input and output for 

each transition are labelled as a(l) (c(1)c(2)c(3)c(,1)). If we look at the value of b(2) in each 

codeword that merges to the zero state in Figure 4.7, we find that there are two distinct 

values, zero and two, thus ns = 2, and from inspection of Figure 4.7 we find that there two 

states in the channel encoder so that SG = 2. Substituting these values into (4.13) we note 

that there should be four states in the overall encoder, and from inspection of Figure 4.9, 

we find this to be the case. It is important to note that each transition in the trellis of 

Figure 4.9 represents two symbol intervals, as the memoryless modulator processes two 

elements of Ckv each symbol period. 
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b(l)(D) 
a(l) (D) --------r----;'------+<+ 

b(2) (D) 
+}---+--~~ 

'-------+-----+ c( 4) (D) 

Figure 4.8: Implementation of G(D) C2(D) D 3+2D 1] 
1+2D 1+2D 

(SeE) 

(0, 0) ~O(OOOO) --------:;1> (0,0) 

1(1001) 

2(2002) 

3(3003) 

0(2200) 

i1(3201) 

---1{---f-------,;;O (2, 1) 

(0, 2) ~2(0202) ---*--+----.....::;i> (0,2) 

3(1203) 

2(3322) 

'-

3(0323) 

0(1320) 

(2,3) 1(2321) ------~ (2,3) 

Figure 4.9: Trellis diagram of G(D) C 2 (D) = [t:lb 
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G(D) 

I i I • 

a(D) : 
G(D) 

b(D) 
Tl(D) 

: b(D) 
I I 

C(D) 
I I 

I I 

Figure 4.10: Actual implementation of a coded CPFSK system 

4.7 Implementation of a Coded CPFSK System 

Although we may use the model Figure 4.5 for code searches, the actual implementation 

in a communication system is more like that shown in Figure 4.10. The code chosen to be 

used in the system is scrambled by T1(D) to form G(D), which is then used to encode a 

standard CPFSK system. Note that the scrambled code is no longer systematic. 

4.7.1 Rate-1/2 Ring-Coded 4-CPFSK Implementation Example 

We use the same channel encoder as that in the example in Section 4.6.1. This is then 

scrambled by the 2 x 2-version of T(D) to form the transfer function 

G(D) = G(D). (D) 

1 

1+2D 

1+D 

1+2D 
3 + 2D] . 
1+2D 

(4.16) 

This scrambled channel encoder is shown in Figure 4.11, and its trellis is illustrated in 

Figure 4.12. The contents of the two delay cells are used to identify the states, and 

the input and output for each transition are labelled as a(l) (b(1)b(2)). The output of the 

scrambled channel encoder b(D) can then be sequentially fed into a standard CPFSK 

system, to produce a coded CPFSK system with a system trellis which is that shown in 

Figure 4.9. 

4.8 Euclidean Distance Model of DCPFSK 

As discussed in Section 3.8, we have chosen to use a DCPFSK receiver that seeks to min

imise the squared Euclidean distance (SED) between the received signal and the possibly

transmitted signals. We assume that the performance of such a receiver is dominated by 

its NMSED (see Section 3.10), thus we wish to find codes for DCPFSK with maximum 
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a(1)(D) 
b(1) (D) 

b(l) (D) + kt, 

b(2) (D) 

+ 

+ b(2)(D) 
kv 

Figure 4.11: Implementation of G(D) 3±2D] 
H2D 

(SeE, Sscram) 

(0,0) ~O(OO)--------;;j> (0,0) 
1(10) 

2(20) 

3(30) 

2(12) 

(2, 1) ~3(22)----\--*--f--~ (2,1) 

\0(32) 
1(02) 

0(20) 

b1(30) 

(0, 2) ~ 2 (00 )-+--*----\------4 (0, 2) 

3(10) 

2(32) 

i 3(02) 

0(12) 

(2, 3) 1(22)------~ (2,3) 

Figure 4 12' Trellis diagram of G(D) = [ HD . . H2D 
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NMSED. In order to preform code searches, we need to develop a model that allows the 

characteristics of the demodulated DCPFSK signal to be calculated from the input to 

the memoryless modulator. By comparing the NISED of CPFSK and DCPFSK given by 

(2.60) and (3.60) respectively, we see that if we introduce a 2x1 vector X n , with elements 

and Pn-l, (4.17) 

then we can write the NISED of DCPFSK, as given in (3.60), as 

[ 

( [

V (1) v (2) ;c (1) ~ (2)]) ( [ v (2) ~ (2)]) 1 sin 21rh Xn +Xn -Xn -Xn -sin 21rh Xn -Xn 

log2 1vI 1 - (V(l) <:ell)) , 
21rh Xn -Xn 

v (1) -::, (1) 
Xn :f. Xn 

[ ( [

V (2) -::, (2)] )] log2 M 1 - cos 27rh Xn - Xn , 
v(l) -::,(1) 

Xn X n · 

(4.18) 

A coherently-demodulated CPFSK system with as the input to its memoryless modu-

lator will produce signals with a NISED given by (4.18). An encoder to produce from 

Pn is shown in Figure 4.13. We call this encoder the differential decoder as it removes the 

effect of the differential encoder. Note the use of the 83 to indicate standard addition and 

not modulo addition. The transfer function of the differential decoder is· 

R(D) = [1 B D D]. 

The B is used to denote standard subtraction and not modulo subtraction. 

Pn ---r---~ v (1) 
Xn 

--+---i>- XV (2) 
n 

Figure 4.13: Differential decoder 

4.14: Differential continuous phase encoder/decoder 

(4.19) 

The encoder to produce X n from Un is just the differential encoder of Figure 3.3 

cascaded with the differential decoder, and is shown in Figure We call this the 



differential continuous phase encoder/decoder (DCPED). The 

differential encoder is 

E(D) = [lID]' 
so the that the transfer function of the DCPED is 

F(D) = E(D) . R(D) 
IBD 

1 D 

function of the 

(4.20) 

(4.21) 

Thus for Euclidean distance purposes, we can model a DCPFSK system as shown 

in Figure 4.15. We have effectively split the differential demodulator in a DCPFSK system 

into a differential decoder before the memoryless modulator and a coherent demodulator 

in the receiver. 

F(D) 

I I 

I s(t, U) Un I f3n : Xn I E(D) R(D) 
I - I MM 
I I 

I I 

Figure 4.15: Euclidean distance model of DCPFSK 

4.9 Code Search Model 

We use the channel encoder from Section 4.'1 to encode DCPFSK. Consequently, we 

must remove the feedback in our DCPFSK model, and this is done by using the scrambler 

discussed in Section 4.3. By cascading the scrambler with the DCPED we have the transfer 

function 

F(D) T(D) . F(D) = [1 B D D]. (4.22) 

Note the similarity with the transfer function of the feedback-free CPE given in (4.7) the 

only difference is in the arithmetic. The feedback-free DCPED is shown in Figure 4.16, 

and the similarity with 4.2(b) is evident. 

Figure 4.16: Feedback-free DCPED 

73 



Overall Encoder 

F(D) I 

r- - - - - - - - - -,::::-... ="':::-=-=:"::;-'1 

II v 

II Xn Un I T(D) MM 
s(t, U) 

I 

Figure 4.17: Coded DCPFSK system with scrambler 

Overall Encoder 

Figure 4.18: Coded DCPFSK system model for code searches 

In Figure 4.17 we illustrate the coded DCPFSK system using the scrambler, which 

is very similar to that of the CPFSK case shown in Figure 4.4. Let Fl(D) and Fl(D) 

denote the equivalent l x 2l-versions of F(D) and F(D) respectively, and let the output 

of (D) be denoted c(D) where each Ckjl is a 2l x 1 vector whose elements c~i~ are such 

that 

{ 

(M-l), ... ,-I,O,I, ... ,M-l}, 

{O, 1, ... ,AI-I}, 

i odd 

i even 

(4.23) 

Although the overall range for the odd-numbered elements of Ckjl has 2A1 - 1 values, it is 

important to note that at anyone time the odd-numbered elements of Ckjl can only take 

on one of M values due to the structure of the DCPED. 

The final system model for DCPFSK code searches is shown in Figure 4.18, which 

again compares to the CPFSK model in Figure 4.5. Note that is a 2 x 1 vector, and 

the commutator selects all the elements of each Ckv in pairs, so that 

i 1,2, ... , l, kvl ( n < (kv + l)l, (4.24) 

as in the CPFSK case. 

Using the model in Figure 4.18 the NISED between two encoded sequences C and 

74 



g over the kv-th trellis interval, denoted 6~v (c)), is defined as 

I ( [V(2i-1)] ['0(2i-1)] ) 2 v::' /'; 2 Ckv Ckv 
6kv (c, c) = I: di v(2i) , '0(2i) , , 

2=1 Ckv Ckv 

( 4.25) 

where 

( [ Ck~-l)l [8i~~1)l ) A d; v(2i) d 22) , 
Ckv Ckv 

8m 7f C
kv 

C
kv 

-Ckv -Ck
V 

-8m 7f Ckv -CkV v(2i-1) -1- d2i-1) 
'{' log2 M 1 - (v(2i-1) ~(2i 1)) ,Ckv T Ckv 

{ 

[

. (2 h[v(2i-1)+v(2i) ~(2i-1) ~(2i)]) . (2 h[v(2i) ~(2i)]) 1 
27fh C

kV 
-Ck

V 

[ ( h [
v(2i) d 2i)])] v(2t-1) d 2i-1) 

'{' log2 M 1 - cos 21T Ckv - Ckv ' Ckv = Ckv 

( 4.26) 

Using (4.25), we write the normalised squared Euclidean distance between two coded 

sequences c and C as d2 (c, c), given by 

d
2 (c,8) = I: 6~v (c, 8). 

kv 

Similarly, the NMSED of a coded DCPFSK system is given as 

d~in = mip. d
2 (c, 8). 

c,c 
c#8 

4.10 Overall Encoder in a Coded DCPFSK System 

( 4.27) 

( 4.28) 

Although the output of the overall encoder in Figure 4.18 follows the slightly peculiar 

format of (4.23), the overall encoder is still a linear encoder over ZM. Also, all the delay 

elements of the overall encoder will contain only elements of ZM. Due to the similar

ity between the feedback-free CPE and the feedback-free DCPED, similar reasoning to 

Section 4.6 can be applied, and the number of states in the overall encoder in a coded 

DCPFSK system can be determined using (4.13). 

4.10.1 Rate-1/2 Ring-Coded 4-DCPFSK Overall Encoder Example 

We again use the same channel encoder as that in the example in Section 4.6.1. When 

this is cascaded with the 2 x 4-version of the DCPED we obtain an overall encoder that 

is a rate-1/4 encoder with transfer function 

G(D) F2 (D) = [1 1 :2D] [B~ 
0 BD 1] 
D 1 0 

[1 + 2D E3 D D 1 E3 (1 + 2D) 
1] . 

1 +2D 1+2D 1+ 2D 
( 4.29) 
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b(l) (D) 
a(l) (D) -------r------t------+i c(1)(D) 

C(2) (D) 

2 

c(3) (D) 

C(4) (D) 

D lE3{1+2D) 1] 1+2D 1+2D Figure 4.19: Implementation of G(D) F2(D) 

(SeE, 

(0, 0) ~O( 00 00) --------,JO (0,0) 

1( 10 01) 

2( 02) 

3( 03) 

-7f--+-----"" (2,1) 

0(-22 41(-12 
(0,2) 2( 02 (0,2) 

3( 12 

" 

2(-13-22) 

'-3( 03-23) 
O( -33 20) 

(2,3) 1(-23 21) (2,3) 

Figure 4.20: Trellis diagram of G(D) F2(D) = [11~~~D 
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This overall encoder is shown in Figure 4.19, and its trellis is illustrated in Figure 4.20. 

The contents of the two delay cells are used to identify the states, and the input and output 

for each transition are labelled as a(1)(c(1)c(2)c(3)c(4)). Note that some of the elements in 

the first and third positions are negative, and this is the difference between the CPFSK 

and DCPFSK cases. 

As the channel encoder is unchanged from Section 4.6.1, ns = 2 and SG = 2 so that 

from (4.13) we would expect the overall encoder to have four states. From inspection of 

Figure 4.20 we find this to be the case. Again, each transition in the trellis of Figure 4.20 

represents two symbol intervals, as the memoryless modulator processes two elements of 

Ckv each symbol period. 

4.11 Implementation of a Coded DCPFSK System 

In an actual coded DCPFSK the output of the channel encoder would be processed 

by a standard DCPFSK transmitter, consisting of a differential continuous phase encoder 

(DCPE) and a memory less modulator. The transfer function of the DCPE C(D) is the 

cascade of those of the differential encoder and the CPE, 

C(D) E(D) . C(D) = [1 ~ D (1: D)2 ] . (4.30) 

Figure 4.21 illustrates the implementation of a coded DCPFSK system, the chosen code 

is scrambled and fed into a standard DCPFSK system. 

I 

a(D) : 
I 

I 

I 

4.11.1 

G(D) 

G(D) b(D) I TI(D) 

I • 

: b(D) 
I 

I 

I 

X Un J I ~nJ I s(t,UJ, 
. ~ C(D) I ~ MM. .. 

Figure 4.21: Implementation of a coded DCPFSK system 

Ring-Coded 4-DCPFSK Implementation Example 

We continue to consider the channel encoder of Section 4.6.1, and as the scrambled code 

is independent of the demodulation used, the transfer function of the scrambled code is 

given by (4.15) and its implementation and trellis are illustrated in Figures 4.11 and 4.12 

respectively. Once fed into a standard DCPFSK system, the demodulated received signal 

would have the system trellis given in Figure 4.20. 
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Code Search Procedure 

For each value of lJ every possible generator matrix G(D) is generated and combined 

with the l x 2l-version of the either the feedback-free CPE or the feedback-free DCPE to 

form the required overall encoder. Note that there will be MI(v+1)-l different generator 

matrices. The NMSED of the coded system can be calculated using either (4.12) or (4.28) 

and the Viterbi algorithm [BDMS91]. As well as the :.JMSED of the coded system, the 

value of 8 v must be recorded to ensure that coded systems of similar complexity can be 

compared. 

4.13 Code Search Results 

Two coded CPFSK and DCPFSK systems were considered, rate-l/2 encoded 4-CPFSK 

and rate-l/2 encoded 4-DCPFSK, which compare to uncoded MSK and uncoded DMSK 

respectively, and rate-2/3 encoded 8-CPFSK and rate-2/3 encoded 8-DCPFSK which com

pare to uncoded 4-CPFSK and uncoded 4-DCPFSK respectively, in terms of their infor

mation bit-rates. Tables 4.1 and 4.2 show the results of the searches, an * by the NMSED 

indicates that a search was not complete. 

The results are ordered according to 817 as this determines the system complexity. 

G(D) given are just sample codes, &'3 for each set of parameters there are a few codes 

that have the d:nin given, and the fullEst of codes can be found in Appendix G. All the 

coherent results found agree exactly with [YT94]-in terms of d~in ---except in the octal, 

Sv = 16, lJ 1 case. best d:nin given for this case in [YT94] was 2.38, compared 

to the 2.81 found here. Only one code was given for each coherent case in [YT94], but 

a later paper [LJKK97] performed similar code searches for rate-l/2 encoded 4-CPFSK 

with Sv 4,8,16. We found the same codes as [LJKK97] along with one additional code 

for the Sv = 4 case. 

For rate-1/2 encoders working with 4-CPFSK and 4-DCPFSK systems (Table 4.1), 

there is always a loss in d~in going from coherent to differential demodulation, although 

this may be as low as 0.03. Note that for the S17 4 and S17 8 cases, the same codes 

have maximum d~in for both coherent and differential demodulation. In all the other 

M 4 cases, different codes are required to achieve the maximum d~in for coherent and 

differential demodulation. 

For rate-2/3 encoders working with 8-CPFSK and 8-DCPFSK systems (Table 4.2), 
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Table 4.1 

Search results for rate-1/2 encoded 4-CPFSK and 4-DCPFSK 

Bv v 

4 1 3.15 

8 1 4.09 

16 2 5.15 

32 3 6.00 

64 3 6.42 

128 4 7.60 

Coherent 

G(D) 

2D
3
+D

2
+3] 

D3+2D+l 

2D
4
+D

3
+2D+l] 

D4+2D3+D2+1 

3.00 

4.00 

4.94 

5.45 

6.39 

7.00 

Table 4.2 

Differential 

[1 

[1 

[1 

[1 

[1 

G(D) 

[
1 D2+D+2 ] 
.. 2D4+2D3+D2+3D+l 

Search results for rate-2/3 encoded 8-CPFSK and 8-DCPFSK 

(the * indicates that the search was not complete) 

8 1 

16 1 

32 2 

2.18 

2.81 

2.93* 

Coherent 

G(D) 

o 6D + 4] 
1 4D+2 

2.18 

2.81 

2.93* 

Differential 

G(D) 

o 6D + 4] 
1 4D+2 

2D+4 ] 
3D2+4D+l 

Dtl 

the d;nin of a code was found to be the exactly the same for both coherent and differential 

reception, at least for the Bv = 8 and Bv 16 cases. A very limited search of Bv = 32 

codes showed the same characteristic. Note that these trellises are very big) as a rate-2/3 

encoder with octal symbols implies 64 branches from each state in the trellis. 
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4,14 

In this chapter we presented the method used to encode CPFSK in [YT94j. A systematic 

convolutional channel encoder over is combined with a feedback-free M-CPFSK sys-

tem. The combination of the channel encoder and the feedback-free CPE forms an oveTall 

encoder that is also a linear encoder over '£'.,j\1. A model for code searching can then be 

constructed using this overall encoder as in [YT94]. We then applied a similar method to 

develop a Euclidean distance model of DCPFSK which led on to a code search model of 

DCPFSK. 

The results of the code searches. showed that very little performance is lost (in 

terms of NMSED) when going from CPFSK to DCPFSK. In the case of rate-2/3 encoded 

8-CPFSK and 8-DCPFSK, it was found that there was no difference in NMSED between 

the encoded coherent and differential systems. 
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Chapter 5 

erformance of Coded ( ) 

Systems in AW N 

5 .1 Introduction 

Although the normalised minimum squared Euclidean distance (NMSED or d~in) of a 

coded (D) CPFSK system is the most important performance figure, it does not tell the 

whole story. In the uncoded cases, the simple approximations of (2.62) and (3.112) approx

imate a system's performance adequately, as an uncoded system has a very small system 

trellis. In the coded cases, the system trellises are much more complicated, so that further 

analysis is required to accurately predict their performance. The problem is that there 

may be many different paths through the trellis that achieve d~in' so that each path's 

contribution to the probability of bit error Pe must be considered. Additionally, there 

may be other paths through the trellis that have a normalised squared Euclidean distance 

(NSED) very close to the d~in whose contribution to Pe may also be significant. 

In [Yan94], Yang applies average transfer function techniques to this problem. How

ever, the computation is very complex and significant approximations need to be made. 

In this chapter we apply a simpler brute-force method to determine the contribution of 

the paths through the system trellis. In Section 5.2 we apply the work in [Yan94] to our 

coded models of CPFSK and DCPFSK to obtain a union bound on Pe , which consists of 

a sum of distance terms and error coefficients. We discuss how to calculate these error 

coefficients in Section 5.3. We present the computed and simulated results for various 

coded and uncoded (D)CPFSK schemes in Sections 5.4 and 5.5 respectively. We compare 

comparable systems' performance in Section 5.6 to determine the improvements available 

through coding. We summarise the chapter and draw some conclusions in Section 5.7. 
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Sv "' 
o 

• 

V 
1 

Figure 5.1: A transmitted path in the trellis of the overall encoder 

5.2 Probability of Error Analysis 

The analysis focuses on the code search models for coded CPFSK and DCPFSK shown 

in Figures (4.5) and (4.18) respectively, as they enable us to treat all the encoders in a 

system as a single overall encoder. Figure 5.1 shows the an example transmitted path 

in an overall encoder. In each system trellis interval lIM -ary information symbols 

are encoded and transmitted. The information symbols transmitted in the kv-th trellis 

interval are denoted akIn as defined in (4.2), and the entire sequence is denoted a{D). The 

elements aii~ are assumed to be independent and identically distributed. The received and 

decoded sequence is denoted a(D). There are Sv states the overall encoder and the 

state sequence that the transmitter goes through is denoted S{D), where 

S(D) Sky E {1, 2, ... ,Sv}. (5.1) 

The state sequence that the receiver goes through is similarly denoted by S(D). 

Let us assume that the transmitted sequence a(D) is L trellis intervals long. The 

total number of information symbols in the transmitted sequence is then (l 1) L, and the 

total number of transmitted bits is equal to (l - 1) 10g2 M L. Let mb[a(D), a(D)] be the 

number of bits that differ between a(D) and a(D), using an appropriate mapping method 

(e.g., natural or Gray). The probability of a bit error is defined as the expected number 

of information bit errors per decoded information bit, 

~ E [mb[a(D), a(D)]] 

(l - 1) log2 M L 
(5.2) 

where the expectation is over the sequence pairs (a(D), a(D)). The upper bound on Pe is 

then obtained by letting L -t 00. Strictly speaking, unless the transmission is assumed to 
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1 III 

Figure 5.2: An example of an error event in a four-state trellis. S(D) is the transmitted 

path, and S(D) the receiver's decided path 

start at time -00 and end at time +00, this probability is a function of the discrete time 

kv at which the error event starts. We assume that the transmission is long enough that 

we may disregard this difficulty. 

We now need to define what an error event is. An error event [ is said to extend 

from time kVl to kvz if S(D) is equal to S(D) at times kVi and kV2' but nowhere in between, 

so that 

, 

SkVl SkVl 

Skv -I- Skv, kVl < kv < k1i2 (5.3) 

SkV2 SkV2' 

The length of the error event is defined as ( k1i2 kV1 · An example error event in a 

four-state trellis is illustrated in Figure 5.2. Note that for S(D) and S(D) to diverge at 

Whenever a decoding error occurs, an error event must be in progress or starting. 

Assume the sequences a(D) and a(D) generate a sequence of error events. The random 

variables Wkv' kv 0,1, ... ,L, are defined in the following manner: if a(D) and a(D) are 

such that an error event starts at time kv, then let Wkv denote the number of information 

bit errors by the entire error event in question. If a(D) and a(D) are such that 

an error event does not start at time kv (or an error event is already in progress), then 

O. The total number of information bit errors caused by a(D) and a(D) is 
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S 

kv 

Figure 5.3: A specific error event £S,m starting from state S at time kv 

WkF' and the bit error probability can be written as 

(l - 1) 1~g2 M L E [[,-1 WkF] 
kF=O 

L-1 

(5.4) 

To find E [WkF], let us study the set of all error events starting at time kv. Take an 

arbitrary state S, S E {1, 2, ... ,Bv}. Find all the error events which start from this state 

and number them £S,1, £S,2,' .. ,£S,m,' .. Each error event £S,m is completely described by 

its start state and the pair of sequences (a~,m(D), a~,m(D)) which generate £S,m, asshown 

in Figure 5.3. As (D)CPFSK codes are not linear, this process must then be repeated for 

the other Bv - 1 states. The length (in trellis intervals) of eaci:1" error event is called 

(S,m, and the number of information bit errors contributed by each error event LS,m' The 

normalised squared Euclidean distance (NSED) associated with the specific error event 

£S,m is d~,m' So far, we have studied the set of all error events starting at time kv. Each 

specific member in this set is (partially) characterised by the three parameters LS,m, (S,m 

and 4m' , 

Our goal is to upper bound E [WkF 1 in (5.4). To be able to do this we define the 

events EkF,S,m and £kF,S,m, kv = O,l, ... ,L 1, S = 1,2, ... ,Bv, 'm 

finite), as 

Ek\f,S,m: the event that a(D) is such that Sk\f = Sand 

akF + ak\f+1 D + ... + ak\fHs,m-1D(s,m-1 a~,m(D) 

6kF,S,m: the event that a(D) is such that Sk\f = Sand 

akF + ak\f+1 D + ... + ak\fHS,m-1D(S,m-1 a~,m(D). 
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Thus the probability that event ckv,S,m will occur is given by 

Pr{Ckv,s,m} = Pr{Sky = S} Pr{ aky + akv+1D + ... + akyHs,m_1D(s,m-1 a~,m(D)}. 

(5.5) 

As we are assuming that the information bits are independent and equally likely, 

we have 

Pr{Sky S} 

and 

1 

Sv' 
S = 1,2, ... ) (5.6) 

( 

1 )(I-l)(S,m 

M' (5.7) 

Substituting (5.6) and (5.7) in (5.5), we obtain 

1 (1) (l-l)(S,m 

Pr{cky,s,m} = Sv M . (5.8) 

The situation when the specific error event £S,m actually occurs is described by 

the joint event (cky,S,m, 

E [Wky], we have 

,S,m) starting at level kv. By applying the union bound to 

:::;; L L LS,m Pr{ Cky,S,m, ,S,m} 
S m 

= L L LS,m Pr{tky,s,mlcky,S,m} Pr{cky,s,m}' 
S m 

For coherent reception, the quantity Pr{tky,s,mlckv,S,m} is given by [For72] 

Using (5.8) and (5.10) in (5.9), we obtain 

E[Wkyl :::;; Sl LL LS,m (~) 
V S m 

We can rewrite (5.8) in terms of the variables L, (, d as 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

where ry(S, /', (, d) is the number of error events starting from state S, assuming the trellis 

is infinite, having L information bit errors, a length of ( trellis intervals and a NSED equal 

to d2
, and V is the set of all NSEDs for the code in question. 
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As we have assumed that the transmitted sequence is sufficiently long (L -+ 00), 

we can say that E [Wkv 1 is independent of kv [Vit71], so that 

E [Wkvl = E [Wl, Vkv, (5.13) 

and consequently (5.4) becomes 

(5.14) 

Using (5.12) in (5.14), we obtain 

1 
( 

1 ) (1-1) ( (fd2E:) 
( ~ 7](S,L,(,d) L M Q V N; . (5.15) 

log2 MSv s 

By defining the error coefficient as 

3(d) ,§, (l ) 1 LV 7](S,L,(,d)L (M1 
), 

1 log2 MSv 6 
S L ( 

(5.16) 

and using (5.15) we can write the union bound on the probability of bit error for a rate

(l 1) / l coded M -CPFSK system as 

~ L 3(d) Q (Va~~,) , 
dED 0 

(5.17) 

where 3(d) and d2 in (5.17) can be calculated using (5.16) and (4.11). 

By using the assumption that differential demodulation incurs a 3dB noise penalty 

over coherent demodulation-~as discussed in Section 3.lO-we can write the union bound 

on the probability of bit error for a rate-(l - l)/l coded M-DCPFSK system as 

(5.18) 

Note that 3(d) and d2 in (5.18) should be calculated using (5.16) and (4.27). 

At high SNR, the contribution of the Q-function to both (5.17) and (5.18) is gener

ally more significant than that of 3 (d). Thus the term with the NMSED d~tin will dominate 

performance, and approximations to (5.17) and (5.18) are given by 

Pe,coh ~ B(dmin) Q ( d;'inE , ) 

No 
(5.19) 

Pe,diff ~ B(dmin) Q ( ~inEb ) . 
2No 

(5.20) 

A further approximation may be obtained by setting 3(dmin) equal to one, indeed, (2.62) 

and (3.112) can be obtained in this manner. 
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5.3 Calculating the 

The expression for the error coefficient in (5.16) assumes an infinite trellis, which implies 

that the sums over ( and!' may be infinite, and makes exact calculation of 3(d) by a search 

method impossible. In [Yan94] Yang avoids this by reformulating (5.15) into an average 

transfer function problem, but then has difficulty with computation requirements. 

We choose instead to use a limited-length exhaustive search. By limiting the length 

of the error events to a set number of trellis intervals, we ensure that all the sums in (5.16) 

will be finite. To facilitate a limited-length search, we rearrange (5.16) into the form 

3(d) £ 
1 (1)(1-1)( 

I M S M I: I: 7] (S, !', (, d) !, • 

og2 V ( S L 

(5.21) 

The quantity I:s I:L 7](S, i, (, d) i in (5.21), can be thought of as the total number of bit 

errors for all error events with length ( and NSED d2
. This enables us to organise the error 

event information by NSED and length. During the exhaustive search, each error event 

that merges within the set number of trellis intervals must be noted, along with its length 

(in trellis intervals), number of bit errors and NSED. Once this is done, an approximate 

Pe can be easily calculated. It is also very important to record the smallest of the 

unmerged error events. reason for this will become apparent in the next ovv"LVLl. 

5,4 Performance of Coded (D)CPFSK Systems 

In this section we present the results of the limited-length error coefficient searches, and 

compare them with of simulations. The simulation models used are the same as 

those discussed in Sections 2.10 and 3.11, except for the extra encoding and decoding. The 

graphs presented all follow a similar format, comparing various computed approximations 

with simulation results. There are three different computed performance approximations 

used: a partial union bound, a 2-dB approximation, and a simple approximation. Each 

is based on the results of the error coefficient searches and either (5.17) or (5.18). The 

partial union bound is denoted by a solid line and uses all the contributions of all the 

error coefficients and distances found in the searches. It is important to note that this is 

a truncated bound as the searches only find the error events up to a certain length. The 

2-dB approximation is denoted by a dashed line, and only uses the contributions of the 

error coefficients whose distances are less than 2 dB away from the d~in of the system. 

The simple approximation is denoted by a dotted line, and uses only the d~in term with 

B(drnin) 1, similar to (2.62) and (3.112) used in Sections 2.9 and 3.10 respectively. 
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Figure 5.4: Computed and simulated performance of 4-state, rate-l/2 encoded 4-CPFSK 

using G(D) = [1 2IiH]. The computed approximations and bounds were calculated using 

(5.17) and Table 5.2(a). 

5.4.1 Performance of 4-state, rate-l/2 encoded 4-CPFSK 

Table 5.1(a) shows the results of the exhaustive error coefficient search for 4-state, rate-

1/2 encoded 4-CPFSK using G(D) = [1 , the error events are limited to two trellis 

intervals. The smallest cP of the unmerged error events is 2.09, which is than the d!in 

of the system. The squared Euclidean distance (SED) incurred over each unmerged trellis 

interval is always positive, but may be small enough to add to the error coefficient for the 

3.15-distance term, or even to introduce an entry between the 3.15 and 4.00 entries. In 

Table 5.2(a), which has been truncated due to the large numberof entries, we present the 

results of the exhaustive error coefficient search for the same system but limited to six trellis 

intervals, and it is evident that the longer error events introduce two new terms between 

the 3.15 and 4.00 entries. The smallest d2 of the unmerged error events in Table 5.2(a) 

is 5.00, which is 2 dB greater than the d;nin of the system. Using (5.17) and results in 

Table 5.2(a), we can produce computed approximations for the performance of this system, 

as shown in 5.4. All the computed curves agree with the simulation results at high 
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Table 5.1 

Error coefficients for 4-state, encoded 4-(D)CPFSK llsing (D) [1 

(2 intervals deep, smallest d2 of unmerged error events: 2.09) 

(a) 4-CPFSK (b) 4-DCPFSK 

d2 ( LL 1)(8".(,d) 
s 3(d) d2 ( LL 1)(8.L,(,d) 

I R • 3(d) 

3.15 2 72 0.56 3.00 2 64 0.50 

4.00 2 368 2.88 3.15 2 120 0.94 

4.85 2 72 0.56 3.49 2 24 0.19 

4.00 2 232 1.81 

4.34 2 24 0.19 

4.85 2 48 0.38 

Table 5.2 

Error coefficients 4-state, rate-l/2 encoded 4-(D)CPFSK using G(D) = [1 2D\1] 
(6 intervals deep, smallest d2 of unmerged error events: 5.00) 

(a) 4-CPFSK (421 entries) (b) 4-DCPFSK (1000 entries) 

d2 ( L 1)(8, '. (, d) 3(d) d2 ( 1)(8", (, d) 3(d) , 

3.15 2 72 0.56 3.00 2 64 0.50 

3.73 3 288 0.56 3.15 2 120 0.94 

3.88 3 96 0.19 3.49 2 24 0.19 

4.00 2 368 2.88 3.73 3 320 0.62 

4 576 0.28 3.88 3 320 0.62 

3 192 0.38 4.00 2 232 1.81 

4.58 3 192 0.38 2 24 0.19 

4.60 4 120 0.06 4 1280 0.62 

4.73 3 320 0.62 3 384 0.75 

4.85 2 72 0.56 4.58 3 128 0.25 

4 1152 0.56 4.60 4 800 0.39 

3 192 0.38 4.73 3 384 0.75 

5 864 0.11 2 48 0.38 

4 480 0.23 5.00 3 128 0.25 

5.30 4 384 0.19 5.09 4 1536 0.75 
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Figure 5.5: Computed and simulated performance of 4-state, rate-1/2 encoded 

DCPFSK using G(D) = [1 . The computed approximations and bounds were 

calculated using (5.18) and Table (b). 

SNR, but only the 2-dB approximation predicts the performance at lower SNR values. 

The 2-dB approximation uses the 10 terms whose d2 
:::;; 5.00. 

5.4.2 Performance of 4-state, rate-l/2 encoded 4-DCPFSK 

The results of the exhaustive error coefficient search for 4-state, rate-1/2 encoded 4-

DCPFSK using G(D) [1 2Li+1] are presented in Table 5.1(b), where the error events 

are limited to two trellis intervals. As in the coherent case, the smallest d2 of the unmerged 

error events is 2.09, which is less than the smallest d2 of the merged error events. The 

tnmcated results for the longer length search are shown in Table 5.2(b), and the smallest 

d2 of the unmerged error events is 5.00, which is 2.2 dB greater than the d~in of the system. 

It is also interesting to note that the differential system has more unique distances than 

the equivalent coherent system. The simulated and computed performance of this system 

is shown in Figure 5.5. The computed curves were calculated using (5.18) and the results 

in Table 5.2(b). Again, the 2-dB approximation predicts the system's performance very 
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Figure 5.6: Computed and simulated performance of 8-state, rate-1/2 encoded 4-CPFSK 

using G(D) [1 . The computed approximations and bounds were calculated using 

(5.17) and Table 5.3 

well. The 2-dB approximation uses the 12 terms whose d2 ~ 4.75. 

5.4.3 Performance of 8-state, rate-1/2 encoded 4-CPFSK 

Table 5.3( a) shows the results of the exhaustive error coefficient search for 8-state, rate-

1/2 encoded 4-CPFSK using G(D) . Due to the computation requirements, 

the error events were limited to six trellis intervals. The smallest d2 of the unmerged 

error events is 5.00, which is only 0.9 dB greater than the ~in of the system, but the 

2-dB approximation still predicts the performance of the system very well, as shown in 

Figure 5.6. The 2-dB approximation uses the 26 terms whose d2 ~ 6.48. Note that the 

simple approximation is slightly optimistic for all SNR values. 

Performance of 8-state, 1/2 encoded 4-DCPFSK 

Table 5.3(b) shows the results ofthe exhaustive error coefficient search for 8-state, rate-1/2 

encoded 4-DCPFSK using G(D) . As in the coherent case, the computation 
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Table 5.3 

Error coefficients for 8-state) rate-l/2 encoded 4-(D)CPFSK using G(D) = [1 2g:l] 
(6 intervals deep) smallest d2 of unmerged error events: 5.00) 

(a) 4-CPFSK (346 entries) (b) 4-DCPFSK (1080 entries) 

d2 ( I: I: 1)(S"",d) 3(d) 
s , 

d2 ( , ~:t1)(S",(,d) 3(d) 

4.09 3 1280 l.25 4.00 2 128 0.50 

4.15 3 256 0.25 4.09 3 1728 l.69 

4.24 4 320 0.08 4.15 3 576 0.56 

4.94 3 512 0.50 4.24 4 1248 0,30 

4.97 5 1600 0.10 4.49 3 192 0.19 

5.00 3 1536 l.50 4.94 3 576 0.56 

5.09 4 2176 0.53 4.97 5 4032 0.25 

5.36 3 1280 1.25 

5.45 4 6400 l.56 

2 256 
5.00 

3 
1.94 

960 

5.51 4 320 0.08 5.09 4 5696 1.39 

5.54 5 7680 0.47 5.34 3 64 0.06 

5.60 5 5120 0.31 5.36 3 576 0.56 

5.69 6 5760 0.09 5.43 4 384 0.09 

5.79 3 256 0.25 4 5184 1.27 

5.82 5 4608 0.28 5.54 5 35424 2.16 

5.85 3 256 0.25 5.60 5 12096 0.74 

5.94 4 2176 0.53 5.69 6 46080 0.70 

6.00 2 512 2.00 5.79 3 192 0.19 

6.09 4 5120 l.25 5.82 5 10080 0.62 

6.18 5 12800 0.78 

6.21 3 512 0.50 

3 256 
5.85 

4 
0.34 

384 

6.24 5 1600 0.10 5.88 4 2592 0.63 

6.30 4 5504 l.34 

6.36 4 2176 0.53 

4 5728 
5.94 l.66 

5 4224 

6.39 5 10752 0.66 

6.45 5 12288 0.75 

2 128 
6.00 1.00 

3 512 

6.54 6 33920 0.52 6.03 5 2496 0.15 

6.67 5 8128 0.50 6.09 4 3456 0.84 

6.79 4 2816 0.69 6.16 5 1472 0.09 

6.82 5 23040 1.41 6.18 5 15552 0.95 

4 768 
6.88 

5 
0.81 

10240 

6.21 3 768 0.75 

6.28 4 1216 0.30 

6.91 6 102400 1.56 6.30 4 6912 1.69 
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Figure 5.7: Computed and simulated performance of 8-state, rate-l/2 encoded 4-

DCPFSK using G(D) = [1 2gtl]. The computed approximations and bounds were 

calculated using (5.18) and Table 5.3(b). 

requirements limited the length of the error events to trellis intervals. The smallest d2 

of the unmerged error events is 5.00, is only 1 dB greater than the d~in of the system, but 

again the 2-dB approximation predicts the performance of the system well, as shown in 

Figure 5.7. The 2-dB approximation uses the 29 terms whose ~ ~ 6.34. Again the simple 

approximation is optimistic. 

5.4.5 Performance of encoded 8-CPFSK 

Table 5.4(a) shows the results of the exhaustive error coefficient search for 8-state, rate-2/3 

d d 8 CPFSK . G(D) [1 0 4D + 6] D t th . . enco e - usmg . ue 0 e computatIOn reqUIrements, 
o 1 2 

the error events were limited to two trellis intervals. The smallest d2 of the unmerged 

error events is 1.45, than the d~lin of the system, so the computed curves would be 

expected to be less accurate. However Figure 5.8 shows that the 2-dB approximation still 

predicts the performance of the system adequately. The 2-dB approximation uses the 9 

terms whose d2 ~ 3.46. 
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Figure 5.8: Computed and simulated performance of 8-state, rate-2/3 encoded 8-CPFSK 

using G(D) = [~ ~ 4D
2
+ 6]. The computed approximations and bounds were calculated 

using (5.17) and Table 5.4(a). 

Table 5.4 

Error coefficients for 8-state, rate-2/3 encoded 8-CPFSK using G(D) [; ~ 4D
2
+ 6] 

(2 intervals deep, smallest d2 of unmerged error events: 1.58) 

(a) 8-CPFSK (1342 entries) (b) 8-DCPFSK (1986 entries) 

I d2 ( 1)(S,t,C;,d) 8(d) 
s' 

d2 ( 2:: 'I(S,L,C;,d) 8(d) 
s , 

2.18 
1 1152 

0.57 
2 37632 

2.18 
1 2304 

0.97 
2 43008 

2.44 2 451584 2.30 2.44 2 602112 3.06 

2.56 2 43200 0.22 2.56 2 96768 0.49 

2.58 2 42336 0.22 2.58 2 96768 0.49 

2.93 2 33600 0.17 2.93 2 120960 0.62 

3.03 2 5376 0.03 3.26 2 152064 0.77 

3.26 2 87360 0.44 3.31 2 193536 0.98 

3.31 2 95508 0.49 3.45 1 2304 0.75 

3.45 1 2304 0.75 3.63 2 120960 0.62 
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Figure 5.9: Computed and simulated performance of 8-state, rate-2/3 encoded 8-

DCPFSK using G(D) = [~ ~ 4D
2
+ 6]. The computed approximations and bounds were 

calculated using (5.18) and Table 5,4(b). 

5.4.6 Performance of 8-state, rate-2/3 encoded 8-DCPFSK 

Table 5,4(b) shows the results ofthe exhaustive error coefficient search for 8-state, rate-2/3 

encoded 8-DCPFSK using G(D) = [1 0 4D + 6]. As in the coherent case, the computa-
012 

tion requirements limited the length of the error events to two trellis intervals, and the 

smallest d2 of the moT'''''''''' error events is 1,45, less than the d;nin of the system, so the 

computed curves would be expected to be less accurate. Figure 5.8 shows that this is 

indeed the case, as none of the approximations predict the system's performance satisfac

torily. The 2-dB approximation uses the 8 terms whose d2 ~ 3,46. 

5.5 of U ncoded (D) 

With a slight modification to (5.16), (5.17) or (5.18) can be used to find the probability of 

bit errol' for an uncoded M-CPFSK or A1-DCPFSK scheme. The uncoded error coefficient 
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Figure 5.10: Computed and simulated performance of various M-CPFSK schemes. 

2-dB approximations were calculated using (5.17) and (5.22) and Tables 5.5(a)-5.7(a). 

is given by 

3(d) ~ 
1 

ry( S, t, (, d) t (~ ) ( 

( 
10g2 MSv s 

(5.22) 

which we reformulate into 

1 ( 1 )( 
3(d) ~ I MS I:: M I:: I:: ry(S,t,(,d)t, 

og2 V (1 S t 

(5.23) 

for the error coefficient searches. 

In 5.5{a)-5.7{a) we present the results of the error coefficient search for 

uncoded M-CPFSK and AI-CPFSK schemes to a depth offour intervals. All the smallest 

d2 of the unmerged error events are at least 3 dB greater than the respective d~in' In 

Figure 5.10 we present a revamped version of Figure 2.10 where the computed curves 

are the approximations for each scheme. Each curve uses (5.17) and the results 

in Tables 5.5(a)-5.7(a). For the MSK case, the 2-dB approximation uses the only term 

whose d2 ( 3.16, for the 4-CPFSK case the 2-dB approximation uses the two terms whose 
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Table 5.5 

Error coefficients for uncoded (D)MSK 

(4 intervals deep, smallest d2 of unmerged error events - MSK: 6.00, DMSK: 4.00) 

(a) MSK (b) DMSK 

d2 ( I: I: 1](S",(,d) 3(d) 
s , d2 ( I: I: 1](S,',(,d) 3(d) 

s , 

2.00 2 16 2.00 2.00 2 16 2.00 

4.00 3 32 2.00 3.00 3 16 1.00 

6.00 4 64 2.00 
4.00 

3 16 
1.50 

4 16 

5.00 4 32 1.00 

6.00 4 16 0.50 

Table 5.6 

Error coefficients for uncoded 4-(D)CPFSK 

(4 intervals deep, smallest d2 of unmerged error events: 2.91) 

(a) 4-CPFSK (40 entries) (b) 4-DCPFSK (46 entries) 

d2 ( I: I: 1](S",(,d) 3(d) 
s , d2 ( I: I: 1](S",(,d) 3(d) 

s , 

1.45 2 144 1.12 1.45 2 192 1.50 

2.18 3 576 1.12 2.18 3 1152 2.25 

2.91 4 1728 0.84 2.91 4 5184 2.53 

3.15 2 96 0.75 3.45 3 576 1.12 

3.45 3 576 1.12 4.00 2 256 2.00 

Table 5.7 

Error coefficients for uncoded 8-(D)CPFSK 

(4 intervals deep, smallest d2 of unmerged error events: 1.20) 

(a) 8-CPFSK (803 entries) (b) 8-DCPFSK (624 entries) 

d2 ( I: I: 1](S",(,d) 3(d) 
s , d2 ( I: I: 1](S",(,d) 3(d) 

s , 

0.60 2 1568 1.02 0.60 2 1792 1.17 

0.90 3 18816 1.53 0.90 3 25088 2.04 

1.20 4 169344 1.72 1.20 4 263424 2.68 

1.48 3 12544 1.02 1.48 3 12544 1.02 

1.78 4 301056 3.06 1.78 4 351232 3.57 
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Figure 5.11: Computed and simulated performance of various M -DCPFSK schemes. The 

2-dB approximations were calculated using (5.24), (5.18) and (5.22) and Tables 5.5(b)-

5.7(b). 

d2 ~ 2.30 and the 2-dB approximation for the 8-CPFSK ease uses the two terms whose 

d2 ~ 0.95. The 2-dB approximations agree very well with the simulation results. 

Tables 5.5(b)-5.7(b) list the results of the error coefficient search for uncoded M

DCPFSK and M-DCPFSK schemes to a depth of four intervals. The smallest d2 of the 

unmerged error events are 3 dB greater than the respective d~in' In Figure 5. we present 

a revamped version of Figure 3.12 where the computed curves are the 2-dB approximations 

for each scheme. The DMSK case, the 2-dB approximation uses the two terms of 5.5(b) 

whose d 2 ~ 3.16, and a bound based on (3.113), given by 

1 
Pe,DMSK ~ 2 

dE'D 

(5.24) 

The other two eases use (5.18) and the results in Tables 5.6(b) and 5.7(b). For the 4-

DCPFSK case the 2-dB approximation uses the two terms whose d2 ~ 2.30 and the 2-dB 

approximation for the 8-DCPFSK case uses the two terms whose d2 ~ 0.95. The 2-dB 

approximations agree reasonably well with the simulation results. 
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Figure 5.12: Computed approximations on the probability of bit error for of un

coded MSK, uncoded DMSK, and rate-1/2 coded 4-DCPFSK in AWGN. The 4-state code 

has G(D) = [1 ,and the 8-state code has G(D) = [1 2gtl]. 

5.6 Comparison of Uncoded DMSK with Rate-l/2 Encoded 

4-DCPFSK 

Having established the agreement between the simulation results and the 2-dB approxi

mations, we can now compare systems using only their 2-dB approximations. Uncoded 

DMSK and rate-1/2 encoded 4-DCPFSK are comparable system in that they have the 

same information throughput. The computed 2-dB approximations for uncoded DMSK 

and two rate-l/2 encoded 4-DCPFSK systems are shown in Figure along with that 

of uncoded coherently-demodulated MSK. The 4-state code does not perform quite as 

well as uncoded DMSK, but the 8-state code shows a 0.5 dB gain, and performs within 0.1 

dB of uncoded MSK. This is significant, as 8-state, rate-l/2 encoded 4-DCPFSK is not 

much more complicated than uncoded DMSK, and could be considered less complicated 

than uncoded MSK as the 4-DCPFSK does not require any synchronisation other than 

symbol timing. Obviously if one of the more powerful codes in Table 4.1 were used, the 
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performance of rate~1/2 encoded 4~DCPFSK would be even better. For example, a rate~ 

1/2 encoded 4-DCPFSK system using G(D) [1 D2+D+2 ] should perforrn around 
2D3+ D2+3D+ 1 

3 dB better than uncoded DMSK and over 2 dB better than uncoded MSK at a BER of 

10-6 . 

5.7 Summary 

In this chapter we have explored the computed performance of rate-(log2 M - 1) / log2 

encoded M-CPFSK and M-DCPFSK systems. By following a similar method to [Yan94], 

we developed an upper bound on the probability of bit error, consisting of a sum of dis

tance terms and error coefficients. Calculating the error coefficients is a computationally

intensive task, and we chose to limit the length of the error events we would consider 

and then perform an exhaustive search to determine the distance terms and their associ

ated error coefficients. It was also found to be important to record the smallest squared 

Euclidean distance of the unmerged error events, as this can indicate whether or not the 

significant terms have been found. 

We compared simulation results with a bound calculated using the error coef

ficients whose distance terms were within 2-dB of the d~in of the system, which we 

called the "2-dB approximation". In all but one case, the 2-dB approximation agreed 

very well with simulation results. The rate-2/3 encoded 8-DCPFSK case-encoded using 

G(D) = [1 0 4D + 6] -did not agree very well, but this can be explained by the fact 
012 

that the computational requirements meant that not all the significant distance terms and 

associated error coefficients were calculated. Another important result to come out of this 

chapter was that the simple performance approximations used in Chapters 2 and 3 provide 

a reasonable indication of the coded system's performance. 

We also showed the improvement available through usmg rate-1/2 encoded 4-

DCPFSK over both uncoded DMSK and uncoded coherently-demodulated MSK. The 

improvement against uncoded coherently-demodulated MSK is perhaps more interesting 

as the coded 4-DCPFSK system uses more DSP processing power to achieve its perfor

mance but does not need the complicated phase and frequency synchronisation circuitry 

and algorithms required for the coherent demodulation used in uncoded MSK. 
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Perfor c CPFSK Syst 

" In Flat Fadi 

6.1 Introduction 

Due to the fact that a transmitted signal may travel many different paths on its way to a 

receiver, the received signal in many communication systems is corrupted by a phenomenon 

known as fading [Jak74]. Typically this results in the received signal undergoing 

quasi-periodic deep nulls and rapid fade changes. A very important fading channel is the 

Rayleigh flat-fading channel. The term Rayleigh is used to describe the phenomenon that 

occurs when there is no direct path between transmitter and receiver, and the term flat

fading further specifies that the fading is not frequency-selective, that is, every frequency 

across the band of interest experiences the same fading. Another important parameter 

is the maximum Doppler shift fD [Jak74], which determines the spectral properties of 

the fading process, and thus its autocorrelation. Often the maximum Doppler shift is 

normalised to the symbol period T and the expression fDT is used. A fading process 

with fDT 0.001 is said to be "slow" and one with fDT 0.1 is said to be "fast". 

These channels can make coherent demodulation very difficult, as carrier recovery becomes 

a complex problem. Differential demodulation avoids this problem, as its very nature 

eliminates the need for carrier recovery. 

In this chapter we investigate the performance of differentially encoded and demod

ulated CPFSK (DCPFSK) systems, with and without external error-correcting coding. In 

Section 6.2 we develop the differentially-demodulated received signal that has been per

turbed by Rayleigh flat fading. From there we analyse the pairwise probability of error 

of Af-DCPFSK in Rayleigh flat fading in Section 6.3. This allows us to calculate the 
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Figure 6.1: Power spectral densities of the Rayleigh fading components 

performance of uncoded M-DCPFSK and coded M-DCPFSK systems in Section 6.4 and 

Section 6.5 respectively. We then compare two systems to determine the improvements 

available through coding in Section 6.6. Finally, we present a summary ofthe developments 

of the chapter in Section 6.7. 

6.2 The Differentially-Demodulated Received Signal 

Let the narrow-band Rayleigh fading process be given by [Jak74] 

(6.1 ) 

where zJ(t) and zQ(t) are zero-mean Gaussian processes with power spectral densities 

(psd's) shown in Figure 6.1 and given by 

(6.2) 

We can write the received signal in Rayleigh fiat fading as 

r(t,(3) £ z(t) s(t,(3) + w(t), (6.3) 

where s(t,(3) was defined in (3.14), and w(t) is described by (2.30) and (2.31). Let us 

define the complex envelope of z(t) as 

z(t) £ zJ(t) + j zQ(t), (6.4) 

Using (6.4) and the definitions of s(t, (3) and 1V(t) given in (2.35) and (2.36) respectively, 

we can the complex envelope of r(t, (3) as 

f(t,(3) £ z(t) .9(t, (3) + w(t), (6.5) 
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and write (6.3) as 

r(t,{3) Re [f( t, (3) exp(j2n Jet)] . (6.6) 

We can then follow a similar development to that Section 3.2 to obtain the differentially

demodulated received signal Yd(t, (3) given by 

(6.7) 

As the following analysis of the pairwise probability of error requires sampled signals, we 

use the sampling receiver described in Appendix F. It should be noted that this receiver 

is just a sampling version of the receiver for DCPFSK in additive white Gaussian noise 

(AWGN) presented in Section 3.8. Thus we assume that the differential demodulator 

accounts for the fading, and no additional circuitry or processing is used to alleviate its 

effects. 

In the sampling receiver, the output of the differential demodulator is sampled at 

Ts Hz. The sample period Ts is equal to l/rs . To ensure that we have an integral number 

of samples per symbol, 1~ is chosen such that 

(6.8) 

where Ds is a positive integer. The sampled version of Yd(t,{3) is Yd(i1~,{3), by 

~ (!; f(iTs, (3) ·f*(i1~ - T, (3) 

~ (!; [z(iTs)S(iTs, (3) + w(iTs)] 

x [z*(iTs T) s*(iTs - T, (3) + w*(iTs T)]. (6.9) 

This signal is then processed by the Viterbi processor described in Appendix F. 

6.3 of Error of 

Flat 

The pairwise probability of error is the probability that the receiver will decide that a 

particular incorTect data sequence has been sent instead of the actually transmitted data 

sequence. Let the transmitted data be {3 and the receiver's estimate of {3 be /3. As 

we require sampled signals for our analysis, we now introduce two instances of a discrete 

metric that operates over the entire received signal. The first is based on the mean squared 
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error (MSE) between the samples of the demodulated received signal Yd (iT.5' {3) and the 

samples of the complex envelope of a noise-free version of the demodulated transmitted 

signal Yd (iTs, {3), 

00 2 

L IYd(iTs,{3) - Yd(iTs,{3)1 ' 
i=-oo 

(6.10) 

where Yd (iTs, {3) is defined as 

s(iTs, {3) s*(iTs - T, {3). (6.11) 

Note that the MSE is the sampled analogue of squared Euclidean distance. Due to the 

effects of the differential noise and fading which has only been partially accounted for, 

this metric is still not optimal, but we are seeking to determine the performance of our 

DCPFSK AWGN receiver in Rayleigh flat fading. 

second instance of the metric is based on the MSE between Yd (iTs, {3) and 

some other demodulated possibly-transmitted signal Yd (iTs, /:3), and is defined as 

00 • 2 

IYd(iTs ){3) - Yd(iTs ,{3) I . 
i=-oo 

(6.12) 

As the Viterbi processor in the receiver chooses the metric with the smallest value, an 

error will occur if 

(6.13) 

That is, the distance between the received signal Yd(iTs ,{3) and a reference signal based 

on incorrect data /:3 is less than that between Yd (iTs, {3) and the reference signal based 011 

the actual transmitted data {3. We are interested in the probability of this occurrence, 

which is given by 

Pr{/:3:1={3} = Pr{T(Yd,{3) > T(Yd,/:3)} 

PI' { T (Yd, {3) T (Yd, /:3) > 0 } 

Pr {T e > A}, 

where we have defined 

(6.14) 

(6.15) 

If we can determine p(T e), the pdf of T e, then the pairwise probability of error can be 

calculated by integrating p(T e) from 0 to 00, 

(6.16) 
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In this case, it is simpler to find (e), the characteristic function of Y e , which is related 

to p(Ye) as 

Thus p(Ye) can be written as 

and sUbstituting (6.18) in (6.16) we obtain 

Pr{Ye>O} {'Xl 1 100 

10 27f -00 

Using the unit-step function u(x), defined as 

'" {o) u(x) = 

1, 

x<O 

x ~ 0, 

we can write the inner integral in (6.19) as 

The RHS of (6.21) is the Fourier transform of u(Ye) which is equal to [Hay83] 

100 u(Y ) e-j~Ye dY = a(-.ir) + ~ 
e e 2 'c' 

-00 J~ 

where 150 is the delta function, with the properties 

I: a(x) dx 

I: f(x) a (I) dx 

1 

k f(O) 

where f(x) is some function of x. Using (6.21)-(6.24) in (6.19), we obtain 

We now need to determine the characteristic function GYe (e). 
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(6.17) 

(6.18) 

(6.19) 

(6.20) 

(6.21 ) 

(6.22) 

(6.23) 

(6.24) 

(6.25) 



6,3,1 of the 

We note that we can develop (6.10) as 

00 

2=-00 

00 

= L {IYd(iTs'/1)1
2 + IYd(iTs,t3)1

2 
2Re [Yd(iTs,t3) Yd(iTs,t3)]} 

i=-oo 

00 00 00 

= L IYd(i7:5,t3)1
2 + L IYd(iTs ,t3)1

2 
- 2 L Re [Yd(iTs ,t3) Yd(iTs , 13)] , 

i=-oo i=-oo i=-oo 

(6.26) 

and similarly, (6.12) can be re-written as 

T(Yd,/3) = f IYd(iTs ,t3)1
2 + f IYd(iTs ,/3)1

2 

- 2 00 [Yd(iTs ,t3}Yd(i7:5,/3)] . 
i=-(X) i=-oo i=-(X) 

(6.27) 

Substituting (6.26) and (6.27) into (6.15), and noting that CPFSK signals are constant

envelope so that 

(6.28) 

we have 

(X) (X) 

Te = 2 L Re [Yd(iTs ,t3)Yd(iTs ,/3)] - 2 L Re[Yd(iTs ,t3)Yd(iTs ,t3)] 
~~oo =-(X) 

00 

2 L Re [Yd(iTs ,t3){yd(iTs ,/3) Yd(iTsl t3)}] 
i=-(X) 

(X) 

= L [Yd(iTsl t3){Yd(iTsl /3) Yd(iTs ,t3)} + Yd(iTsl t3){Yd(iTs ,/3) Yd(iTs ,t3)}] 
i=-(X) 

Let us now suppose that the signals are finite in length (say Ns samples long, where 

Ns is a multiple of Ds), so that we can define the vector r as 

f(Ts,t3) 

r A 'P(iTs,t3) z s + iiJ, (6.30) 

f(NsTs, 13) 
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where 

(6.31) 

and the 0 represents element-by-element multiplication, known as the Kronecker product. 

Equations (6.30) and (6.31) allow us to write (6.29) in matrix form as 

Y -HA-
e = T T, (6.32) 

where x H represents the conjugate-transpose of x, and A is a Ns-by-Ns matrix that scales 

the required products, defined as 

0 0 ADs+1 0 0 

0 A D8 +2 

0 0 0 

Ab8+1 0 A-
~ 

A ~ 0 Ab8+2 0 0 0 (6.33) 

AN8 

0 A'!' 
~ 

0 0 

o o A* 0 N8 o 

where 

(6.34) 

Obviously, A is Hermitian. Equation (6.32) is a Gaussian quadratic form, whose charac

teristic function is given by [SBS66] 

exp{je E [f]H (A -1 - 2jeR fTr
1 

E [f]} 

GYe (e) = det (IN
8 

- 2jeRfTA) , 
(6.35) 

where IN8 is the Ns x Ns identity matrix, and RTT is the auto-covariance matrix of the 

vector f, defined as 

RTT (6.36) 
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The expected value of r is 

E [r] = E [z 0 s + w] = s 0 E [z] + E [w] = 0, 

as both z and ware zero-mean vectors. Applying (6.37) to (6.36), we obtain 

Rff ~ E [r*r t
] 

~E [(z0S+w)*(Z0S+W)t] 

~ E [(z 0 s)*(z 0 s)t] + ~ E [w*w t] 

R ZBZB + R ww , 

(6.37) 

(6.38) 

(6.39) 

( 6.40) 

as we assume that z(iTs) and w(iTs) are uncorrelated. The element in the i-th row and 

the k-th column of RZB ZB is 

Assuming isotropic scattering, the autocorrelation of fading samples is given by [Jak74] 

(6.42) 

where Joe) is the zeroth order Bessel function. Thus the element in the i-th row and the 

k-th column of RZB ZB is 

~ s(iTs, (3) s(kTs, (3) Jo (21f f DT Ii - kl Ts) . ( 6.43) 

As r is zero-mean, we can reduce (6.35) to the much simpler form 

(6.44) 

As all the matrices in (6.44) are Ns-by-Ns, the determinant will be a Ns-th order polyno

mial in e. If we use ei to denote the i-th pole of GYe (e), we can write (6.44) as 

(6.45) 

As we are investigating the pairwise probability of error, we will specify a particular f3 

and /3, so that the characteristic function GyJe) given in (6.44) is completely specified, 

and we may proceed to its calculation. 
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6.3.2 Calculating the Pairwise Probability of Error 

The residue theorem states that if a function J(z) is single-valued and analytic inside and 

on a simple closed curve r except at the singularities Zl, Z2, Z3, ... which have residues 

given by g-l,l, g-1,2) g-1,3, ... then 

i J(z) dz = 21fj(g-1,1 + + g-1,3 + ... ). (6.46) 

That is, the integral of J (z) around r (traversed counter-clockwise) is 21fj times the sum 

of the residues of J (z) at the singularities enclosed by r. By appropriate choice of the 

simple closed curve, we can use the residue theorem to perform the integration in (6.25), 

which is a line integral along the real 

A suitable curve r is shown in 6.2, which is made up of the real axis and 

two semi-circles, one of radius R, and one of radius r denoted r R and rr. The smaller 

semi-circle r r is used to avoid the pole at ~ O. As R -+ 00 and r -+ 0, this curve will 

encompass the entire real axis. 

We need to ealculate the eontribution of r Rand r T to the sum of residues. The 

following theorem addresses the large semi-circle r R [Spi81]. 

Theorem 1 

If I J (z ) I ~ m / Rk for z k > 1 and m are constants, then if r A is a semi-circle 

SIlch as r R, 

lim r J(z)dz 
R-+oo lr A 

O. (6.47) 

Thus we require 

(6.48) 
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But this will be the case as from (6.45), GYe (e) is an inverse polynomial in e that is at 

least quadratic, and will therefore be bounded above by m/ Rk for e ReiO . Thus we 

have shown that 

(6.49) 

The contribution of the smaller semi-circle 

reiO, 0 ~ e ~ 1f, and 

can be directly calculated. Along r r, e 

o '0 

1· l Gye(re
J 
). iO de == 1m '() J re 

r-tO, rr reJ 

j (0) iO 

de 

1f GYe (0). (6.50) 

Thus using the results of (6.49) and (6.50) we can write 

l
CX) GYe(O de + lim r Gye(O de + lim r ----:;:...:..::..:..de 

-CX) e R-tCX) JrR e T-tO Jr
T 

= lCX) GyJe) de j 1f GYe(O). 
-CX) e (6.51) 

But from the residue theorem in (6.46), the LHS of (6.51) is equal to 21fj times the 

sum of the residues of GYe (e)/e whose poles are contained by the closed curve r. Let us 

define 9-1,i as the i-th residue of GYe (e)/e at e = ei, this allows us to re-write (6.51) as 

21fj L 9-1,i + j 1fGYe(O). 
2 

Im[~;J>O 

Finally, using (6.52) in (6.25), and noting that Gye(O) 0 we obtain 

Pr{Ye>O} 

= 1 + 9-1,i 

6.3.3 Calculating the 

i 
Im[~il>O 

Residues 

The poles of GYe (e) are the values of e that satisfy 

O. 

(6.52) 

(6.53) 

(6.54) 

Unfortunately, these poles cannot be determined analytically, and thus must be computed 

numerically. Many numerical packages have library routines for finding eigenvalues, and 
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the solutions to (6.54) are closely related to the 

the values of A of that satisfy 

of The eigenvalues are 

o. (6.55) 

Manipulating the LHS of (6.55), we obtain 

= o. (6.56) 

Equating (6.54) and (6.56), we find that the poles of GYe (~) are given by 

(6.57) 

However, the eigenvalue calculation can be numerically inaccurate, particularly if Ns is 

large [Har96]. The solution is to use only the eigenvalues greater than Ns X Amax X E, where 

E is the floating point precision of the machine used for calculations. 

Having found the poles, we now proceed to the computation of their residues. The 

i-th residue of f (z) at Z Zi, where Zi is a pole of order ki is given by [Spi81] 

9-1,i (6.58) 

For the simple poles (order 1), we have 

9-1,i (~ ~i) 
~ 

Ns 
1 

lim IT (1 - U~k)' ~i 1= 0 
~-+~i 

k=l 

1 N. 
1 r (~ - ~i) 

~i II (1 ~d~k) ~~~i (1 - U~i)' 
~i 1= 0 

Ns 

~i 1= O. (6.59) 

The restriction ~i 1= 0 is not important as r does not encompass this pole. 

6.4 t"e]~IOl~m,an(~e of Uncoded M-DCPFSK Flat 

In this section we present and discuss the results of the approximate performance calcu

lations and simulations of uncoded M-DCPFSK in Rayleigh flat fading. The simulation 

model used is described in Appendix F and we now discuss the performance calculations. 
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Figure 6.3: Computed and simulated performance of uncoded DMSK in Rayleigh flat 

fading with various values of fDT 

6.4.1 Approximate Performance Calculations 

The approximate performance curves were calculated using just the pairwise probabil

ity of error for minimum distance term and its associated error coefficient as discussed in 

Chapter 5. The transmitted signal s(iTs) (3) and an appropriate incorrectly-detected signal 

s(iTs,/3) are required by the matrix A. If all the delay elements in the differential contin

uous phase encoder (DCPE) are set to zero, the sequences U [0 1 0] and if = [0 0 l] 

will generate the necessary signals to create an error event with minimum distance for 

uncoded M-DCPFSK, as discussed in Section 3.9.2. 

The autocorrelation matrix of the filtered noise Rww was approximated by gener

ating noise samples, filtering them by the filter used in the simulations and determining 

a mean for each time lag. It is important also to note that our approximate calculations 

assume that the signal :9 and fading z are unchanged by the filtering in the demodulator, 

which is not the case as the band-pass filter has quite a tight 3dB point. However, this 
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Figure 6.4: Pairwise probability of error vs fDT of uncoded DMSK in Rayleigh flat 

fading for various values of Eb/ No 

assumption greatly simplifies the calculations, and as will be seen, the computed perfor

mance agrees very well with the simulated performance. 

6.4.2 Computed and Simulated Performance of Uncoded M-DCPFSK 

Figure 6.3 shows the computed and simulated performance of uncoded DMSK in Rayleigh 

flat fading with various values of fDT. It is evident that the computed curves and the 

simulated results agree very well. The performance for each value of f DT changes almost 

linearly with the SNR until it reaches an irreducible error rate, also known as an "error 

floor". The error floor is due to deep fades and their associated rapid phase changes. 

The performance is best in "slow" fading (fDT = 0.001) and gets progressively worse as 

fDT is increased. This can be attributed to the fact that differential demodulation uses 

a sample of the faded carrier from the previous symbol period to demodulate the current 

symbol. As the value of fDT increases, the faded carrier changes more and more quickly 
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Figure 6.5: Computed and simulated performance of uncoded 4-DCPFSK in Rayleigh 

flat fading with various values of 

and so becomes a progressively worse reference for demodulation. This is well illustrated in 

Figure 6.4, where the computed pairwise probability of error for uncoded DMSK for various 

values of Eb/No is graphed against fDT. The curve with Eb/NO = 60 dB best illustrates 

the dependence on f DT) showing the degradation in performance as f DT increases. It is 

interesting to note that the 60-dB curve can be thought of as the asymptotic performance 

of uncoded DMSK as from Figure 6.3 we see that the performance has reached an error 

floor when Eb/NO 60 dB and no further increase in Eb/NO will improve performance. 

The computed and simulated performance of uncoded 4-DCPFSK and uncoded 8· .. 

DCPFSK are shown in 6.5 and Figure 6.6 respectively. Both uncoded 4-DCPFSK 

and uncoded 8-DCPFSK exhibit similar error floors to those of uncoded DMSK, and the 

computed curves and the simulated results agree very well. The performance of both 

uncoded 4-DCPFSK and uncoded 8-DCPFSK exhibit similar dependence on fDT to that 

ofDMSK. 
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Figure 6.6: Computed and simulated performance of uncoded 8-DCPFSK in Rayleigh 

fiat fading with various values of iDT 

6.5 Performance of Rate-l/2 Encoded 4-DCPFSK in 

Rayleigh Flat Fading 

The theoretical performance of coded 4-DCPFSK is more complicated to calculate as more 

terms than just the minimum distance in the union bound are required to adequately 

predict performance. The calculation of the pairwise probability of error is just the same 

as that described in Section 6.3, but the data sequences a and ii to the error 

events with the required distances must be determined to perform the calculations. In 

Tables 6.1 and 6.2 we present the data sequences that will generate an error event with 

the given distance in 4-state, rate-1/2 encoded 4-DCPFSK using G(D) [1 and 8-

state, encoded 4-DCPFSK using G(D) = [1 2fN1] respectively, if all the delay 

elements in the transmitter and receiver are set to zero. It is important to note that 

these are not the only data sequences that will generate the required error events. For 

each distance are many different error events and thus many different generating 
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Table 6.1 

Data sequences to produce error events from the all zeros state for 4-state, rate-1/2 

encoded 4-DCPFSK using G(D) = [1 2D
1+1] 

3(d) a a 
3.00 2 0.50 [0 1 0 0] [0 1 2 0] 

3.15 2 0.94 [0 1 0 0] [0 0 2 0] 

3.49 2 0.19 [1 1 0 0] [1 2 2 0] 

3.73 3 0.62 [0 0 0 0 0] [0 1 0 0 0] 

3.88 3 0.62 [0 1 2 2 0] [0 2 1 0 0] 

4.00 2 1.81 [0 0 0 0] [0 0 2 0] 

Table 6.2 

Data sequences to produce error events from the all zeros state for 8-state, rate-1/2 

encoded 4-DCPFSK using G(D) = [1 

d2 ( 3(d) a a 
4.00 2 0.50 [0 2 0 0 0] [0 2 2 2 0] 

4.09 3 1.69 [0 1 0 0 0] [0 0 1 2 0] 

4.15 3 0.56 [0 1 0 0 0 0] [0 1 1 1 0 0] 

4.24 4 0.30 [0 1 0 0 0 0] [0 0 0 1 0 0] 

4.49 2 0.19 [0 2 0 0 0] [0 1 3 0 0] 

4.94 3 0.56 [0 1 0 0 2 0] [0 1 3 1 0 0] 

4.97 3 0.25 [0 1 0 2 1 0 0] [0 0 0 2' 0 0 0] 

5.00 2 0.94 [0 2 0 0 0] [0 0 2 0 0] 

5.00 3 1.00 [0 1 0 0 0] [0 0 3 0 0] 
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Figure 6.7: Computed and simulated performance of 4-state, rate-1/2 encoded 4-

DCPFSK using G(D) = [1 in Rayleigh flat fading with various values of fDT. 

sequences. Once the pairwise probabilities of error have been found, they are multiplied 

by their associated error coefficient and then summed. 

Figure 6.7 shows the computed and simulated performance of 4-state, rate-1/2 

. encoded 4-DCPFSK using (D) [1 2D1+1] in Rayleigh flat fading with various values 

of fDT. For the fDT 0.1 case, the first 4 terms were used in the union bound. For the 

0.01 and f DT 0.001 cases, the first 5 and 6 terms respectively were used. The 

computed curves agree well with the simulation results. Only the fDT = 0.1 case exhibits 

an error floor at SNR less than 60 dB, but the computed curves do indeed show error 

floors. The f DT = 0.01 case exhibits an error floor of 10-9 from about Eb/ No = 65 dB 

onwards, and the fDT 0.001 case exhibits an error floor of 4 x 10-15 from about 

Eb/ No = 100 dB onwards. Thus the coding has dramatically reduced the error floors of 

uncoded 4-DCPFSK, except in very fast fading. 
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Figure 6.8: Computed pairwise probability of error vs JDT of rate-1/2 encoded 

4-DCPFSK using G(D) [1 215+1] in Rayleigh flat fading for various values of Eb/No. 

Perhaps the most interesting point in Figure 6.7 is the fact that the JDT = 0.01 

case performs better than the J DT = 0.001 case up until the Eb/ No = 70 dB point. In 

Figure 6.8 we further highlight the variation in the performance versus JDT. It is important 

to note that the performance in Figure 6.8 is based simply on the minimum distance term 

and its error coefficient. Whereas the performance of uncoded DMSK steadily worsens 

as JDT increases, the performance in Figure 6.8 at Eb/NO values greater than 30 dB can 

improve somewhat as JDT increases. This can be explained by the fact that the error 

events in the coded case are much longer than those of the uncoded case, and as J DT 

increases the fading becomes less and less correlated, and the coding can exploit time 

diversity in the fading. However, once the J DT up to a certain value, the fading 

becomes so uncorrelated that the differential demodulation corrupts the signal too much. 

A similar improvement in coherent coded performance with increasing JDT has also been 

noted in [van96]. 
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DCPFSK using G(D) = [1 2D\1] in Rayleigh flat fading with various values of fDT. 

We now turn our attention to the computed and simulated performance of 8-state, 

rate-1/2 encoded 4-DCPFSK using G(D) [1 2Li
H

] , shown in Figure 6.9. For the 

fDT 0.1 case, the first 3 terms were used in the union bound. For the fDT 0.01 and 

0.001 cases, the first 4 and 9 terms respectively were used. Again, the computed 

curves agree well with the simulation results, and only the fDT 0.1 case exhibits an 

error floor at SNR values less than 60 dB. The computed curves show error floors. The 

computed curve for the f DT = 0.01 case exhibits an error floor of 4 x 10-10 from about 

65 dB onwards, and the fDT = 0.001 case exhibits an error floor of 2 x 10-15 

from about Eb/NO 100 dB onwards. Figure 6.9 also exhibits a similar variation in 

performance with fDT to that of Figure 6.7. 
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Figure 6.10: Computed and simulated performance of uncoded DMSK, 4-state, rate-1/2 

encoded 4-DCPFSK using G(D) = [1 2D1+l] and 8-state, rate-1/2 encoded 4-DCPFSK 

using G(D) [1 in Rayleigh flat fading with fDT 0.1. 

6.6 Comparison of Uncoded DMSK with Rate-l/2 Encoded 

in Rayleigh Flat Fading 

Uncoded DMSK and rate-1/2 encoded 4-DCPFSK are comparable systems in terms of 

information throughput. In this section we present a performance comparison of uncoded 

DMSK, rate-l/2 encoded 4-DCPFSK using G(D) [1 2D1+1] and 8-state, rate-

1/2 encoded 4-DCPFSK using G(D) = [1 are the same systems that were 

compared in Section 5.6, but note that we do not consider the coherently-demodulated 

uncoded MSK case as it has no method to combat the fading. 

Figure 6.10 compares the three systems in Rayleigh flat fading with fDT = 0.1. 

The coding lowers the error floor from 10-1 to about 10-3
. There is not much difference 
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Figure 6.11: Computed and simulated performance of uncoded DMSK, 4-state, rate-1/2 

encoded 4-DCPFSK using G(D) = [1 2D
1
+1] and 8-state, rate-1/2 encoded 4-DCPFSK 

using G(D) = [1 2g:l] in Rayleigh flat fading with fDT = 0.01. 

in the performance of the two coded systems, but this is to be expected as the 8-state 

code has a d~in of 4.00, which is only 1.25 dB better than the d~in of the 4-state code, 

and only a slight performance improvement was observed in the additive white Gaussian 

noise (AWGN) case in Figure 5.12. 

A much more dramatic performance improvement obtained from coding is evident 

in the fDT = 0.01 case, shown in Figure 6.11. Up to the 25-dB point, the three systems 

perform similarly, but any further increases in E b/ No do not improve the BER of uncoded 

DMSK whilst those of the coded systems continue to decrease steeply. Again there is not 

a great performance difference between the codes. Finally, we present the performance 

of the two systems in Rayleigh flat fading with fDT = 0.001 in Figure 6.12. The three 

systems perform similarly up to the 45-dB point, but from then on the DMSK encounters 
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Figure 6.12: Computed and simulated performance of uncoded DMSK, 4-state, rate-1/2 

encoded 4-DCPFSK using G(D) [1 2ri+1] and 8-state, rate-1/2 encoded 4-DCPFSK 

using G(D) = [1 2g:l] in Rayleigh flat fading with fDT = 0.001. 

Table 6.3 

Approximate values of the error floors of uncoded DMSK, 

4-state, rate-1/2 encoded 4-DCPFSK using G(D) = [1 

and 8-state, rate-1/2 encoded 4-DCPFSK using G(D) [1 

fDT 

0.1 0.01 0.001 

Uncoded DMSK 1 x 10-1 1 X 10-3 1 X 10-5 

4-state, rate-1/2 encoded 4-CPFSK 3 x 10-3 1 X 10-9 4 X 10-15 

8-state, rate-1/2 encoded 4-CPFSK 1 x 10-3 4 X 10-10 2 X 10-15 

an error floor while the coded systems continue to improve. We summarise the difference 

in error floors the three systems in Table 6.3. It is evident that the coding lowers the 

error floor in all the cases, and that the error floor lowers as fJ)T decreases. There is only 

a slight difference in the error floors of the two coded systems. 
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6.7 Summary 

In this chapter we have analysed the performance of uncoded and coded M-DCPFSK 

systems. Once we determined the form of the differentially-demodulated received signal 

that had been corrupted by Rayleigh flat fading, we were able to calculate the pairwise 

probability of error for M -DCPFSK. This involved developing an error metric which turned 

out to be a Gaussian quadratic form. We transformed the characteristic function of the 

error metric using the residue theorem, and determined the pdf of the error metric which we 

then integrated over the error region to find the pairwise probability of error. By applying 

the bounds and error coefficients of Chapter 5, we calculated the bit-error probability of 

both uncoded and coded M-DCPFSK systems. These computed curves were seen to agree 

very well with simulation results, and could be used to predict performance outside the 

scope of the simulations. 

An interesting variation in error performance as the value of changed was 

observed. In the uncoded systems the error performance gets progressively worse as fDT 

increases as the corrupted carrier used in the differential demodulator becomes a less and 

less reliable reference. The coded systems are able to exploit the time diversity introduced 

by the increasing fDT up to a point, where they too encounter the corrupted carrier 

reference problem. It is also evident that there is a much bigger performance improvement 

between the coded and uncoded cases in fading than in the AWGN case, as the simplest 

of the coded 4-DCPFSK systems is able to significantly lower the error floor of DMSK. 

However, the difference in performance between the two coded cases considered is similar 

to that of the AWGN case. 
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7 .1 Conclusions 

In this thesis we have developed a differential encoder that enables the preservation of 

the phase trellis of CPFSK through differential demodulation. The difIerential encoder 

is a linear encoder over the ring of integers modulo-B (ZB). Differentially-encoded and 

differentially-demodulated CPFSK (DCPFSK) performs worse than coherently-demodu

lated CPFSK in additive white Gaussian noise (AWGN), and this is due to the presence 

of extra noise terms in the demodulated signal. These extra noise terms make exact 

performance analysis very difficult, but through some assumptions the performance of 

DCPFSK is found to be approximately 3 dB worse than that of CPFSK. Simulation 

results agree reasonably well with this theoretical approximation. The DCPFSK receivers 

are considerably simpler than their eoherent eounterparts, requiring no synchronisation 

other than that of symbol timing. Thus receiver complexity can be reduced at the expense 

of performance by using DCPFSK instead of CPFSK. 

M-ary DCPFSK schemes with modulation index h 

DCPFSK sehemes-have a differential encoder defined over 

l/M-which "ve call M-

These schemes are par-

ticularly important as they have similar spectral charaeteristics to differentially-encoded 

and differentially-demodulated minimum shift keying (DMSK) and interface well with the 

deeomposed model of CPFSK to form a decomposed model of M-DCPFSK. Additionally, 

these schemes eombine well with external error-control eneoders defined over ZM to enable 

codes to be designed speeifically for M -DCPFSK. 

We developed a code seareh model of M -DCPFSK and used it find codes over Z4 for 

rate-1/2 encoded 4-DCPFSK and codes over Z8 for rate-2/3 encoded 8-DCPFSK. Results 
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of the code searches demonstrate that very little performance-in terms of the normalised 

minimum squared Euclidean distance d~in-is lost when going from coded M-CPFSK to 

coded M-DCPFSK. 

The performance of both coded CPFSK and coded DCPFSK OIoU<;;,"><O" can be ap-

proximated by a truncated union bound, which consists of a sum of pairwise probabilities 

of error that are based on error event distances and their associated error coefficients. By 

performing an exhaustive search on the error events up to certain length, we were able 

to obtain a theoretical approximation which agreed well with simulation results of coded 

systems in AWGN. We call this the "2-dB approximation" as it uses the contribution of 

all the error events within 2 dB of the ~in of the coded system. It was found that the 

approximation was only reliable if all the error events within 2 dB had been found. In 

coded systems with large trellises, the error event search may become very computationally 

intensive. 

By applying these performance measures, we were able to determine that the best 

8-state, rate-1/2 encoded 4-DCPFSK system performs 0.5 dB better than uncoded DMSK 

in AWGN, and within 0.1 dB of coherently-demodulated MSK. Thus for a slight increase 

in the system's trellis, expensive and computationally intensive carrier recovery algorithms 

can be eliminated from the system. 

Carrier recovery can be particularly difficult in a fading channel. By its very nature, 

differential demodulation can alleviate some of the problems encountered in fading chan

nels. We analysed the performance of uncoded and coded DCPFSK systems in Rayleigh 

flat fading. A truncated union bound similar to the one encountered in AWGN was used, 

with the only difference being the pairwise probabilities of error. This agreed well with sim

ulation results. It was found that the bit error rate (BER) of uncoded DCPFSK decreased 

almost linearly with increasing SNR until it encountered an irreducible BER, known as an 

"error floor". The level of this error floor is dependent on the maximum Doppler shift f D 

multiplied by the symbol period T. As fDT increases, so does the level of the error floor. 

performance of coded DCPFSK systems in Rayleigh flat fading exhibited quite 

different behaviour to that of the uncoded systems. The BER still encountered an error 

floor whose level increased as fDT increased, but the BER decreased with an increasing 

rate of descent. Interestingly, the BER of the coded systems can improve somewhat as 

increases. This is due to the fact that the coding can take advantage of time diversity 

as the fading becomes less and less correlated. However, at a certain point-dependent 
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on SNR-the fading becomes too uncorrelated for the differential demodulation process 

to work, and the BER deteriorates as fDT is increased. 

Comparisons between DMSK and rate-l/2 encoded 4-DCPFSK showed that the 

simplest 4-state code was able to lower the error floor significantly-by 2 to 10 orders of 

magnitude-in Rayleigh flat fading with values of fDT between 0.1 and 0.001. However, 

the difference in performance between codes was similar to their performance difference 

in AWGN, suggesting that the major gain was that of time diversity due to the fact that 

the error events in a coded system span more symbol intervals. 

7,2 DCPFSK Evaluation 

Five of the most important areas of a communication scheme's performance are power 

efficiency, delay, capacity, bit error rate and cost. Let us investigate how our DCPFSK 

system performs in each of these areas: 

II Power Efficiency: DCPFSK transmitters are very power-efficient as DCPFSK is a 

constant-envelope modulation and the power amplifiers may be run in their non

linear, but power-efficient, regions . 

• Delay: The DCPFSK systems considered here have very low delay, on the order of 

tens of symbols. 

II Capacity: The DCPFSK systems considered here are not particularly spectrally 

efficient, so that they could not be used in a high-capacity system. 

CII Bit Error Rate: DCPFSK systems perform considerably worse than coherently

demodulated schemes in AWGN. With relatively simple coding however, this perfor

mance can be improved. In medium to slowly-varying flat fading channels, DCPFSK 

systems require no additional circuitry to achieve a reasonable level of performance. 

Again, simple codes can improve this performance markedly. 

II Cost: DCPFSK receivers are very simple as symbol timing is the only synchroni

sation required. Combined with their power efficiency, DCPFSK systems are low 

cost. 

Thus DCPFSK systems are power efficient, low-delay, low-capacity, medium-level 

BER performance and low-cost, most suitable for mobile voice or satellite applications. 
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7,3 

There are many avenues of future work opened up by this thesis, some of them are: 

II The coded systems considered here had h II M. Codes for DCPFSK systems with 

h i= 11M could be designed. This would allow for a wider range of coded DCPFSK 

schemes to be considered . 

• The coded performance improvement in fading seems to be due to time diversity. 

This could be further explored by using lower-rate coded DCPFSK systems. For 

instance, codes over Zs for rate-1/3 encoded 8-DCPFSK, which is comparable to 

uncoded DMSK. 

til The codes found here were designed for AWGN, where d~in dominates performance. 

The searches could be performed with other search criteria-such as error event 

length-to find codes specifically designed for fading. 

• The use of multi-h DCPFSK would improve performance in fading, and could also 

be combined with coding. However, the complexity would increase significantly, and 

the differential encoder would need to be modified, as would the code search model. 

" Performance in fading may also be improved by using partial response signalling. 

This would serve to lengthen error events, possibly increasing diversity. Com-

bining this with coding would also be an interesting problem. Again, complexity 

would increase significantly, and the differential encoder and the code search model 

would need to be modified. The resulting scheme would not actually be DCPFSK, 

but some other form of differentially-encoded and differentially-demodulated contin

uous phase modulation (DCPM). 

11/ Using partial response signalling would also result in a scheme with better spectral 

efficiency than that of DCPFSK. Use of a smoother pulse shape would also achieve 

this. Yet again, the differential encoder and the code search model would need to be 

modified, and the result would be some other DCPM scheme. 

!III Finally, improvements in computing power-or better algorithms-would result in 

the ability to perform code searches for coded systems with larger trellises, and enable 

performance analysis of coded systems than those analysed in this thesis. 
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A 

Prop the Modulo 

or 

Let A and B be positive let x and y be real numbers, and let f be a positive real 

number. We define the modulo-f operator Rdx] as 

Rdx] ~ x - If J f (A.l) 

where l·J denotes the floor function, i.e. the largest integer not exceeding the enclosed 

number. Note that Rrlx] will always be non-negative, regardless of the of x. 

We now present some properties of the modulo operator. This list is by no means 

exhaustive, these are just some properties that are of use in this thesis 

Rdx y] Rdx ± RdYlJ = RdRdx] ± RdY]l (A.2) 

(A.3) 

Rr[xYl RdRdx] y] if and only if y is an integer. (A.4) 

if and only if A is a factor of B. (A.5) 

x k is an integer. (A.6) 

y+ kA, o ~ y < A, and k is an integer. (A.7) 

x, if 0 ~ x < A. (A.8) 
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.. 
OISe 

Let wr(t) and wQ{t) be independent, zero-mean, Gaussian processes, with psd's given by 

{

No) - ':; :::; f :::; ':; 

0, otherwise. 

(B.1) 

The auto correlations of WI(t) and wQ{t) are the inverse Fourier transforms of SWI(f) and 

SWQ(f), given by 

E [WI{t)Wr{t + T)] = Nofw sinc (fwT) 

E [wQ{t)wQ(t + T)] = Nofw sinc (fwT). 

As stated, wr(t) and wQ{t) are independent, so that 

E [wr(t)wQ{t + T)] = 0. 

Let w{t) be a complex noise process, defined as 

w{t) !!:, wr{t) + j wQ{t). 

Like its component processes, w{t) is also zero-mean, as shown by 

E [w{t)] E [w{t) + j w{t)] = E [w{t)] + j E [1V{t)] 

The autocorrelation of w{ t) is given by 

E [w{t)w*{t + T)] 

E [{wr{t) + j 'll]Q{t)}{wr{t + T) - j wQ{t + Tn] 

o. 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

E [Wr(t)WI(t + T) - j wr(t)WQ(t + T) + j WQ(t)WI(t + T) + WQ(t)WQ(t + T)] 
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E [WI (t)WI (t + T)] - j E [Wr(t)WQ(t + T)] + j E [WQ(t)Wr(t + T)] 

+ E [WQ(t)WQ(t + T)] 

Nofw sinc (fwT) - j 0 + j 0 + Nofw sinc UwT) 

2Nofw sinc (fwT) . 

The psd of w(t) is the Fourier transform of Rw(T), given by 

{

2NO' -f2 ~ f ~ 

0, otherwise. 

(B.7) 

(B.8) 

The final remark is that the "unconjugated" autocorrelation of w(t) is equal to zero, as 

E [w(t)w(t + T)] = E [{~l)r(t) + j wQ(t)}{ WI(t + T) + j wQ(t + T)}] 

= E [WI(t)Wr(t + T) + j wr(t)wQ(t + T) + j wQ(t)wr(t + T) 

- wQ(t)wQ(t + T)] 

= E [wr(t)wr(t + T)] + j E [wr(t)wQ(t + T)] + j E [wQ(t)wr(t + T)] 

E [wQ(t)wQ(t + T)] 

= Nofw sine (fwT) + j 0 + j 0 Nofw sine (fwT) 

= O. (B.9) 
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c 

The Algorit 

In this Appendix we present a brief summary of the workings of the Viterbi algorithm 

(VA) as it relates to this thesis. We draw largely from Forney's paper [For73]. 

Cel General of the pro blern 

The VA can be thought of as a solution to the problem of maximum a posteriori probability 

(MAP) estimation of the state sequence of a finite-state, discrete-time Markov process 

observed in memoryless noise. 

The underlying Markov process is characterised as follows. Time is discrete. The 

state CJkv at time kv is one of a finite number Sv. The state sequence is represented by 

the vector 0' [ •.. ,CJkv-l,CJkv,CJk,,+l," .l. 

As the process is Markov, the probability of being in state CJkv+1 at time kv + 1, 

given all states up to time kv, depends only on the state CJkv at time kv: 

(C.l) 

The transition probabilities Pr {CJkv+1 I CJkv} may be time-varying, but we do not explicitly 

indicate this in the notation. 

It is convenient to define the transition ~kv at time kv. from CJkv to CJkv+1 as the 

pair of states CJkv+1 and CJkv: 

(C.2) 

We let 3 be the (possibly time-varying) set of transitions ~kv = {CJkv+b CJkv} for which 

Pr {CJkv+11 CJkv} i- 0, and 131 their number. Clearly ::; S~. There is evidently 

a one-to-one correspondence between state sequences 0' and transition sequences e 
[ ... , '~kv'~kv+1, .. ·l· 
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The process is assumed to be observed in memorlyess noise; that is, there is a 

sequence z of observations Zkj/ in which Zkj/ depends probabilistically only on the transition 

~kj/ at time kv: 

PriG'} PI' {z I e} = II Pr {Zkv I ~kj/ } . (C.3) 

kv 

We can describe z as the output of some memoryless channel whose input sequence is e. 
Again, though we shall not indicate it explicitly, the channel may be 

sense that PI' {O'kj/ I ~kj/} may be a function of kv· 

varying in the 

The Markov process can be described as a trellis, where each node corresponds to 

a distinct state O'kv at a given time kv, and each branch represents a transition ~kj/ to 

some new state O'kv+1 at the next instant of time kv + 1. The most important property 

of the trellis is that every possible state sequence 0' corresponds to a unique path through 

the trellis and vice versa. 

Our problem is thus to find the state sequence 0' for which Pr {z I O'} is maximum. 

It is convenient however, to restate this problem as finding 

the "length" InPr {z IO'} is minimum. Using (C.3) we find 

-In [II Pr {Zkv I ~kj/ }] 

kv 

-lnPr {z I O'} 

We now define the "length" of each transition as 

state sequence 0' for which 

(C.4) 

(C.5) 

which we call the branch metric. This allow us to finally state our problem as that of 

finding the state sequence 0' for which the "length" or path metric 

(C.6) 

is minimum. 

C.2 algorithlTI 

At any particular time, there will be several paths terminating at a particular node (or 

state) in the trellis. Amongst the paths terminating in state O'kv at time kv ) the one with 

the smallest path metric is called the survivor corresponding to the state O'kj/ and denoted 

by Cr (O'kj/ ). The path metric of the survivor Cr (O'kv) is denoted by AVA (O'kj/ )) defined as 

kj/-l 

AVA (O'kv) £ AVA (~i) , (C.7) 
i=O 
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where the transitions are all from the survivor IJ (akv ). Each time step, an estimate of 

the state sequence Kd-time intervals previously is output. The quantity Kd is called the 

decision depth. The choice of Kd is important as the delay through VA and the storage 

requirements are proportional to it. However if Kd is too small performance may suffer. 

C.2.1 Storage 

Only Kd states for each of the 8v survivor paths IJ (akv), need to be stored, along with 

the 8v path metrics AVA (akv)' Unless the system starts in a known state, these should 

all be initialised to the same arbitrary value. 

C.2.2 Operation 

For each time kv) the VA runs as follows: 

• Calculate the provisional path metrics AVA (akv+1, akv): 

for each possible transition. 

Ell For each state set 

(C.g) 

OIl Store AVA (akv+d and its associated path IJ (akv+d for each trellis state. 

III Find the AVA (akv+d with the minimum value, and from its associated IJ (akv+1), 

output the state transition at time kv + 1 - Kd. 

" Set ky to kv + 1 and repeat. 

C.2.3 Complexity 

The complexity of the VA depends OIl the size of the trellis of the system, particularly the 

total number of branches, as each OIle requires a metric calculation. 
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endix 

Simulate 

Simulations on a computer must be performed in discrete-time. In this appendix we 

describe our CPFSK simulation model and a sampling receiver for CFPSK, which relates 

much more accuarately to the simulations that were performed. We show in Appendix E 

that this receiver acheives the performance of (2.62). 

D.1 A Sampling Receiver Structure for CPFSK 

A sampling receiver for coherent CPFSK consists of three main blocks, a coherent de

modulator, a sampler, and a Viterbi processor as shown in Figure D.l. The coherent 

demodulator is exactly the same as that described in Section 2.7.1. We now discuss the 

other two elements. 

r(t, U) Coherent Yc(t, U) 
Sampler 

Yc(iTsl U) Viterbi (; 

Demodulator Processor 

Figure D.l: A sampling receiver structure for coherent CPFSK 

1 Sampler 

output of the coherent demodulator Yc(t, U) is sampled at rs Hz. sample period 

is by 

1 
(D.1) 
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2Nofw 

Figure D.2: Autocorrelation function of the low-pass filtered white Gaussian noise 

To simplify processing, we choose Ts such that 

(D.2) 

where Ds is a positive integer. This ensures that we have an integral number of samples 

per symbol. The sampled version of yc(t, U) is yc(iTs , U), given by 

(D.3) 

We want the samples of w(t) to be uncorrelated. The autocorrelation of w(t) is the inverse 

Fourier transform of Sw(f) in (2.38), given by 

RW(T) = 2Nofw sinc (fwT) . (D.4) 

RW(T) is shown in Figure D.2. It is clear that if we choose 'T's such that 

(D.5) 

then 

1 
Ts = fw' (D.6) 

and the noise samples w(iTs) will be uncorrelated and thus white. Formally, their auto-

correlation is 

(D.7) 

where 6i,k is the K ronecke'T' delta function, defined as 

__ /:; {1' 6i,k 

0, 

i = k 
(D.8) 

otherwise, 
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where i and k are integers. Thus as long as (D.5) is adhered to, the demodulated signal 

will consist of the transmitted signal perturbed by AWGN. As the band-width of the low

pass filters in the demodulator determine the band-width of the base-band noise, we must 

increase the band-width of the low-pass filters in the demodulator if we wish to increase 

the sampling rate, so that 

(D.9) 

D.1.2 Viterbi Processor 

As the transmitted signal in each symbol interval depends on all the previously transmitted 

symbols, we must determine the state sequence of the transmitter to detect the transmitted 

data U. This is called maximum-likelihood sequence estimation (MLSE) [For72]. Using 

the time-invariant phase trellis and the memoryless modulator, the transmitter can be 

thought of as a Markov source, that is the transmitted signal s(t, U) in the n-th symbol 

period depends only on the state of the CPE Vn and the current information symbol Un. 

Thus the output of the sampler; yc(iTs , U), consists of the output of a Markov source plus 

AWGN. 

Let us use S(U) and Yc(U) to denote the sequences s(iTs) U) and Yc(iT..~) U) respec

tively. Our problem then is to find the sequence S(U) that maximises Pr {s(U) I Yc(U)}, 

that is the probability that S(U) was the transmitted sequence given that Yc(U) was re-

ceived. is equivalent to finding the sequence S(U) that maximises the joint probability 

Pr{s(U),yc(U)} [For73], as 

Pr {s(U), Yc(U)} {s(U) I Yc(U)} Pr {Yc(U)} . (D.lO) 

However, assuming Pr {s(U)} to be a uniform distribution, Pr {s(U), Yc(U)} also factors 

as 

Pr{yc(U) I s(U)} Pr{s(U)} , (D.11) 

and our problem can be restated as finding the sequence S(U) that maximises the con

ditional probability Pr {Yc(U) I s(U)}. As discussed in Appendix C, this is a problem 

suitable for the Viterbi algorithm. 

In a CPFSK system with no external ECC, the system trellis interval is just the 

symbol period, so that the transition in the kv-th trellis interval ekv, is just the transmitted 

signal in the n-th symbol interval, which we call s(n, U) and define sampled form as 
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the vector 

where xt represents the non-conjugate transpose of x. Let the coherently-demodulated 

received signal in the n-th interval be similarly named and defined: 

,U) ... Yc([(n + l)Ds - l]Ts, u)f· 
(D.13) 

Following (C.3), we can write PI' {Yc(U) I s(U)} as 

PI' {yc(n, U) I s(n, U)} . (D.14) 

n 

The probability density function (pdf) of {yc(n, U) I s(n, U)} is that of aDs-dimension 

Gaussian random vector where each Yc (iTs, U) has mean s('iTs, U) /.,j2 and vari-

ance 2Nofw, as discussed in Section D.1.l. Thus 

PI' {yc(n, U) I s(n, U)} 

= __ 1----::~ exp ( - 4n~ofw i ly,(iT" U) - ~ "(iT,, U) 1'), (D,15) 

Before proceeding, we need to identify the different possible transitions. In each symbol 

period there are p. M unique possible transitions, which we will call reference signals. 

k' be an integer ranging from 1 to . M, used to enumerate all the possible memory less 

modulator inputs X kl. The samples of the complex envelope of the k'-th reference signal 

in the n-th symbol period are defined as 

( [
iTs - nT ]) 

exp j 2n hX1,kl + hX2,k' T + foiT..9 , 

nT::; iTs < (n + l)T, (D.16) 

The Ds samples in the n-th symbol period are denoted 

s'(n, ) s'([nD s +1]Ts ,Xk,)", s'([(n+1)Ds -1]Ts,Xk,)f· 
(D.17) 

Following (C.5) and replacing the actual transition s(n, U) with the hypothesised ones 

s'(n, X k') in (D.15), we can write the k'-th branch metric in the n-th symbol period as 

AVA (s'[n,Xk,]) 

InPr {yc(n, U) I s'(n, X k')} 

Ds 1 
2 In (4nNofw) + 4nN

o
fw 
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To minimise computation, we ignore the offset and scaling that are independent of k' so 

that our branch metrics are 

(n+1)Ds-l 

1 Yc ( iTs, U) - ·n iTs, X k' ) 12 . (D.19) 

The Viterbi algorithm then proceeds as described in Appendix C to produce an estimate 

of the transmitted data sequence fl. 

D.2 CPFSK Simulation Model 

Figure D.3 shows the model used to generate yc(iTs , U) for simulations. A modified 

CPFSK transmitter generates samples of the complex envelope of the transmitted signal 

s(iTs, U), to which the independently identically distributed, zero-mean, white, complex 

Gaussian random variables w(iTs) are added. Note that the real and imaginary compo

nents of w(iTs) are independent and that each has a variance of Nofw as we assume that 

(D.5) holds. The output of the summer is then scaled by 1/V2 to generate yc(iTsl U) as 

specified in (D.3). The scaling is not necessary, but ensures that the signal component 

of Yc (iTs) U) has energy The Viterbi processor then uses yc(iTsl U) to produce an 

estimate of the transmitted data fl, as described in Section D.1.2. 

Figure D.3: Model used to produce YC(iTSl U) for simulations of CPFSK in AWGN 
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Appendix E 

CPFSK Sampling Receiver 

Performance 

The Viterbi algorithm in the receiver operates on the signal 

(E.1) 

Note that the noise samples are zero-mean, white and Gaussian, with an autocorrelation 

given by 

(E.2) 

where 6i,k was defined in (D.S). Another important property of w(iTs) is 

(E.3) 

Let the transmitted data be given by U and the receiver's estimate of U be given 

by U. We now introduce two instances of a discrete metric that operates over the entire 

received signal. The first is based on the mean squared error (MSE) between the samples 

of the demodulated received signal yc(iTs, U) and the samples of the complex envelope of 

the transmitted signal s(iTs, U), which we define as 

(E.4) 

The second is based on the MSE between yc(iTs, U) and s(iTs, U) and defined as 

(E.5) 

As the VA chooses the metric with the smallest value, an error will occur if 

(E.6) 
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that is the distance between the received signal Yc (iTs, U) and a signal based on incorrect 

data U is less than that between yc(iTs, U) and the transmitted data U. We are interested 

in the probability of this occurance, which is called the pa.irwise proba.bility of error, and 

given by 

where we have implicitly defined 

Pr { Y(Yc, U) > Y(Yc, U) } 

Pr { Y(Yc, U) - Y(Yc, U) > 0 } 

Pr{Ye > O}, 

We note now that we can develop (E.4) as 

CXl 1 1 12 Y(Yc, U) = i];CXl yc(iTs, U) - .j2s(iTs, U) 

. f {IYc(iTs, U)1
2 

+ ~ Is(iTs, U)1
2 

- v'2Re [Yc(iTs, U) s*(iTs, U)]} 
~=-CXl 

(E.7) 

(E.8) 

CXl 1 CXl CXl 

I: lyc(iTs, U)1
2 

+ 2 I: Is(iTs, U)1
2 

- v'2 I: Re [Yc (iTs , U) s*(iTs, U)], 
~-CXl ~-CXl ~-CXl 

(E.g) 

and similarly, (E.S) can be re-written as 

CXl 1 CXl 2 CXl 

Y(Yc,U) = I: IYc(iTs,U)1
2 

+ 2 I: IS(iTs,U)1 - v'2 I: Re [yc(iTs,U) s*(iTs, u)] . 
~=-CXl i=-CXl ~=-CXl 

(E.10) 

Substituting (E.4) and (E.S) into (E.8), and noting that CPFSK signals are constant

envelope so that 

(E.1l) 

we have 

CXl CXl 

Y e v'2 I: Re [Yc(iTs, U) s*(iTs, U)] - v'2 I: Re [Yc(iTs, U)S*(iTs, U)] 
i=-CXl i=-CXl 

CXl 

v'2 I: Re [Yc (iTs , U){S* (iTs, U) - s*(iTs, un] (E.12) 

i=-CXl 
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Using (E.1) in (E.12)) we obtain 

00 

Ie = I: Re [{s(iTs)U) + w(iTs)}{s*(iTs) U) - s*(iTs1U)}] 
2=-00 

00 

= I: Re [s(iTs) U) (iTs) if) -ls(iTs) U)1
2 + 'iiJ(iTs) 

i=-oo 

(iT,~) if) - s*(iTs) U)}] . 

(E.13) 

As 'w(iTs) is Gaussian) is also Gaussian. Its mean is 

E [T ,I = E [1== Re ['(iT" U) (iT,,tJ) ~ [.,(iT" U) [' + w(iT,) (iT" U) ~"(iT" U)) l] 

Re [s(iTsl U) (iTs) if) - Is(iTsl U) 12 + E [w(iTs)] {s*(iTs) if) - s*(iTsl U)}] 

i=-oo 

00 

= L {Re [s(iTs1 U)S*(iTs) if)] -ls(iTs) U)1
2

} (E.14) 

i=-oo 

We now use (E.ll) to note that 

(E.15) 

which allows us to write (E.14) as 

E [1 e] ~ i=:OO {IS(iTs) U)1
2 + IS(iTs1 if) 12 2 Re [S(iTs1 U) ,;;*(iTs1 if)] } 

(E.16) 

We now define the normalised MSE (NMSE) between the two signals s(iTs1 U) and 

s( iTs) if) as 

2(U U~) f:, r log2 M 
00 I-('T U) -('T U

A 

)1
2 

€ ) = 4E s Z s, - S Z S1 ' 

i=-oo 

(E.17) 

Using (E.17), we can re-write (E.16) as 

E[lel 

(U, if), (E.18) 

as from (2.5)) Eb = E/(r log2M). 

Having found the mean of 1 e, we now turn our attention to its variance. We first 

note that from (E.13) and (E.14) 

= Re [w(iTs){s*(iTs) if) - (iTs, U)}] 
i=-oo 

= ~ f: ['w(iTs){S*(iTsl if) (iTs) U)} + 'w*(iTs){s(iTsl if) s(iTsl U)}] . 
t=-oo 

(E.19) 
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Using (E.19), the variance of Te is given by 

Var{Te } = E[(Te- E [Te])2] 

~ ± E [ (J:oo [w(iT,) (." (iT" U) - .,' (iT" U)) + w'(iT,)(s(iT" U) - .'(iT" U)) 1 r 1 

~ ± E [ C~ooW( iT, )(." (iT" U) - .,' (iT" U)) +,1=ooW' (iT, )(.'( iT" U) - ii( iT" U))) 

X C~ooW (kT,){ .,' (kT" U) - ii' (kT" U)) + ktoo ·w' (kT,)( s (kT" U) - s (kT" U))) 1 

= ~ ELL w(iTs)w(kTs){s*(iTs, U) - s*(iTs, U)}{s*(kTs, U) - s*(kTs, U)} 
4 . [

00 00 

2=-00 k=-oo 

00 00 

+ L L w(iTs)w*(kTs){s*(iTs, U) - s*(iTs, U)}{s(kTs, U) - s(kTs, U)} 

i=-oo k=-oo 

00 00 

+ L L w*(iTs)w(kTs){s(iTs, U) - s(iTs, U)}{s*(kTs, U) - s*(kTs, U)} 
i=-oo k=-oo 

1 00 00 

= 4 L L E [w(iTs)w(kTs)]{s*(iTs, U) - s*(iTs, U)}{s*(kTs, U) - s*(kTs, U)} 
i=-oo k=-oo 

00 00 

+ L L E [w(iTs)w*(kTs)] {s*(iTs, U) - s*(iTs, U)}{s(kTs, U) - s(kTs, U)} 
i=-oo k=-oo 

00 00 

+ L L E [w*(iTs)w(kTs)] {s(iTs, U) - s(iTs, U)}{s*(kTs, U) - s*(kTs, U)} 
i=-oo k=-oo 

00 00 

+ L L E [w*(iTs)w*(kTs)] {s(iTs, U) - s(iTs, U)}{s(kTs, U) - s(kTs, U)} 
i=-oo k=-oo 

= ~ f= f= 2Nofw bi,k {s*(iTs, U) - s*(iTs, U)}{s(kTs, U) - s(kTs, U)} 
i=-oo k=-oo 

00 00 

+ L L 2Nofw bi,k {s(iTs, U) - s(iTs, U)}{s*(iTs, U) - s*(iTs, U)} 
i=-ook=-oo 

00 

= Nofw L {s*(iTs, U) - s*(iTs, U)}{s(kTs, U) - s(kTs, U)} 
i=-oo 

00 2 

= NofwL Is(iTs,U)-s(iTs,U)1 

2 ' 
= 4NofwEb E (U, U). (E.20) 

Let us use /-LYe to denote E[Te], and at to denote Var{T e}. The probability density 
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function (pdf) of Y e is a Normal distribution, given by 

(E.21) 

The pairwise probability of error can then be written as 

Pr{Ye > O} dYe' (E.22) 

We wish to get this into a standard form. Let 

Z = 
aYe 

(E.23) 

so that 

aYe dz (E.24) 

Note that as Y e 00, Z -+ 00, and 

when Y e = 0, z (E.25) 

Using (E.23)-(E.25) in (E.22), we obtain 

Pr{Ye > O} = 

(E.26) 

where Q(x) is called the Q-function and defined as 

(E.27) 

Substituting (E.18) and (E.20) into (E.26), we find the pairwise probability of error be

tween two CPFSK signals based on the data sequences U and iJ, is given by 

Pr {Ye > O} 

(E.28) 

Let us look at the quantity £2(U, iJ)/ fw. As we have specified that fw l/Ts , we have 

M 00 A 2 

-=-- IS(iTs,U) - S(iT:~,U)1 (E.29) 

Z=-(X) 
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As we increase the sampling frequency, Ts -~ 0, so that the summation approaches an 

integration, and 

Jill l CXJ 

1 ~ 12 A -c==-- -CXJ s(t, U) - s(t, U) dt = d2 (u, U). (E.30) 

Using (E. 30) in (E.28), we obtain pairwise probability of error for a DCPFSK system is 

Pr{Ye>O} (E.31) 

The performance of the 'l"or'on,o" will be dominated by the pairwise probability of 

error of the minimum distance error event d~in' Thus probability of error for om receiver 

is 

(E.32) 

which agrees with the result in Section 2.9. 
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endix F 

CP Simulations 

Simulations on a computer must be performed in discrete-time. In this appendix we 

describe our DCPFSK simulation model and a sampling receiver for DCFPSK, which 

relates much more accuarately to the simulations that were performed. 

F.l Sampling Structure for DCPFSK 

Our sampling receiver for DCPFSK consists of three main blocks, a differential demodu

lator, a sampler, and a Viterbi processor as shown in Figure F.l. The differential demod

ulator is exactly the same as that described in Section 1. We now discuss the other two 

elements. 

1'(" (3) Differential Yd(t,f3) 
Sampler 

Yd(iTs ) (3) Viterbi fj 

Demodulator Processor 

I 

Figure F.l: A sampling receiver structure for DCPFSK 

1.1 Sampler 

The output of the differential demodulator, Yd (t, (3) is sampled at 1'8 Hz. The sample 

period Ts is equal to l/1's. To ensure that we have an integral number of samples per 

symbol, Ts is chosen such that 

(F.1) 
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where Ds is a positive integer. The sampled version of Yd(t,f3) is Yd(iT,~,f3), given by 

Yd(iTs, (3) = ~A [s(iTs, (3) (iTs - T, (3) + w(iTs) (iTs - T,(3) 

+ (iTs - T)S(iTs, (3) + w(iTs) w"'(iTs - T)]. (F.2) 

F.1.2 Viterbi Processor 

Our Viterbi processor seeks to minimise the squared Euclidean distance between the re

ceived signal and the possible transmitted signals (see Section 3.7). We use the trellis 

structure of Yd(iTs ,f3) discussed in Section 3.6 to estimate the transmitted data. Let us 

look at the noise-free version of Yd(iTs,f3). From (3.13) this is given by 

Yd(iTs , (3) ~ A s(iTs1 (3) s*(iTs (3) 

exp (i 21fh [,Bn-I + (,Bn - ,Bn-I) iTs TnT]), nT:S; iTs < (n + l)T. 

(F.3) 

In the n-th symbol period this depends only on ,Bn and ,Bn-I. discussed in Section 3.6 

there are only possible M x P combinations of ,Bn - ,Bn-I and that produce unique 

values of the signal x signal term. Let us use k' to enumerate possible combinations, 

and the 2 x 1 """'Jeu""," vector X k' to identify them. We denote the samples of the complex 

envelope of the k' -th reference signal as s' ( iTs, X k') and define them as 

IE ( . 2 h [xv (2) XV (1) iTs - nT]) V T exp J 1f k' + k' T ' 

The Ds samples in the n-th symbol period are denoted as 

s' (nD s Ts, X k' ) 

nT :s; 

s'(n, Xkl) 
, [ v 

S (nDs + l]T,slX k,) 

< (n + I)T. (FA) 

(F.5) 

Using (FA) and (F.5), the k'-th branch metric in the n-th symbol period is defined as 

(n+1)Ds-I 

AVA (s'[n,Xk,J) = /Yd(iTs1 f3) - S'(iTs,Xk,)!2. (F.6) 
i=nDs 

Viterbi algorithm then proceeds as described in Appendix C to produce an estimate 

of the transmitted data sequence U. 
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Figure F.2: Model used to produce Yd(iTs,{3) for simulations of DCPFSK in AWGN 

F.2 DCPFSK Simulation Models 

The simulation of a DCPFSK system is a much more complicated problem than that of its 

coherent counterpart. Figure F.2 illustrates how Yd(iTs, fJ) was generated for the AWGN 

simulations. A modified DCPFSK transmitter generates samples of the complex envelope 

of the transmitted signal s(iTs,fJ), to which the independently identically distributed, 

zero-mean, white, complex Gaussian random variables w~(iTs) are added. The real and 

imaginary components of w~ (iTs) are independent and each has a variance of No r s' It 

was found that a low-pass filter (LPF) was needed to obtain the best possible performance 

in the simulations. Note that in our receiver model, the LPF would be a band-pass filter 

before the differential demodulator. For the LPF, we chose to use a 2Ds-tap finite impulse 

response (FIR) filter whose transfer function is a Hamming window with a cut-off frequency 

equal to fB/2. The output of the LPF is multiplied by a copy that has been delayed by 

T and conjugated. The result is scaled by to produce Yd (iTs, fJ) as specified 

in (F.2). scaling is not necessary, but ensures that the signal x signal component of 

Yd(iTs,fJ) has energy of E. The Viterbi algorithm uses Yd(iTs,fJ) to produce an estimate 

of the transmitted data U, as described in Section F.1.2. It is important to note that the 

simulations do not use the assumptions discussed in Section 3.10, and thus they take into 

account the effect of noise x noise and signal x noise terms. 

The choice of fB is important as it significantly affects performance. The power 

in the noise x noise term increases as fB is increased, but decreasing damages the 

desired signal x signal term, and the best-performing values of fB were found empirically. 

Table F.1 shows the choice of fB for each of the cases shown in Figure 3.12. 

The simulation model used to generate Yd(iTs , fJ) for the fading simulations is shown 

in Figure F.3, which is very similar to that in Figure F.2, the only difference being the mul-
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Table F.I 

Normalised cut-off frequency of noise-limiting filter for various DCPFSK schemes 

Scheme fBT 

DMSK 1.0 

4-DCPFSK 2.5 

8-DCPFSK 2.5 

tiplication of s( iT.~, j3) by z( iTs). The samples of the fading process z( iTs) were generated 

using the model in [Jak74], which simply sums up a number of appropriately-weighted 

offset oscil1ators. It was found that 15 oscillators produced an adequate representation of 

a Rayleigh flat fading process. 

Figure F.3: Model used to produce Yd(iTs,j3) for simulations of DCPFSK in Rayleigh 

flat fading 
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Appendix 

I de Search s 

In this appendix we present the full results of the code searches. When more than one 

code is given for a particular set of parameters, the given codes have the same d~in to four 

decimal places. Tables G.1-G.3 list the best codes found for rate-1/2 encoded 4-CPFSK 

and 4-DCPFSK. rate-2/3 codes, it was found that the codes performed exactly the 

same for both 8-CPFSK and 8-DCPFSK, so the results in Table G.4 are not separated for 

the coherent and differential cases. 

It must be noted that these are the best codes for CPFSK and DCPFSK sys

tems using feedback-free continuous phase encoders (CPE's) 1 for standard CPFSK and 

DCPFSK systems (systems employing feedback CPE's), the given codes G(D) should be 

scrambled by (D) to produce 

G(D) G(D) . Tl(D), (G.1) 

which are suitable for feedback systems. In the case of the rate-1/2 coded quaternary 

systems, the form of the scrambler is 

(G.2) 

and the form of the scrambler for the rate-2/3 coded octal systems is 

(D) 
[ 

1 7 01 ° 1 7 . 

7D 0 1 

(G.3) 
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Table G.l 

Search results for rate-1/2 encoded 4-CPFSK and 4-DCPFSK 

Coherent Differential 

By v d~in G(D) d~in G(D) 

I [1 2D\1] , [2D
1
+l 1] , [1 2D\1] 1 [2D\1 1] , 

4 1 3.15 [D+2 1] ) 3.00 [D+2 1] ) 

[1 2D + 1]) [2D + 1 1] [1 2D + 1], [2D + 1 1] 

8 1 4.09 [ D+l 
2D+l 1]) [1 2D+l] 

Dtl 
4.00 [ D+l 

2D+l 1]) [1 2Dtl ] 
D+l 

[1 D+2 ] 
2D2+3D±l ) 

16 2 5.15 3D+2 1] [2D
2
+3D+2 1] 4.94 [ D

2
±3D+2 1] , .2D"+3D+l ) D+l 2D+l 

[1 
2D2+D±2 ] 

D+l 

I I [ D±2 1] [ 2D2+D+2 1] ) 2D3+D+l ) 2D3+2D2+3D+l 16 entries, 
32 3 6.00 5.45 

[ 2D3+D+2 1], 
[ 2D3+2D2+D+2 

1] 
see Table G.2 

2D2+D+l 3D+l 

[ D3±2D
2
±3 1], [1 

2D3+D2+3· 
[1 

D2+D±2 ] 
2D3+D2+2D+l D';+2D+l ) 2D3+D2+3D+l ) 

64 3 6.42 [1 
2D

3
±3D

2
±2D

2
+3 ] 

3D3+2D2±l ' 
6.39 [ D3+3D2+D2±2 

2D2+D+l 1] ) 

I 

[ 3D
3
+2D+3 

2D:l+3D2+1 1] [1 
~D3±3D2+D2+2 ] 

3D2+D+l 

[ D4±3D2 +2D+l 
2D4+D3+2D2+1 1] , 

[ D4+2D3±D2+1 
2D4+D3+2D+l 1] ) 

[1 
2D

4
±D

3
+2D±1] 

D4+2D3+D2+1 ' 

[1 
2D4+D3+2D2 +1 ] 
D4+3D2+2D+l ' 38 entries, 

128 4 7.60 7.00 

[1 
2D4 +3D3+1 ] see Table G. 3 

3D4+2D3+D2+2D+l ' 

[1 
2D4+3D3 +2D2+2D+l 

3D4+3D~+1 
, 

[ 3D
4
+3D

2
+1 

2D4+3D3+2D2+2D+l 1] ) 

[ 3D4 +2D3+D2+2D+l 
2D4+3D3+1 1 ] 
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Table G.2 

Search results for rate-l/2 encoded 4-DCPFSK with v = 3, Sv = 32 and d~in = 5.45 

G(D) 

2D
2
+3D+l] 

3D2+D+l ' 

[~g~!g!i 1], [231W:3~~\ 1], [?~t~g~!i 1], [2Df~tEf~t~+1 1], 

[1 
2D3+D2+1] [1 2D3+D2+1] [2D

3
+D

2
+3D+l 1] [2D

3
+D

2
+3D+l 1] 

D3+2D2+1' 3D3+2D+l' D+l ' 3D+l ' 

2D
3
+3D

2
+2D+l] [1 2D

3
+3D

2
+2D+l] [3D

3
+2D+l 1] [3D

3
+2D+l 1] 

D3+2D2+1' 3D3+2D+l' 2D3+D2+1 '2D3+3D2+2D+l 

Table G.3 

Search results for rate-l/2 encoded 4-DCPFSK with v = 4, Sv = 128 and d~in = 7.00 

G(D) 

[1 D2+D+2 ] [1 
2D4+2D3+D2+3D+l ' 

D
2
+3D+2 ] 

2D4+2D3+3D2+D+l ' [1 D
3
+3D+2 ] 

2D4+D3+2D2+2D+l ' 

[1 2D
3
+D+2 ] 

2D4+3D3+2D2+D+l ' [1 2D3+D2+D+2 ] 
3D4+2D3+D2+D+l ' [1 2D3+D2+3D+2 ] 

D4+3D3+D2+1 ' 

[ 3D
3
+D

2
+D±2 

2D3+3D2+2D+l 
1] [3D

3
+2D

2
+D+2 

' 2D3+3D2+3D+l 1], [1 
3D3+2D2+3D+2 ] 

2D4+3D3+1 ' 

[ 3D
3
+3D

2
+D+2 

2D3+3D2+1 1] , [ D
4
+2D

2
+3D+2 

2D4+3D3+3D2+3D+ 1 1] , [ D 4+D3+D2+3D+2 
2D4+3D3+2D+l 1] , 

[ D 4+2D3+3D+2 
2D4+3D3+D2+D+l 

1] [ D 4
+2D3+2D

2
+D+2 

' 2D3+3D2+1 1] , [D
4
+3D

3
+3D

2
+3D+2 

2D4+3D3+2D2+1 1] , 

2D
4
+D

2
+3D+2 ] [1 2D

4
+3D

2
+D+2] [1 

D4+3D3+D2+2D+l ' 2D3+D2+D+l' 

2D4+3D2+3D+2] [2D
4
+D

3
+D

2
+D+2 1], [1 

3D4+3D3+3D2+1' 3D2+2D+l 
2D4+D3+2D

2
+3D+2] 

D3+2D2+1 ' 

2D
4
+2D

3
+D

2
+3D+2] 

D2+D+l ' 

2D4 +3D3+3D+2] [2D4+3D3+2D2+D+2 
3D3+2D+l' D2+3D+l 

[ 
3D4+2D3+3D+2 

2D4+D3+3D2+D+l 
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Table G.4 

Search results for rate-2/3 encoded 8-CPFSK and 8-DCPFSK 

(the * indicates that the search was not complete) 

8 1 2.18 

16 1 2.81 

32 2 2.93* 

G(D) 

[~ 

[~ 

[~ ~ 

[~ ~ 

[~ ~ 

o 41)-1-
61 [01 0 31)+1 

2 ' 
1 31)+1 1 

4D+6] 
51)+1 

2 ' 
51)+1 

6 ] 21)+1 

41)+2 ' 
21)+1 

[~ ~ 

[~ ~ 

41)+6] 71)+1 

2 ' 
7D+1 

6 ] 31)+1 

41)+2 ' 
31)+1 

[~ o 6D + 4], [1 0 ~~!i] 
1 4D + 2 0 1 41)+2 

41)+1 

21)+4 ] 
31)2+41)+1 

1)+1 

156 



G 

AWGN 

BER 

BPF 

CE 

CPE 

CPFSK 

CPM 

DCPE 

DCPED 

DCPFSK 

DCPM 

DMSK 

DPSK 

ECC 

FSK 

GSM 

GMSK 

LPF 

M-CPFSK 

M-DCPFSK 

MLSE 

MM 

MSK 

NISED 

NMSED 

NSED 

pdf 

psd 

PPE 

PSK 

RHS 

SED 

SNR 

endix 

of Abbreviate 

additve white Gaussian noise 

bit error rate 

band-pass filter 

channel encoder 

continuous phase encoder 

continuous phase frequency shift keying 

continuous phase modulation 

differential continuous phase encoder 

differential continuous phase encoder I decoder 

differentially-encoded and differentially-demodulated CPFSK 

differentially-encoded and differentially-demodulated CPM 

differential minimum shift keying 

differential phase shift keying 

error-control coding 

frequency shift keying 

Global System for Mobile Communications 

Gaussian minimum shift keying 

left-hand side 

low-pass filter 

M -ary CPFSK with h 

M-ary DCPFSK with h 

11M 

11M 
maximum-likelihood sequence estimation 

memoryless modulator 

minimum shift keying 

normalised incremental squared Euclidean distance 

normalised minimum squared Euclidean distance 

normalised squared Euclidean distance 

probability density function 

power spectral density 

pairwise probability of error 

phase shift keying 

right-hand side 

squared Euclidean distance 

signal-to-noise ratio 
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B 

C(D) 

CI(D) 

C(D) 

Cl(D) 

d2(U,U) 

d;(U,U) 

d~in 
D 

Ds 

D 

E 

Eb 

GS,i 

E(D) 

f 
fe 

f1 
fo 

fB 

endix I 

Gloss fS ols 

vector of 1 1 uncoded lv'I -ary symbols input to the channel 

encoder in the kv-th trellis interval 

matrix in Gaussian quadratic form 

elements of A 

vector of 1 coded M -ary symbols output by the channel encoder 

in the kv-th trellis interval 

modulo base of the differential encoder 

vector of 21 coded M-ary symbols output by C1(D) in the kv-th 
trellis interval 

vector of 21 coded M-ary symbols output by Fl(D) in the kv-th 

trellis interval 

transfer function of the feedback CPE 

equivalent 1 x 2l version of C (D) 

transfer function of the feedback-free CPE 

equivalent 1 x 21 version of C(D) 

normalised SED between two CPFSK signals, s(t, U) and s(t, U) 

normalised incremental SED between two CPFSK signals, 

s(t, U) and s(t, U) in the n-th symbol period 

normalised minimum SED of a (D) CPFSK scheme 

a dummy variable representing delay 

number of samples per symbol (integer value) 

the set of all NSEDs for a particular code 

symbol energy 

bit energy 

the i-th error event starting from the state S 

transfer function of the differential encoder 

variable representing frequency 

carrier frequency 

asymmetric carrier frequency 

frequency representing the difference between f e and f 1 

one-sided band-width of at the input of differential 

demodulator 

one-sided band-width of LPFs at the output of demodulators 

159 



fw 

fD 

F(D) 

F1(D) 

F(D) 

F1(D) 

9ik(D) 

9-1,i 

GYe(e) 

G(D) 

G(D) 
h 

hc,I,Un (t) 

hc,Q,un (t) 

h . . (t) 
d,I,,Bn -,Bn-l 

h . . (t) 
d,Q,,Bn-,Bn-l 

k 

kM 

k1 ,n 

k2 ,n 

kn 

k' 

kv 
K 

L 

M 

n 

one-sided band-width of w(t) 

maximum Doppler shift 

transfer function of the feedback DCPED 

equivalent l x 2l version of F(D) 

feedback-free version of F(D) 

equivalent l x 2l version of F(D) 

elements of G (D) 

the i-th residue of 

characteristic function of Y e 

transfer function of the channel encoder 

scrambled version of G(D) 

modulation index 

impulse response of in-phase matched filter in coherent receiver 

impulse response of quadrature matched filter in coherent 

receiver 

impulse response of in-phase matched filter in differential receiver 

impulse response of quadrature matched filter in differential 

receiver 

general purpose index 

the Ns x Ns identity matrix 

the square root of 1 

infinite correlation performed in coherent receiver to determine U 

semi-infinite correlation performed in coherent receiver to 
determine U 

infinite correlation performed in differential receiver to 

determine U 

semi-infinite correlation performed in differential receiver to 

determine U 

general purpose index or integer 

positive integer relating M and P 

non-negative integer less than kM 

non-negative integer less than kM 

integer used in NMSED of DCPFSK calculations 

index used to enumerate signals in VA 

index used to identify system trellis intervals 

numerator of h 

number of symbols output by the channel encoder 

number of transmitted symbols (in system trellis intervals) 

size of symbol alphabet 

index representing symbol period 

number of different values that the 2l-th element in bkv takes 

before the channel encoder merges to the zero state 

one-sided psd of white noise 

total number of elements in vectors used in fading performance 

calculations 

probability density function of Y e 

denominator of h 

probability of bit error 
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q(t) 

Q(x) 

r 

r(t, U) 

f(t-T,U) 

Rw(T) 

Rrr 

R(D) 
s(t, U) 

s(t, (3) 

sr(t, U) 

sQ(t, U) 

S(T,Xn) 

Sf(T, Xn) 

SQ(T,Xn) 

Sw(f) 

SG 

Sv 

Sky 

Sky 
t 

T 

Tb 

Ts 

T(D) 

Tl(D) 

u(t) 

Un 

U 

Yc(t, U) 

Yd(t, U) 

Yd(t, (3) 

z(t) 

phase response of CPFSK 

the Q-function 

information bit-rate of the channel encoder 

sampling rate 

received 

T-delayed and 11" /2-phase shifted version of r(t, U) 

autocorrelation of w(t) 

the autocorrelation matrix of r 
transfer function of the differential decoder 

transmitted CPFSK signal 

transmitted DCPFSK signal 

symmetric in-phase component of s(t, U) 

symmetric quadrature component of s(t, U) 

output of the memory less modulator in the n-th symbol period 

asymmetric in-phase component of S(T, Xn) 

asymmetric quadrature component of s( T, X n) 

power spectral density of w(t) 

number of states in the channel encoder 

number of states in the overall encoder 

state of the transmitter in the kv-th trellis interval 

state of the receiver in the kv-th trellis interval 

variable representing time 

symbol period 

bit period 

sample period 

transfer function of the scrambler 

equivalent l x l version of T(D) 

the unit step function 

uncoded 1v1-ary symbol at the input of the CPE in the n-th 
symbol period 

vector of successive Un 

accumulated symbol phase of the transmitted DCPFSK signal in 
the n-th symbol period 

accumulated symbol phase of the transmitted CPFSK signal in 
the n-th symbol period 

vector of successive Vn 

Gaussian noise process 

number of information 

input to the memory less modulator in the n-th symbol period 

differential input to the memoryless modulator in the n-th 

symbol period 

coherently-demodulated CPFSK signal 

differentially-demodulated CPFSK signal 

differentially-demodulated DCPFSK signal 

narrow-band Rayleigh flat fading process 

ring of integers modulo-P 
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,8,m 

( 

7](8, /', (, d) 

v 

T 

Y e 

Y(Yd,(3) 

CPo 

4>n 
<1?n 

W(t, U) 

1jJ(t,U) 

1jJ(T,Xn ) 

Wd(t,(3) 

1/Jd(t, (3) 

Wi 

~i 

fln - 1 

(t) 
.i(t) 

XI(t) 

standard CPM symbols 

output of the differential encoder in the n-th symbol period 

vector of successive fin 

the Kronecker delta function 

the delta function 

an event used in calculating the performance of coded 

(D )CPFSK systems 

an event used in calculating the performance of coded 

(D)CPFSK systems 

normalised SED between two encoded sequences, Ckv and Ckv, in 
the kv-th trellis interval 

length of an error event (in system trellis intervals) 

the number of error events starting from state 8, assuming the 

trellis is infinite, having /, information bit errors, a length of ( 
trellis intervals and a NSED equal to d2 

term used in NMSED of DCPFSK calculations 

number of bit errorS in an error event 

the i-th eigenvalue of RfrA 

metric used in coherent receiver to perform sequence estimation 

ofU 

metric used in coherent receiver to perform sequence estimation 

ofU 

metric used in differential receiver to perform sequence 

estimation of U 

metric used in differential receiver to perform sequence 

estimation of U 

the number of delay cells in the encoder 

dummy variable used to transform GYe (e) 

poles of GYe (e) 

the error coefficient for error events with NSED equal to d2 

alternate time variable 

error metric used in performance calculations 

metric used in performance calculations 

initial phase offset 

frequency term in Yd(t, (3) in the n-th symbol period 

difference between fin and fin 

tilted phase 

physical tilted phase 

physical tilted phase in the n-th symbol period 

differentially-demodulated tilted phase 

physical differentially-demodulated tilted phase 

difference between 8'i and Gi 

difference between 8 i and Gi plus a multiple of P 

phase term in Yd (t, (3) in the n-th symbol period 

the complex conjugate of x(t) 

the complex envelope of x(t) 

the in-phase component of x(t) 
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xQ(i) the quadrature component of x(i) 

x(t) an estimate (or hypothesised value) of x(t) 

x(D) delay polynomial of x 

x t the non-conjugate transpose of x 

x H the conjugate transpose of x 
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